JP2019148305A5 - - Google Patents

Download PDF

Info

Publication number
JP2019148305A5
JP2019148305A5 JP2018033793A JP2018033793A JP2019148305A5 JP 2019148305 A5 JP2019148305 A5 JP 2019148305A5 JP 2018033793 A JP2018033793 A JP 2018033793A JP 2018033793 A JP2018033793 A JP 2018033793A JP 2019148305 A5 JP2019148305 A5 JP 2019148305A5
Authority
JP
Japan
Prior art keywords
tube
polyethylene resin
cooling system
automobile cooling
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018033793A
Other languages
Japanese (ja)
Other versions
JP7154775B2 (en
JP2019148305A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2018033793A priority Critical patent/JP7154775B2/en
Priority claimed from JP2018033793A external-priority patent/JP7154775B2/en
Priority to PCT/JP2019/007207 priority patent/WO2019167919A1/en
Publication of JP2019148305A publication Critical patent/JP2019148305A/en
Publication of JP2019148305A5 publication Critical patent/JP2019148305A5/ja
Application granted granted Critical
Publication of JP7154775B2 publication Critical patent/JP7154775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上記の目的を達成するため、本発明は、下記の(A)成分を主成分とし、下記の(B)成分を含有するポリエチレン樹脂組成物の架橋体からなる自動車用冷却システム用チューブを第一の要旨とする。
(A)フィリップス触媒により重合されたポリエチレン樹脂にエチレン性不飽和シラン化合物がグラフト重合されてなる、シラングラフトポリエチレン樹脂。
(B)アルミニウム系架橋触媒。
In order to achieve the above object, the present invention first comprises a tube for an automobile cooling system composed of a crosslinked product of a polyethylene resin composition containing the following component (A) as a main component and the following component (B) as a main component. It is the summary of.
(A) A silane graft polyethylene resin obtained by graft-polymerizing an ethylenically unsaturated silane compound onto a polyethylene resin polymerized by a Phillips catalyst.
(B) an aluminum-based crosslinking catalysts.

また、本発明は、上記第一の要旨の自動車用冷却システム用チューブの製造方法であって、下記の[I]〜[III]に示す工程をこの順で備えている自動車用冷却システム用チューブの製造方法を第二の要旨とする。
[I]下記(A)成分を主成分とし、下記の(B)成分を含有するポリエチレン樹脂組成物を、チューブ状に溶融押出成形し、未架橋チューブを得る工程。
(A)フィリップス触媒により重合されたポリエチレン樹脂にエチレン性不飽和シラン化合物がグラフト重合されてなる、シラングラフトポリエチレン樹脂。
(B)アルミニウム系架橋触媒。
[II]上記未架橋チューブを、40〜95℃、湿度50〜100RH%の条件下で、0.5〜24時間、湿熱処理する工程。
[III]上記湿熱処理後のチューブを、100〜120℃で5〜60分間、乾熱処理する工程。
Further, the present invention is a method for manufacturing a tube for an automobile cooling system according to the first gist of the above, and the tube for an automobile cooling system including the steps shown in the following [I] to [III] in this order. The second gist is the manufacturing method of.
[I] A step of melt-extruding a polyethylene resin composition containing the following component (A) as a main component and containing the following component (B) into a tube shape to obtain an uncrosslinked tube.
(A) A silane graft polyethylene resin obtained by graft-polymerizing an ethylenically unsaturated silane compound onto a polyethylene resin polymerized by a Phillips catalyst.
(B) an aluminum-based crosslinking catalysts.
[II] A step of moisturizing the uncrosslinked tube under the conditions of 40 to 95 ° C. and a humidity of 50 to 100 RH% for 0.5 to 24 hours.
[III] A step of dry heat-treating the tube after the wet heat treatment at 100 to 120 ° C. for 5 to 60 minutes.

すなわち、本発明者らは、前記課題を解決するため鋭意研究を重ねた。その研究の過程で、本発明者らは、自動車用冷却システム用チューブの材料として当然に要求される防水性を備えつつ、材料費が安く、耐加水分解性の高い材料として、ポリエチレン樹脂を使用することを検討した。しかしながら、ポリエチレン樹脂からなるチューブは、強度に乏しく、例えば、自動車用冷却システム用チューブとして実際に使用した際にかかる内圧(水圧)により、亀裂進展に至る懸念がある。また、ポリエチレン樹脂は、耐熱性能や低温脆性が悪く、このことが、自動車用冷却システム用チューブの材料として従来使用されてこなかった一因でもある。そこで、本発明者らは、これらの問題を解決するため、上記ポリエチレン樹脂として、高結晶性を示す、フィリップス触媒により重合されたポリエチレン樹脂にエチレン性不飽和シラン化合物がグラフト重合されてなる、シラングラフトポリエチレン樹脂(A)を使用し、チューブ強度を高めることを検討した。しかしながら、上記のような特定のシラングラフトポリエチレン樹脂(A)を使用した場合であっても、その架橋密度が適正でないと、自動車用冷却システム用チューブとして実使用に耐えうるほどの強度等を得ることができないことが、各種実験により明らかとなった。すなわち、上記特定のシラングラフトポリエチレン樹脂(A)の架橋密度が高過ぎると、結晶性を低下させることから、低温脆性を悪化させる等の問題が生じ、逆に、上記特定のシラングラフトポリエチレン樹脂(A)の架橋密度が低過ぎても、チューブ強度を低下させる問題が生じた。そこで、上記特定のシラングラフトポリエチレン樹脂(A)に対して適正な架橋密度を示し得る架橋触媒を見いだすべく、各種実験を行った。その結果、アルミニウム系架橋触媒(B)を、上記特定のシラングラフトポリエチレン樹脂(A)に対して使用したときに、自動車用冷却システム用チューブとして実使用に耐えうるほどの強度等を得ることができたことから、これにより、所期の目的が達成できることを見いだし、本発明に到達した。
なお、シラングラフトポリエチレン樹脂の架橋触媒として従来から多用されている有機錫を、上記特定のシラングラフトポリエチレン樹脂(A)に使用した場合、架橋密度が高過ぎ、良好な低温脆性評価を得ることができなかった。
That is, the present inventors have conducted intensive studies to solve the above-mentioned problems. In the process of the research, the present inventors used polyethylene resin as a material having low material cost and high hydrolysis resistance while having the waterproof property naturally required as a material for a tube for an automobile cooling system. I considered doing it. However, the tube made of polyethylene resin has poor strength, and for example, there is a concern that cracks may grow due to the internal pressure (water pressure) applied when the tube is actually used as a tube for an automobile cooling system. In addition, polyethylene resin has poor heat resistance and low temperature brittleness, which is one of the reasons why it has not been used as a material for tubes for automobile cooling systems. Therefore, in order to solve these problems, the present inventors graft-polymerize an ethylenically unsaturated silane compound onto a polyethylene resin polymerized by a Phillips catalyst, which exhibits high crystallinity, as the above-mentioned polyethylene resin. It was examined to increase the tube strength by using the graft polyethylene resin (A). However, even when the specific silane graft polyethylene resin (A) as described above is used, if the crosslink density is not appropriate, the strength and the like that can withstand actual use as a tube for an automobile cooling system can be obtained. Various experiments have revealed that this is not possible. That is, if the crosslink density of the specific silane graft polyethylene resin (A) is too high, the crystallinity is lowered, which causes problems such as deterioration of low temperature brittleness. On the contrary, the specific silane graft polyethylene resin (A) Even if the crosslink density of A) was too low, there was a problem of lowering the tube strength. Therefore, various experiments were conducted in order to find a cross-linking catalyst capable of exhibiting an appropriate cross-linking density with respect to the specific silane graft polyethylene resin (A). As a result, aluminum-based crosslinking catalysts and (B), when used with respect to the specific silane-grafted polyethylene resin (A), the obtaining the strength and the like of higher withstand practical use as a tube for automotive cooling systems Therefore, it was found that the intended purpose could be achieved by this, and the present invention was reached.
When organic tin, which has been widely used as a cross-linking catalyst for a silane graft polyethylene resin, is used for the specific silane graft polyethylene resin (A), the cross-linking density is too high and a good low-temperature brittleness evaluation can be obtained. could not.

以上のように、本発明の自動車用冷却システム用チューブは、フィリップス触媒により重合されたポリエチレン樹脂にエチレン性不飽和シラン化合物がグラフト重合されてなる、シラングラフトポリエチレン樹脂(A)を主成分とし、アルミニウム系架橋触媒(B)を含有するポリエチレン樹脂組成物の架橋体からなるものである。そのため、本発明の自動車用冷却システム用チューブは、防水性、耐熱性等といった、自動車用冷却システム用チューブの基本性能を備えつつ、低コストで、耐加水分解性と強度等との両立を実現することができる。また、本発明の自動車用冷却システム用チューブは、軽量であることから、自動車の軽量化に寄与することもできる。さらに、本発明の自動車用冷却システム用チューブは、環境懸念物質として知られる有機錫を含まないため、環境面の上でも有用である。 As described above, the tube for an automobile cooling system of the present invention contains a silane graft polyethylene resin (A) as a main component, which is obtained by graft-polymerizing an ethylenically unsaturated silane compound with a polyethylene resin polymerized by a Phillips catalyst. those comprising a crosslinked body of a polyethylene resin composition containing an aluminum-based crosslinking catalysts (B). Therefore, the tube for an automobile cooling system of the present invention has the basic performances of a tube for an automobile cooling system such as waterproofness and heat resistance, and at a low cost, achieves both hydrolysis resistance and strength. can do. Further, since the tube for the automobile cooling system of the present invention is lightweight, it can also contribute to the weight reduction of the automobile. Furthermore, since the tube for an automobile cooling system of the present invention does not contain organotin, which is known as an environmentally concerned substance, it is also useful in terms of the environment.

また、上記(B)成分が、アルミニウムトリスアセチルアセトナートであると、架橋密度がより適正となり、亀裂進展の抑制効果等に、より優れるようになる。 Further, the component (B), if it is A Rumi iodonium tris acetylacetonate, crosslink density becomes more appropriate, the suppression effect like the crack growth, so more excellent.

そして、本発明の自動車用冷却システム用チューブの製造方法として、下記の[I]〜[III]に示す工程をこの順で行うと、上記のような優れた性能を有する自動車用冷却システム用チューブを、良好に製造することができる。
[I]下記(A)成分を主成分とし、下記の(B)成分を含有するポリエチレン樹脂組成物を、チューブ状に溶融押出成形し、未架橋チューブを得る工程。
(A)フィリップス触媒により重合されたポリエチレン樹脂にエチレン性不飽和シラン化合物がグラフト重合されてなる、シラングラフトポリエチレン樹脂。
(B)アルミニウム系架橋触媒。
[II]上記未架橋チューブを、40〜95℃、湿度50〜100RH%の条件下で、0.5〜24時間、湿熱処理する工程。
[III]上記湿熱処理後のチューブを、100〜120℃で5〜60分間、乾熱処理する工程。
Then, as a method for manufacturing a tube for an automobile cooling system of the present invention, when the steps shown in the following [I] to [III] are performed in this order, the tube for an automobile cooling system having the above-mentioned excellent performance is performed. Can be satisfactorily manufactured.
[I] A step of melt-extruding a polyethylene resin composition containing the following component (A) as a main component and containing the following component (B) into a tube shape to obtain an uncrosslinked tube.
(A) A silane graft polyethylene resin obtained by graft-polymerizing an ethylenically unsaturated silane compound onto a polyethylene resin polymerized by a Phillips catalyst.
(B) an aluminum-based crosslinking catalysts.
[II] A step of moisturizing the uncrosslinked tube under the conditions of 40 to 95 ° C. and a humidity of 50 to 100 RH% for 0.5 to 24 hours.
[III] A step of dry heat-treating the tube after the wet heat treatment at 100 to 120 ° C. for 5 to 60 minutes.

本発明の自動車用冷却システム用チューブは、先に述べたように、フィリップス触媒により重合されたポリエチレン樹脂にエチレン性不飽和シラン化合物がグラフト重合されてなる、シラングラフトポリエチレン樹脂(A)を主成分とし、アルミニウム系架橋触媒(B)を含有するポリエチレン樹脂組成物の架橋体からなるものである。ここで「主成分」とは、上記ポリエチレン樹脂組成物としての特性に大きな影響を与える成分のことであり、通常は、上記ポリエチレン樹脂組成物全体の50重量%以上が、上記特定のシラングラフトポリエチレン樹脂(A)であるものを示す。そして、上記ポリエチレン樹脂組成物における樹脂成分が、上記特定のシラングラフトポリエチレン樹脂(A)のみからなるものであることが、本発明の作用効果を効果的に得る観点から、望ましい。なお、上記特定のシラングラフトポリエチレン樹脂(A)以外の樹脂成分を含む場合、その樹脂成分としては、例えば、上記特定のシラングラフトポリエチレン樹脂(A)以外のポリエチレン樹脂、ポリプロピレン樹脂、エチレン・α−オレフィン共重合体、プロピレン・α−オレフィン共重合体、エチレン・アクリル酸共重合体等を、単独でもしくは二種以上併用されたものがあげられる。
また、本発明の自動車用冷却システム用チューブは、上記ポリエチレン樹脂組成物の架橋体からなるものであり、通常、図1に示すような単層構造であるが、必要に応じ、樹脂層や補強糸層を更に積層し、上記ポリエチレン樹脂組成物の架橋体からなる層を備えた、多層構造のチューブとしてもよい。
As described above, the tube for an automobile cooling system of the present invention contains a silane graft polyethylene resin (A) as a main component, which is obtained by graft-polymerizing an ethylenically unsaturated silane compound with a polyethylene resin polymerized by a Phillips catalyst. and then, it is made of a crosslinked polyethylene resin composition containing an aluminum-based crosslinking catalysts (B). Here, the "main component" is a component that has a great influence on the characteristics of the polyethylene resin composition, and usually, 50% by weight or more of the whole polyethylene resin composition is the specific silane graft polyethylene. The resin (A) is shown. Then, it is desirable that the resin component in the polyethylene resin composition is composed of only the specific silane graft polyethylene resin (A) from the viewpoint of effectively obtaining the effects of the present invention. When a resin component other than the specific silane graft polyethylene resin (A) is contained, the resin component includes, for example, a polyethylene resin other than the specific silane graft polyethylene resin (A), a polypropylene resin, ethylene / α-. Examples thereof include those in which an olefin copolymer, a propylene / α-olefin copolymer, an ethylene / acrylic acid copolymer and the like are used alone or in combination of two or more.
Further, the tube for an automobile cooling system of the present invention is made of a crosslinked product of the polyethylene resin composition, and usually has a single-layer structure as shown in FIG. 1, but if necessary, a resin layer or reinforcement is used. A tube having a multi-layer structure may be formed by further laminating a thread layer and having a layer made of a crosslinked body of the polyethylene resin composition.

《架橋触媒(B)》
一方、本発明に用いる架橋触媒(B)としては、先に述べたように、アルミニウム系架橋触媒が使用される。上記架橋触媒は、単独でもしくは二種以上併せて用いられる。上記架橋触媒は、アルミニウムのカルボン酸塩、有機塩基、無機酸、および有機酸である。具体的には、アルミニウムトリスアセチルアセトナート等が好ましく用いられる。
<< Crosslink catalyst (B) >>
Meanwhile, as the crosslinking catalyst used in the present invention (B), as previously described, the aluminum-based crosslinking catalysts are used. The above-mentioned cross-linking catalyst may be used alone or in combination of two or more. The crosslinking catalyst is a carboxylate of aluminum, organic bases, inorganic acids, and organic acids. Specifically, aluminum tris acetyl acetate toner collected by the like are preferably used.

また、上記架橋触媒(B)が、アルミニウムトリスアセチルアセトナートであると、架橋密度がより適正となり、亀裂進展の抑制効果等に、より優れるようになるため、好ましい。そして、上記観点から、上記架橋触媒(B)が、アルミニウムトリスアセチルアセトナートのみからなることが、より好ましい。 Further, the crosslinking catalyst (B) is, if it is A Rumi iodonium tris acetylacetonate, crosslink density becomes more appropriate, since the suppression effect like the crack growth, so more excellent, preferably. From the above viewpoint, it is more preferable that the cross-linking catalyst (B) is composed only of aluminum trisacetylacetonate.

つぎに、本発明の実施例について、参考例、比較例と併せて説明する。ただし、本発明はこれら実施例に限定されるものではない。 Next, examples of the present invention will be described together with reference examples and comparative examples. However, the present invention is not limited to these examples.

まず、実施例、参考例および比較例に先立ち、下記に示す材料を準備した。なお、下記の材料において、ベースポリエチレン(ベースPE)(1)〜(4)の溶融粘度は、JIS K 7199に準拠し、キャピラリーレオメーター(キャピログラフ1D、東洋精機社製)により、200℃、せん断速度121sec-1の条件で測定される溶融粘度を示す。 First, the materials shown below were prepared prior to Examples, Reference Examples and Comparative Examples. In the following materials, the melt viscosities of the base polyethylenes (base PEs) (1) to (4) conform to JIS K 7199 and are sheared at 200 ° C. by a capillary rheometer (capillary rheometer, manufactured by Toyo Seiki Co., Ltd.). The melt viscosity measured under the condition of speed 121sec -1 is shown.

[実施例1〜参考例1,2、比較例1,2]
後記の表1に示す重量割合および組合せで、ベースPE、過酸化物、およびシラン化合物を混合し、温度180℃の条件の下、溶融混練によりシラングラフトポリエチレン樹脂を調製した。なお、後記の表1に示す「シラングラフトポリエチレン樹脂密度」は、JIS K 7112に準拠して測定された値である。
ついで、上記シラングラフトポリエチレン樹脂に対し、後記の表1に示す重量割合および組合せで、架橋触媒を混合することにより、ポリエチレン樹脂組成物を調製した。
[Examples 1 to 4 , Reference Examples 1 and 2, Comparative Examples 1 and 2]
The base PE, peroxide, and silane compound were mixed in the weight ratios and combinations shown in Table 1 below, and a silane graft polyethylene resin was prepared by melt-kneading under the condition of a temperature of 180 ° C. The "silane graft polyethylene resin density" shown in Table 1 below is a value measured in accordance with JIS K 7112.
Then, a polyethylene resin composition was prepared by mixing a cross-linking catalyst with the above-mentioned silane graft polyethylene resin in the weight ratio and combination shown in Table 1 below.

このようにして得られた実施例、参考例および比較例の押出成形品(サンプル)に対し、下記の基準に従って、各特性の評価を行った。その結果を、後記の表1に併せて示した。 The extruded products (samples) of Examples, Reference Examples and Comparative Examples thus obtained were evaluated for their respective characteristics according to the following criteria. The results are also shown in Table 1 below.

Figure 2019148305
Figure 2019148305

Claims (5)

下記の(A)成分を主成分とし、下記の(B)成分を含有するポリエチレン樹脂組成物の架橋体からなることを特徴とする自動車用冷却システム用チューブ。
(A)フィリップス触媒により重合されたポリエチレン樹脂にエチレン性不飽和シラン化合物がグラフト重合されてなる、シラングラフトポリエチレン樹脂。
(B)アルミニウム系架橋触媒。
A tube for an automobile cooling system, which comprises a crosslinked body of a polyethylene resin composition containing the following component (A) as a main component and containing the following component (B).
(A) A silane graft polyethylene resin obtained by graft-polymerizing an ethylenically unsaturated silane compound onto a polyethylene resin polymerized by a Phillips catalyst.
(B) an aluminum-based crosslinking catalysts.
上記(A)成分における、フィリップス触媒により重合されたポリエチレン樹脂の溶融粘度が、1000〜3000Pa・sである、請求項1記載の自動車用冷却システム用チューブ。 The tube for an automobile cooling system according to claim 1, wherein the polyethylene resin polymerized by the Philips catalyst in the component (A) has a melt viscosity of 1000 to 3000 Pa · s. 上記(B)成分が、アルミニウムトリスアセチルアセトナートである、請求項1または2記載の自動車用冷却システム用チューブ。 Component (B) is an A Rumi iodonium tris acetylacetonate, claim 1 or 2 automotive cooling system tube according. 請求項1〜3のいずれか一項に記載の自動車用冷却システム用チューブの製造方法であって、下記の[I]〜[III]に示す工程をこの順で備えていることを特徴とする自動車用冷却システム用チューブの製造方法。
[I]下記(A)成分を主成分とし、下記の(B)成分を含有するポリエチレン樹脂組成物を、チューブ状に溶融押出成形し、未架橋チューブを得る工程。
(A)フィリップス触媒により重合されたポリエチレン樹脂にエチレン性不飽和シラン化合物がグラフト重合されてなる、シラングラフトポリエチレン樹脂。
(B)アルミニウム系架橋触媒。
[II]上記未架橋チューブを、40〜95℃、湿度50〜100RH%の条件下で、0.5〜24時間、湿熱処理する工程。
[III]上記湿熱処理後のチューブを、100〜120℃で5〜60分間、乾熱処理する工程。
The method for manufacturing a tube for an automobile cooling system according to any one of claims 1 to 3, wherein the steps shown in the following [I] to [III] are provided in this order. A method for manufacturing tubes for automobile cooling systems.
[I] A step of melt-extruding a polyethylene resin composition containing the following component (A) as a main component and containing the following component (B) into a tube shape to obtain an uncrosslinked tube.
(A) A silane graft polyethylene resin obtained by graft-polymerizing an ethylenically unsaturated silane compound onto a polyethylene resin polymerized by a Phillips catalyst.
(B) an aluminum-based crosslinking catalysts.
[II] A step of moisturizing the uncrosslinked tube under the conditions of 40 to 95 ° C. and a humidity of 50 to 100 RH% for 0.5 to 24 hours.
[III] A step of dry heat-treating the tube after the wet heat treatment at 100 to 120 ° C. for 5 to 60 minutes.
上記工程[I]により得られた未架橋チューブを曲げて、曲げ型に嵌めた後、上記工程[II]を行う、請求項4記載の自動車用冷却システム用チューブの製造方法。 The method for manufacturing a tube for an automobile cooling system according to claim 4, wherein the uncrosslinked tube obtained in the above step [I] is bent and fitted into a bending die, and then the above step [II] is performed.
JP2018033793A 2018-02-27 2018-02-27 Tubing for automotive cooling system and manufacturing method thereof Active JP7154775B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018033793A JP7154775B2 (en) 2018-02-27 2018-02-27 Tubing for automotive cooling system and manufacturing method thereof
PCT/JP2019/007207 WO2019167919A1 (en) 2018-02-27 2019-02-26 Automobile cooling system tube and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033793A JP7154775B2 (en) 2018-02-27 2018-02-27 Tubing for automotive cooling system and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2019148305A JP2019148305A (en) 2019-09-05
JP2019148305A5 true JP2019148305A5 (en) 2021-04-01
JP7154775B2 JP7154775B2 (en) 2022-10-18

Family

ID=67805818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033793A Active JP7154775B2 (en) 2018-02-27 2018-02-27 Tubing for automotive cooling system and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7154775B2 (en)
WO (1) WO2019167919A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112128478A (en) * 2020-08-04 2020-12-25 扬州华光橡塑新材料有限公司 Multilayer co-extrusion cooling pipe and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032615B2 (en) * 1991-07-29 2000-04-17 株式会社クラレ Multilayer structure and package
JPH08134319A (en) * 1994-11-04 1996-05-28 Mitsubishi Chem Corp Part relating to antifreezing solution for cars
JP3532106B2 (en) * 1997-12-10 2004-05-31 旭化成ケミカルズ株式会社 Polyethylene silane cross-linked pipe
JP4191234B2 (en) 1998-04-22 2008-12-03 古河電気工業株式会社 Cross-linked polyethylene pipe
JP3656545B2 (en) 2000-11-17 2005-06-08 日立電線株式会社 Silane cross-linked polyolefin molding
JP2004098635A (en) 2002-09-13 2004-04-02 Mitsubishi Chemicals Corp Method for manufacturing silane cross-linking polyethylene molding
JP3881615B2 (en) 2002-11-11 2007-02-14 株式会社クラレ Packaging container
JP6248391B2 (en) 2013-01-11 2017-12-20 日本ゼオン株式会社 Manufacturing method of molded body
JP2014193044A (en) * 2013-03-27 2014-10-06 Honda Motor Co Ltd Power supply control device
JP6146089B2 (en) 2013-03-28 2017-06-14 三菱化学株式会社 Silanol condensation catalyst and silane cross-linked polyolefin
JP6258496B2 (en) 2014-12-09 2018-01-10 三井化学株式会社 Propylene resin composition
JP6832638B2 (en) 2016-06-08 2021-02-24 三井化学株式会社 Propylene resin composition and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2018154679A (en) Composition for wire coating material, insulated wire, and wire harness
JP2019148305A5 (en)
EP1283527A1 (en) Electrically insulating resin composition and electric wire or cable both coated therewith
JP2008303251A (en) Flame retarding silane crosslinked polyolefin resin composition and insulated electric wire
CN1465617A (en) Semi-conductive watertigth composition
JP7154775B2 (en) Tubing for automotive cooling system and manufacturing method thereof
JP2012074173A (en) Insulated electric wire
CN115989274A (en) Flame-retardant resin composition, insulated wire, and wire harness
JP2008300224A (en) Insulated wire and cable
JP2002322330A (en) Pvc compound and electric cable using the same
JP3341488B2 (en) Electrical insulating composition and electric wires and cables
CN105153554A (en) Electro-insulating rubber for oil resistant electric wire with high insulation resistance
CN110791012A (en) Irradiation crosslinking low-smoke halogen-free flame-retardant polyolefin cable material and preparation method thereof
JP3812064B2 (en) Fluorine-containing elastomer composition
JP7364958B1 (en) Refrigerant transport hose and its manufacturing method
JP7381958B1 (en) Refrigerant transport hose and its manufacturing method
JP7491149B2 (en) Flame-retardant resin composition, insulated wire, wiring harness
KR102351547B1 (en) Halogen-free insulating composition with excellent oil resistance and low-teperature resistance and cable having a dielectric layer formed from the same
JP2602722B2 (en) Heat resistant resin composition
JP7440792B2 (en) Resin composition, method for producing the same, and uncrosslinked resin composition
WO2023188569A1 (en) Hose for refrigerant transportation and production method therefor
JP6916106B2 (en) Catalyst composition for silane cross-linking, silane cross-linking resin composition and wiring material
JPH07116333B2 (en) Heat resistant resin composition
CN111849082A (en) Cable core wire insulating material with water resistance
JP3589256B2 (en) Rubber composition, protective tube, electric wire