JP2019147984A - Silicon carbide member - Google Patents

Silicon carbide member Download PDF

Info

Publication number
JP2019147984A
JP2019147984A JP2018033413A JP2018033413A JP2019147984A JP 2019147984 A JP2019147984 A JP 2019147984A JP 2018033413 A JP2018033413 A JP 2018033413A JP 2018033413 A JP2018033413 A JP 2018033413A JP 2019147984 A JP2019147984 A JP 2019147984A
Authority
JP
Japan
Prior art keywords
silicon carbide
conductivity
cvd
peripheral portion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018033413A
Other languages
Japanese (ja)
Inventor
徹 仲山
Toru Nakayama
徹 仲山
和之 藤江
Kazuyuki Fujie
和之 藤江
浩充 小川
Hiromitsu Ogawa
浩充 小川
義宜 平野
Yoshinori Hirano
義宜 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018033413A priority Critical patent/JP2019147984A/en
Publication of JP2019147984A publication Critical patent/JP2019147984A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

To provide a silicon carbide member capable of being adopted to a focus ring having a corrosion resistance, a heat resistance, and an excellent mechanical property in a plasma treatment apparatus used in manufacturing a semiconductor.SOLUTION: A silicon carbide member 1 has a major component of silicon carbide including a dopant, a ring shape having an outer peripheral 2 and an inner peripheral 3. When a dopant concentration of the outer peripheral part 2a is D1atoms/cmand a dopant concentration of the inner peripheral part 3a is D2atoms/cm, D1 is larger than D2, and a conductivity σ1 of the outer peripheral part 2a is larger than a conductivity σ2 of the inner peripheral part 3a.SELECTED DRAWING: Figure 1

Description

本開示は、炭化ケイ素部材に関する。   The present disclosure relates to silicon carbide members.

半導体製造に用いられるプラズマ処理装置では、ウェハの表面にプラズマが収束するようにフォーカスリングが用いられる。フォーカスリングはウェハに近接して用いられるため、石英、炭化ケイ素など、ウェハと同じ元素を主成分とし高純度を有する材料、またはプラズマにより腐食されにくい材料が用いられる。特に化学気相成長法(Chemical Vapor
Deposition、CVD法)により形成された炭化ケイ素材料(CVD−SiC材料)は、
焼結法で製造された炭化ケイ素材料に比較して高純度で緻密であり、耐食性、耐熱性、および機械的強度が高い。
In a plasma processing apparatus used for semiconductor manufacturing, a focus ring is used so that plasma converges on the surface of a wafer. Since the focus ring is used close to the wafer, a material such as quartz or silicon carbide having the same element as that of the wafer as a main component and having high purity or a material that is not easily corroded by plasma is used. Especially chemical vapor deposition (Chemical Vapor)
Silicon carbide material (CVD-SiC material) formed by Deposition, CVD method)
Compared to a silicon carbide material produced by a sintering method, it is highly pure and dense, and has high corrosion resistance, heat resistance, and mechanical strength.

プラズマ処理装置では、プラズマ発生領域にウェハ、フォーカスリング、周辺部材や筺体など種々の部材が配置される。部材毎の電気特性の違いによりプラズマが局所的に集中したり、プラズマが不安定になる場合がある。たとえば特許文献1では、絶縁材料である石英製のフォーカスリングと導電性部材とを組合せて部材間の導電率を調整し、プラズマの集中を低減する方法が開示されている。   In the plasma processing apparatus, various members such as a wafer, a focus ring, a peripheral member, and a casing are disposed in a plasma generation region. Plasma may be locally concentrated or plasma may become unstable due to the difference in electrical characteristics of each member. For example, Patent Document 1 discloses a method of reducing plasma concentration by adjusting the conductivity between members by combining a quartz focus ring, which is an insulating material, and a conductive member.

特開2002−246370号公報JP 2002-246370 A

本開示の炭化ケイ素部材は、ドーパントを含む炭化ケイ素を主成分とし、外周と内周とを有する環形状を有する。外周部のドーパント濃度をD1atoms/cm、内周部のドーパント濃度をD2atoms/cmとしたとき、D1がD2よりも大きい。 The silicon carbide member of the present disclosure has a ring shape having silicon carbide containing a dopant as a main component and having an outer periphery and an inner periphery. The outer peripheral portion of the dopant concentration D1atoms / cm 3, when the inner peripheral portion D2atoms / cm 3 a dopant concentration of, D1 is greater than D2.

炭化ケイ素部材の外観を模式的に示す斜視図である。It is a perspective view which shows typically the external appearance of a silicon carbide member. CVD装置内の基体とガス導入ノズルの配置を模式的に示す平面図である。It is a top view which shows typically the arrangement | positioning of the base | substrate in a CVD apparatus, and a gas introduction nozzle.

本開示の炭化ケイ素部材1は、図1に示すように外周2と内周3とを有する環形状を有している。   The silicon carbide member 1 of the present disclosure has an annular shape having an outer periphery 2 and an inner periphery 3 as shown in FIG.

炭化ケイ素材料、特に化学気相成長法(Chemical Vapor Deposition、CVD法)で作
成されるCVD−SiC材料は、高純度で耐プラズマ性が高いことから、種々の半導体製造装置用部材として用いられている。また、CVD−SiC材料はドーパントを導入することで導電率の調整が可能で、ウェハの導電率と周辺筺体の導電率との中間の導電率を有するフォーカスリングを実現できる。以下、炭化ケイ素をSiCという場合もある。
Silicon carbide materials, especially CVD-SiC materials created by chemical vapor deposition (CVD), are used as various semiconductor manufacturing equipment members because of their high purity and high plasma resistance. Yes. Further, the conductivity of the CVD-SiC material can be adjusted by introducing a dopant, and a focus ring having an intermediate conductivity between the conductivity of the wafer and the conductivity of the peripheral casing can be realized. Hereinafter, silicon carbide may be referred to as SiC.

炭化ケイ素部材1は、ドーパントを含む炭化ケイ素を主成分としている。ここで、主成分とは、部材の90%以上を占める成分とする。炭化ケイ素部材1は、ドーパントを含む炭化ケイ素以外に、ドーパントを含まない炭化ケイ素、およびグラファイト等結晶質または非晶質の炭素、ケイ素結晶、および特性に影響しない程度の不純物等、炭化ケイ素以外の成分を含んでいてもよい。   Silicon carbide member 1 is mainly composed of silicon carbide containing a dopant. Here, the main component is a component that occupies 90% or more of the member. The silicon carbide member 1 includes silicon carbide not containing a dopant, silicon carbide not containing a dopant, and crystalline or amorphous carbon such as graphite, silicon crystals, and impurities not affecting the characteristics. Ingredients may be included.

炭化ケイ素は、単位体積当たりのドーパントの原子の個数であるドーパント濃度により導電率が変化する。本開示の炭化ケイ素部材1は、外周部2aのドーパント濃度をD1atoms/cm、内周部3aのドーパント濃度をD2atoms/cmとしたとき、D1がD2よりも大きい。なお、外周部2aとは外周2を含むその近傍の部位であり、内周部3aとは、内周3を含むその近傍の部位である。外周2の近傍とは、外周2との距離が10mm以下の範囲とし、内周3の近傍とは、内周3との距離が10mm以下の範囲とする。たとえば、外周2と内周3との中点より外周側を外周部2aとし、中点より内周側を内周部3aとしてもよい。 The conductivity of silicon carbide varies depending on the dopant concentration, which is the number of dopant atoms per unit volume. Silicon carbide member 1 of the present disclosure, D1atoms / cm 3 a dopant concentration of the peripheral portion 2a, when the dopant concentration of the inner peripheral portion 3a was D2atoms / cm 3, D1 is greater than D2. The outer peripheral portion 2 a is a portion in the vicinity including the outer periphery 2, and the inner peripheral portion 3 a is a portion in the vicinity including the inner periphery 3. The vicinity of the outer periphery 2 is a range where the distance to the outer periphery 2 is 10 mm or less, and the vicinity of the inner periphery 3 is a range where the distance to the inner periphery 3 is 10 mm or less. For example, the outer peripheral side from the middle point between the outer periphery 2 and the inner periphery 3 may be the outer peripheral part 2a, and the inner peripheral side from the middle point may be the inner peripheral part 3a.

炭化ケイ素は、ドーパント濃度が高いほど導電率が高くなる。したがって、炭化ケイ素部材1の外周部2aの導電率をσ1とし、内周部3aの導電率をσ2としたとき、D1がD2よりも大きいことから、σ1がσ2よりも大きくなる。   Silicon carbide has higher conductivity as the dopant concentration is higher. Therefore, when the conductivity of the outer peripheral portion 2a of the silicon carbide member 1 is σ1 and the conductivity of the inner peripheral portion 3a is σ2, since D1 is larger than D2, σ1 is larger than σ2.

半導体製造装置、特にCVD(Chemical Vapor Deposition、化学気相成長法)、PV
D(Physical Vapor Deposition、物理気相成長法)、およびプラズマエッチング装置等
のプラズマ処理装置では、Siなどのウェハがプラズマ処理される。これらの装置では、ウェハの外周にフォーカスリングを配置して、ウェハ上でプラズマの安定化を図っている。フォーカスリングにウェハと同等または類似の抵抗率、およびプラズマに対する高い耐食性を有する材料を用いることで、プラズマを安定化させ、ウェハをより均一に処理することができる。また、ウェハは半導体であり、プラズマ処理装置の筺体などの他の周辺部材は導体であることが多いため、フォーカスリングに半導体と導体との中間の導電性を付与することで、ウェハと周辺部材との間で導電率の急激な変化が緩和され、よりプラズマが安定化する。しかしこの場合も、フォーカスリングが一様に半導体と導体との中間の導電性を有するため、ウェハとフォーカスリングとの境界部、および周辺部材とフォーカスリングとの境界部で導電率が急激に変化して、これらの境界部にプラズマが集中し、これら境界部のプラズマ密度が高くなりやすい。その結果、これらの部材の境界部で異常放電が発生したり、ウェハのエッチング状態がばらつき半導体の歩留まりが低くなる懸念がある。
Semiconductor manufacturing equipment, especially CVD (Chemical Vapor Deposition), PV
In a plasma processing apparatus such as D (Physical Vapor Deposition) and a plasma etching apparatus, a wafer such as Si is subjected to plasma processing. In these apparatuses, a focus ring is disposed on the outer periphery of the wafer to stabilize the plasma on the wafer. By using a material having a resistivity equivalent to or similar to that of the wafer and high corrosion resistance to the plasma for the focus ring, the plasma can be stabilized and the wafer can be processed more uniformly. Also, since the wafer is a semiconductor and other peripheral members such as the casing of the plasma processing apparatus are often conductors, the wafer and the peripheral members can be provided by providing the focus ring with an intermediate conductivity between the semiconductor and the conductor. And the rapid change in conductivity is relaxed, and the plasma is more stabilized. However, in this case as well, the conductivity of the focus ring is uniform between the semiconductor and the conductor, so that the conductivity changes abruptly at the boundary between the wafer and the focus ring and at the boundary between the peripheral member and the focus ring. As a result, plasma concentrates on these boundary portions, and the plasma density at these boundary portions tends to increase. As a result, there is a concern that abnormal discharge occurs at the boundary between these members, or the etching state of the wafer varies and the yield of the semiconductor is lowered.

本開示の炭化ケイ素部材1をフォーカスリングとした場合、外周部2a、すなわち導体である周辺部材に近接する部位のD1が大きく、σ1が大きいため、フォーカスリングと周辺部材との境界部で導電率の急激な変化が緩和され、境界部にプラズマが集中し難くなる。また、内周部3a、すなわち半導体であるウェハに近接する部位のD2が小さく、σ2が小さいため、フォーカスリングとウェハとの境界部で導電率の急激な変化が緩和され、境界部にプラズマが集中し難くなる。   When the silicon carbide member 1 of the present disclosure is a focus ring, the outer peripheral portion 2a, that is, the portion D1 in the vicinity of the peripheral member that is a conductor is large and σ1 is large, and therefore the conductivity at the boundary between the focus ring and the peripheral member The abrupt change is relaxed, making it difficult for plasma to concentrate on the boundary. In addition, since D2 in the inner peripheral portion 3a, that is, a portion close to the wafer, which is a semiconductor, is small and σ2 is small, an abrupt change in conductivity is reduced at the boundary between the focus ring and the wafer, and plasma is generated at the boundary It becomes difficult to concentrate.

また、炭化ケイ素部材1は、ドーパント濃度が外周部2aと内周部3aとで異なるが、単一の材料であり、導電性の異なる複数の部材を組合せた場合と比べ、長期間使用しても導電性、およびプラズマに対する耐久性が変化し難い。   In addition, the silicon carbide member 1 is different in the dopant concentration between the outer peripheral portion 2a and the inner peripheral portion 3a, but is a single material and is used for a long period of time compared to a combination of a plurality of members having different conductivity. However, the electrical conductivity and durability against plasma are hardly changed.

ドーパント濃度D1およびD2は、プラズマ処理されるウェハの種類と導電率、および周辺部材の種類と導電率により、所望のσ1およびσ2となるように適宜調整すればよい。D1とD2の比率は、たとえばLogD1/LogD2が1.01以上であってもよい。LogD1/LogD2を1.01以上とすることで、ウェハに近接する内周部3aの導電率σ2をウェハの導電率に近づけることができるとともに、周辺部材に近接する外周部2aの導電率σ1を周辺部材の導電率に近づけることができる。なお、ドーパント濃度は桁で変化するため、通常は対数で比較される。   The dopant concentrations D1 and D2 may be appropriately adjusted so as to obtain desired σ1 and σ2 depending on the type and conductivity of the wafer to be plasma-treated and the type and conductivity of the peripheral member. As for the ratio of D1 and D2, LogD1 / LogD2 may be 1.01 or more, for example. By setting LogD1 / LogD2 to 1.01 or more, the conductivity σ2 of the inner peripheral portion 3a close to the wafer can be made closer to the conductivity of the wafer, and the conductivity σ1 of the outer peripheral portion 2a close to the peripheral member can be set to The electrical conductivity of the peripheral member can be approached. In addition, since the dopant concentration changes by a digit, it is usually compared logarithmically.

外周部2aの導電率σ1は、内周部3aの導電率σ2に対する比σ1/σ2が5以上であってもよい。σ1/σ2を5以上とすることで、内周部3aの導電率σ2がSiウェハ
の導電率に近くなるとともに、周辺部材に近接する外周部2aの導電率σ1が周辺部材の導電率に近くなる。このような炭化ケイ素部材1をフォーカスリングとして用いることで、ウェハとフォーカスリングとの境界部、および外周部材とフォーカスリングとの境界部で導電率の急激な変化が緩和され、境界部にプラズマが集中し難くなる。
The conductivity σ1 of the outer peripheral portion 2a may be 5 or more in the ratio σ1 / σ2 with respect to the conductivity σ2 of the inner peripheral portion 3a. By setting σ1 / σ2 to 5 or more, the conductivity σ2 of the inner peripheral portion 3a is close to the conductivity of the Si wafer, and the conductivity σ1 of the outer peripheral portion 2a adjacent to the peripheral member is close to the conductivity of the peripheral member. Become. By using such a silicon carbide member 1 as a focus ring, a sudden change in conductivity is mitigated at the boundary between the wafer and the focus ring and the boundary between the outer peripheral member and the focus ring, and plasma is generated at the boundary. It becomes difficult to concentrate.

炭化ケイ素部材1の導電率は、内周部3aから外周部2aに向かって連続的に増加してもよい。ここで、導電率が内周部3aから外周部2aに向かって連続的に増加しているとは、内周部3aと外周部2aとの中間部の導電率σ3が、σ2より大きくσ1より小さいことをいう。   The conductivity of silicon carbide member 1 may continuously increase from inner peripheral portion 3a toward outer peripheral portion 2a. Here, the electrical conductivity continuously increases from the inner peripheral portion 3a toward the outer peripheral portion 2a means that the conductivity σ3 of the intermediate portion between the inner peripheral portion 3a and the outer peripheral portion 2a is larger than σ2 and larger than σ1. It is small.

このような炭化ケイ素部材1は、以下のように化学気相成長法(Chemical Vapor Deposition、CVD法)により作製することができる。SiC部材1の作製に用いるCVD装
置は、特に限定されない。CVD装置は、たとえばガスの導入口および導出口を有する縦型または横型のバッチ式のCVD室と、電気的な加熱手段とを備えたものでもよい。高周波を用いて加熱するCVD装置では、基体を選択的に加熱できる。加熱に用いる高周波の周波数は、たとえば3kHz以上、100kHz以下とすればよい。
Such a silicon carbide member 1 can be manufactured by a chemical vapor deposition method (Chemical Vapor Deposition, CVD method) as follows. The CVD apparatus used for producing SiC member 1 is not particularly limited. The CVD apparatus may include, for example, a vertical or horizontal batch type CVD chamber having gas inlets and outlets, and an electric heating means. In a CVD apparatus that heats using a high frequency, the substrate can be selectively heated. The frequency of the high frequency used for heating may be, for example, 3 kHz or more and 100 kHz or less.

CVDの方法は、CVD室内に基体をセットし、原料ガス、キャリアガスなどのガスをCVD室内に導入し、基体上で化学気相成長(CVD)反応させるものであればよい。   Any CVD method may be used as long as a substrate is set in the CVD chamber, a gas such as a source gas or a carrier gas is introduced into the CVD chamber, and a chemical vapor deposition (CVD) reaction is performed on the substrate.

原料ガスは、炭素原子およびケイ素原子を含むガスであればよい。ケイ素原子を含むガスとしては、分子中に、ケイ素原子に1個以上の塩素原子が結合している構造を有するものを用いてもよい。メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、または塩化ケイ素と炭化水素ガスとの混合原料などを用いてもよい。これらの原料ガスを用いることで、CVD−SiCを高速で堆積させることができ、効率的にSiC部材1を作製することができる。   The source gas may be a gas containing carbon atoms and silicon atoms. As the gas containing a silicon atom, a gas having a structure in which one or more chlorine atoms are bonded to a silicon atom in the molecule may be used. Methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, a mixed raw material of silicon chloride and hydrocarbon gas, or the like may be used. By using these source gases, CVD-SiC can be deposited at high speed, and the SiC member 1 can be produced efficiently.

これらの原料ガスは、水素、アルゴン等のキャリアガスと所定の比率で混合され、混合ガスとしてCVD室内に導入される。原料ガスとキャリアガスとの混合比率は、たとえばケイ素原子を含む原料ガスの体積に対して、キャリアガスの体積を3倍以上、10倍以下としてもよい。キャリアガスは水素であってもよい。水素をキャリアガスとして用いると、ケイ素原子からの脱塩素反応を促進させることができる。   These source gases are mixed with a carrier gas such as hydrogen or argon at a predetermined ratio and introduced into the CVD chamber as a mixed gas. As for the mixing ratio of the source gas and the carrier gas, for example, the volume of the carrier gas may be 3 to 10 times the volume of the source gas containing silicon atoms. The carrier gas may be hydrogen. When hydrogen is used as a carrier gas, the dechlorination reaction from silicon atoms can be promoted.

CVD室内には、さらにドーパントとなる原子を含有するガスを導入する。ドーパントとなる原子としては、窒素、またはホウ素などを用いてもよい。窒素含有ガスとしては、例えば窒素、アンモニア、トリメチルアミン、およびトリエチルアミンなどが挙げられる。ホウ素含有ガスとしては、例えば三塩化ホウ素、およびジボランなどが挙げられる。以下、ドーパントとなる原子を含有するガスを単にドーパントガスという場合もある。   A gas containing atoms as dopants is further introduced into the CVD chamber. Nitrogen, boron, or the like may be used as the dopant atom. Examples of the nitrogen-containing gas include nitrogen, ammonia, trimethylamine, and triethylamine. Examples of the boron-containing gas include boron trichloride and diborane. Hereinafter, a gas containing an atom serving as a dopant may be simply referred to as a dopant gas.

原料ガスと、ドーパントガスとの比率は、ドーパントガスの種類、および所望のドーパントの導入量に応じて適宜調整してもよい。たとえば、ケイ素原子を含む原料ガスの体積に対し、ドーパントガスの体積を0.01%以上、5000%以下としてもよい。以下、原料ガス、キャリアガス、およびドーパントガスの混合ガスを、総じて混合原料ガスという。   The ratio between the source gas and the dopant gas may be appropriately adjusted according to the type of the dopant gas and the amount of the desired dopant introduced. For example, the volume of the dopant gas may be 0.01% or more and 5000% or less with respect to the volume of the source gas containing silicon atoms. Hereinafter, the mixed gas of the source gas, the carrier gas, and the dopant gas is generally referred to as a mixed source gas.

図2は、CVD室内の基体4とガス導入ノズル5の配置の例のひとつを示している。図2では、円板状の基体4の外周にガス導入ノズル5を配置している。基体4は、たとえば厚さ5mm以上20mm以下であってもよい。基体4は円板の中心Oを軸に回転させてもよい。白抜き矢印は、ガス導入ノズルから導入される混合原料ガスの向きを示している。混合原料ガスを基体4の外周から中心に向けて、基体の面に沿って導入することで、径方
向にドーパント濃度が異なるCVD−SiCを得られる。
FIG. 2 shows one example of the arrangement of the substrate 4 and the gas introduction nozzle 5 in the CVD chamber. In FIG. 2, the gas introduction nozzle 5 is arranged on the outer periphery of the disk-shaped base 4. The substrate 4 may be, for example, 5 mm to 20 mm in thickness. The substrate 4 may be rotated about the center O of the disk. The white arrow indicates the direction of the mixed raw material gas introduced from the gas introduction nozzle. By introducing the mixed source gas from the outer periphery of the substrate 4 toward the center along the surface of the substrate, CVD-SiC having different dopant concentrations in the radial direction can be obtained.

原料ガス、ドーパントガス、およびキャリアガスの種類、比率および流速を調整することにより、CVD−SiCに含まれるドーパント濃度の分布を調整できる。キャリアガスとして水素を用いると、原料ガスおよびドーパントガスとの比率により原料ガスおよびドーパントガスの分解を促進または抑制することができる。   By adjusting the type, ratio, and flow rate of the source gas, dopant gas, and carrier gas, the distribution of the dopant concentration contained in CVD-SiC can be adjusted. When hydrogen is used as the carrier gas, decomposition of the source gas and the dopant gas can be promoted or suppressed depending on the ratio of the source gas and the dopant gas.

CVDの反応温度は、たとえば1200℃以上としてもよく、さらに1250℃以上としてもよい。反応温度が1200℃未満であると、CVD−SiCの堆積速度が著しく低下し、生産効率が低下する。反応温度は、特に1350℃以上、さらには1350℃以上、1500℃以下としてもよい。   The CVD reaction temperature may be, for example, 1200 ° C. or higher, and may be 1250 ° C. or higher. When the reaction temperature is less than 1200 ° C., the deposition rate of CVD-SiC is remarkably lowered, and the production efficiency is lowered. The reaction temperature may be particularly 1350 ° C. or higher, more preferably 1350 ° C. or higher and 1500 ° C. or lower.

CVD−SiCを堆積させる基体としては、たとえば黒鉛を用いてもよい。黒鉛の熱膨張係数は、SiCの熱膨張係数に近いため、基体として黒鉛を用いることで、基体および基体の表面に形成されたCVD−SiCの熱応力による変形を小さくすることができる。   For example, graphite may be used as a substrate on which CVD-SiC is deposited. Since the thermal expansion coefficient of graphite is close to the thermal expansion coefficient of SiC, the use of graphite as the substrate can reduce deformation due to thermal stress of the substrate and the CVD-SiC formed on the surface of the substrate.

黒鉛の熱膨張係数は、CVD−SiCの熱膨張係数よりも若干大きくてもよい。CVD−SiCを堆積させた後に、基体およびCVD−SiCを室温まで冷却した際、黒鉛の熱膨張係数がCVD−SiCの熱膨張係数よりも若干大きいと、CVD−SiCに生じる熱応力は圧縮応力となる。CVD−SiCに圧縮応力が加わることにより、CVD−SiCにはクラックが発生しにくくなる。   The thermal expansion coefficient of graphite may be slightly larger than the thermal expansion coefficient of CVD-SiC. When the substrate and the CVD-SiC are cooled to room temperature after depositing the CVD-SiC, if the thermal expansion coefficient of graphite is slightly larger than the thermal expansion coefficient of the CVD-SiC, the thermal stress generated in the CVD-SiC is a compressive stress. It becomes. By applying compressive stress to CVD-SiC, cracks are less likely to occur in CVD-SiC.

また、フォーカスリングに用いるSiC部材1は、CVD−SiCを自立体(自立膜ともいう)として用いる。自立体として用いるSiC部材1では、形成したCVD−SiCから基体を除去する必要がある。黒鉛製の基体は、酸化や研削によりCVD−SiCから除去しやすい。   The SiC member 1 used for the focus ring uses CVD-SiC as a self-solid (also referred to as a self-supporting film). In the SiC member 1 used as a self-three-dimensional object, it is necessary to remove the substrate from the formed CVD-SiC. A graphite substrate is easily removed from CVD-SiC by oxidation or grinding.

SiCの原料ガスとしてケイ素を含む四塩化ケイ素(SiCl)、炭素を含むメタン(CH)、キャリアガスとして水素(H)、およびドーパントガスとしてアンモニア(NH)を用いて、CVD法により、黒鉛基体上にCVD−SiCを形成した。 By using a silicon tetrachloride (SiCl 4 ) containing silicon as a raw material gas for SiC, methane containing carbon (CH 4 ), hydrogen (H 2 ) as a carrier gas, and ammonia (NH 3 ) as a dopant gas, a CVD method is used. Then, CVD-SiC was formed on the graphite substrate.

CVD装置は、高周波誘導加熱により黒鉛を加熱する方式の装置を用いた。高周波の周波数は60kHzとした。CVD室内に、基体として直径350mm、厚さ15mmの黒鉛製の円板を配置した。2つの円板を15mmの間隔をあけて重ね合わせ、各円板の中心を断熱材の基板支持体で保持し、さらに回転機構に接続した。   The CVD apparatus used was an apparatus that heated graphite by high-frequency induction heating. The frequency of the high frequency was 60 kHz. In the CVD chamber, a graphite disc having a diameter of 350 mm and a thickness of 15 mm was placed as a substrate. The two disks were overlapped with an interval of 15 mm, the center of each disk was held by a substrate support made of heat insulating material, and further connected to a rotating mechanism.

円板の外周部には、15mmの内径を有する4つのガス導入ノズルを、図2に示すように4か所にそれぞれ配置した。ガス導入ノズルと円板の外周との距離は5mmとした。   On the outer periphery of the disc, four gas introduction nozzles having an inner diameter of 15 mm were respectively arranged at four locations as shown in FIG. The distance between the gas introduction nozzle and the outer periphery of the disc was 5 mm.

CVD室内を真空排気しながら黒鉛製の円板を加熱して、円板の温度を1400℃とした。2つの円板をそれぞれ5rpmの回転数で回転させながら、2つの円板の間隙に原料ガス、キャリアガスおよびドーパントガスを混合した混合ガスを、ガス挿入ノズルで導入し、2つの円板の表面にCVD−SiCを堆積させた。各ガスの流量を表1に示す。   While the CVD chamber was evacuated, the graphite disk was heated to a temperature of 1400 ° C. While rotating the two disks at a rotation speed of 5 rpm each, a mixed gas in which a source gas, a carrier gas and a dopant gas are mixed into the gap between the two disks is introduced by a gas insertion nozzle, and the surfaces of the two disks CVD-SiC was deposited on the substrate. Table 1 shows the flow rate of each gas.

得られた2つのCVD−SiCから黒鉛基板を研削加工により除去し、さらに外径350mm、内径300mm、厚さ4mmの円環形状に加工してフォーカスリングとした。   The graphite substrate was removed from the obtained two CVD-SiCs by grinding, and further processed into an annular shape having an outer diameter of 350 mm, an inner diameter of 300 mm, and a thickness of 4 mm to obtain a focus ring.

得られた2つのフォーカスリングの導電率を測定した。外周部として外周からの距離が5mmの点4箇所、内周部として内周からの距離が5mmの点4箇所、および外周と内周
の中間点4箇所の導電率をそれぞれ4探針法で測定した。2つのフォーカスリングの測定結果は誤差の範囲で一致した。外周部の導電率σ1、内周部の導電率σ2、および比σ1/σ2を表1に示す。なお、試料No.1、2では、外周と内周の中間点の導電率σ3はσ1よりも小さくσ2よりも大きかった。試料No.3のσ3はσ1、σ2と同じであり、試料No.4ではσ1<σ3<σ2であった。なお、後述するプラズマエッチング試験に用いたシリコンウェハの導電率は10S/mであった。
The conductivity of the two focus rings obtained was measured. The conductivity at 4 points of 5 mm distance from the outer periphery as the outer periphery, 4 points at 5 mm distance from the inner periphery as the inner periphery, and 4 points of intermediate points between the outer periphery and the inner periphery by the 4-probe method, respectively. It was measured. The measurement results of the two focus rings coincided within the error range. Table 1 shows the conductivity σ1 of the outer peripheral portion, the conductivity σ2 of the inner peripheral portion, and the ratio σ1 / σ2. Sample No. In 1 and 2, the conductivity σ3 at the midpoint between the outer periphery and the inner periphery was smaller than σ1 and larger than σ2. Sample No. 3 is the same as σ1 and σ2, and sample no. In 4, it was σ1 <σ3 <σ2. In addition, the electrical conductivity of the silicon wafer used for the plasma etching test mentioned later was 10 S / m.

一方のフォーカスリングのドーパント濃度を、二次イオン質量分析(SIMS)を用いて測定した。測定は、外周からの距離が5mmの箇所(D1)、内周からの距離が5mmの箇所(D2)について行った。外周部のドーパント濃度D1の平均値、内周部のドーパント濃度D2の平均値、および比LogD1/LogD2を表1に示す。   The dopant concentration of one focus ring was measured using secondary ion mass spectrometry (SIMS). The measurement was performed on a part (D1) having a distance of 5 mm from the outer periphery and a part (D2) having a distance of 5 mm from the inner periphery. Table 1 shows the average value of the dopant concentration D1 in the outer peripheral portion, the average value of the dopant concentration D2 in the inner peripheral portion, and the ratio LogD1 / LogD2.

もう一方のフォーカスリングを直径300mmのシリコンウェハとともにプラズマエッチング装置に設置し、シリコンウェハのプラズマエッチング試験を行った。エッチング処理は、CFガスをエッチング室内に導入するとともに、13.56MHzの高周波を出力0.8W/cmで導入してプラズマを4時間発生させた。 The other focus ring was installed in a plasma etching apparatus together with a silicon wafer having a diameter of 300 mm, and a plasma etching test of the silicon wafer was performed. In the etching process, CF 4 gas was introduced into the etching chamber, and a high frequency of 13.56 MHz was introduced at an output of 0.8 W / cm 2 to generate plasma for 4 hours.

シリコンウェハにはエッチング処理前に中心から外周にかけポリイミドテープを貼ってマスクとした。プラズマ処理後にシリコンウェハからポリイミドテープを除去し、洗浄後にマスク部と非マスク部の段差を測定してエッチング率を算出した。測定箇所は、ウェハ中心部としてウェハ中心からの距離が10mmの点8箇所、およびウェハ外周部としてウェハの外周からの距離が10mmの点8箇所とした。中心部のエッチング率の平均値をRcとし、外周部のエッチング率の平均値をReとして、中心部のRcに対する外周部のReの比であるRe/Rcを表1に示す。   The silicon wafer was used as a mask by applying polyimide tape from the center to the outer periphery before the etching process. After the plasma treatment, the polyimide tape was removed from the silicon wafer, and after cleaning, the level difference between the mask portion and the non-mask portion was measured to calculate the etching rate. The measurement locations were eight points with a distance of 10 mm from the wafer center as the wafer central portion, and eight points with a distance from the outer periphery of the wafer of 10 mm as the wafer outer peripheral portion. Table 1 shows Re / Rc, which is the ratio of Re at the outer peripheral portion to Rc at the central portion, where Rc is the average etching rate at the central portion and Re is the average etching rate at the outer peripheral portion.

Figure 2019147984
Figure 2019147984

試料No.1、2では、外周部のD1が内周部のD2よりも大きいため、シリコンウェハのエッチング率比Re/Rcが1.0に近く、均一なエッチング処理がなされていた。一方、試料No.3、4では、D1がD2以下であるため、プラズマがシリコンウェハの外周付近で不均一になり、シリコンウェハのエッチング率比Re/Rcが大きくなっていた。   Sample No. In 1 and 2, since the outer peripheral portion D1 is larger than the inner peripheral portion D2, the etching rate ratio Re / Rc of the silicon wafer is close to 1.0, and a uniform etching process is performed. On the other hand, Sample No. In 3 and 4, since D1 is D2 or less, the plasma becomes non-uniform near the outer periphery of the silicon wafer, and the etching rate ratio Re / Rc of the silicon wafer is large.

1 :炭化ケイ素部材
2 :外周
2a:外周部
3 :内周
3a:内周部
4 :基体
5 :ガス導入ノズル
1: Silicon carbide member 2: Outer circumference 2a: Outer circumference 3: Inner circumference 3a: Inner circumference 4: Base 5: Gas introduction nozzle

Claims (5)

ドーパントを含む炭化ケイ素を主成分とし、
外周と内周とを有する環形状を有し、
外周部のドーパント濃度をD1atoms/cm、内周部のドーパント濃度をD2atoms/cmとしたとき、D1がD2よりも大きい、炭化ケイ素部材。
The main component is silicon carbide containing a dopant,
Having an annular shape having an outer periphery and an inner periphery;
The dopant concentration in the outer peripheral portion D1atoms / cm 3, when the dopant concentration of the inner peripheral portion was D2atoms / cm 3, D1 is greater than D2, the silicon carbide member.
前記D1と前記D2とが、LogD1/LogD2≧1.01の関係を満たす、請求項1に記載の炭化ケイ素部材。   The silicon carbide member according to claim 1, wherein the D1 and the D2 satisfy a relationship LogD1 / LogD2 ≧ 1.01. 前記外周部の導電率をσ1、前記内周部の導電率をσ2としたとき、
前記σ2に対する前記σ1の比率であるσ1/σ2が、5以上である、請求項1または2に記載の炭化ケイ素部材。
When the conductivity of the outer periphery is σ1, and the conductivity of the inner periphery is σ2,
The silicon carbide member according to claim 1 or 2, wherein σ1 / σ2 that is a ratio of σ1 to σ2 is 5 or more.
導電率が、前記内周部から前記外周部に向かって連続的に増加する、請求項1〜3のいずれかに記載の炭化ケイ素部材。   The silicon carbide member according to claim 1, wherein the conductivity continuously increases from the inner peripheral portion toward the outer peripheral portion. 前記ドーパントが窒素である、請求項1〜4のいずれかに記載の炭化ケイ素部材。   The silicon carbide member according to claim 1, wherein the dopant is nitrogen.
JP2018033413A 2018-02-27 2018-02-27 Silicon carbide member Pending JP2019147984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033413A JP2019147984A (en) 2018-02-27 2018-02-27 Silicon carbide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033413A JP2019147984A (en) 2018-02-27 2018-02-27 Silicon carbide member

Publications (1)

Publication Number Publication Date
JP2019147984A true JP2019147984A (en) 2019-09-05

Family

ID=67849160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033413A Pending JP2019147984A (en) 2018-02-27 2018-02-27 Silicon carbide member

Country Status (1)

Country Link
JP (1) JP2019147984A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139547A (en) * 1996-07-26 1998-05-26 Applied Materials Inc Silicone carbide composite particularly useful for plasma reactor
JP2002519860A (en) * 1998-06-26 2002-07-02 ラム リサーチ コーポレーション Focus ring configuration for substantially eliminating open plasma in a plasma processing chamber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139547A (en) * 1996-07-26 1998-05-26 Applied Materials Inc Silicone carbide composite particularly useful for plasma reactor
JP2002519860A (en) * 1998-06-26 2002-07-02 ラム リサーチ コーポレーション Focus ring configuration for substantially eliminating open plasma in a plasma processing chamber

Similar Documents

Publication Publication Date Title
JP5896297B2 (en) CVD-SiC molded body and method for producing CVD-SiC molded body
JP3984820B2 (en) Vertical vacuum CVD equipment
JP2002047066A (en) FORMED SiC AND ITS MANUFACTURING METHOD
JPH1012692A (en) Dummy wafer
JP2018035009A (en) SiC MATERIAL AND MEMBER FOR SEMICONDUCTOR MANUFACTURING DEVICE USING THE SAME
JP2017011102A (en) Cleaning method of deposition apparatus of silicon carbide film
US20030059568A1 (en) Opaque low resistivity silicon carbide
JP2019147984A (en) Silicon carbide member
JP2015198213A (en) Method of manufacturing epitaxial silicon carbide wafer, and holde for silicon carbide single cristal substrate used for the same
JP2019112288A (en) Silicon carbide member and member for semiconductor manufacturing device
CN115595552A (en) Silicon carbide ring for plasma etching equipment and forming process of silicon carbide ring
JP2011074436A (en) Silicon carbide material
JP7255473B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP2021046336A (en) Method for processing surface of graphite support substrate, method for depositing silicon carbide polycrystalline film and method for manufacturing silicon carbide polycrystalline substrate
KR101936170B1 (en) Method for fabrication silicon carbide epi wafer
JP7367497B2 (en) Method for forming a silicon carbide polycrystalline film and manufacturing method for a silicon carbide polycrystalline substrate
JP2021031363A (en) Method for manufacturing silicon carbide polycrystal substrate
JP2021031336A (en) SiC CHEMICAL VAPOR DEPOSITION APPARATUS
KR20130134938A (en) Silicon carbide epi wafer and method of fabricating the same
JP7247749B2 (en) Silicon carbide polycrystalline film deposition method, susceptor, and deposition apparatus
JP7427848B1 (en) Polycrystalline SiC molded body and its manufacturing method
JP6117522B2 (en) Method for manufacturing epitaxial silicon carbide wafer
WO2024116827A1 (en) Sic molded article and method for manufacturing sic molded article
JP7413768B2 (en) Method for manufacturing polycrystalline substrate
JP3942158B2 (en) Method for producing cylindrical SiC molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211228