JP2019144025A - 位置特定方法、位置特定装置およびプログラム - Google Patents

位置特定方法、位置特定装置およびプログラム Download PDF

Info

Publication number
JP2019144025A
JP2019144025A JP2018026525A JP2018026525A JP2019144025A JP 2019144025 A JP2019144025 A JP 2019144025A JP 2018026525 A JP2018026525 A JP 2018026525A JP 2018026525 A JP2018026525 A JP 2018026525A JP 2019144025 A JP2019144025 A JP 2019144025A
Authority
JP
Japan
Prior art keywords
installed device
smart device
signal
position specifying
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018026525A
Other languages
English (en)
Other versions
JP6347533B1 (ja
Inventor
オー・ジョナ・ドンギュ
Jona Dongkyu O
山下徳正
Tokumasa Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tameko Co Ltd
Original Assignee
Tameko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tameko Co Ltd filed Critical Tameko Co Ltd
Priority to JP2018026525A priority Critical patent/JP6347533B1/ja
Application granted granted Critical
Publication of JP6347533B1 publication Critical patent/JP6347533B1/ja
Publication of JP2019144025A publication Critical patent/JP2019144025A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】位置・動線測量の精度を向上させること。【解決手段】動線測量装置3は、予め所定箇所に設置されたTD1が発する信号を検知可能なスマートデバイス2の信号を受信し、スマートデバイス2による信号の検知状況に応じて演算およびかかる演算結果の統計的取捨選択処理(フィルタ処理)を同時に行うことで、同時に算出可能な複数の演算結果のうち最適な演算結果をその都度採択することによりスマートデバイス2の位置を特定する。過去の位置座標特定結果が存在する場合には、具体的に正規化最小自乗(Normalized Least Square)及びコサイン類似度(Cosine Similarity)アルゴリズムを用いてスマートデバイス2の位置座標を算出する。【選択図】図1

Description

本発明は位置特定方法、位置特定装置およびプログラムに関する。
センサを用いてヒトまたはモノ(総称して「移動体」)の環境に関する位置及び動線を検出する動線測量についての技術が知られている。例えば、Bluetooth Low Energy(BLE)や電磁場(EMF:Electromagnetic Field)を用いて屋内のスマートデバイスの位置及び動線を測量する技術が知られている。
米国特許出願公開第2014/0286534号明細書
電磁場を用いて動線を測量する場合、電磁場の乱れ等により、必ずしも正確な測量ができるとは限らない。
また、例えばGPS(Global Positioning System)等を用いて位置及び動線を測量する場合、衛星のカバレッジの信頼できる受信が不十分であるために建物の屋内にあるPEに関しては十分に正確な検出結果が得られない場合がある。BLEによる動線測量も、外的環境内に所在する障害物によるシグナル遮蔽や、BLE特有シグナルノイズのRSSI値への影響等により十分に正確な検出結果が得られない場合がある。
このように、個々の技術単独では限界があり、個々の技術を組み合わせてより正確な動線を測量することが求められる。
1つの側面では、本発明は、動線測量の精度を向上させることを目的とする。
上記目的を達成するために、開示の位置特定方法が提供される。この位置特定方法は、所定箇所に予め設置された複数の設置デバイスを用いて非設置デバイスの位置を特定する方法であり、コンピュータが、設置デバイスまたは非設置デバイスのうち一方のデバイスが発する信号を検出した、設置デバイスまたは非設置デバイスのうち他方のデバイス検出の可否を受信したときに、非設置デバイスに関し以前計算された位置座標データが存在する場合、正規化最小自乗、およびコサイン類似度アルゴリズムを用いて位置座標を算出することにより非設置デバイスの位置を特定する。
1態様では、動線測量の精度を向上させることができる。
実施の形態の測量システムを説明する図である。 実施の形態の動線測量装置のハードウェア構成を示す図である。 実施の形態のTDのハードウェア構成を示す図である。 実施の形態のスマートデバイスのハードウェア構成を示す図である。 実施の形態の動線測量装置の機能を示すブロック図である。 近距離無線通信信号の検知を説明する図である。 近距離無線通信信号の検知を説明する図である。 近距離無線通信信号のRSSI値の一例を示す図である。 実施の形態の動線測量装置の処理を示すフローチャートである。 実施の形態の動線測量装置の処理を示すフローチャートである。 制御部のノイズ除去処理を説明する図である。 他の方法で行うLFTフィルタ処理を説明する図である。 三辺測量処理を説明する図である。 デッドレコニング処理を説明する図である。 加速度センサを活用して測位を行うデッドレコニング処理を説明するフローチャートである。 RSSI値を活用して測位を行うデッドレコニング処理を説明するフローチャートである。 2次元もしくは3次元カルマンフィルタを用いて座標の値を統合計算する処理の一例を説明する図である。
以下、実施の形態の測量システムを、図面を参照して詳細に説明する。
<実施の形態>
図1は、実施の形態の測量システムを説明する図である。
第1の実施の形態の測量システム100は、複数のタイプの信号およびセンサ入力のアルゴリズム計算を用いた屋内および屋外の測位対象デバイスの動線を測量(Geospatial tracking)するシステムである。この測量システム100は、タメコデバイス1と、スマートデバイス2と、動線測量装置3とを有している。
タメコデバイス(Tamecco Device:以下、「TD」と言う)1は、スマートデバイス2との間で近距離無線通信を実行するデバイスである。近距離無線通信手段としては、例えば、iBeacon(登録商標)プロトコルに基づくBluetooth(登録商標)によるブロードキャスト通信手段等が挙げられる。TD1は、例えば、iBeacon(登録商標)信号を1秒に数回、半径数十メートル範囲にブロードキャスト発信する。
TD1は、iBeacon信号の発信に加え、またはiBeacon信号の代わりに単独で、iBeaconよりも発信頻度の高いBluetoothによるブロードキャスト配信(以下、「TBS:Tamecco Broadcast Signal」という。)を行う場合もある。TBSによる高頻度ブロードキャスト配信の場合、動線測量装置3がiBeaconよりも多くのRSSI(Received Signal Strength Indication)値のデータポイントを取得できる為、動線測位の精度を上げることができる。
なお、iBeacon及びTBSのいずれも、Bluetooth4.0又はそれ以降のバージョンのBluetoothを採用した実施の形態であるが、それらへの言及はあくまで例示目的であり、本発明の範疇を、Bluetoothを採用した実施形態に限定するものではない。必要あれば、本発明による測位はWi−Fiシグナル等その他あらゆる近距離無線通信手段により実施することも考えられる。以下、TD1より検知される信号を「近距離無線通信信号」と記述する。
また、TD1が発信機として近距離無線通信信号を発信し、スマートデバイス2が受信機として近距離無線通信信号のRSSI値を計測するパターンもあれば、その逆でスマートデバイス2が発信機として近距離無線通信信号を発信し、TD1が受信機として近距離無線通信信号のRSSI値を計測するパターンもある。どちらのパターンでもTD1とスマートデバイス2との間のRSSI値を検知できることに変わらないので、そのRSSI値を使って位置を測位する計算方法は同様である。
図1は、ビルのフロアの一例を示している。実施の形態のフロア20は、クリーンルームであり、階段を上がって殺菌室を通り作業場に入場する。第1作業場21には作業台、加工機械、および棚が設置されている。TD1は、所定の間隔でフロア20内に3つ配置されている。1つのフロア内に配置されるTD1の数や、配置するTD1の間隔は、特に限定されない。
動線測量装置3は、図1に示すフロア20の左上の位置座標を(0,0)に設定し、各時刻におけるスマートデバイス2の特定した位置の座標をそれぞれ記憶することにより、スマートデバイス2を保持する作業者の動線を測量する。これにより、作業者がフロア20内をどのように移動したのか、そして現在どこに位置するのかを把握することができる。
スマートデバイス2は、本実施の形態では人物が携帯するデバイスであり、動線測量装置3が位置を特定する対象のデバイスである。スマートデバイス2としては、特に限定されないが、例えばスマートフォン、タブレット端末、ウェアラブル端末、ビーコン端末、並びにその他ディスプレイを有さないGPSモジュールや近距離無線通信信号レシーバーが搭載されたデバイス等が挙げられる。なお、本実施の形態ではスマートデバイス2を人物が携帯するが、スマートデバイス2をショッピングカートや車、ショベルカー、フォークリフト、無人搬送車(Automatic Guided Vehicle)等、他のあらゆる有人又は無人の移動物に搭載し、位置及び動線測量を実施することも可能である。
スマートデバイス2は、TD1が発信し、そのTD1への距離が近くなるにつれ強度が増す特性がある近距離無線通信信号のRSSI値を動線測量装置3に送信する機能を備えている。
また、スマートデバイス2には、各種センサが内蔵されていることもあり、その場合はこれら各種センサによる検出結果を動線測量装置3に送信する機能を備えている。
動線測量装置(コンピュータ)3は、TD1より検出され、スマートデバイス2経由で送られてくるRSSI値や、センサの検出(検知)結果に基づき、スマートデバイス2の位置を特定する要素(RSSI値や、センサの検出結果)を選択する。そして、選択した要素を用いて動線を測量する。なお、動線測量装置3の設置箇所は特に限定されない。また、場合によってはスマートデバイス2が動線測量装置3の役割を果たすパターンもある。
具体的には、まず動線測量装置3は、スマートデバイス2から送られてくる信号に基づきスマートデバイス2が静止しているか移動しているか否かを判断する。動線測量装置3は、スマートデバイス2が静止している場合、または移動している場合それぞれの状況に応じて前述したセンサや近距離無線通信信号を用いてスマートデバイス2の位置を特定する。
以下、開示の測量システム100をより具体的に説明する。
図2は、実施の形態の動線測量装置のハードウェア構成を示す図である。
動線測量装置3は、CPU(Central Processing Unit)301によって装置全体が制御されている。CPU301には、バス305を介してRAM(Random Access Memory)302と複数の周辺機器が接続されている。
RAM302は、動線測量装置3の主記憶装置として使用される。RAM302には、CPU301に実行させるOS(Operating System)のプログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。また、RAM302には、CPU301による処理に使用する各種データが格納される。
バス305には、ハードディスクドライブ(HDD:Hard Disk Drive)303、および通信インタフェース304が接続されている。
ハードディスクドライブ303は、内蔵したディスクに対して、磁気的にデータの書き込みおよび読み出しを行う。ハードディスクドライブ303は、動線測量装置3の二次記憶装置として使用される。ハードディスクドライブ303には、OSのプログラム、アプリケーションプログラム、および各種データが格納される。なお、二次記憶装置としては、フラッシュメモリ等の半導体記憶装置を使用することもできる。
通信インタフェース304は、ネットワーク50に接続されている。通信インタフェース304は、ネットワーク50を介して、他のコンピュータまたは通信機器との間でデータを送受信する。
以上のようなハードウェア構成によって、本実施の形態の処理機能を実現することができる。
図3は、実施の形態のTDのハードウェア構成を示す図である。
TD1は、CPU101によって装置全体が制御されている。
CPU101には、バス104を介して内蔵メモリ102と通信インタフェース103が接続されている。
内蔵メモリ102は、TD1の主記憶装置として使用される。内蔵メモリ102には、TD1に近距離無線通信信号をブロードキャストさせるプログラムコードが格納される。なお、内蔵メモリ102としては、例えばフラッシュメモリ等の半導体記憶装置が挙げられる。
通信インタフェース103は、TBS又はiBeacon(登録商標)プロトコルに基づくBluetooth(登録商標)4.0以上の信号及びWi−Fi信号等に例示される、近距離無線通信信号用のブロードキャスタとして機能するハードウェアである。
図4は、実施の形態のスマートデバイスのハードウェア構成を示す図である。
スマートデバイス2は、CPU201によって装置全体が制御されている。
CPU201には、バス209を介してRAM202と複数の周辺機器が接続されている。
RAM202は、スマートデバイス2の主記憶装置として使用される。RAM202には、CPU201に実行させるOSのプログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。OSとしては、Linux(登録商標)、iOS(登録商標)、Android(登録商標)OS等が挙げられる。
また、RAM202には、CPU201による処理に使用する各種データが格納される。
バス209には、内蔵メモリ203、グラフィック処理装置204、入力インタフェース205、通信インタフェース206、各種センサ207、およびGPSモジュール208が接続されていることもある。
内蔵メモリ203は、データの書き込みおよび読み出しを行う。内蔵メモリ203は、スマートデバイス2の二次記憶装置として使用される。内蔵メモリ203には、OSのプログラム、スマートデバイス2の位置を追跡させるアプリケーション(以下、「動線測量アプリケーション」と言う。)のプログラム、および各種データが格納される。なお、内蔵メモリとしては、例えばフラッシュメモリ等の半導体記憶装置が挙げられる。
グラフィック処理装置204には、ディスプレイ204aが接続されている。グラフィック処理装置204は、CPU201からの命令に従って、画像をディスプレイ204aの画面に表示させる。ディスプレイ204aとしては、液晶表示装置等が挙げられる。また、ディスプレイ204aは、タッチパネル機能も備えている。ディスプレイ204aおよびタッチパネル機能は、設けられていなくてもよい。
入力インタフェース205は、ディスプレイ204aおよび入力ボタン205に接続されている。入力インタフェース205は、入力ボタン205aやディスプレイ204aのタッチパネルから送られてくる信号をCPU201に送信する。
通信インタフェース206aは、例えば、前述したBluetooth4.0以上のプロトコル仕様のハードウェアを備えている。
通信インタフェース206bは、ネットワーク50に接続されている。通信インタフェース206bは、ネットワーク50を介して、他のコンピュータまたは通信機器との間でデータを送受信する。
各種センサ207としては、磁力計(Magnetometer)207aと、ジャイロセンサ(Gyro sensor)207bと、加速度センサ(Accelerometer)207cを備えていることもある。
GPSモジュール208は、GPS衛星からの電波を受信し、位置を計算する。
以上のようなハードウェア構成によって、本実施の形態の処理機能を実現することができる。
図2に示すようなハードウェア構成の動線測量装置3内には、以下のような機能が設けられる。
図5は、実施の形態の動線測量装置の機能を示すブロック図である。
動線測量装置3は、記憶部31と受信部32と制御部33とを有している。
記憶部31は、受信部32が受信したデータや制御部33の処理結果のデータ(例えば、所定時刻におけるスマートデバイス2の現在位置座標(以下、「位置座標データ」とも言う))等、種々のデータを記憶する。
受信部32は、スマートデバイス2(スマートデバイス2が受信機の場合)またはTD1(TD1が受信機の場合)から送られてくる近距離無線通信信号を受信する。
近距離無線通信信号には、RSSI値が含まれている。また、近距離無線通信信号には、シーケンス番号(当該信号を発信したデバイス毎の当該信号を発信した順序を識別する識別情報が含まれていてもよい。シーケンス番号は、TD1またはスマートデバイス2が発信する各近距離無線通信信号に発信された順序を示すものであり、近距離無線通信信号のペイロードにシーケンス番号を書き込む形で実装される。シーケンス番号は、近距離無線通信信号の度に変化させる。また、近距離無線通信信号には、近距離無線通信信号を発信した装置を識別する情報が含まれていてもよい。
図6および図7は、近距離無線通信信号の検知を説明する図である。
以下の説明では、3つのTD1それぞれを区別するため、3つのTD1それぞれに便宜的にTD1a、TD1b、TD1cと異なる符号を付す。
図6は、TD1による近距離無線通信信号の検知を説明する図である。
TD1a、TD1b、TD1cは、所定時間毎に近距離無線通信信号発信を行う。
図7は、スマートデバイス2による近距離無線通信信号の検知を説明する図である。
スマートデバイス2は、所定時間毎に近距離無線通信信号発信を行う。
このように、スマートデバイス2が信号を発信する場合は、受信機役のTD1経由で近距離無線通信信号を受信する。TD1が信号を発信する場合は、受信機役のスマートデバイス2経由で近距離無線通信信号を受信する。
図8は、近距離無線通信信号のRSSIの値の一例を示す図である。
図8に示すグラフの横軸は時間を示し、縦軸は、近距離無線通信信号の強度を示している。
図8では、受信部32が、各TD1a、1b、1cが発する近距離無線通信信号の強度を示すRSSI値を秒毎に複数の値を受信する例を示している。
再び図5に戻って説明する。
制御部33は、受信部32が受信した近距離無線通信信号に基づき、スマートデバイス2の位置を特定する。なお、特定方法をスマートデバイス2の状態に応じて調整し、さらなる精度向上に役立てることも可能である。すなわち、(イ)スマートデバイス2が備える各種センサの検出結果により制御部33が、スマートデバイス2が静止していると判断した場合、および(ロ)スマートデバイス2が移動していると判断した場合、または各種センサによる移動・静止検出が不可能な場合、のそれぞれに応じて、同アルゴリズム処理において違ったパラメーターを適用することが挙げられる。
また、移動パターンの場合、デッドレコニング(Dead-reckoning)方式と呼ばれる別個の位置特定方法が利用可能である。すなわち、制御部33が、まずスマートデバイス2から抽出するセンサの値を用いてスマートデバイス2が移動した方角と距離を測位する。制御部33は、測位により得られた移動した方角と距離を、直近に演算した当該移動前の位置座標に適用してスマートデバイス2の現在位置座標を決定する。
次に、前述した動線測量装置3の処理を、フローチャートを用いて詳しく説明する。
図9および図10は、実施の形態の動線測量装置の処理を示すフローチャートである。なお、以下のフローチャートの処理の順序は一例であり、図示の順序に限定されない。
[ステップS1] 受信部32は、TD1とスマートデバイス2間の近距離無線通信信号を、所定時間毎に受信する。
前述したように、スマートデバイス2が信号を発信する場合は、受信機役のTD1経由で近距離無線通信信号を受信する。TD1が信号を発信する場合は、受信機役のスマートデバイス2経由で近距離無線通信信号を受信する。
[ステップS2] 制御部33は、受信部32が、受信した近距離無線通信信号に含まれるRSSI値およびシーケンス番号を取得する。その後、ステップS3に遷移する。
[ステップS3] 制御部33は、RSSI値のノイズを低減する処理を実行する。具体的には、制御部33は、以下のa)、b)の処理を実行する。
a)制御部33は、明らかに無効な値(0等)や予め定めた数値以下の値を除去する。これは、予め定めた数値以下のRSSI値は、TD1とスマートデバイス2との距離が遠すぎるか、または間に遮蔽があると考えられるためである。値の除去により、位置測位の精度が悪くなることを抑制することができる。
b)階数が複数階の建物の動線を測量する際には、各階に配置されるTD1が発信または受信する近距離無線通信信号のパターンを事前に記憶部31等に記憶しておく。これにより、制御部33は、スマートデバイス2が位置する階を判断し、他の階の近距離無線通信信号によるRSSI値を取り除く処理を実行する。
また、制御部33は、以下のc)の処理を実行してもよい。
c)制御部33は、受信した近距離無線通信信号のシーケンス番号の順序を確認する。そして、制御部33は、受信した近距離無線通信信号のうちから、発信された順番通りでない近距離無線通信信号によるRSSI値を除去する。
例えば、あるTD1が複数回近距離線通信信号を発信した場合、後に受信した近距離無線通信信号に含まれるシーケンス番号が、先に受信した近距離無線通信信号のシーケンス番号よりもよりも大きい場合(先に発信された近距離無線通信信号が後に発信された近距離無線通信信号より後に受信された場合)は、後に受信した近距離無線通信信号は、壁などに当たって反射したものを受信してしまった可能性が高いため、後に受信した近距離無線通信信号に含まれるRSSI値を除去する。
その後、ステップS4に遷移する。
[ステップS4] 制御部33は、ステップS3の処理を実行することにより、除去されなかったRSSI値の数を、スマートデバイス2に近接しているTD1の数として取り扱う。すなわち、以下に言う「スマートデバイス2に近接しているTD1の数」は、スマートデバイス2が近距離無線通信信号を検知できたTD1の数、またはスマートデバイス2が発信した近距離無線通信信号を検知できたTD1の数から、ステップS3の処理を実行することにより、除去されたRSSI値の数を減算した数になる。
そして、スマートデバイス2に近接しているTD1の数に応じた位置測定処理を実行する。
具体的には、制御部33は、スマートデバイス2に近接しているTD1の数が3つ以上か否かを判断する。スマートデバイス2に近接しているTD1の数が3つ以上の場合(ステップS4のYes)、ステップS5に遷移する。スマートデバイス2に近接しているTD1の数が2つ以下の場合(ステップS4のNo)、ステップS1に遷移し、ステップS1以降の処理を引き続き実行する。
[ステップS5] 制御部33は、荷重移動平均処理(Weighted Moving Average)により追加的にRSSI値のノイズを減らす(以下、「フィルタ処理済RSSI値」という)。その後、ステップS6に遷移する。
図11は、制御部のノイズ除去処理を説明する図である。
図11は、1つの近距離無線通信信号に対し、ノイズ除去を実行している例を示している。
図11中、sig1が、受信部32が受信した生信号であり、sig2が、制御部33がステップS6において実行したノイズ除去処理結果の信号を示している。
再び図9に戻って説明する。
[ステップS6] 制御部33は、以下の処理方法により、RSSI値を(スマートデバイス2と各該当TD1間の)距離(m)に変換する。
具体的には以下の処理を行う。
R=フィルタ処理済RSSI値
S=予め定義されたシグナル受信強度
P=予め定義された伝播数値
とすると、
距離=10^((R−S)/(−10.0*P))
と処理する。その後、ステップS7に遷移する。
[ステップS7] 制御部33は、記憶部31を参照し、以前計算された位置座標データが存在するか否かを判断する。位置座標データが存在する場合(ステップS7のYes)、ステップS8に遷移する。位置座標データが存在しない場合(ステップS7のNo)、ステップS9に遷移する。
[ステップS8] 制御部33は、正規化最小自乗(Normalized Least Square)及びコサイン類似度(Cosine Similarity)アルゴリズムを用いてスマートデバイス2の位置座標を算出する。
TD1とスマートデバイス2とのユークリッド距離dは、次式(1)で表すことができる。
Figure 2019144025
(x、y、z)は、スマートデバイス2の位置座標を表している。(Bx,By,Bz)は、TDiの位置座標を示している。iはTD1に割り振られている番号を示している。
ここで、(x、y、z)と(Bx,By,Bz)との間のRSSI値をメートルに変換して抽出した距離をrと定義する。
ユークリッド距離dにおける磁力は、次式(2)で表すことができる。
Figure 2019144025
また、距離rにおける磁力は、次式(3)で表すことができる。
Figure 2019144025
正規化最小自乗は、次式(4)で表すことができる。
Figure 2019144025
線型化は、次式(5)で表すことができる。
Figure 2019144025
このコサイン類似度と最小二乗法を組み合わせて、誤差(d−r)を0に最も近くする(x,y,z)を算出する。この誤差(d−r)が少なければ少ないほど、算出した位置が正確になる。算出方法は、次式(6)〜(16)にて表すことができる。なお、算出方法の説明を簡略化する為に、数5〜16は2次元での(TD1のz軸が全て同じだとみなす)想定で説明する。
ここで、Q*Q=1である。
Figure 2019144025
Figure 2019144025
Figure 2019144025
Figure 2019144025
Figure 2019144025
Figure 2019144025
Figure 2019144025
Figure 2019144025
Figure 2019144025
Figure 2019144025
Figure 2019144025
その後、ステップS10に遷移する。
[ステップS9]制御部33は、LFTフィルタ処理(Least Funky Triangle Filter)、マルチ三辺測量処理(Multi Trilateration)、およびクラスタリング処理(Clustering)を用いてスマートデバイス2の位置座標を算出する。以下、順番に説明する。
<LFTフィルタ処理>
制御部33は、フィルタ処理済RSSI値のうち、最も値が大きい順に5つのフィルタ処理済RSSI値を抽出する。そして、それぞれのフィルタ処理済RSSI値(最も大きなフィルタ処理済RSSI値が検知されるTD#1〜TD#5(TD#1が最も値が大きい))に対応する既知の位置座標(x,y,z)を抽出する。ここで、「#と数字の組み合わせ」は、TD1を区別するために便宜的に設定した識別子である。
制御部33は、たとえば最も大きいフィルタ処理済RSSI値が検知されるTDの順にペアを構成し、各TDの既知の物理的位置間のユークリッド距離に基づいて、それらが最も接近しているかを確認する。制御部33は、次の優先順位で確認する。
TD#1⇔TD#2
TD#1⇔TD#3
TD#2⇔TD#3
TD#3⇔TD#4
TD#3⇔TD#5
TD#1⇔TD#4
TD#4⇔TD#5
TD#3⇔TD#5
TD#2⇔TD#5
TD#1⇔TD#5
上記の基準を満たす有効なTD1のペアが5つのTD1間で見つからない場合は、測定された新しいRSSI値を用いて上記処理を再実行する。
上記の基準を満たす有効なTD1のペア(かかるペアが複数認識できた場合にはそれぞれ)について、3番目のTDを見つける。その際、TD1のペアを構成する2つのTDいずれかに最も近接しているTDで、そのペアと直線を形成しないもののうちから、スマートデバイス2が最も強いフィルタ処理済RSSI値を検出したものを選択する。制御部33は、結果として得られる3つのTD1の組み合わせを抽出し、次のマルチ三辺測量に使用する。
なお、上記の3つのTD1の構成方法や参照するTD1の数はあくまで一例であり、スマートデバイス2に最も近い複数のTD1の中から、3つを組み合わせることにより出来上がる三角形のうち、正三角形に最も近い三角形が出来上がるTDの組み合わせ順にマルチ三辺測量処理を行っていくのが好ましい。
図12は、他の方法で行うLFTフィルタ処理を説明する図である。
図12に示す三角形の面積をΑ、三角形の半周長をp、三角形の各辺の長さをa、b、c、辺ab間の頂点の角度をγ、辺ac間の角度をβ、三角形の外接円の半径をR、三角形の内接円の半径をrとすると、
2R=abc/2Α=a/sinα=b/sinβ=c/sinγ
Α=rp
Figure 2019144025
また、以下のように|t|、|t|、|t|、θ、θを定義する。
|t|=min(a,b,c)
Figure 2019144025
|t|=max(a,b,c)
θ=min(α,β,γ)
θ=max(α,β,γ)
ここで、min(a,b,c)は、辺a、b、cの最小値を示している。max(a,b,c)は、辺a、b、cの最大値を示している。min(α,β,γ)は、角度α、β、γの最小値を示している。max(α,β,γ)は、角度α、β、γの最大値を示している。
正三角形に最も近い三角形が出来上がるTDの組み合わせ順にマルチ三辺測量処理を行う以外には、以下a)〜d)の方法も可能である。
a)|t|と|t|0の差が最も小さい三角形の順に3つのTD1をマルチ三辺測量に使用する。
b)θとθの差が最も小さい三角形の順に3つのTD1をマルチ三辺測量に使用する。
c)R÷rが2に最も近い三角形の順に3つのTD1をマルチ三辺測量に使用する。
d)|t|/|t|0が1に最も近い三角形の順に3つのTD1をマルチ三辺測量に使用する。
<マルチ三辺測量処理>
制御部33は、LFTフィルタ処理によって識別された3つのTD1の組み合わせ毎に、以下に示すマルチ三辺測量処理を実行する。計算式を簡略化する為に2次元での(TD1のz軸が全て同じだとみなす)想定で説明するが、より正確に測位したい場合は3次元で算出することも可能である。
図13は、三辺測量処理を説明する図である。
まず、制御部33は、スマートデバイス2の位置座標P1、P2、P3を定義する。
P1:TD#1の位置に対応する位置座標(0,0)
P2:TD#2の位置に対応する位置座標(d,0)
P3:TD#3の位置に対応する位置座標(i,j)
次に、制御部33は、次式(1)により位置座標P1から位置座標P2の方向の単位ベクトルExを求める。
Ex=(P2−P1)/||P2−P1||・・・(1)
次に、制御部33は、式(1)により求めた単位ベクトルExを次式(2)に代入して位置座標P1から位置座標P3までのベクトルのx成分の符号付きの大きさiを求める。
i=Ex(P3−P1)・・・(2)
次に、制御部33は、y方向の単位ベクトルEyを次式(3)により求める。
Ey=(P3−P1−i・Ex)/||P3−P1−i・Ex||・・・(3)
次に、制御部33は、位置座標P1と位置座標P2間の距離dを次式(4)により求める。
d=||P2−P1||・・・(4)
次に、制御部33は、位置座標P1から位置座標P3のy成分の符号付きの大きさjを次式(5)により求める。
j=Ey・(P3−P1)・・・(5)
次に、制御部33は、次式(6)、(7)によりスマートデバイス2のIn1(x,y)を求める。
x=(t1−r2+d)/2・d・・・(6)
y=(r1−r3+x+(x−i)+j)/(2・j)・・・(7)
<クラスタリング処理>
制御部33は、マルチ三角測量処理に起因する各座標間のユークリッド距離を計算する。
お互いに最も近い点のペアを特定し、そのペアに最も近い第3の点を特定する。次に、制御部33は、特定した3点のx座標とy座標それぞれの平均値をとる。
制御部33は、その平均値(クラスタを表す結果の位置座標)を、マルチ三辺測量の位置座標として使用する。その後、図10に示すステップS10に遷移する。
[ステップS10] 制御部33は、スマートデバイス2が移動しているか否かを判断し、スマートデバイス2が移動していると判断した場合(ステップS10のNo)、ステップS11に遷移する。具体的には、制御部33は、加速度センサ207cの検出結果に基づき以下の演算を実行する。
以下、スマートデバイス2のx軸方向の加速度を「Ax」、スマートデバイス2のy軸方向の加速度を「Ay」、スマートデバイス2のz軸方向の加速度を「Az」と定義する
加速度の大きさ|A|は、|A|=SQRT(Ax+Ay+Az)で求めることができる。
そして、制御部33は、加速度Azが所定の定数Ac1より小さい場合、または、|A|が所定の定数Ac2より小さい場合、スマートデバイス2は静止しているものと判断する。制御部33は、スマートデバイス2が静止していると判断した場合(ステップS10のYes)、ステップS12に遷移する。
仮にスマートデバイス2が加速度センサを備えていない場合は、ステップS12に遷移する。
[ステップS11] 制御部33は、磁力計207a、ジャイロセンサ207b、および加速度センサ207cの測定値を取得する。制御部33は、取得した値を使用してスマートデバイス2が移動した方向および距離を計算するデッドレコニング処理を実行する。
図14は、デッドレコニング処理を説明する図である。
方向の計算に際しては、制御部33は、次に説明する3つの優先順位に従う。
[ステップS11a] 制御部33は、スマートデバイス2の動線測量アプリケーションがフォアグラウンドモード(動線測量アプリケーションがスマートデバイス2の画面に表示されている状態)か否かを判断する。スマートデバイス2の動線測量アプリケーションがフォアグラウンドモードである場合(ステップS11aのYes)、ステップS11bに遷移する。スマートデバイス2の動線測量アプリケーションがフォアグラウンドモードではない場合(すなわち、バックグラウンドモード(アプリケーションが裏で動作しており、スマートデバイス2の画面に表示されていない状態(画面が暗くなっている状態も含む))である場合)(ステップS11aのNo)、ステップS11dに遷移する。
[ステップS11b] 制御部33は、スマートデバイス2のジャイロセンサ及び磁力計による磁針向首方向を確認する機能が利用可能か否かを判断する。スマートデバイス2のジャイロセンサ及び磁力計による磁針向首方向を確認する機能が利用可能である場合(ステップS11bのYes)、ステップS11cに遷移する。スマートデバイス2のジャイロセンサ及び磁力計による磁針向首方向を確認する機能が利用可能ではない場合(ステップS11bのNo)で加速度センサが利用可能である場合、ステップS11dに遷移する。
[ステップS11c] 制御部33は、スマートデバイス2の磁針向首方向機能を活用して測位を行うデッドレコニング(Magnetic Heading-based Dead-reckoning)処理を実行する。
この手順は、後述する加速度センサを活用して即位するデッドレコニング処理と同じ手順である。
但し、加速度センサを活用して即位するデッドレコニング処理が加速度センサの値に基づいて計算するのに対し、磁針向首方向機能を活用して測位を行うデッドレコニング処理が磁気方向のスマートデバイス2からの磁針向首方向データを使用するという点が異なる。
そして、制御部33は、磁針向首方向機能を活用して測位を行うデッドレコニング処理により求めたスマートデバイス2の移動距離と方角を、直近のスマートデバイス2の静止位置に適用し、現在位置を測位する。その後、ステップS12に遷移する。
[ステップS11d] 制御部33は、設定を確認し、エンドユーザーが位置座標データを可視化するにあたり、リアルタイム性を求めているかどうかを確認する。可視化のリアルタイム性が求められていない場合は、ステップS11fに遷移する。可視化のリアルタイム性が求められている場合は、ステップS11eに遷移する。
[ステップS11e] 制御部33は、加速度センサを活用して測位を行うデッドレコニング(Accelerometer-based Dead-reckoning)処理を実行する。以下、詳述する。
図15は、加速度センサを活用して測位を行うデッドレコニング処理を説明するフローチャートである。
[ステップS11e1] 加速度センサ207cからx、y、zの値の時系列が与えられると、制御部33は、加速度センサ207cから取得したz方向の値のパターンに基づいてスマートデバイス2の所有者の歩数を時刻tの歩行ごとに特定する。具体的には、加速度センサ207cからスパイク(値の変動)があるときはステップS11e2に遷移する。
[ステップS11e2] 制御部33は、時間範囲±Δtの場合、主成分分析(PCA)を使用して、その時間範囲の加速度センサのx軸方向およびy軸方向の値を渡すことによって、スマートデバイス2が移動している磁気方向を計算する。
[ステップS11e3] 制御部33は、ステップS11d2で計算した磁気方向に向かって予測される歩幅(一例として、60cm)の推定幅によってスマートデバイス2の最近計算された位置をオフセットする。
[ステップS11e4] 制御部33は、スマートデバイス2の新しい位置を直近のスマートデバイス2の位置に適用し、最近計算された位置に設定する。その後、ステップS12に遷移する。
なお、ステップS11e3においては、歩幅の推定幅によって、スマートデバイス2の最近計算された位置をオフセットした。しかし、距離の推定方法は、これに限定されず、トラッキング対象により異なる。例えば、無人搬送車の位置を測量する場合は、かかる無人搬送車の平均移動速度と時間軸を使って距離を推定することができる。
なお、距離の推定方法は、後述するステップS11f3においても同様のことが言える。
再び図14に戻って説明する。
[ステップS11f] 制御部33は、RSSI値を活用して測位を行うデッドレコニング処理で進行方向を特定する。以下、詳述する。
図16は、RSSI値を活用して測位を行うデッドレコニング処理を説明するフローチャートである。
[ステップS11f1] 加速度センサ207cからx、y、zの値の時系列が与えられると、制御部33は、加速度センサ207cから取得したz方向の値のパターンに基づいて歩行者の歩数を時刻tの歩行ごとに特定する。具体的には、加速度センサ207cから積極的なスパイク(値の変化)があるときはステップS11f2に遷移する。
[ステップS11f2] 制御部33は、時刻t±Δtの範囲については、時刻t前後の各TD1のTBS、RSSI値間の差分を計算する。次に、制御部33は、計算した差分を使用してRSSI値が正になっているTD1のグループと、RSSI値が負になっているTD1のグループの、合計2つのグループを作成する。
次に、制御部33は、作成した各グループについて、各TD1の位置座標(x,y,z)を使用して、主成分分析(PCA)を行い各グループの中心点を識別する。
次に、制御部33は、スマートデバイス2が移動している磁気方向を、負のTD1のグループの中心から正のTD1のグループの中心までのベクトルに設定する。
[ステップS11f3] 制御部33は、ステップS14e2で計算した磁気方向に向かって予測される歩幅(一例として、60cm)の推定幅によってスマートデバイス2の最近計算された位置をオフセットする。
[ステップS11f4] 制御部33は、新しい位置を最近計算された位置に設定する
以上で図14〜図16の説明を終了する。再び図10に戻って説明する。
[ステップS12] 制御部33は、2次元または3次元カルマンフィルタを用いて、座標の値を統合計算して現在位置候補(x4、y4、z4)を算出する(統計的取捨選択処理)。具体的には、制御部33は、静止パターンの場合(ステップS10のYes)または移動パターンの場合(ステップS10のNo)の処理により得られた位置座標(Dx,Dy,Dz)を、カルマンフィルタのcontrol vector uに指定する。2次元カルマンフィルタの場合は、Z軸の値を「0」にする。その後、ステップS13に遷移する。
図17は、2次元または3次元カルマンフィルタを用いて座標の値を統合計算する処理の一例を説明する図である。
矩形の輪郭は、建物30を示している。フロア20と同様に、建物30の左上を(0,0,0)とする座標が仮想的に設定されている。
図17中、動線d2は、RSSI値により算出した動線を示している。動線d3は、デッドレコニング処理により算出した動線を示している。動線d1は、動線d2と動線d3を、2次元カルマンフィルタを用いて統合計算処理した結果を示している。
再び図10に戻って説明する。
[ステップS13] 制御部33は、ステップS12の処理により得られたスマートデバイス2の現在位置候補(x4,y4,z4)を地図に照らし合わせる。照らし合わせた結果、スマートデバイス2の現在位置候補(x4,y4,z4)が、地図上存在し得る位置に該当する場合には、現在位置候補(x4,y4,z4)を現在位置に特定する。地図上存在し得ない位置(例えば、壁の内部等の障害物)に該当する場合には、現在位置候補からその無効なセクションの最も近いエッジ上の最も近い位置座標(x5,y5,z5)を現在位置に特定する。その後、ステップS14に遷移する。
[ステップS14] 制御部33は、特定した位置座標をスマートデバイス2の現在位置に決定する。制御部33は、ステップS13にて特定した位置座標を特定完了時刻とともに記憶部31に記憶する(位置座標データ)。また、制御部33は、特定した位置座標をGPS座標に変換する。このGPS座標は、スマートデバイス2のディスプレイ204a等に表示することにより、利用者にスマートデバイス2の動線を示すことができる。その後、図10の処理を終了する。
以上述べたように、測量システム100によれば、スマートデバイス2を経由して得られるデータに基づき、スマートデバイス2のその時の環境と動態につき判断し、それに応じて最適な要素を演算及びフィルタ処理を同時に履行することで、最良な測位結果を抽出するようにした。この方式は、RSSI値を特定の演算方式にて処理して位置座標を決定する方式とは一線を画している。最初のRSSI値のフィルタ処理からそのフィルタ済RSSI値を用いた位置座標の特定、そして直近の位置座標結果を参照した2次元カルマンフィルタによる現在位置座標の特定にわたり、測量システム100では終始一貫して演算およびかかる演算結果の統計的取捨選択処理(フィルタ処理)を同時に行うことで、同時に算出可能な複数の演算結果のうち最適な演算結果をその都度採択しており、その上で非設置デバイスの位置を特定する特徴が挙げられる。
演算方法としては、前述したように、受信部32の信号の検出状況に応じてTD1を仮想的に繋ぐ線の軌跡が可及的に正三角形に近づくTD1の組み合わせを用いて三辺測量を行うとともに測量結果のフィルタ処理を行い、算出可能な複数の演算結果のうち最適な演算結果をその都度採択して前記非設置デバイスの位置を特定するようにした。
また、スマートデバイス2に関し以前計算された位置座標データが存在する場合、正規化最小自乗、およびコサイン類似度アルゴリズムを用いて位置座標を算出することによりスマートデバイス2の位置を特定するようにした。
また、信号の検出状況に応じてデッドレコニング方式により位置特定を行うにあたり、RSSI値の演算により得られた移動した方角情報と移動距離を、過去に演算した直近の位置座標に適用して前記非設置デバイスの現在位置座標を決定するようにした。
なお、本発明による演算処理の構成や順序は、実施の形態における説明や図示に限定されない。本発明においては、非設置デバイスに最低限GPSモジュールおよび(Bluetooth・Wi-Fi等)近距離無線通信信号レシーバーのいずれかが搭載されている限り、スマートデバイス2の位置を高精度で特定することができる。加えて本実施の形態では、RSSI値、マグネチックフィールド入力、GPS座標、加速度計入力、デッドレコニング値、ジャイロスコープセンサ入力のセットを取得し、フローチャートにて説明したアルゴリズムを用いてスマートデバイス2の現在位置を計算し、スマートデバイス2の位置座標を決定した。これにより、スマートデバイス2の位置を特定する精度を向上させることができる。
具体的には、動線測量装置3が、予め所定箇所に設置されたTD1が発する信号を検出可能なスマートデバイス2による信号の検出の可否を受信し、スマートデバイス2による信号の検出状況に応じて、スマートデバイス2の移動の有無をスマートデバイス2が備えるセンサの検出結果により判断し、信号の検出の可否と、スマートデバイス2の移動の有無に応じてスマートデバイス2の位置を特定する要素を選択し、選択した要素を用いて演算を行うことによりスマートデバイス2の位置を特定した。
これにより、RFIDチップ等を搭載した特殊で高価な電波設備を用いずとも、スマートデバイス2の位置を高精度かつ安価に特定することができる。
以上、本発明の位置特定方法、位置特定装置およびプログラムを、図示の実施の形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物や工程が付加されていてもよい。例えば、スマートデバイス2が一定時間の間隔で静止し続けることが把握できている場合等、常時測量する必要がない場合は、TD1から発信される近距離無線通信信号のスキャン動作および動線測量装置3による計算の頻度を減らすことにより、消費電力を低減させることができる。
なお、動線測量装置3が行った処理が、複数の装置によって分散処理されるようにしてもよい。例えば、1つの装置が、各種センサにより検出された値を記憶しておき、他の装置が、その値を用いてスマートデバイス2の位置座標を特定してもよい。
また、センサ関連のデータは測位対象である非設置端末から検出する必要があるものの、近距離無線通信信号については、TD1が発しスマートデバイス2がそれを受信するか、逆にスマートデバイス2が発しTD1がそれを受信するか、を一切問わない。従って、図示の実施の形態では、スマートデバイス2経由でTD1からの近距離無線通信信号の検知状況及びスマートデバイス2のセンサ検知結果が動線測量装置3に対し送信されたが、スマートデバイス2が発する近距離無線通信信号及びセンサの両方をTD1が検知し、TD1経由で動線測量装置3に対し送信してもよい。TD1が複数存在する場合、各TD1の検知結果をひとつの任意のTD1に集約し処理を行ってもよい。
さらに、動線測量装置3の処理の一部または全部をTD1又はスマートデバイス2が実行するようにしてもよい。その場合、かかるデバイスから動線測量装置3へのデータ通信を省略でき、付随するデータ通信コストの削減が可能である。その際、各TD1の位置座標は、処理を行うデバイスに記憶させるか或いは動線測量装置3から取得する。
また、予め算出された、または予め与えられたスマートデバイス2の位置座標(初期位置座標)を用いて、図9および図10にて説明した処理を実行するようにしてもよい。
初期位置座標の特定方法としては特に限定されないが、例えば、
(1)最も近い3つのTD1の位置座標を利用して、Trilaterationアルゴリズムにて初期位置座標を特定する方法。
(2)最も近い3つのTD1の位置座標を利用して、Triangulationアルゴリズムにて初期位置座標を特定する方法。
(3)単純に、最も近いTD1の位置座標を初期位置情報とみなす方法。
(4)最も近い3つのTD1の位置座標が描く三角形内の適当な位置を選択し、その位置(例えば三角形の中央)を初期位置情報とみなす方法。
等が挙げられる。
なお、上記の処理機能は、コンピュータによって実現することができる。その場合、スマートデバイス2または動線測量装置3が有する機能の処理内容を記述したプログラムが提供される。そのプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、磁気記憶装置、光ディスク、光磁気記録媒体、半導体メモリ等が挙げられる。磁気記憶装置には、ハードディスクドライブ、フレキシブルディスク(FD)、磁気テープ等が挙げられる。光ディスクには、DVD、DVD−RAM、CD−ROM/RW等が挙げられる。光磁気記録媒体には、MO(Magneto-Optical disk)等が挙げられる。
プログラムを流通させる場合には、例えば、そのプログラムが記録されたDVD、CD−ROM等の可搬型記録媒体が販売される。また、プログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することもできる。
プログラムを実行するコンピュータは、例えば、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、自己の記憶装置に格納する。そして、コンピュータは、自己の記憶装置からプログラムを読み取り、プログラムに従った処理を実行する。なお、コンピュータは、可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することもできる。また、コンピュータは、ネットワークを介して接続されたサーバコンピュータからプログラムが転送される毎に、逐次、受け取ったプログラムに従った処理を実行することもできる。
また、上記の処理機能の少なくとも一部を、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)等の電子回路で実現することもできる。
1 TD
2 スマートデバイス
3 動線測量装置
31 記憶部
32 受信部
33 制御部
100 測量システム

Claims (15)

  1. 所定箇所に予め設置された複数の設置デバイスを用いて非設置デバイスの位置を特定する位置特定方法において、
    コンピュータが、
    前記設置デバイスまたは前記非設置デバイスのうち一方のデバイスが発する信号を検出した、前記設置デバイスまたは前記非設置デバイスのうち他方のデバイス検出の可否を受信したときに、前記非設置デバイスに関し以前計算された位置座標データが存在する場合、正規化最小自乗、およびコサイン類似度アルゴリズムを用いて位置座標を算出することにより前記非設置デバイスの位置を特定する、
    ことを特徴とする位置特定方法。
  2. 算出した過去の位置座標に対し予見モデルを用いて前記非設置デバイスの現在の位置座標を補正する請求項1に記載の位置特定方法。
  3. 前記予見モデルは2次元または3次元カルマンフィルタである請求項2に記載の位置特定方法。
  4. 前記信号はRSSI値であり、前記RSSI値に対してノイズ除去処理を行い、ノイズ
    を除去したRSSI値を用いて前記非設置デバイスの位置座標を算出する請求項1に記載
    の位置特定方法。
  5. 前記信号には、当該信号を発信したデバイス毎の当該信号を発信した順序を識別する識別情報が含まれており、発信順序の異なる近距離無線通信信号を演算対象から除去する請求項1に記載の位置特定方法。
  6. 所定箇所に予め設置された複数の設置デバイスを用いて非設置デバイスの位置を特定する位置特定方法において、
    コンピュータが、
    前記設置デバイスまたは前記非設置デバイスのうち一方のデバイスが発する信号を検出した、前記設置デバイスまたは前記非設置デバイスのうち他方のデバイス検出の可否を受信し、
    前記他方のデバイスによる前記信号の検出状況に応じて前記各設置デバイスを仮想的に繋ぐ線の軌跡が可及的に正三角形に近づく前記設置デバイスの組み合わせを用いて三辺測量を行うとともに測量結果のフィルタ処理を行い、
    算出可能な複数の演算結果のうち最適な演算結果をその都度採択して前記非設置デバイスの位置を特定する、
    ことを特徴とする位置特定方法。
  7. 算出した過去の位置座標に対し予見モデルを用いて前記非設置デバイスの現在の位置座標を補正する請求項6に記載の位置特定方法。
  8. 前記予見モデルは2次元または3次元カルマンフィルタである請求項7に記載の位置特定方法。
  9. 所定箇所に予め設置された複数の設置デバイスを用いて非設置デバイスの位置を特定する位置特定方法において、
    コンピュータが、
    前記設置デバイスまたは前記非設置デバイスのうち一方のデバイスが発する信号を検出した、前記設置デバイスまたは前記非設置デバイスのうち他方のデバイス検出の可否を受信し、
    前記他方のデバイスによる前記信号の検出状況に応じてデッドレコニング方式により位置特定を行うにあたり、RSSI値の演算により得られた移動した方角情報と移動距離を、過去に演算した直近の位置座標に適用して前記非設置デバイスの現在位置座標を決定する、
    ことを特徴とする位置特定方法。
  10. 請求項1に記載の位置特定方法を行う制御部と、
    特定した非設置デバイスの位置を記憶する記憶部と、
    を有することを特徴とする位置特定装置。
  11. 請求項6に記載の位置特定方法を行う制御部と、
    特定した非設置デバイスの位置を記憶する記憶部と、
    を有することを特徴とする位置特定装置。
  12. 請求項9に記載の位置特定方法を行う制御部と、
    決定した前記非設置デバイスの現在位置座標を記憶する記憶部と、
    を有することを特徴とする位置特定装置。
  13. 所定箇所に予め設置された複数の設置デバイスを用いて非設置デバイスの位置を特定するプログラムにおいて、
    コンピュータに、
    前記設置デバイスまたは前記非設置デバイスのうち一方のデバイスが発する信号を検出した、前記設置デバイスまたは前記非設置デバイスのうち他方のデバイス検出の可否を受信したときに、前記非設置デバイスに関し以前計算された位置座標データが存在する場合、正規化最小自乗、およびコサイン類似度アルゴリズムを用いて位置座標を算出することにより前記非設置デバイスの位置を特定する、
    ことを特徴とする位置特定方法。
  14. 所定箇所に予め設置された複数の設置デバイスを用いて非設置デバイスの位置を特定するプログラムにおいて、
    コンピュータに、
    前記設置デバイスまたは前記非設置デバイスのうち一方のデバイスが発する信号を検出した、前記設置デバイスまたは前記非設置デバイスのうち他方のデバイス検出の可否を受信し、
    前記他方のデバイスによる前記信号の検出状況に応じて前記各設置デバイスを仮想的に繋ぐ線の軌跡が可及的に正三角形に近づく前記設置デバイスの組み合わせを用いて三辺測量を行うとともに測量結果のフィルタ処理を行い、
    算出可能な複数の演算結果のうち最適な演算結果をその都度採択して前記非設置デバイスの位置を特定する、
    処理を実行させることを特徴とするプログラム。
  15. 所定箇所に予め設置された複数の設置デバイスを用いて非設置デバイスの位置を特定するプログラムにおいて、
    コンピュータに、
    前記設置デバイスまたは前記非設置デバイスのうち一方のデバイスが発する信号を検出した、前記設置デバイスまたは前記非設置デバイスのうち他方のデバイス検出の可否を受信し、
    前記他方のデバイスによる前記信号の検出状況に応じてデッドレコニング方式により位置特定を行うにあたり、RSSI値の演算により得られた移動した方角情報と移動距離を、過去に演算した直近の位置座標に適用して前記非設置デバイスの現在位置座標を決定する、
    ことを特徴とするプログラム。
JP2018026525A 2018-02-16 2018-02-16 位置特定方法、位置特定装置およびプログラム Active JP6347533B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018026525A JP6347533B1 (ja) 2018-02-16 2018-02-16 位置特定方法、位置特定装置およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018026525A JP6347533B1 (ja) 2018-02-16 2018-02-16 位置特定方法、位置特定装置およびプログラム

Publications (2)

Publication Number Publication Date
JP6347533B1 JP6347533B1 (ja) 2018-06-27
JP2019144025A true JP2019144025A (ja) 2019-08-29

Family

ID=62706256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018026525A Active JP6347533B1 (ja) 2018-02-16 2018-02-16 位置特定方法、位置特定装置およびプログラム

Country Status (1)

Country Link
JP (1) JP6347533B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10740051B2 (en) 2018-11-19 2020-08-11 Ricoh Company, Ltd. Information processing system, information processing method, and recording medium
JP2021089144A (ja) * 2019-12-02 2021-06-10 株式会社Jvcケンウッド 位置推定装置、位置推定方法及び位置推定プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021588A1 (ja) * 2009-08-20 2011-02-24 日本電気株式会社 移動体軌跡識別システム
JP2012502299A (ja) * 2008-09-10 2012-01-26 コムラブス,インコーポレーテッド 広域測位システム
US20140286534A1 (en) * 2012-01-11 2014-09-25 Indooratlas Oy Generating magnetic field map for indoor positioning
JP2015180873A (ja) * 2014-03-07 2015-10-15 公立大学法人岩手県立大学 位置推定システム、位置推定方法、プログラム
JP2015187610A (ja) * 2008-05-23 2015-10-29 クゥアルコム・インコーポレイテッドQualcomm Incorporated 複数モード位置決定方法およびシステム
JP2017067566A (ja) * 2015-09-29 2017-04-06 株式会社Nttドコモ 端末装置および検出プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187610A (ja) * 2008-05-23 2015-10-29 クゥアルコム・インコーポレイテッドQualcomm Incorporated 複数モード位置決定方法およびシステム
JP2012502299A (ja) * 2008-09-10 2012-01-26 コムラブス,インコーポレーテッド 広域測位システム
WO2011021588A1 (ja) * 2009-08-20 2011-02-24 日本電気株式会社 移動体軌跡識別システム
US20140286534A1 (en) * 2012-01-11 2014-09-25 Indooratlas Oy Generating magnetic field map for indoor positioning
JP2015180873A (ja) * 2014-03-07 2015-10-15 公立大学法人岩手県立大学 位置推定システム、位置推定方法、プログラム
JP2017067566A (ja) * 2015-09-29 2017-04-06 株式会社Nttドコモ 端末装置および検出プログラム

Also Published As

Publication number Publication date
JP6347533B1 (ja) 2018-06-27

Similar Documents

Publication Publication Date Title
KR101728123B1 (ko) 지구 자기장을 이용한 동시 로컬리제이션 및 매핑
US9683851B2 (en) Indoor magnetic field based location discovery
CN103843429B (zh) 针对设备位置的位所指示控制
TWI500003B (zh) 基於虛擬地標之定位及地圖繪製技術
Taneja et al. Analysis of three indoor localization technologies for supporting operations and maintenance field tasks
US9462423B1 (en) Qualitative and quantitative sensor fusion for indoor navigation
US20170336210A1 (en) Electronic apparatus providing indoor navigation and method thereof
US10798527B2 (en) Cognitive progressive method and system for deploying indoor location sensor networks
EP3019827A2 (en) Indoor location-finding using magnetic field anomalies
CN103207383A (zh) 基于单个移动节点对一静止节点进行二维无线定位的方法
US11275149B2 (en) Determining a location of an electronic device
EP3534111B1 (en) Method and system of pedestrian localization
JP2007114003A (ja) 非接触icタグ位置検出システム
US20190286863A1 (en) Rfid module for through boundary location accuracy
WO2015079260A1 (en) Location finding apparatus and associated methods
US9716980B1 (en) Geometrical scheduling algorithm for acoustic positioning beacons
JP6347533B1 (ja) 位置特定方法、位置特定装置およびプログラム
KR20170032147A (ko) 단말 및 이의 위치 측정 방법
US10412700B2 (en) Portable-device-locating system that uses room-level motion sensors and RSSI measurements to determine precise room-location
US11408988B2 (en) System and method for acoustic vehicle location tracking
JP7054339B2 (ja) 移動体
JP2016109487A (ja) 相対位置測定装置、プログラム
JP6300216B1 (ja) 位置特定方法、位置特定装置およびプログラム
JP2016218026A (ja) 情報処理装置、測位方法およびプログラム
Jeon et al. Smart parking system based on an ultrasonic sensor and bluetooth low energy in the internet of things

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180525

R150 Certificate of patent or registration of utility model

Ref document number: 6347533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350