JP2019143223A - Method for removing impurities from cobalt chloride solution - Google Patents

Method for removing impurities from cobalt chloride solution Download PDF

Info

Publication number
JP2019143223A
JP2019143223A JP2018030595A JP2018030595A JP2019143223A JP 2019143223 A JP2019143223 A JP 2019143223A JP 2018030595 A JP2018030595 A JP 2018030595A JP 2018030595 A JP2018030595 A JP 2018030595A JP 2019143223 A JP2019143223 A JP 2019143223A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
extraction
solution
impurities
cobalt chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018030595A
Other languages
Japanese (ja)
Inventor
堅士 山本
Kenji Yamamoto
堅士 山本
英一 中川
Hidekazu Nakagawa
英一 中川
宏之 三ツ井
Hiroyuki Mitsui
宏之 三ツ井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018030595A priority Critical patent/JP2019143223A/en
Publication of JP2019143223A publication Critical patent/JP2019143223A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method capable of stably removing impurities without adding excess additive in a solvent extraction treatment to a cobalt chloride solution including the impurities.SOLUTION: There is provided a method for removing impurities by conducting a solvent extraction treatment consisting of an extraction step S81, a cleaning step S82, and a reverse extraction step S83 preferably using di-(2-ethylhexyl)phosphonic acid as an extraction liquid on a cobalt chloride solution produced by for example a wet refining process of a nickel ore and containing at least Ca, Mn, Zn and Fe as impurities, a reverse extraction treatment condition of the reverse extraction step S83 is adjusted so that hydrochloric acid concentration of a liquid post reverse extraction drawn from the reverse extraction step S83 is 80 to 90 g/L.SELECTED DRAWING: Figure 2

Description

本発明は、塩化コバルト水溶液からの不純物除去方法に関し、特に湿式製錬プロセスにおいて生成される塩化コバルト水溶液から不純物を除去する方法に関する。   The present invention relates to a method for removing impurities from an aqueous cobalt chloride solution, and more particularly to a method for removing impurities from an aqueous cobalt chloride solution produced in a hydrometallurgical process.

コバルトは耐摩耗性及び耐熱性に優れているため、航空宇宙、発電機、特殊工具等の様々な分野において特殊鋼として広く利用されている。また、コバルトはその強い磁性を活かして小型ヘッドホンや小型モーターの磁性材料としても利用されている。更に、近年はパソコンやスマートフォン等の移動式情報処理端末用のほか、自動車用、電力貯蔵用として需要が増大しているリチウムイオン二次電池の正極材の原料にもコバルトの用途は拡大している。   Since cobalt is excellent in wear resistance and heat resistance, it is widely used as a special steel in various fields such as aerospace, generators and special tools. Cobalt is also used as a magnetic material for small headphones and small motors by taking advantage of its strong magnetism. Furthermore, in addition to mobile information processing terminals such as personal computers and smartphones in recent years, the use of cobalt has also expanded as a raw material for positive electrode materials for lithium ion secondary batteries, for which demand is increasing for automobiles and power storage. Yes.

コバルトは、鉱物資源としてはニッケルや銅に付随して含まれることが多く、ニッケル製錬や銅製錬の副産物として産出されるものが大半を占めている。そのため、コバルトの製造においてはニッケルや銅を始めとする不純物の分離が重要な技術要素になっている。例えば、特許文献1にはニッケル及びコバルトを含んだ原料を塩素浸出処理して得た浸出液に対して、セメンテーション工程、脱鉄工程、コバルト溶媒抽出工程、及びコバルト電解工程で処理することによって電気コバルトを製造する方法において、該コバルト溶媒抽出工程で得た不純物を含む粗塩化コバルト水溶液から不純物を除去する技術が開示されている。この特許文献1の技術は、粗塩化コバルト水溶液に酸化剤及び中和剤を添加して酸化中和処理を行った後、硫化剤及びpH調整剤を添加して脱銅処理することにより不純物を除去するものである。   Cobalt is often included as a mineral resource along with nickel and copper, and most of it is produced as a by-product of nickel smelting and copper smelting. Therefore, the separation of impurities such as nickel and copper is an important technical element in the production of cobalt. For example, Patent Document 1 discloses that a leachate obtained by chlorine leaching of a raw material containing nickel and cobalt is electrically processed by a cementation process, a deironing process, a cobalt solvent extraction process, and a cobalt electrolysis process. In the method for producing cobalt, a technique for removing impurities from a crude cobalt chloride aqueous solution containing impurities obtained in the cobalt solvent extraction step is disclosed. In the technique of Patent Document 1, an oxidizing agent and a neutralizing agent are added to a crude cobalt chloride aqueous solution to carry out an oxidation neutralization treatment, and then a sulfurating agent and a pH adjuster are added to remove copper, thereby removing impurities. To be removed.

また、特許文献2には、粗塩化コバルト水溶液に対して有機リン酸型の溶媒抽出剤を用いて不純物と一部のコバルトを溶媒抽出した後、該溶媒抽出後の有機相をpH1.5〜1.8の水溶液と接触させて該一部のコバルトを逆抽出し、更に鉱酸水溶液に接触させて水相のpH0.5以下の条件で不純物を逆抽出することで粗塩化コバルト水溶液に含まれる不純物としてのMnのほか、Ca、Zn、及びFeを除去する技術が開示されている。   Patent Document 2 discloses that a crude cobalt chloride aqueous solution is subjected to solvent extraction of impurities and a part of cobalt using an organic phosphoric acid solvent extractant, and then the organic phase after the solvent extraction is adjusted to pH 1.5 to 1.5. Included in the crude cobalt chloride aqueous solution by back-extracting a part of the cobalt by bringing it into contact with an aqueous solution of 1.8, and further contacting the mineral acid aqueous solution and back-extracting impurities under the condition that the pH of the aqueous phase is 0.5 or lower. In addition to Mn as an impurity, a technique for removing Ca, Zn, and Fe is disclosed.

特開2016−014164号公報JP, 2006-014164, A 特開2017−190478号公報JP 2017-190478 A

しかしながら、上記の特許文献1の技術では、粗塩化コバルト水溶液からMnを十分に除去するのが難しく、原料の組成が変動すると製品中に含まれる不純物としてのMnが許容値を超えることがあった。一方、特許文献2の技術では、不純物を含んだ有機相を鉱酸水溶液に接触させることにより不純物を水相に移行させて系外に除去するほか、水相のpHを低く抑えることで有機相を再生することも狙っている。そのため、不純物を逆抽出した後の水相のpHは過剰に低く管理される傾向にあり、当該水相の排水処理工程において使用する中和剤の消費コストが高くなりすぎることがあった。   However, in the technique of Patent Document 1, it is difficult to sufficiently remove Mn from the crude cobalt chloride aqueous solution, and when the composition of the raw material fluctuates, Mn as an impurity contained in the product may exceed the allowable value. . On the other hand, in the technique of Patent Document 2, an organic phase containing impurities is brought into contact with a mineral acid aqueous solution to transfer impurities to the aqueous phase and removed from the system, and the organic phase is controlled by keeping the pH of the aqueous phase low. Also aim to play. For this reason, the pH of the aqueous phase after back-extracting impurities tends to be controlled too low, and the consumption cost of the neutralizing agent used in the wastewater treatment process of the aqueous phase may be too high.

すなわち、上記の特許文献2の技術では粗塩化コバルト水溶液からのMnの除去を主眼に置いてpHの上限値0.5が規定されているが、pHをこの上限値以下にすることによってMn以外の不純物も除去できるうえ、有機相の再生も可能になるため、実操業においてはpHを0.5よりも低く管理することが安全サイドの管理となる。つまり、原料組成の変動等の理由によって上記水相のpHが0.5を超える事態が生じないように過度に低いpHで管理されることが多かった。更に、鉱酸水溶液による不純物の逆抽出において水相のpHを上限値0.5で管理すると、Mn以外の不純物除去が不十分になることがあるうえ、pH計の感度等の問題によりpHを0.5程度の低い値で安定的に維持するのは困難であった。   That is, in the technique of Patent Document 2 described above, the upper limit value of pH 0.5 is defined with a focus on the removal of Mn from the crude cobalt chloride aqueous solution. In addition, the organic phase can be regenerated. Therefore, in actual operation, management of pH lower than 0.5 is management on the safe side. That is, in many cases, the pH of the aqueous phase is controlled at an excessively low pH so as not to cause a situation where the pH of the aqueous phase exceeds 0.5 for reasons such as fluctuations in the raw material composition. Furthermore, when the pH of the aqueous phase is controlled at the upper limit of 0.5 in the back extraction of impurities with an aqueous mineral acid solution, removal of impurities other than Mn may be insufficient, and the pH may be reduced due to problems such as the sensitivity of the pH meter. It was difficult to stably maintain at a low value of about 0.5.

本発明は上記した従来の塩化コバルト水溶液からの不純物除去方法が抱える問題点に鑑みてなされたものであり、不純物を含んだ塩化コバルト水溶液に対して添加剤を過剰に添加することなく安定的に溶媒抽出処理を行うことができ、よって排水処理工程のコストを抑制することが可能な塩化コバルト水溶液からの不純物除去方法を提供することを目的としている。   The present invention has been made in view of the problems of the conventional method for removing impurities from a cobalt chloride aqueous solution, and can be stably carried out without excessively adding an additive to the cobalt chloride aqueous solution containing impurities. An object of the present invention is to provide a method for removing impurities from an aqueous cobalt chloride solution, which can perform a solvent extraction process, and thus can reduce the cost of a wastewater treatment process.

上記目的を達成するため、本発明に係る塩化コバルト水溶液からの不純物除去方法は、不純物として少なくともCa、Mn、Zn、及びFeを含む塩化コバルト水溶液に対して、抽出段、洗浄段、及び逆抽出段からなる溶媒抽出処理を施して該不純物を除去する方法であって、前記逆抽出段から抜き出される逆抽出後液の塩酸濃度が80〜90g/Lとなるように前記逆抽出段の逆抽出処理条件を調整することを特徴としている。   In order to achieve the above object, the method for removing impurities from an aqueous cobalt chloride solution according to the present invention comprises an extraction stage, a washing stage, and a back extraction for an aqueous cobalt chloride solution containing at least Ca, Mn, Zn, and Fe as impurities. A method of removing the impurities by performing a solvent extraction treatment comprising a stage, wherein the hydrochloric acid concentration in the solution after back extraction withdrawn from the back extraction stage is 80-90 g / L. It is characterized by adjusting the extraction processing conditions.

本発明によれば、不純物を含んだ塩化コバルト水溶液に対して過剰に添加剤を添加することなく安定的に溶媒抽出処理を行うことができ、よって排水処理工程のコストを抑制することが可能になる。   According to the present invention, it is possible to stably perform a solvent extraction process without adding an additive excessively to an aqueous cobalt chloride solution containing impurities, and thus it is possible to suppress the cost of a wastewater treatment process. Become.

本発明の塩化コバルト水溶液からの不純物除去方法が好適に適用される湿式製錬プロセスの工程フロー図である。It is a process flow figure of the hydrometallurgical process to which the impurity removal method from the cobalt chloride aqueous solution of the present invention is applied suitably. 図1のコバルト浄液工程の工程フロー図である。It is a process flow figure of the cobalt liquid cleaning process of FIG. ビーカー試験において不純物を含んだ塩化コバルト水溶液を様々な塩酸濃度を有する希塩酸水溶液と混合して逆抽出処理を行ったときの水相中の不純物元素と塩酸濃度との関係をプロットしたグラフである。It is the graph which plotted the relationship between the impurity element in a water phase, and hydrochloric acid concentration when the cobalt chloride aqueous solution containing an impurity was mixed with the diluted hydrochloric acid aqueous solution which has various hydrochloric acid concentration in a beaker test, and the back extraction process was performed. 図2の逆抽出段から排出される逆抽出後液の塩酸濃度の調整方法の一具体例を示すフロー図である。It is a flowchart which shows one specific example of the adjustment method of the hydrochloric acid concentration of the liquid after back extraction discharged | emitted from the back extraction stage of FIG.

先ず図1を参照しながら、本発明の塩化コバルト水溶液からの不純物除去方法が好適に適用される湿式製錬プロセスについて説明する。この図1に示す湿式製錬プロセスは、MCLE(マット塩素浸出電解採取)プロセスとも称されるニッケル及びコバルトの製造プロセスであり、塩素浸出工程S1、粉砕工程S2、セメンテーション工程S3、脱鉄工程S4、溶媒抽出工程S5、ニッケル浄液工程S6、ニッケル電解工程S7、コバルト浄液工程S8、及びコバルト電解工程S9からなる。   First, a hydrometallurgical process to which the method for removing impurities from an aqueous cobalt chloride solution of the present invention is suitably applied will be described with reference to FIG. The hydrometallurgical process shown in FIG. 1 is a nickel and cobalt production process, also called MCLE (matt chlorine leaching electrowinning) process, and includes a chlorine leaching step S1, a pulverizing step S2, a cementation step S3, and a deironing step. It consists of S4, solvent extraction step S5, nickel purification step S6, nickel electrolysis step S7, cobalt purification step S8, and cobalt electrolysis step S9.

先ず、塩素浸出工程S1では、MCLEプロセスの第1の原料として例えばニッケル酸化鉱を湿式製錬して得たニッケルコバルト混合硫化物(MS)に電解廃液を加えてスラリーとし、このスラリーに後述するセメンテーション工程S3から排出されるセメンテーション残渣を加えると共に、塩素ガスを吹き込んでニッケル、コバルト、銅等の金属成分の塩素浸出を行う。これにより、塩素浸出液としての銅イオンを含んだ含銅塩化ニッケル水溶液と浸出残渣とが生成される。この塩素浸出工程S1で生成した含銅塩化ニッケル水溶液はセメンテーション工程S3に送液され、浸出残渣は硫黄を主成分とするため更に処理が施されて製品硫黄として回収される。   First, in the chlorine leaching step S1, as a first raw material of the MCLE process, for example, nickel cobalt mixed sulfide (MS) obtained by hydrometallizing nickel oxide ore is added to an electrolytic waste liquid to form a slurry, which will be described later. While adding the cementation residue discharged | emitted from cementation process S3, chlorine gas is blown in and chlorine leaching of metal components, such as nickel, cobalt, copper, is performed. Thereby, the copper containing nickel chloride aqueous solution and the leaching residue containing the copper ion as a chlorine leaching liquid are produced | generated. The copper-containing nickel chloride aqueous solution generated in the chlorine leaching step S1 is sent to the cementation step S3, and the leaching residue is further processed because it contains sulfur as a main component, and is recovered as product sulfur.

一方、MCLEプロセスの第2の原料として乾式製錬で作製されるニッケルマットは、粉砕工程S2において振動ミルなどの粉砕装置で粉砕処理した後、電解廃液を加えてマットスラリーとする。このマットスラリーは、セメンテーション工程S3において上記塩素浸出工程S1からの含銅塩化ニッケル水溶液と混合される。これにより、含銅塩化ニッケル水溶液中の銅イオンはニッケルマット中のニッケルメタル及び亜硫化ニッケルによって還元され、硫化銅として固定化される。この固定化された硫化銅は未反応のニッケルと共にセメンテーション残渣として固液分離された後、上記の塩素浸出工程S1に送られる。このセメンテーション工程S3における固定化により銅が除去された溶液はニッケル及びコバルトを含むため、セメンテーション終液として脱鉄工程S4に送液される。   On the other hand, the nickel mat produced by dry smelting as the second raw material of the MCLE process is pulverized by a pulverizing apparatus such as a vibration mill in the pulverizing step S2, and then an electrolytic waste solution is added to form a mat slurry. This mat slurry is mixed with the copper-containing nickel chloride aqueous solution from the chlorine leaching step S1 in the cementation step S3. Thereby, the copper ion in the copper-containing nickel chloride aqueous solution is reduced by the nickel metal and nickel subsulfide in the nickel mat and fixed as copper sulfide. This fixed copper sulfide is solid-liquid separated as a cementation residue together with unreacted nickel, and then sent to the chlorine leaching step S1. Since the solution from which copper is removed by the immobilization in the cementation step S3 contains nickel and cobalt, the solution is sent to the iron removal step S4 as a cementation final solution.

上記セメンテーション終液は、脱鉄工程S4において例えば酸化中和法等の浄液処理によって該セメンテーション終液中に含まれる不純物としての鉄が除去された後、溶媒抽出工程S5に送られる。この溶媒抽出工程S5は抽出段、洗浄段、及び逆抽出段からなり、先ず抽出段において抽出始液としての脱鉄処理済みセメンテーション終液に対して、例えばTNOA(トリ−n−オクチルアミン)やTIOA(トリ−i−オクチルアミン)などのアミン系抽出剤を混合して溶媒抽出処理を行い、有機相側にコバルトを抽出し、水相側の抽出残液にニッケルを残存させる。   The above-mentioned cementation final solution is sent to the solvent extraction step S5 after iron as impurities contained in the cementation final solution is removed by a cleaning process such as oxidation neutralization in the deironation step S4. This solvent extraction step S5 comprises an extraction stage, a washing stage, and a back extraction stage. First, for example, TNOA (tri-n-octylamine) is used for the deironation-treated cementation final solution as an extraction start solution in the extraction stage. Amine-based extractants such as TIOA (tri-i-octylamine) and the like are mixed to perform a solvent extraction process to extract cobalt on the organic phase side and leave nickel in the extraction residual liquid on the aqueous phase side.

上記の抽出段から抜き出されたニッケルを含む抽出残液は、粗塩化ニッケル水溶液としてニッケル洗浄工程S6に送られ、ここで例えば脱鉛処理やCOB(Crowding Organic Bypass)−SX処理などが施された後、塩化ニッケル純液としてニッケル電解工程S7に送られて電解採取法によって電気ニッケルが作製される。なお、この電解採取の際にアノード側において塩化ニッケル溶液から発生する塩素ガスは、上記塩素浸出工程S1において塩素浸出用のガスとして用いられる。   The extraction residual liquid containing nickel extracted from the extraction stage is sent to the nickel washing step S6 as a crude nickel chloride aqueous solution, where, for example, deleading treatment or COB (Crowding Organic Bypass) -SX treatment is performed. Then, it is sent to nickel electrolysis process S7 as nickel chloride pure liquid, and electro nickel is produced by the electrowinning method. The chlorine gas generated from the nickel chloride solution on the anode side during this electrowinning is used as a chlorine leaching gas in the chlorine leaching step S1.

一方、上記抽出段から抜き出されたコバルトを含む有機相は後段の洗浄段で洗浄された後、逆抽出段で例えば希塩酸等の弱酸性水溶液からなる逆抽出液と混合され、有機相中のコバルトを水相側に逆抽出する。この逆抽出段で得られたコバルトを含む水相側の逆抽出後液は、粗塩化コバルト水溶液としてコバルト洗浄工程S8に送られ、ここで洗浄処理が施されることによって塩化コバルト純液となる。この塩化コバルト純液はコバルト電解工程S9に送られ、電解採取法によって電気コバルトが作製される。   On the other hand, the cobalt-containing organic phase extracted from the extraction stage is washed in a subsequent washing stage, and then mixed with a back extraction solution composed of a weakly acidic aqueous solution such as dilute hydrochloric acid in the back extraction stage. Back-extract cobalt to the water phase side. The back-extracted solution on the aqueous phase side containing cobalt obtained in this back extraction stage is sent to the cobalt washing step S8 as a crude cobalt chloride aqueous solution, and becomes a pure cobalt chloride solution by performing the washing treatment here. . This cobalt chloride pure solution is sent to the cobalt electrolysis step S9, and electric cobalt is produced by the electrowinning method.

次に、本発明の実施形態の塩化コバルト水溶液からの不純物除去方法が適用される上記のコバルト洗浄工程S8について、図2を参照しながら説明する。このコバルト洗浄工程S8は、前述した溶媒抽出工程S5と同様に抽出段S81、洗浄段S82、及び逆抽出段S83で構成される。なお、図2において点線は有機相側の流れを示しており、実線は水相側の流れを示している。また、各段は上側が有機相、下側が水相であり、下線を付した物質は白矢印に示す有機相から水相に又は水相から有機相に移動することを示している。   Next, the cobalt cleaning step S8 to which the impurity removal method from the cobalt chloride aqueous solution according to the embodiment of the present invention is applied will be described with reference to FIG. The cobalt cleaning step S8 includes an extraction stage S81, a cleaning stage S82, and a back extraction stage S83, similar to the solvent extraction step S5 described above. In FIG. 2, the dotted line indicates the flow on the organic phase side, and the solid line indicates the flow on the aqueous phase side. Each stage shows the organic phase on the upper side and the aqueous phase on the lower side, and the underlined substance moves from the organic phase indicated by the white arrow to the aqueous phase or from the aqueous phase to the organic phase.

各段について具体的に説明すると、先ず抽出段S81において、粗塩化コバルト水溶液に有機溶媒を混合して溶媒抽出処理を行い、有機相側に不純物としてのCa、Mg、Zn、Fe、及び一部Coを抽出し、水相側の抽出残液にCo及びCu等を残存させる。この溶媒抽出に使用する有機溶媒は、不純物の除去効率が高いものが好ましく、例えばジ−(2−エチルへキシル)ホスホン酸などの有機リン酸型の溶媒抽出剤が好ましい。   Specifically, each stage is described. First, in the extraction stage S81, an organic solvent is mixed with the crude cobalt chloride aqueous solution to perform a solvent extraction process, and Ca, Mg, Zn, Fe as impurities on the organic phase side, and a part thereof Co is extracted to leave Co, Cu and the like in the extraction residual liquid on the aqueous phase side. The organic solvent used for this solvent extraction is preferably one having a high impurity removal efficiency, for example, an organic phosphoric acid type solvent extractant such as di- (2-ethylhexyl) phosphonic acid.

上記のCo及びCu等を含む抽出残液は、必要に応じて後工程S84において脱銅処理などが施された後、塩化コバルト純液として前述したコバルト電解工程S9に送られる。一方、上記のCa等の不純物及び一部のCoを含む有機相は、洗浄段S82において希塩酸水溶液などの洗浄液と混合されることで洗浄され、上記の一部のCoが洗浄後液側に回収される。この洗浄後液に回収された該一部Coは、塩化コバルト薄液処理工程S85で処理される。   The extraction residual liquid containing Co, Cu, and the like is subjected to a copper removal treatment or the like in a post-process S84 as necessary, and then sent to the cobalt electrolysis process S9 as a cobalt chloride pure liquid. On the other hand, the organic phase containing impurities such as Ca and part of Co is washed by being mixed with a washing liquid such as dilute hydrochloric acid in the washing step S82, and the part of Co is recovered on the liquid side after washing. Is done. The partial Co recovered in the post-cleaning solution is processed in a cobalt chloride thin solution processing step S85.

上記の洗浄段S82で洗浄処理されたCa等の不純物を含む有機相は、次に逆抽出段S83に送られ、ここで逆抽出液としての希塩酸水溶液と混合されて有機相中の上記不純物が水相側に逆抽出される。この逆抽出段S83で得られた不純物を含む水相側の逆抽出後液は、排水処理工程S86に送られて一般的な中和処理、活性汚泥処理などによる排水処理が施される。なお、上記の溶媒抽出等の各段に使用する装置は、撹拌機を備えた混合槽と重力沈降により相分離槽とが組み合わせられた構造のミキサセトラを使用するのが簡便で且つ単位設置面積当たりの処理能力が高いので好ましい。   The organic phase containing impurities such as Ca washed in the washing stage S82 is then sent to the back extraction stage S83, where it is mixed with a dilute hydrochloric acid aqueous solution as a back extraction liquid to remove the impurities in the organic phase. Back extracted to the water phase side. The aqueous post-back extraction liquid containing impurities obtained in the back extraction stage S83 is sent to the waste water treatment step S86 to be subjected to waste water treatment such as general neutralization treatment and activated sludge treatment. In addition, the apparatus used for each stage such as the solvent extraction described above is simple to use a mixer setra having a structure in which a mixing tank equipped with a stirrer and a phase separation tank are combined by gravity sedimentation, and per unit installation area. Is preferable because of its high processing capacity.

本発明の実施形態の塩化コバルト水溶液からの不純物除去方法は、上記したように不純物として少なくともCa、Mn、Zn、及びFeを含んだ有機相を逆抽出段で逆抽出してこれら不純物を水相側に分配して除去するに際して、逆抽出液の塩酸濃度を調整することによって逆抽出後液の塩酸濃度を80〜90g/Lの範囲内に制御している。これにより、上記の不純物をほぼ完全に有機相から除去できるだけでなく、逆抽出段における塩酸の添加量を必要最小限に抑えることができるので、排水処理工程において該逆抽出後液の中和用の薬剤の使用量を必要最小限に抑えることができる。   In the method for removing impurities from the aqueous cobalt chloride solution according to the embodiment of the present invention, as described above, an organic phase containing at least Ca, Mn, Zn, and Fe as impurities is back-extracted in a back extraction stage, and these impurities are extracted into an aqueous phase. When removing by distributing to the side, the hydrochloric acid concentration of the back-extracted solution is controlled within the range of 80 to 90 g / L by adjusting the hydrochloric acid concentration of the back-extracted solution. As a result, not only can the above-mentioned impurities be almost completely removed from the organic phase, but the amount of hydrochloric acid added in the back-extraction stage can be minimized, so that the post-back-extraction solution can be neutralized in the wastewater treatment process. The amount of drug used can be minimized.

すなわち、逆抽出段における水相中の適切な塩酸濃度を把握すべく不純物としてCa、Mn、Zn、及びFeを含む有機相に対して塩酸濃度を様々に変えた逆抽出液を混合して逆抽出処理を行い、得られた水相側の逆抽出後液中の上記不純物の濃度と塩酸濃度とを測定したところ、図3に示す結果が得られた。この図3から分かるように、水相の塩酸濃度が20〜30g/L程度以上であればCa、Mn、及びZnの曲線はいずれもほぼ水平になっているのでこれら3種類の不純物の除去だけであれば水相の塩酸濃度は20〜30g/L程度で十分であるが、Feはこの程度の塩酸濃度では逆抽出されておらず、水相の塩酸濃度を60g/L程度まで増やしてもほとんど逆抽出することができない。   That is, in order to grasp the appropriate hydrochloric acid concentration in the aqueous phase in the back extraction stage, the reverse extraction liquid in which the hydrochloric acid concentration is variously mixed with the organic phase containing Ca, Mn, Zn, and Fe as impurities is mixed and reversed. When the extraction process was performed and the concentration of the impurity and the hydrochloric acid concentration in the obtained liquid after back extraction on the aqueous phase side were measured, the results shown in FIG. 3 were obtained. As can be seen from FIG. 3, when the hydrochloric acid concentration in the aqueous phase is about 20 to 30 g / L or more, the curves of Ca, Mn, and Zn are almost horizontal, so only the removal of these three types of impurities is possible. If so, a hydrochloric acid concentration in the aqueous phase of about 20-30 g / L is sufficient, but Fe is not back-extracted at this level of hydrochloric acid, and even if the hydrochloric acid concentration in the aqueous phase is increased to about 60 g / L. Can hardly be back-extracted.

しかし、水相の塩酸濃度を80g/L以上にすることでFeについても曲線が水平になっており、よって水相の塩酸濃度を80g/L以上にすることでFeを加えた4種類すべての不純物が有機相から除去できることが分かる。なお、水相の塩酸濃度の上限値を90g/Lとする理由は、水相の塩素濃度を90g/Lよりも増やしても上記の不純物の逆抽出量はほとんど増加することはなく、かえって塩酸の使用量や排水処理での中和コストが増大してコスト的に不利になるからである。   However, when the concentration of hydrochloric acid in the aqueous phase is set to 80 g / L or more, the curve for Fe is also horizontal. Therefore, the concentration of hydrochloric acid in the aqueous phase is set to 80 g / L or more to add all four types of Fe. It can be seen that impurities can be removed from the organic phase. The reason why the upper limit value of the hydrochloric acid concentration in the aqueous phase is 90 g / L is that, even if the chlorine concentration in the aqueous phase is increased above 90 g / L, the amount of back extraction of the impurities hardly increases. This is because the use amount of water and the neutralization cost in wastewater treatment increase, which is disadvantageous in cost.

なお、逆抽出段において水相のpHが0.5の上限値となる条件で操業する場合は、水相の塩酸濃度が12g/L程度に調整されることに相当するが、図3から分かるようにMnの除去を考慮する場合はこの程度の塩酸濃度でもある程度逆抽出が可能になると考えられる。しかし、上記の水相の塩酸濃度12g/L程度ではZnやCaの逆抽出は不十分であり、ましてやFeはほとんど逆抽出することはできない。しかも、実操業では前述したようにより酸性にして安全側で管理するためpHを低めに制御することが行われるが、pHをほぼゼロ或いはマイナス側の値で制御するのは難しいので水相の塩酸濃度が90g/Lよりも大きな例えば塩酸濃度100g/Lを超えた濃度で逆抽出処理される場合が生じていた。   In addition, when operating in the back extraction stage under the condition that the pH of the aqueous phase reaches the upper limit of 0.5, this corresponds to the hydrochloric acid concentration of the aqueous phase being adjusted to about 12 g / L, as can be seen from FIG. Thus, when considering the removal of Mn, it is considered that back-extraction can be performed to some extent even with such a hydrochloric acid concentration. However, if the hydrochloric acid concentration in the aqueous phase is about 12 g / L, the back extraction of Zn or Ca is insufficient, and even Fe cannot be back extracted. Moreover, in actual operation, it is acidified as described above and is controlled on the safe side, so that the pH is controlled to be low, but it is difficult to control the pH with a value of almost zero or minus, so the aqueous phase hydrochloric acid is difficult to control. In some cases, the back extraction treatment is performed at a concentration higher than 90 g / L, for example, a concentration exceeding the hydrochloric acid concentration of 100 g / L.

これに対して本発明の実施形態では、逆抽出段において塩酸濃度を80〜90g/Lと上記の12g/Lよりも極めて高い濃度で管理を行っており、これはpH(水素イオン濃度)に換算すれば、−0.34〜−0.39の範囲内で制御することになる。このような極めて低いpHの管理は、一般的なpH計を用いて管理するのは困難であるが、上記のようにpHではなく酸濃度(塩酸濃度)で制御するので簡易且つ正確に逆抽出処理の条件を調整することができる。   On the other hand, in the embodiment of the present invention, the hydrochloric acid concentration is controlled at 80 to 90 g / L, which is extremely higher than the above 12 g / L, in the back extraction stage, which is adjusted to pH (hydrogen ion concentration). In terms of conversion, control is performed within the range of -0.34 to -0.39. Such extremely low pH control is difficult to control using a general pH meter, but as described above, it is controlled by acid concentration (hydrochloric acid concentration) instead of pH, so back extraction is simple and accurate. Processing conditions can be adjusted.

上記の逆抽出段の水相の塩酸濃度を調整する方法には特に限定はないが、例えば図4に示すように逆抽出液の調製用の塩酸希釈槽10を設け、この塩酸希釈槽10に接続される濃塩酸の注入配管11及び工業用水の注入配管12のうち、濃塩酸の注入配管11に設けた制御弁13の開度又は開閉を逆抽出後液中の塩酸濃度を測定する測定器14の出力値で自動的に制御するのが好ましい。例えば、測定器14で測定した逆抽出後液中の塩酸濃度が所定の濃度より低くなれば制御弁13を閉状態から開状態にして濃塩酸を塩酸希釈槽10に添加して該塩酸希釈槽10中の塩酸濃度を上昇させることで逆抽出液の塩酸濃度を高めることができるので、結果的に逆抽出後液の塩酸濃度を所定の濃度まで高めることができる。一方、逆抽出後液中の塩酸濃度が所定の濃度より高い場合は上記とは逆の操作となる。   The method for adjusting the hydrochloric acid concentration in the aqueous phase of the back extraction stage is not particularly limited. For example, as shown in FIG. 4, a hydrochloric acid dilution tank 10 for preparing a back extract is provided, and the hydrochloric acid dilution tank 10 A measuring instrument for measuring the concentration of hydrochloric acid in the liquid after back-extracting the opening or opening / closing of the control valve 13 provided in the concentrated hydrochloric acid injection pipe 11 among the concentrated hydrochloric acid injection pipe 11 and the industrial water injection pipe 12 to be connected. It is preferable to automatically control with 14 output values. For example, when the hydrochloric acid concentration in the solution after back extraction measured by the measuring instrument 14 is lower than a predetermined concentration, the control valve 13 is opened from the closed state and concentrated hydrochloric acid is added to the hydrochloric acid dilution tank 10 to add the hydrochloric acid dilution tank. Since the hydrochloric acid concentration in the back-extracted solution can be increased by increasing the hydrochloric acid concentration in 10, the hydrochloric acid concentration in the solution after back-extraction can be increased to a predetermined concentration. On the other hand, when the concentration of hydrochloric acid in the solution after back extraction is higher than a predetermined concentration, the operation is reversed.

なお、上記の測定器14を塩酸希釈槽10の底部からの抜出配管に設けることで、逆抽出後液に代えてこの抜出配管を流れる逆抽出液の塩酸濃度を測定してもよい。但し、この場合は、逆抽出段において例えば有機溶媒の再生等のために塩酸が消費されるので、事前に試験等を行うことにより逆抽出後液中の塩酸濃度が上記の80〜90g/Lの範囲内となるような塩酸希釈槽10の該抜出配管における適切な塩酸濃度の範囲を規定しておくことが好ましい。また、上記の濃塩酸の注入配管11の制御弁13に代えて或いは該制御弁13に加えて、工業用水の注入配管12に設けた制御弁(図示せず)の開度又は開閉を測定器14の出力値に基づいて制御してもよい。   In addition, you may measure the hydrochloric acid density | concentration of the back extraction liquid which flows through this extraction piping instead of the liquid after back extraction by providing said measuring device 14 in the extraction piping from the bottom part of the hydrochloric acid dilution tank 10. FIG. However, in this case, hydrochloric acid is consumed in the back extraction stage, for example, for regeneration of the organic solvent, so that the concentration of hydrochloric acid in the solution after back extraction is 80 to 90 g / L as described above by conducting a test or the like in advance. It is preferable to prescribe an appropriate hydrochloric acid concentration range in the extraction pipe of the hydrochloric acid dilution tank 10 that falls within the above range. Further, in place of or in addition to the control valve 13 of the concentrated hydrochloric acid injection pipe 11, the opening or opening / closing of a control valve (not shown) provided in the industrial water injection pipe 12 is measured. You may control based on the output value of 14.

以上、本発明の塩化コバルト水溶液からの不純物の除去方法をMCLEプロセスのコバルト浄液工程に適用する実施形態について説明したが、本発明はこれに限定されるものではなく、不純物としてCa、Mn、Zn、Feを含む有機相に対して逆抽出段において塩酸を含んだ逆抽出液で処理するものであれば本発明を好適に適用することができる。   As mentioned above, although embodiment which applies the removal method of the impurity from the aqueous solution of cobalt chloride of the present invention to the cobalt cleaning process of the MCLE process has been described, the present invention is not limited to this, and impurities such as Ca, Mn, The present invention can be suitably applied as long as the organic phase containing Zn and Fe is treated with a back extract containing hydrochloric acid in the back extraction stage.

[実施例]
図1に示すようなMCLEプロセスで生成された不純物としてCa、Mn、Zn、及びFeを含み且つコバルト濃度が約50g/Lの粗塩化コバルト水溶液に対して、図2に示す抽出段、洗浄段、及び逆抽出段からなる溶媒抽出処理を施してこれら4種類の不純物を除去した。各段の処理装置にはミキサセトラ型溶媒抽出装置を用い、溶媒にはジ−(2−エチルへキシル)ホスホン酸を用いた。また、逆抽出段で使用する逆抽出液には市販の35%濃塩酸(約400g/L)を工業用水で希釈した希塩酸水溶液を使用し、逆抽出段から排出される逆抽出後液の塩酸濃度が85g/L程度となるように調整して逆抽出処理を行った。なお、逆抽出段から排出される逆抽出後液の酸濃度計測用として、東亜ディーケーケー株式会社製の電磁濃度計を用いた。
[Example]
Extraction stage and washing stage shown in FIG. 2 with respect to a crude cobalt chloride aqueous solution containing Ca, Mn, Zn and Fe as impurities generated by the MCLE process as shown in FIG. 1 and having a cobalt concentration of about 50 g / L These four types of impurities were removed by performing a solvent extraction process consisting of a back extraction stage. A mixer-settler type solvent extraction apparatus was used as the processing apparatus for each stage, and di- (2-ethylhexyl) phosphonic acid was used as the solvent. In addition, a commercially available 35% concentrated hydrochloric acid (about 400 g / L) diluted with industrial water is used as the back extract used in the back extraction stage, and hydrochloric acid of the back-extracted liquid discharged from the back extraction stage is used. The back extraction process was performed by adjusting the concentration to be about 85 g / L. An electromagnetic densitometer manufactured by Toa DKK Co., Ltd. was used for measuring the acid concentration of the back-extracted solution discharged from the back extraction stage.

その結果、逆抽出液の塩酸濃度は120g/L前後に調整する必要が生じた。また、逆抽出段から排出される水相側の逆抽出後液中のFe濃度は7mg/Lであった。この逆抽出後液に対して市販の苛性ソーダ(フレーク状)を工業用水で溶解したアルカリ水溶液で中和したところ、pH7まで中和するには逆抽出後液1L当たり苛性ソーダを93.2g要した。   As a result, it was necessary to adjust the hydrochloric acid concentration of the back extract to around 120 g / L. Moreover, the Fe concentration in the liquid after back extraction on the water phase side discharged from the back extraction stage was 7 mg / L. When this commercially available caustic soda (flakes) was neutralized with an aqueous alkaline solution dissolved in industrial water, 93.2 g of caustic soda per liter of the back-extracted solution was required to neutralize to pH 7.

[比較例1]
逆抽出後液を塩酸濃度で制御することに代えて東亜ディーケーケー株式会社製のガラス電極型pH測定器を用いて逆抽出後液のpHが0.5以下になるように制御した以外は上記実施例と同様にして粗塩化コバルト水溶液を処理した。その結果、安定的にpH制御するのが困難になり、pH計の上限付近で制御されることが多く、その時の逆抽出後液の塩酸濃度を測定したところ60g/L程度であり、逆抽出後液中のFe濃度は1mg/L未満であり、逆抽出段でのFeの除去は不充分であった。なお、この逆抽出後液の中和処理に要した苛性ソーダは逆抽出後液1L当たり65.8gであった。
[Comparative Example 1]
The above procedure was carried out except that the back-extracted solution was controlled by the hydrochloric acid concentration instead of controlling the pH of the back-extracted solution to be 0.5 or less using a glass electrode type pH meter manufactured by TOA DK Corporation. The crude cobalt chloride aqueous solution was treated in the same manner as in the examples. As a result, it is difficult to stably control the pH, and it is often controlled near the upper limit of the pH meter. The hydrochloric acid concentration in the solution after back extraction at that time is about 60 g / L, and back extraction is performed. The Fe concentration in the post-solution was less than 1 mg / L, and the removal of Fe in the back extraction stage was insufficient. The caustic soda required for the neutralization treatment of the solution after back extraction was 65.8 g per liter of the solution after back extraction.

[比較例2]
上記比較例1ではFe濃度の除去が不十分であったのでpHを更に下げた条件で制御したところ、逆抽出液としてより高濃度の塩酸を調製する必要が生じた。このときの逆抽出後液の塩酸濃度を測定してみると180g/L程度であった。その結果、逆抽出後液のFe濃度は7mg/L程度であり充分除去されたが、その中和処理に要した苛性ソーダは逆抽出後液1L当たり139.8gとなり、実施例1に比べて1.5倍を要した。
[Comparative Example 2]
In Comparative Example 1 above, the removal of the Fe concentration was insufficient, and therefore the pH was further controlled to lower the pH, which necessitated the preparation of a higher concentration of hydrochloric acid as the back extract. When the hydrochloric acid concentration of the solution after back extraction at this time was measured, it was about 180 g / L. As a result, the Fe concentration in the solution after back extraction was about 7 mg / L and was sufficiently removed, but the caustic soda required for the neutralization was 139.8 g per liter of solution after back extraction, which was 1 in comparison with Example 1. It took five times.

S1 塩素浸出工程
S2 粉砕工程
S3 セメンテーション工程
S4 脱鉄工程
S5 溶媒抽出工程
S6 ニッケル浄液工程
S7 ニッケル電解工程
S8 コバルト浄液工程
S9 コバルト電解工程
10 塩酸希釈槽
11 濃塩酸の注入配管
12 工業用水の注入配管
13 制御弁
14 測定器
S1 Chlorine leaching process S2 Grinding process S3 Cementation process S4 Deironing process S5 Solvent extraction process S6 Nickel cleaning process S7 Nickel electrolysis process S8 Cobalt cleaning process S9 Cobalt electrolysis process 10 Hydrochloric acid dilution tank 11 Concentrated hydrochloric acid injection pipe 12 Industrial water Injection pipe 13 Control valve 14 Measuring instrument

Claims (3)

不純物として少なくともCa、Mn、Zn、及びFeを含む塩化コバルト水溶液に対して、抽出段、洗浄段、及び逆抽出段からなる溶媒抽出処理を施して該不純物を除去する方法であって、前記逆抽出段から抜き出される逆抽出後液の塩酸濃度が80〜90g/Lとなるように前記逆抽出段の逆抽出処理条件を調整することを特徴とする塩化コバルト水溶液からの不純物除去方法。   A method of removing impurities by subjecting a cobalt chloride aqueous solution containing at least Ca, Mn, Zn, and Fe as impurities to a solvent extraction process comprising an extraction stage, a washing stage, and a back-extraction stage. A method for removing impurities from an aqueous cobalt chloride solution, wherein the back extraction treatment conditions of the back extraction stage are adjusted so that the hydrochloric acid concentration in the post-back extraction liquid extracted from the extraction stage is 80 to 90 g / L. 前記逆抽出処理条件の調整が、前記逆抽出段に供給する逆抽出液の塩素濃度の調整であることを特徴とする、請求項1に記載の塩化コバルト水溶液からの不純物除去方法。   2. The method for removing impurities from an aqueous cobalt chloride solution according to claim 1, wherein the adjustment of the back extraction treatment condition is adjustment of a chlorine concentration of a back extraction solution supplied to the back extraction stage. 前記逆抽出液の塩酸濃度の調整が、該逆抽出液の調製を行う塩酸希釈槽に接続される濃塩酸の注入配管及び水の注入配管のうち、濃塩酸の注入配管に設けた流量調節弁の開閉又は開度を逆抽出段から抜き出される逆抽出後液の塩酸濃度を測定する測定器の出力値に基づいて制御することである、請求項2に記載の塩化コバルト水溶液からの不純物除去方法。   The flow rate regulating valve provided in the concentrated hydrochloric acid injection pipe among the concentrated hydrochloric acid injection pipe and the water injection pipe connected to the hydrochloric acid dilution tank for preparing the back extract is adjusted for the hydrochloric acid concentration of the back extract. The removal of impurities from the aqueous solution of cobalt chloride according to claim 2, wherein the opening / closing or the opening degree of the catalyst is controlled based on the output value of a measuring instrument for measuring the hydrochloric acid concentration of the back-extracted solution extracted from the back-extraction stage. Method.
JP2018030595A 2018-02-23 2018-02-23 Method for removing impurities from cobalt chloride solution Pending JP2019143223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018030595A JP2019143223A (en) 2018-02-23 2018-02-23 Method for removing impurities from cobalt chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018030595A JP2019143223A (en) 2018-02-23 2018-02-23 Method for removing impurities from cobalt chloride solution

Publications (1)

Publication Number Publication Date
JP2019143223A true JP2019143223A (en) 2019-08-29

Family

ID=67770930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018030595A Pending JP2019143223A (en) 2018-02-23 2018-02-23 Method for removing impurities from cobalt chloride solution

Country Status (1)

Country Link
JP (1) JP2019143223A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099592B1 (en) 2021-06-25 2022-07-12 住友金属鉱山株式会社 Manufacturing method of cobalt sulfate
CN115058597A (en) * 2022-06-30 2022-09-16 盛隆资源再生(无锡)有限公司 Method for recycling electroplating sludge containing calcium, iron, cobalt and nickel
JP7156491B1 (en) 2021-04-22 2022-10-19 住友金属鉱山株式会社 Method for producing cobalt sulfate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156491B1 (en) 2021-04-22 2022-10-19 住友金属鉱山株式会社 Method for producing cobalt sulfate
WO2022224499A1 (en) * 2021-04-22 2022-10-27 住友金属鉱山株式会社 Production method for cobalt sulfate
JP2022167760A (en) * 2021-04-22 2022-11-04 住友金属鉱山株式会社 Method for producing cobalt sulfate
JP7099592B1 (en) 2021-06-25 2022-07-12 住友金属鉱山株式会社 Manufacturing method of cobalt sulfate
JP2023004393A (en) * 2021-06-25 2023-01-17 住友金属鉱山株式会社 Manufacturing method of cobalt sulfate
TWI811993B (en) * 2021-06-25 2023-08-11 日商住友金屬礦山股份有限公司 Manufacturing method of cobalt sulfate
CN115058597A (en) * 2022-06-30 2022-09-16 盛隆资源再生(无锡)有限公司 Method for recycling electroplating sludge containing calcium, iron, cobalt and nickel
CN115058597B (en) * 2022-06-30 2024-06-04 盛隆资源再生(无锡)有限公司 Recovery treatment method of electroplating sludge containing calcium, iron, cobalt and nickel

Similar Documents

Publication Publication Date Title
CN101838736B (en) Wet separation method for valuable metals in purified liquid cobalt slags of wet zinc smelting system
CN104039991B (en) Lead is reclaimed from mixed oxidization section bar material
JP5541336B2 (en) Method for producing high purity cobalt sulfate aqueous solution
KR101420501B1 (en) Method for separating metal in metal mixed solution
CN106048217B (en) The comprehensive reutilization method of oxide powder and zinc
JP6070898B2 (en) Method and facility for recovering valuable components from waste dry batteries
CN101818250B (en) Method for processing cobalt-copper-iron alloy
JP2015183292A (en) Recovery method of cobalt and nickel
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
WO2015146329A1 (en) Copper removal method for aqueous nickel chloride solution
CN103725890B (en) A kind of method that multiple control substep reclaims valuable metal in manganese cobalt slag from zinc-rich
JP2019143223A (en) Method for removing impurities from cobalt chloride solution
JP2008081784A (en) Electrolyzed sediment copper treatment method
CN111748690B (en) Method for purifying and deironing hydrometallurgy leaching solution based on hydrothermal lattice transformation
JP2011021219A (en) Method for recovering copper from copper/iron-containing material
JP2011195878A (en) Method for recovering copper from copper sulfide
JP5568977B2 (en) Method for recovering manganese from batteries
KR102460255B1 (en) Purification method of cobalt chloride aqueous solution
CN110540252B (en) Method for preparing battery-grade cobalt sulfate and high-purity germanium dioxide from white alloy
JP6233478B2 (en) Purification method of bismuth
WO2018138917A1 (en) Bismuth purification method
CN102010995B (en) Method for increasing copper recovery rate in zinc hydrometallurgy process
CN110036123B (en) Method for controlling iron via formation of magnetite in hydrometallurgical processes
CN103773957B (en) Precipitating alum and removing iron technique in Zinc hydrometallurgy process
JP5181684B2 (en) Solvent extraction method for aqueous chloride solution