JP2019141769A - プラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法 - Google Patents

プラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法 Download PDF

Info

Publication number
JP2019141769A
JP2019141769A JP2018027111A JP2018027111A JP2019141769A JP 2019141769 A JP2019141769 A JP 2019141769A JP 2018027111 A JP2018027111 A JP 2018027111A JP 2018027111 A JP2018027111 A JP 2018027111A JP 2019141769 A JP2019141769 A JP 2019141769A
Authority
JP
Japan
Prior art keywords
furnace
steam
biomass
drying
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018027111A
Other languages
English (en)
Other versions
JP7102163B2 (ja
Inventor
陽一 真保
Yoichi Shimbo
陽一 真保
雄太 小澤
Yuta Ozawa
雄太 小澤
吉田 章人
Akito Yoshida
章人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2018027111A priority Critical patent/JP7102163B2/ja
Publication of JP2019141769A publication Critical patent/JP2019141769A/ja
Application granted granted Critical
Publication of JP7102163B2 publication Critical patent/JP7102163B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

【課題】バイオマスを水熱処理するための蒸気を生成する専用の装置を設ける構成と比較して、省スペース化できるとともに、設置コストを低減することを目的とする。【解決手段】プラント1は、蒸気を過熱する過熱器25を設けたボイラ4と、ボイラ4で生成された蒸気によって発電する発電機7と、汚泥を水熱処理する処理炉29と、処理炉29で水熱処理された汚泥を乾燥させる乾燥炉31と、過熱器25で過熱された過熱蒸気の一部を抽気し、処理炉29に導く蒸気流路27と、乾燥炉31の乾燥用熱源を供給する、ボイラ4から排ガス流路12に排出される排ガスの保有熱量の少なくとも一部を乾燥炉31に導く排ガス供給路18と、蒸気流路27を流通する過熱蒸気の保有熱量を熱交換する第1熱交換部32と、を備えている。抽気された蒸気の温度は、第1熱交換部32で熱交換された後に処理炉29の入口においてバイオマスが水熱処理可能な温度とされる。【選択図】図1

Description

本開示は、プラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法の運転方法に関するものである。
国際的な二酸化炭素排出規制によりカーボンニュートラルなバイオマス燃料の利用が注目を集めている。バイオマスはその利用が種々検討されている。含水率の低いバイオマスは活用が進められており、例えば、間伐材、廃材木、流木、草類などは原料としたペレットやチップなどが燃焼して熱源を得る燃料用として利用されている。一方、含水率の高いバイオマスは、自燃不能であり、前処理として乾燥処理を行わなければ燃焼用の燃料として活用することが難しいという問題がある。また、高含水率バイオマスを燃料化する場合、蒸発させる水分が多いため乾燥に必要なエネルギが大きい。また、高含水率バイオマスは、水分が生物由来の細胞壁内に拘束されており、乾燥効率が低いという課題がある。
バイオマスの乾燥効率を向上させるための方法として、バイオマスに対して、所定の温度及び圧力の蒸気を供給し、加水分解処理を行うことで乾燥効率を向上させる水熱処理を用いる方法が知られている(例えば、特許文献1)。
特許文献1には、植物性廃棄物に対して加水分解処理を行うことでバイオマス燃料を製造する方法が記載されている。この方法では、加水分解処理を行った植物性廃棄物を固液分離装置で固形分と液体分とに分離(脱水)し、分離した固形分を乾燥装置で乾燥している。
特許第6190082号公報
しかしながら、特許文献1には、加水分解処理を行う際に用いられる蒸気を生成する方法や、乾燥を行う際の熱源等については考慮されていない。加水分解処理を行う際に用いられる蒸気を生成するための専用の装置や、乾燥を行う際の熱源となる専用の装置等を個別に設けた場合には、バイオマス燃料を製造する装置が大型化するとともに、設置コストも増大する可能性がある。
また、バイオマス燃料を製造する際に用いられる蒸気や乾燥を行う際の熱源エネルギの供給およびその利用に関して、効率的にバイオマス燃料を製造することが望まれている。
本開示は、このような事情に鑑みてなされたものであって、バイオマスを水熱処理するための蒸気を生成する専用の装置を設ける構成と比較して、省スペース化できるとともに、設置コストを低減することができるプラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法を提供することを目的とする。
また、バイオマス燃料を製造する際に用いられる蒸気や乾燥を行う際の熱源エネルギの供給およびその利用に関して、効率的にバイオマス燃料を製造することができるプラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法を提供することを目的とする。
上記課題を解決するために、本開示のプラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法の運転方法は以下の手段を採用する。
本開示の一態様に係るプラントは、蒸気を過熱する過熱器を設けたボイラと、前記ボイラで生成された蒸気によって回転駆動する蒸気タービンと、前記蒸気タービンの回転駆動力によって発電する発電機と、バイオマスを水熱処理する処理炉と、前記処理炉で水熱処理されたバイオマスを乾燥させる乾燥炉と、前記過熱器で過熱された過熱蒸気の一部を抽気し、前記処理炉に導く蒸気流路と、前記乾燥炉の乾燥用熱源を供給する、前記ボイラから排ガス流路に排出される排ガスの保有熱量の少なくとも一部を前記乾燥炉に導く排ガス供給路と、前記蒸気流路を流通する前記過熱蒸気の保有熱量を熱交換する第1熱交換部または炉内熱交換部と、前記乾燥炉で乾燥されたバイオマスを搬送するバイオマス燃料供給路と、を備え、前記バイオマス燃料供給路から燃焼用燃料を搬出可能するとともに、抽気された蒸気温度は、前記第1熱交換部または前記炉内熱交換部で熱交換された後に前記処理炉の入口においてバイオマスが水熱処理可能な温度とされる。
上記構成では、ボイラで生成された過熱蒸気の一部を抽気し利用して、バイオマスを水熱処理しているので、ボイラで生成された蒸気によって、発電を行うとともに、バイオマスを水熱処理することができる。すなわち、バイオマスを水熱処理するための蒸気を生成する専用の装置を設けることなく、バイオマスを水熱処理することができる。したがって、バイオマスを水熱処理するための蒸気を生成する専用の装置を設ける構成と比較して、省スペース化できるとともに、設置コストを低減することができ、バイオマス燃料製造にプラントのボイラで生成された過熱蒸気の一部を有効利用するため、別途蒸気を生成する必要がなくバイオマス燃料を効率的に製造することができる。
また、上記構成では、過熱器で生成された過熱蒸気を処理炉に導いている。ボイラの負荷が変動することによってボイラから出力される蒸気の温度は変動しないよう制御されるが、圧力を制御して蒸発した飽和蒸気温度はボイラの負荷による影響が少なく大きく変動しないため、ドラムなどよりも下流側に配置された過熱器で過熱される過熱蒸気は、ボイラの負荷変動によって温度と圧力が所定値として変動しないよう制御が可能である。したがって、ボイラの負荷変動に依ることなく、一定の温度の蒸気を抽気し、処理炉に導くことができる。よって、処理炉に導かれる過熱蒸気の温度を所望の温度とし易くすることができ、処理炉において好適にバイオマスの水熱処理を行うことができる。
また、一般に、過熱器で生成される過熱蒸気の温度は、好適に水熱処理を行うことができる蒸気の温度よりも高い。上記構成では、第1熱交換部または乾燥炉内に設けた炉内熱交換部において、蒸気流路を流通する過熱蒸気の保有熱量(保有する熱エネルギ)を乾燥炉の乾燥用熱源として利用している。すなわち、第1熱交換部または炉内熱交換部で減温されて適温となった過熱蒸気を処理炉に導入している。これにより、処理炉に導入される過熱蒸気を冷却し、好適に水熱処理を行うことができる温度とすることができるとともに、冷却した分の熱量(熱エネルギ)をバイオマスの乾燥用熱源に利用しているので、エネルギを有効利用することができる。
以上のように、上記構成では、過熱器で生成された過熱蒸気を抽気することで、安定した温度の蒸気を処理炉に導くことができるとともに、抽気した過熱蒸気の温度を処理炉における水熱処理に適した温度まで減温する際に熱交換した熱エネルギを乾燥炉の乾燥用熱源に利用することで、エネルギを有効利用して、エネルギ効率を向上させることができる。
また、本開示の一態様に係るプラントは、前記蒸気タービンから排出された蒸気を凝縮して復水させて前記ボイラに給水する循環流路と、前記処理炉から排出された蒸気を凝縮して復水させる復水部と、前記復水部による復水に対して不純物の除去処理を行い給水とする復水処理部と、前記復水処理部による給水を循環流路に導く復水流路と、を備えていてもよい。
上記構成では、処理炉で使用された蒸気を復水し、不純物を除去してボイラへの給水となる循環流路に導いている。これにより、処理炉で使用された蒸気を循環流路を介してボイラに給水することができるので、ボイラで生成された蒸気を処理炉に導く構成において、ボイラへの給水量の低減を抑制することができる。
また、一般に、ボイラの循環流路には、給水を補充する流路及び、補充する給水に対して不純物を除去する処理を行う処理部が設けられている。このような流路及び処理部を利用した場合には、専用の復水流路及び復水処理部を新たに設けることなく、既存の処理部を活用でき、ボイラへの給水量の低減を抑制することができる。したがって、専用の復水流路及び復水処理部を設ける構成と比較して、省スペース化できるとともに、設置コストを低減することができる。
また、本開示の一態様に係るプラントは、前記ボイラで用いられる炭素含有固体燃料を貯蔵する貯炭場と、前記処理炉で水熱処理されたバイオマスを脱水する脱水部と、前記脱水部においてバイオマスから排出された排水から不純物を除去する処理を行う排水処理部と、前記排水処理部で処理された排水を前記貯炭場に貯蔵されている前記炭素含有固体燃料に散水する散水手段と、を備えていてもよい。
貯炭場に貯蔵されている炭素含有固体燃料(例えば石炭)は、条件によっては自然発火するおそれがある。上記構成では、脱水部からの排水を、排水処理部で不純物を除去し、散水手段によって炭素含有固体燃料に散水している。これにより、脱水部で脱水したことによって発生した排水を利用して、炭素含有固体燃料の自然発火を防止することができる。したがって、散水専用の水を貯炭場に貯留された炭素含有固体燃料に散水する構成と比較して、プラント全体で使用される水量を低減することができる。
また、一般に、貯炭場に貯留されている炭素含有固体燃料に散水した水は、回収され、処理装置で不純物を除去する処理を行ったうえでプラント外に排水される。したがって、既設のプラントに対して、上記構成を適用する場合には、脱水部から排出された排水から不純物を除去する処理を行う排水処理部として、炭素含有固体燃料に散水した水を処理する処理装置を利用することができる。このような場合には、専用の排水処理部を設ける必要がないので、専用の排水処理部を設ける構成と比較して、省スペース化できるとともに、設置コストを低減することができる。
また、本開示の一態様に係るプラントは、前記排ガス供給路から導かれ前記乾燥炉を通過した排ガスを前記排ガス流路に戻す排ガス排出路と、前記処理炉から排出される前記蒸気と、前記排ガス排出路を流通する排ガスとを熱交換する第2熱交換部と、を備えていてもよい。
上記構成では、処理炉から排出される蒸気と乾燥炉を通過して排出される排ガスとを熱交換し、乾燥炉から排出される排ガスを加熱して、ボイラの排ガス流路に戻している。これにより、ボイラの排ガス流路を通して煙突などから系外に排ガスを排出する際に、排ガス中に含まれる水蒸気の一部凝縮による白煙の発生を防止することができる。
また、本開示の一態様に係るプラントは、前記処理炉から排出された前記蒸気の保有熱量の少なくとも一部を前記乾燥炉の乾燥用熱源とする第3熱交換部を備えてもよい。
上記構成では、処理炉から排出される蒸気の熱エネルギをバイオマスの乾燥用熱源の一部に利用することができる。これにより、エネルギを有効利用して、エネルギ効率を向上させることができる。また、乾燥炉でより高温でバイオマスを乾燥することができるので、より短時間で乾燥を促進することができる。
また、本開示の一態様に係るプラントは、前記処理炉で水熱処理されたバイオマスを脱水する脱水部と、前記処理炉から排出される前記蒸気と、前記脱水部においてバイオマスから排出された排水とを熱交換する第4熱交換部と、を備えてもよい。
上記構成では、処理炉から排出された蒸気と、脱水部からの排水とを熱交換することで、排出された蒸気を冷却するとともに、脱水部からの排水を加熱している。脱水部からの排水を加熱しているので、排水中に含まれる揮発成分(CHやベンゼンH化合物等)を気化させて、排水中から揮発成分を取り出し易くすることができる。また、排出された蒸気を冷却しているので、排出された蒸気を凝縮し易くすることができる。また、排出された蒸気と脱水部からの排水とを熱交換することで、排出された蒸気の冷却及び脱水部からの排水の加熱を行っているので、プラント全体においてエネルギを有効利用して、エネルギ効率を向上させることができる。
本開示の一態様に係るバイオマス燃料製造システムは、発電用のボイラに設けられた過熱器で過熱された過熱蒸気の一部を抽気してバイオマスを水熱処理する処理炉と、乾燥用熱源として、前記ボイラから排ガス流路に排出される排ガスの保有熱量の少なくとも一部が導かれ、前記処理炉で水熱処理されたバイオマスを乾燥させる乾燥炉と、前記処理炉に供給される上流側で前記過熱蒸気の保有熱量を熱交換する第1熱交換部または炉内熱交換部と、前記乾燥炉で乾燥されたバイオマスを搬送するバイオマス燃料供給路と、を備え、前記バイオマス燃料供給路から燃焼用燃料を搬出可能するとともに、抽気された過熱蒸気の温度は、前記第1熱交換部または前記炉内熱交換部で熱交換された後に前記処理炉の入口においてバイオマスが水熱処理可能な温度とされる。
上記構成では、発電用のボイラで生成された過熱蒸気の一部と、ボイラから排出される排ガスの保有熱量の少なくとも一部を利用して、バイオマスを水熱処理と乾燥をしている。これにより、ボイラで生成された蒸気によって、発電を行うとともに、バイオマスを水熱処理して、乾燥されたバイオマスをバイオマス燃料として供給することができる。また、既設の発電用ボイラを利用する場合には、バイオマスを水熱処理するための蒸気を生成する専用の装置を設けることなく、バイオマスを水熱処理して、乾燥されたバイオマスをバイオマス燃料として供給することができる。
また、過熱器で生成された過熱蒸気を処理炉に導いている。過熱器はボイラにおいて、蒸気の温度と圧力が制御されるので、過熱器で生成される蒸気は、ボイラの負荷変動によって温度と圧力が所定値として変動しないよう制御が可能である。したがって、ボイラの負荷変動に依ることなく、一定の温度の蒸気を抽気し、処理炉に導くことができる。よって、処理炉に導かれる過熱蒸気の温度を所望の温度とし易くすることができ、処理炉において好適にバイオマスの水熱処理を行うことができる。
また、一般に、過熱器で生成される過熱蒸気の温度は、好適に水熱処理を行うことができる蒸気の温度よりも高い。上記構成では、熱交換部または乾燥炉内に設けた炉内熱交換部において、蒸気流路を流通する過熱蒸気の保有熱量(保有する熱エネルギ)を乾燥炉の乾燥用熱源としている。すなわち、熱交換部または炉内熱交換部で減温されて適温となった過熱蒸気を処理炉に導入している。これにより、処理炉に導入される蒸気の温度を、好適に水熱処理を行うことができる温度とすることができるとともに、低下させた温度に相応する熱量(エネルギ)をバイオマスの乾燥用熱源に利用することができ、エネルギを有効利用して、エネルギ効率を向上させることができる。
以上のように、上記構成では、過熱器で生成された過熱蒸気を抽気することで、安定した温度の蒸気を処理炉に導くことができるとともに、抽気した過熱蒸気の温度を処理炉における水熱処理に適した温度まで減温する際に熱交換した熱エネルギを乾燥炉の乾燥用熱源に利用することで、エネルギの有効利用をすることができる。
本開示の一態様に係るバイオマス燃料の製造方法は、上記のバイオマス燃料製造システムを用いてバイオマス燃料を製造する。
本開示の一態様に係るバイオマス発電設備は、上記に記載のいずれかれプラントから搬送されたバイオマス燃料を利用するバイオマス発電設備であって、前記プラントに設けられた前記バイオマス燃料供給路から搬送されたバイオマスを燃焼させるボイラと、前記ボイラで生成された蒸気によって回転駆動する蒸気タービンと、前記蒸気タービンの回転駆動力によって発電する発電機と、を備えている。
本開示の一態様に係るプラントの運転方法は、ボイラで生成された蒸気によって回転駆動する蒸気タービンの回転駆動力によって発電する発電工程と、前記ボイラに設けられた過熱器で過熱された過熱蒸気の一部を抽気して処理炉に供給する供給工程と、前記供給工程で供給された前記過熱蒸気によって、バイオマスを前記処理炉で水熱処理する水熱処理工程と、前記処理炉で水熱処理されたバイオマスを乾燥炉で乾燥させる乾燥工程と、前記処理炉に供給前記乾燥炉の乾燥用熱源として、前記ボイラから排ガス流路に排出される排ガスの一部を前記乾燥炉へ導く排ガス供給路を通過する排ガスの保有熱量の少なくとも一部と、前記処理炉に供給される上流側で抽気された過熱蒸気の保有熱量と第1熱交換部または炉内熱交換部と熱交換した熱量とする熱交換工程と、前記乾燥炉で乾燥されたバイオマスをバイオマス燃料供給路から搬送するバイオマス燃料搬送工程と、を備え抽気された過熱蒸気の温度は、前記第1熱交換部または前記炉内熱交換部で熱交換された後に前記処理炉の入口においてバイオマスが水熱処理可能な温度とされる。
本開示によれば、バイオマスを水熱処理するための蒸気を生成する専用の装置を設ける構成と比較して、省スペース化できるとともに、設置コストを低減することができ。
また、プラントのエネルギの一部をバイオマス燃料製造に有効利用するため、バイオマス燃料を効率的に製造することができる。
本開示の第1実施形態に係るプラントを示す系統図である。 図1の変形例を示す図である。 図1の変形例を示す図である。 本開示の第2実施形態に係るプラントを示す系統図である。 図4の変形例を示す図である。 本開示の第3実施形態に係るプラントを示す系統図である。 図6の変形例を示す図である。 図6の変形例を示す図である。 図6の変形例を示す図である。 本開示の第4実施形態に係るプラントを示す系統図である。 図10の変形例を示す図である。
以下に、本開示に係るプラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
以下、本開示の第1実施形態について、図1から図3を用いて説明する。
図1に示されているように、本実施形態に係るプラント1は、ボイラ4で生成された蒸気によって発電する発電設備2と、発電設備2に備えられたボイラ4からの蒸気等によって汚泥(バイオマス)から水分を取り除き、バイオマス燃料とするバイオマス燃料製造システム3とを備えている。なお、以下の説明では、バイオマスの一例として、下水処理場28から供給された下水汚泥を用いる例について説明するが、バイオマス燃料製造システムで処理されるバイオマスは下水汚泥に限定されず、高含水率バイオマス(湿潤燃料)であればよく特に限定しない。
発電設備2は、蒸気を生成するボイラ4と、ボイラ4に接続されてボイラ4で生成された蒸気が流通する第1循環流路5と、第1循環流路5からの蒸気によって回転駆動する蒸気タービン6と、蒸気タービン6の回転駆動力によって発電する発電機7と、蒸気タービン6を回転駆動して排出された蒸気を凝縮する復水器8と、復水器8で凝縮された復水の不純物を除去してボイラ4に給水する第2循環流路(循環流路)9と、第2循環流路9に復水を流通させるポンプ10と、を備えている。
また、発電設備2は、ボイラ4から排出される排ガスを大気に放出する煙突11と、排ガスを煙突11に導く排ガス流路12とを備えている。また、本実施形態では、一例として排ガス流路12には、排ガス流れの上流側から順番に、脱硝装置13、空気予熱器14、電気集塵機15、誘引送風機16、脱硫装置17が設けられている。
脱硝装置13は、排ガスから窒素酸化物を除去することで排ガスを脱硝する。空気予熱器14は、ボイラ4に供給する燃焼用空気と排ガスとを熱交換することで、燃焼用空気を予熱する。電気集塵機15は、排ガス中から煤や粉塵を除去する。誘引送風機16は、羽根を回転させることで、排ガス流路12内に排ガスを流通させている。脱硫装置17は、排ガスから硫黄酸化物を除去することで排ガスを脱硫する。
また、排ガス流路12は、電気集塵機15と誘引送風機16との間から排ガス供給路18が分岐するとともに、排ガス供給路18の分岐位置の下流側に流路切替えダンパ19が設けられている。排ガス供給路18は、後述する乾燥炉31に連通していて、排ガスの少なくとも一部を乾燥炉31に導くことができる。流路切替えダンパ19は、開度を調整可能であり、開度を調整することで、排ガス供給路18に流入する排ガス量を調整することができる。また、排ガス流路12は、流路切替えダンパ19の下流側に、乾燥炉31を通過し、乾燥炉31から排出された排ガスが流通する排ガス排出路20が合流している。
ボイラ4は、本実施形態では例えば、火炉(図示省略)と、節炭器23と、ドラム24と、過熱器25と、再熱器26とを備えている。ボイラ4は、火炉に設けられたバーナ(図示省略)で形成された火炎によって、給水を加熱し蒸気を生成している。ボイラ4に供給された給水は、まず節炭器23に供給され、加熱される。節炭器23で加熱された給水は、次にドラム24に供給され、ドラム24によって飽和水から飽和蒸気に変化する。ドラム24で生成された蒸気は、次に過熱器25に供給される。過熱器25に供給された蒸気は、過熱されることで過熱蒸気となる。過熱蒸気は、蒸気タービン6で回転駆動にエネルギ変換されて蒸気タービン6から排出され再熱器26で再度過熱され、ボイラ4から排出される。ボイラ4から排出された再熱蒸気は、第1循環流路5を介して蒸気タービン6へと供給されて、蒸気タービン6で回転駆動にエネルギ変換される。なお、ボイラ4は、ドラム24の代わりに汽水分離器を設けたものでもよい。
また、過熱器25の出口近傍には、過熱蒸気の一部を抽気する蒸気供給路(蒸気流路)27が連通している。蒸気供給路27は、抽気した過熱蒸気を後述する第1熱交換器(第1熱交換部)32を経由して、バイオマス燃料製造システム3に供給する。
バイオマス燃料製造システム3は、下水処理場28から供給された汚泥を水熱処理する処理炉29と、処理炉29で水熱処理された汚泥を脱水する脱水装置(脱水部)30と、脱水装置30で脱水された汚泥を乾燥させる乾燥炉31とを備えている。
処理炉29には、上流端がボイラ4に接続されている蒸気供給路27が連通している。
汚泥等の高含水率バイオマスでは、水分が生物由来の細胞壁内に拘束されているものがあり、この拘束されている水分が蒸発し難いために、このような汚泥等の高含水率バイオマスは乾燥効率が低くなっている。処理炉29では、蒸気供給路27から供給された蒸気を用いた加水分解反応によって、汚泥の細胞壁を破壊することで細胞内に拘束されていた水分を放出させている。すなわち、処理炉29は、汚泥を水熱処理している。なお、加水分解反応は、高含水率バイオマスに対して、中圧水蒸気(温度が200度から250度であって、圧力が1.5Mpaから3Mpaの蒸気)を用いることで行われる。
また、処理炉29に連通している蒸気供給路27の途中位置には、第1熱交換器32が設けられている。第1熱交換器32は、蒸気供給路27を流通する過熱蒸気と、排ガス供給路18を流通する排ガスとを熱交換する。第1熱交換器32を通過した蒸気供給路27を流通する過熱蒸気の温度は、後述するように処理炉29での水熱処理に適した温度に冷却される。一方、第1熱交換器32を通過した排ガス供給路18を流通する排ガスは乾燥炉31の乾燥用熱源により適するように昇温される。
また、処理炉29には、蒸気排出路33が連通している。蒸気排出路33は、処理炉29と復水タンク(復水部)34とを接続しており、処理炉29で水熱処理に供された蒸気(過熱蒸気)を処理炉29から排出するとともに、処理炉29から排出された蒸気を復水タンク34に供給する。復水タンク34では、蒸気を冷却することで凝縮する。凝縮された復水は、ポンプ35によって所内用水設備(復水処理部)36に供給され、所内用水設備36で不純物を除去する処理を施される。処理炉29から排出された蒸気に汚泥から放出された水分(ドレン)が多少混ざっていた場合でも所内用水設備36で除去することができる。不純物を除去された復水は、純水設備37に供給される。また、純水設備37には、復水流路38が連通しており、純水設備37に供給された復水は、復水流路38を介して第2循環流路9に設けられた復水器8に供給され、ボイラ4への給水に加えられる。
なお、発電設備2が、ボイラ4の給水を補充するために、所内用水設備及び純水設備を備えている場合には、当該設備と、処理炉29から排出された蒸気を処理する所内用水設備36及び純水設備37とを兼用してもよい。すなわち、専用の復水流路(38相当)、復水の不純物を除去する所内用水設備(36相当)、及び純水設備(37相当)を新たに設けることなく、発電設備2の既存の処理設備を活用して給水とすることができる。また、処理炉29から排出された蒸気を凝縮した復水を所内用水設備36と純水設備37で処理してボイラ4への給水とするので、処理炉29で水熱処理に供された蒸気量に対するボイラ4への給水量の低減を抑制して、新たな給水量を削減することができる。
脱水装置30は、処理炉29で加水分解反応によって細胞壁を破壊された汚泥を、固形分と液体分とに分離することで、脱水している。汚泥等の高含水率バイオマスでは、水分が生物由来の細胞壁内に拘束されているが、水熱処理での加水分解反応によって細胞壁を破壊して、細胞内に拘束されていた水分を放出させているので、脱水装置30により効率的な脱水処理が可能で、例えば水分比率を50%以下まで脱水させる。脱水装置30は、例えば、プレス機(図示省略)で汚泥をプレスすることで、汚泥を脱水する。なお、脱水装置30は、他の方法で汚泥を脱水してもよい。例えば、遠心分離器で汚泥を脱水してもよい。
脱水装置30には、第1排水流路39が連通している。第1排水流路39は、脱水装置30と排水タンク40とを接続しており、脱水装置30で分離された液体分(排水)を脱水装置30から排出するとともに、当該排水を排水タンク40に供給している。排水には、汚泥等に含有されていた揮発成分(CHやベンゼンH化合物等)が含まれている。排水から揮発した揮発成分は、排水タンク40に連通している第1揮発成分流路41を介して揮発成分タンク42に供給され、揮発成分タンク42に貯留される。揮発成分タンク42に貯留された揮発成分は、揮発成分タンク42に連通している第2揮発成分流路43を介して、ボイラ4に設けられたバーナ(図示省略)に供給され、ボイラ燃料の一部として利用されてもよい。
また、排水タンク40には、第2排水流路44が連通している。第2排水流路44は、排水タンク40と貯炭場排水処理装置(排水処理部)46とを接続しており、ポンプ45によって排水タンク40から排水を排出するとともに、排水を貯炭場排水処理装置46に供給している。貯炭場排水処理装置46は、排水から環境に有害な不純物を除去する処理を行う。貯炭場排水処理装置46には、散水流路47が連通している。散水流路47は、貯炭場排水処理装置46と散水装置(散水手段)48とを接続しており、貯炭場排水処理装置46で処理を施した排水(散水)を散水装置48に供給している。散水装置48は、ボイラ4の燃料とされる例えば石炭(炭素含有固体燃料)50が貯蔵されている貯炭場49に設けられており、貯蔵されている石炭50に対して散水する。
一般に、既設の発電設備2においても、貯炭場49に貯蔵されている石炭50は、条件によっては自然発火するおそれがあるため、散水手段によって石炭50に散水をしている。貯炭場49に貯留されている石炭50に散水した水は、回収され、処理装置で不純物を除去する処理を行ったうえで発電設備2外に排水される。
したがって、既設の発電設備2に対しては、脱水装置30から排出された排水から不純物を除去する処理を行う貯炭場排水処理装置46として、既設の発電設備2の石炭50に散水する水を処理する処理装置を利用することができる。このように、既設の発電設備2の処理設備を利用することで、専用の貯炭場排水処理装置46を設ける必要がない。
なお、発電設備2が、貯炭場49に貯蔵されている石炭50に対して散水した水を回収して、当該回収した水から不純物を除去する設備を備えている場合には、当該設備と、貯炭場排水処理装置46とを兼用してもよい。
なお、排水を貯炭場排水処理装置46に供給せずに、乾燥濃縮させて、汚泥乾燥物流路51を介してボイラ4に設けられたバーナに供給し、ボイラ燃料の一部として利用してもよい。汚泥乾燥物は、少量(数パーセント程度)であれば、ボイラ4で混焼可能であるので、汚泥乾燥物をボイラ燃料の一部として利用することで、排水に含まれる炭素成分や炭化水素成分を有効利用することができる。
乾燥炉31は、脱水装置30で脱水された汚泥を、排ガス供給路18からの排ガスの熱を利用して例えば水分比率を10%以下まで乾燥している。乾燥方法は、排ガスと汚泥とを直接接触させて熱交換を行ってもよく、また、排ガスと汚泥とを直接接触させずに熱交換を行ってもよい。
また、乾燥炉31には、ボイラ4から排ガス流路12を流通して排出されるボイラ4の排ガスの少なくとも一部を乾燥炉31へ導入し、乾燥炉31を通過して後は乾燥炉31出口から乾燥炉31の排ガスが流通して排ガス流路12に戻るように、下流端部が排ガス流路12に合流する排ガス排出路20が連通している。乾燥炉31で汚泥の乾燥に供した乾燥炉31の排ガスは、排ガス排出路20から排出される。排ガス排出路20には、乾燥に供した乾燥炉31の排ガスを脱臭する脱臭装置52と、乾燥に供した乾燥炉31の排ガスから不純物を除去するバグフィルタ53とが設けられている。なお、乾燥炉31において、ボイラ4の排ガスと脱水装置30で脱水された汚泥とを直接接触させずに熱交換を行う場合には、脱臭装置52及びバグフィルタ53を省略してもよい。
乾燥炉31で乾燥された汚泥は、バイオマス燃料として乾燥炉31からバイオマス燃料供給路55で排出される。乾燥炉31から排出されたバイオマス燃料は、例えば、バイオマス発電施設54に運搬され燃料として発電に利用される。バイオマス発電施設54は、バイオマス燃料を燃焼させることで生成するボイラ54aと、ボイラ54aで生成された蒸気によって回転駆動する蒸気タービン54bと、蒸気タービン54bの回転駆動力によって発電する発電機54c等を備えている。
次に、本実施形態における作用について説明する。
まず、本実施形態に係るプラント1における蒸気の流れについて説明する。
ボイラ4に供給された給水は、本実施形態では例えば、節炭器23、ドラム24、過熱器25、再熱器26を順番に通過する。ドラム24で飽和蒸気となり過熱器25で過熱されて、過熱蒸気となる。過熱器25から排出された過熱蒸気、および一旦蒸気タービン6から戻り再熱器26で過熱して排出された過熱蒸気は、蒸気タービン6に供給されて蒸気タービン6を回転駆動する。蒸気タービン6が回転駆動すると、発電機7によって発電が行われる(発電工程)。蒸気タービン6から排出された蒸気は、復水器8において凝縮される。凝縮された復水は、給水として再度ボイラ4に供給される。
また、過熱器25の出口近傍からは、300度(℃)から500度(本実施形態では、一例として、350度)の過熱蒸気の一部が抽気される。なお、この時の蒸気の圧力は、一例として17Mpa程度である。抽気された過熱蒸気は、蒸気供給路27を流通する。蒸気供給路27を流通する過熱蒸気は、第1熱交換器32において、排ガス供給路18を流通する排ガスと熱交換することで冷却されるとともに、排ガスを加熱し乾燥炉31における乾燥用熱源の一部となる(熱交換工程)。第1熱交換器32で温度が冷却された過熱蒸気は、処理炉29に供給される(供給工程)。なお、処理炉29に供給される蒸気は、第1熱交換器32で熱交換を行ったことで、温度は一例として220度程度であって、圧力は一例として2.5Mpa程度となっている。
処理炉29に供給された蒸気は、処理炉29において、下水汚泥に対して水熱処理を行う(水熱処理工程)。水熱処理での加水分解反応は、高含水率バイオマスに対して、中圧水蒸気(例えば温度が180度から230度であって、圧力が1.8Mpaから3Mpaの蒸気)を用いることで有効に反応が可能となるので、本実施形態の構造では、加水分解反応により、好適に汚泥の細胞壁を破壊することができる。処理炉29において水熱処理に供した蒸気は、処理炉29出口から蒸気排出路33を介して復水タンク34に供給され、復水タンク34で凝縮される。なお、蒸気排出路33を流通する蒸気の温度は、200度程度である。復水タンク34で凝縮された凝縮水は、所内用水設備36で不純物を除去する処理を施され、純水設備37を経て復水器8に供給され、ボイラ4の給水系統に戻される。なお、復水タンク34で凝縮された凝縮水の温度は、20度程度であり、圧力は、0.1Mpa程度である。
次に、本実施形態に係るプラント1における排ガスの流れについて説明する。
ボイラ4から排出される排ガスは、排ガス流路12を流通する。排ガス流路12を流通する排ガスの一部または全部は、排ガス流路12から排ガス供給路18に流入して乾燥炉31へ流通する。排ガス供給路18に流入する排ガスの流量は、流路切替えダンパ19の開度によって決まる。排ガス供給路18に流入しなかった排ガスは排ガス流路12を流通し、後流側で乾燥炉31から排出されて排ガス排出路20により流通して戻される排ガスと合流して、脱硫装置17を経て煙突11から大気に放出される。
排ガス供給路18に流入する排ガスの温度は、100~120度程度である。排ガス供給路18に流入した排ガスは、第1熱交換器32において、蒸気供給路27を流通する過熱蒸気と熱交換することで、加熱されて温度が上昇する。第1熱交換器32において加熱された排ガスは乾燥炉31に供給されて乾燥用熱源とする。乾燥炉31では、脱水装置30において脱水された汚泥を排ガスの熱により乾燥し、バイオマス燃料を製造する(乾燥工程)。乾燥炉31で汚泥の乾燥に供した排ガスは、乾燥炉31から排出され、排ガス排出路20へ導入される。なお、乾燥炉31から排出される排ガスの温度は、100度程度となっている。乾燥炉31から排出された排ガスは、排ガス排出路20を流通する。排ガス排出路20を流通する排ガスは、排ガス流路12に合流し、脱硫装置17を経て煙突11から放出される。
次に、本実施形態に係るプラント1における汚泥の流れについて説明する。
下水処理場28から処理炉29に供給された下水汚泥は、処理炉29でボイラ4から抽気され、第1熱交換器32で冷却された中圧水蒸気によって水熱処理を施され加水分解反応により細胞壁が破壊される。なお、処理炉29に供給される汚泥の水分比率は80%程度となっている。処理炉29において水熱処理が施された汚泥は、脱水装置30で脱水され、液体分が除去される。脱水装置30で脱水された汚泥の水分比率は50%程度となっている。脱水装置30で脱水された汚泥は、乾燥炉31に供給され、乾燥炉31でボイラ4からの排ガスによって乾燥される。乾燥炉31で乾燥された汚泥は、バイオマス燃料として、バイオマス燃料製造システム3からバイオマス燃料供給路55で排出して搬送される(バイオマス燃料搬送工程)。なお、乾燥炉31で乾燥された汚泥の水分比率は10%程度となっている。バイオマス燃料製造システム3から排出されたバイオマス燃料は、例えば、バイオマス発電施設54においてボイラ54aの燃料とされて、ボイラ54aで生成された蒸気によって蒸気タービン54bを回転駆動して、発電機54cで発電が行われる。
脱水装置30で除去された液体分は、排水として排水タンク40に供給される。排水タンク40では、揮発成分が取り出される。取り出された揮発成分は、揮発成分タンク42を介して、ボイラ4に供給されボイラ4の燃料としてもよい。また、排水タンク40で揮発成分が取り出された残りの排水は、貯炭場排水処理装置46で不純物を除去される。不純物を除去された排水は、散水装置48によって、貯炭場49に貯蔵されている石炭50に対して散水されてもよい。
本実施形態によれば、以下の作用効果を奏する。
本実施形態では、発電設備2に設けられたボイラ4で生成された過熱蒸気の一部を利用して、汚泥(高含水率バイオマス)を水熱処理しているので、ボイラ4で生成された蒸気によって、発電を行うとともに、汚泥を水熱処理することができる。すなわち、汚泥を水熱処理するための蒸気を生成する専用の装置を設けることなく、汚泥を水熱処理することができる。したがって、汚泥を水熱処理するための過熱蒸気を生成する専用の装置を設ける構成と比較して、省スペース化できるとともに、設置コストを低減することができる。また、バイオマス燃料製造にプラント1のボイラ4で生成された蒸気の一部を有効利用するため、別途蒸気を生成する必要がなくエネルギの有効利用をしてバイオマス燃料を製造することができる。
また、過熱器25の出口近傍から過熱蒸気を抽気することで、過熱器25で生成された過熱蒸気を乾燥炉31の乾燥用熱源として利用した後に処理炉29に導いている。すなわち、例えばドラム24よりも蒸気流れにおける下流側から過熱された過熱蒸気を抽気し、処理炉29に導いている。ドラム24等において圧力を制御して生成される飽和蒸気の温度はボイラ4の負荷による影響が少なく大きく変動しないため、ドラム24等よりも下流側である過熱器25で過熱される過熱蒸気は、ボイラ4の負荷変動によって温度と圧力が所定値として変動しないよう制御が可能である。したがって、ボイラ4の負荷変動に依ることなく、一定の温度の蒸気を抽気し、処理炉29に導くことができる。よって、処理炉29に導かれる蒸気の温度を所望の温度とし易くすることができ、処理炉29において好適に汚泥の水熱処理を行うことができる。
また、本実施形態では、ボイラ4の負荷変動の影響を受けにくい過熱器25の出口近傍から過熱蒸気を抽気しているが、過熱器25の出口近傍の過熱蒸気の温度は、好適に水熱処理を行うことができる蒸気の温度よりも高い。本実施形態では、第1熱交換器32において、ボイラ4から抽気した過熱蒸気の保有熱量(保有するエネルギ)を乾燥炉31の乾燥用熱源として利用している。すなわち、第1熱交換器32で減温されて適温となった過熱蒸気を処理炉29に導入している。これにより、処理炉29に導入される蒸気を冷却し、好適に水熱処理を行うことができる温度とすることができるとともに、過熱蒸気を冷却した分の熱量(熱エネルギ)を汚泥の乾燥用熱源に利用しているので、プラント1全体のエネルギを有効利用することができる。
以上のように、本実施形態では、過熱器25で生成された過熱蒸気を抽気することで、安定した温度の蒸気を処理炉29に導くことができるとともに、抽気した過熱蒸気の温度を処理炉29における水熱処理に適した温度まで減温する際に熱交換した熱エネルギを乾燥炉31の乾燥用熱源に利用することで、プラント1全体のエネルギの有効利用をすることができる。
本実施形態では、処理炉29で使用された蒸気を復水し、不純物を除去してボイラ4への給水となる給水系統に戻している。これにより、ボイラ4で生成された蒸気を処理炉29に導くために抽気する構成において、抽気した過熱蒸気量の分だけ新たな給水が必要となる中で、処理炉29で使用された蒸気を復水して、再度にボイラ4の給水へと戻すので、ボイラ4の給水系統における給水量の低減を抑制できる。このため、ボイラ4への新規に追加する給水量を低減することができる。
また、発電設備2が、ボイラ4の給水を補充するために、所内用水設備及び純水設備を備えていて、当該設備と、処理炉29から排出された蒸気を処理する所内用水設備36及び純水設備37とを兼用する場合には、新たに専用の処理設備を設けることなく、既存の処理設備を活用でき、ボイラ4への給水量の低減を抑制することができる。したがって、専用の処理設備を設ける構成と比較して、省スペース化できるとともに、設置コストを低減することができる。
また、貯炭場49に貯蔵されている石炭50は、条件によっては自然発火するおそれがある。本実施形態では、脱水装置30からの純度が低い排水を、貯炭場排水処理装置46で環境に有害な不純物を除去する処理を行い、散水装置48によって貯炭場49に貯蔵されている石炭50に散水することで有効利用する。これにより、脱水装置30で脱水したことによって発生した排水を有効利用して、石炭50の自然発火を防止に活用することができる。したがって、既存の発電設備2で散水専用の水を石炭50に散水する構成と比較して、プラント1全体で使用される水量を低減することができる。
また、発電設備2が、貯炭場49に貯蔵されている石炭50に対して散水した水を回収して、当該回収した水から不純物を除去する設備を既に備えていて、当該設備と、貯炭場排水処理装置46とを兼用する場合には、専用の排水処理設備を設ける必要がないので、専用の排水処理設備を設ける構成と比較して、省スペース化できるとともに、設置コストを低減することができる。
次に、第1実施形態の第1変形例について図2を用いて説明する。
本変形例では、ボイラ4からの排ガスを乾燥炉31に導かず、排ガスと熱交換した乾燥用空気を乾燥炉31に導く点で第1実施形態と異なる。第1実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本変形例に係るプラント61は、図2に示されているように、排ガス流路12の電気集塵機15と誘引送風機16との間に、乾燥用空気熱交換器62が設けられている。乾燥用空気熱交換器62は、乾燥炉31に導入する乾燥用空気とボイラ4の排ガスとを熱交換することで、乾燥用空気を加熱している。乾燥用空気熱交換器62には、乾燥用空気を乾燥炉31に導く乾燥用空気供給路63が連通している。乾燥用空気供給路63は、乾燥用空気熱交換器62と乾燥炉31とを接続している。また、乾燥用空気供給路63には、第1熱交換器32が設けられており、蒸気供給路27を流通する過熱蒸気と、乾燥用空気とを熱交換することで、乾燥用空気を加熱している。
過熱蒸気の熱量の一部が乾燥空気の加熱に使用されることで過熱蒸気が冷却されて適温になり、第1熱交換器32から排出された過熱蒸気は、好適に水熱処理を行うことができる温度になって処理炉29に供給される。
乾燥炉31では、乾燥用空気供給路63によって供給された乾燥用空気の保有熱量を利用して汚泥を乾燥する乾燥用熱源としている。乾燥方法は、乾燥用空気と汚泥とを直接接触させて熱交換を行ってもよく、また、乾燥用空気と汚泥とを直接接触させずに熱交換を行ってもよい。また、乾燥炉31には、乾燥炉31から乾燥用空気を排出する乾燥用空気排出路64が連通している。乾燥用空気排出路64は、乾燥炉31と乾燥用空気熱交換器62とを接続している。乾燥用空気排出路64には、乾燥に供した乾燥用空気を脱臭する脱臭装置52と、乾燥に供した乾燥用空気から不純物を除去するバグフィルタ53とが設けられている。なお、乾燥炉31において、乾燥用空気と汚泥とを直接接触させずに熱交換を行う場合には、脱臭装置52及びバグフィルタ53を省略してもよい。乾燥用空気排出路64を経て乾燥用空気熱交換器62に供給された乾燥用空気は、再度排ガスと熱交換を行い、乾燥用空気供給路63に流入する。
なお、乾燥用空気は、必ずしも空気である必要は無く、例えば比熱が少し大きな窒素などを用いて熱の輸送効率を向上させてもよい。
このような構成でも、第1実施形態と同様の効果を奏する。
また乾燥用空気を系外に排出せずに乾燥用空気供給路63から乾燥用空気排出路64を循環させるので、乾燥用空気熱交換器62および第1熱交換器32で加熱された熱量を系外へ排出することなく有効に利用することができる。
また、乾燥炉31で乾燥用空気と汚泥とを直接接触させる場合には、乾燥用空気が系外へ排出されないので、脱臭装置52及びバグフィルタ53の作動を軽減させても環境への影響が無いので、運用性が向上する。
次に、第1実施形態の第2変形例について図3を用いて説明する。
本変形例では、第1熱交換器32の代わりに、ボイラ4から抽気した蒸気を乾燥炉31内に設けられた炉内熱交換器(炉内熱交換部)67に供給する点で第1実施形態と異なる。第1実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本変形例に係るプラント66は、図3に示されているように、乾燥炉31内に炉内熱交換器67を備えている。炉内熱交換器67は、蒸気供給路27を流通する過熱蒸気と、乾燥炉31内に供給された汚泥とを熱交換し、汚泥を加熱する。すなわち、炉内熱交換器67によって、蒸気供給路27を流通する過熱蒸気の保有熱量が乾燥炉31の乾燥用熱源とされている。過熱蒸気の熱量の一部が汚泥の加熱に使用されることで過熱蒸気が冷却されて適温になり、炉内熱交換器67から排出された過熱蒸気は、好適に水熱処理を行うことができる温度になって処理炉29に供給される。
このような構成でも、第1実施形態と同様の効果を奏する。また、汚泥は温度の高い過熱蒸気を乾燥用熱源とするので、加熱効率が向上し、乾燥炉31のコンパクト化もしくは乾燥時間の短縮が可能となる。
〔第2実施形態〕
次に、第2実施形態について図4及び図5を用いて説明する。
本実施形態では、処理炉29から排出された蒸気と、乾燥炉31から排出される排ガスとを熱交換する第2熱交換器(第2熱交換部)72を備えている点で第1実施形態と異なる。第1実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本実施形態に係るプラント71は、図4に示されているように、蒸気排出路33を流通する蒸気と排ガス排出路20を流通する排ガスとを熱交換する第2熱交換器72を備えている。第2熱交換器72では、蒸気と排ガスとを熱交換することで、処理炉29の出口でも交換可能な熱量を保有しているので、蒸気排出路33を流通する蒸気の熱量を排ガスで有効に回収を行うもので、蒸気を冷却するとともに、排ガスを加熱している。具体的には、蒸気の温度は、100〜160度程度に冷却される。また、排ガスは、100度程度まで加熱される。
本実施形態によれば、以下の作用効果を奏する。
本実施形態では、処理炉29から排出される蒸気と乾燥炉31から排出される排ガスとを熱交換し、乾燥炉31から排出される排ガスを加熱して、ボイラ4の排ガス流路12に戻している。これにより、ボイラ4の排ガス流路12を通して煙突11から系外に排ガスを排出する際に、排ガス中に含まれる水蒸気の一部凝縮による白煙の発生を防止することができる。また、処理炉29から排出される蒸気と排ガスとを熱交換することで処理炉29から排出される蒸気を冷却しているので、排出される蒸気を復水タンク34で凝縮し易くすることができる。
次に、第2実施形態の変形例について図5を用いて説明する。
本変形例では、第1熱交換器32の代わりに、ボイラ4から抽気した蒸気を乾燥炉31内に設けられた炉内熱交換器77に供給する点で第2実施形態と異なる。第2実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本変形例に係るプラント76は、図5に示されているように、乾燥炉31内に炉内熱交換器77を備えている。炉内熱交換器77は、蒸気供給路27を流通する過熱蒸気と、乾燥炉31内に供給された汚泥とを熱交換し、汚泥を加熱する。すなわち、炉内熱交換器77によって、蒸気供給路27を流通する過熱蒸気の保有熱量が乾燥炉31の乾燥用熱源とされている。炉内熱交換器77から排出された蒸気は、好適に水熱処理を行うことができる温度になって処理炉29に供給される。
このような構成でも、第2実施形態と同様の効果を奏する。また、汚泥は温度の高い過熱蒸気を乾燥用熱源とするので、加熱効率が向上し、乾燥炉31のコンパクト化もしくは乾燥時間の短縮が可能となる。
〔第3実施形態〕
次に、第3実施形態について図6から図9を用いて説明する。
本実施形態では、処理炉29から排出された蒸気と、乾燥炉31に供給される排ガスとを熱交換する第3熱交換器(第3熱交換部)82を備えている点で第1実施形態と異なる。第1実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本実施形態に係るプラント81は、図6に示されているように、蒸気排出路33を流通する処理炉29から排出される蒸気と排ガス供給路18を流通する排ガスとを熱交換する第3熱交換器82を備えている。なお、第3熱交換器82は、第1熱交換器32よりも、排ガス流れの下流に配置されている。第3熱交換器82では、処理炉29から排出される蒸気と排ガスとを熱交換することで、排出される蒸気を冷却するとともに、排ガスを加熱している。
本実施形態によれば、以下の作用効果を奏する。
本実施形態では、処理炉29から排出される蒸気の熱エネルギをバイオマスの乾燥に利用することができる。これにより、エネルギを有効に利用し、エネルギ効率を向上させることができる。また、排ガス供給路18から流通する排ガスの温度をより高くして、乾燥炉31でより高温でバイオマスを乾燥することができるので、より乾燥を促進して乾燥時間を短縮することができる。
次に、第3実施形態の第1変形例について図7を用いて説明する。
本変形例では、第1熱交換器32の代わりに、ボイラ4から抽気した蒸気を乾燥炉31内に設けられた炉内熱交換器87に供給する点で第3実施形態と異なる。第3実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本変形例に係るプラント86は、図7に示されているように、乾燥炉31内に炉内熱交換器87を備えている。炉内熱交換器87は、蒸気供給路27を流通する過熱蒸気と、乾燥炉31内に供給された汚泥とを熱交換し、汚泥を加熱する。すなわち、炉内熱交換器87によって、蒸気供給路27を流通する過熱蒸気の保有熱量が乾燥炉31の乾燥用熱源とされている。炉内熱交換器87から排出された蒸気は、好適に水熱処理を行うことができる温度になって処理炉29に供給される。
このような構成でも、第3実施形態と同様の効果を奏する。
次に、第3実施形態の第2変形例について図8を用いて説明する。
本変形例では、第3熱交換器82の代わりに、処理炉29から排出された蒸気を乾燥炉31内に設けられた炉内熱交換器92に供給する点で第3実施形態と異なる。第3実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本変形例に係るプラント91は、図8に示されているように、乾燥炉31内に炉内熱交換器92を備えている。炉内熱交換器92は、蒸気排出路33を流通する蒸気は処理炉29の出口でも交換可能な熱量を保有しているので、蒸気排出路33を流通する蒸気の熱量を排ガスで有効に回収を行うもので、乾燥炉31内に供給された汚泥を加熱する。すなわち、炉内熱交換器92によって、蒸気排出路33を流通する蒸気の保有熱量が乾燥炉31の乾燥用熱源の一つとされている。炉内熱交換器92から排出された蒸気は、処理炉29から排出される蒸気を冷却しているので、排出される蒸気を容易に凝縮し易くして、復水タンク34に供給される。
このような構成でも、処理炉29から排出される蒸気の熱エネルギをバイオマスの乾燥に利用することができる。これにより、エネルギの有効利用を促進し、エネルギ効率を向上させることができる。
次に、第3実施形態の第3変形例について図9を用いて説明する。
本変形例では、第1熱交換器32の代わりに、ボイラ4から抽気した蒸気を乾燥炉31内に設けられた第1炉内熱交換器97に供給する点、及び、第3熱交換器82の代わりに、処理炉29から排出された蒸気を乾燥炉31内に設けられた第2炉内熱交換器98に供給する点で第3実施形態と異なる。第3実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本変形例に係るプラント96は、図9に示されているように、乾燥炉31内に第1炉内熱交換器97及び第2炉内熱交換器98を備えている。第1炉内熱交換器97は、蒸気供給路27を流通する過熱蒸気と、乾燥炉31内に供給された汚泥とを熱交換し、汚泥を加熱する。すなわち、第1炉内熱交換器97によって、蒸気供給路27を流通する過熱蒸気の保有熱量が乾燥炉31の乾燥用熱源とされている。第1炉内熱交換器97から排出された過熱蒸気は、好適に水熱処理を行うことができる温度になって処理炉29に供給される。また、第2炉内熱交換器98は、蒸気排出路33を流通する蒸気と、乾燥炉31内に供給された汚泥とを熱交換し、汚泥を加熱する。すなわち、第2炉内熱交換器98によって、蒸気排出路33を流通する蒸気の保有熱量が乾燥炉31の乾燥用熱源の1つとされている。第2炉内熱交換器98から排出された蒸気は、処理炉29から排出される蒸気を冷却しているので、排出される蒸気を容易に凝縮し易くして、復水タンク34に供給される。
このような構成でも、処理炉29から排出される蒸気の熱エネルギをバイオマスの乾燥に利用することができる。これにより、エネルギの有効利用を促進し、エネルギ効率を向上させることができる。
〔第4実施形態〕
次に、第4実施形態について図10及び図11を用いて説明する。
本実施形態では、乾燥炉31内に炉内熱交換器102を備えている点、及び、蒸気排出路33に第4熱交換器(第4熱交換部)103が設けられている点で第1実施形態と異なる。第1実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本実施形態に係るプラント101は、図10に示されているように、乾燥炉31内に炉内熱交換器102を備えている。炉内熱交換器102は、蒸気排出路33を流通する蒸気と、乾燥炉31内に供給された汚泥とを熱交換し、汚泥を加熱する。すなわち、炉内熱交換器102によって、蒸気排出路33を流通する蒸気の保有熱量が乾燥炉31の乾燥用熱源の1つとされている。
また、本実施形態に係るプラント101は、蒸気排出路33に設けられた第4熱交換器103を備えている。第4熱交換器103は、炉内熱交換器102から排出された蒸気と、脱水装置30から排出された排水とを熱交換する。炉内熱交換器102から排出された蒸気と脱水装置30から排出された排水とを熱交換することで、排出された蒸気を冷却するとともに、排出された排水を加熱している。第4熱交換器103から排出された蒸気は、復水タンク34に供給される。また、第4熱交換器103から排出された排水は、排水タンク40に供給される。
本実施形態によれば、以下の作用効果を奏する。
本実施形態では、脱水装置30からの排水を第4熱交換器103で加熱しているので、排水中に含まれる汚泥等に含有されていた揮発成分(CHやベンゼンH化合物等)を気化させて、排水中から揮発成分を取り出し易くすることができる。また、炉内熱交換器102から排出された蒸気を第4熱交換器103で冷却しているので、蒸気を凝縮し易くすることができる。また、炉内熱交換器102から排出された蒸気と脱水装置30から排出された排水とを熱交換することで、蒸気の冷却及び排水の加熱を行っているので、プラント1全体においてエネルギの有効利用を促進し、エネルギ効率を向上させることができる。
次に、第4実施形態の変形例について図11を用いて説明する。
本変形例では、第4熱交換器107を第1排水流路39に設けている点で、第4実施形態と異なる。第4実施形態と同一の構成については、同一の符号を付し、その詳細な説明は省略する。
本変形例に係るプラント106では、図11に示されているように、炉内熱交換器102から排出された蒸気と、脱水装置30から排出された排水とを熱交換する第4熱交換器107が、第1排水流路39に設けられている。
このような構成でも、第4実施形態と同様の効果を奏する。
なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
例えば、上記各実施形態及び上記各変形例は組み合わせてもよい。
1 プラント
2 発電設備
3 バイオマス燃料製造システム
4 ボイラ
5 第1循環流路
6 蒸気タービン
7 発電機
8 復水器
9 第2循環流路
11 煙突
12 排ガス流路
18 排ガス供給路
20 排ガス排出路
23 節炭器
24 ドラム
25 過熱器
26 再熱器
27 蒸気供給路(蒸気流路)
29 処理炉
30 脱水装置(脱水部)
31 乾燥炉
32 第1熱交換器(第1熱交換部)
33 蒸気排出路
34 復水タンク(復水部)
36 所内用水設備(復水処理部)
37 純水設備
38 復水流路
39 第1排水流路
40 排水タンク
42 揮発成分タンク
44 第2排水流路
46 貯炭場排水処理装置(排水処理部)
48 散水装置(散水手段)
49 貯炭場
54 バイオマス発電設備
55 バイオマス燃料供給路
67 炉内熱交換器(炉内熱交換部)
71 プラント
72 第2熱交換器(第2熱交換部)
81 プラント
82 第3熱交換器(第3熱交換部)
101 プラント
103 第4熱交換器(第4熱交換部)

Claims (10)

  1. 蒸気を過熱する過熱器を設けたボイラと、
    前記ボイラで生成された蒸気によって回転駆動する蒸気タービンと、
    前記蒸気タービンの回転駆動力によって発電する発電機と、
    バイオマスを水熱処理する処理炉と、
    前記処理炉で水熱処理されたバイオマスを乾燥させる乾燥炉と、
    前記過熱器で過熱された過熱蒸気の一部を抽気し、前記処理炉に導く蒸気流路と、
    前記乾燥炉の乾燥用熱源を供給する、前記ボイラから排ガス流路に排出される排ガスの保有熱量の少なくとも一部を前記乾燥炉に導く排ガス供給路と、
    前記蒸気流路を流通する前記過熱蒸気の保有熱量を熱交換する第1熱交換部または炉内熱交換部と、
    前記乾燥炉で乾燥されたバイオマスを搬送するバイオマス燃料供給路と、を備え、
    前記バイオマス燃料供給路から燃焼用燃料を搬出可能とするとともに、
    抽気された蒸気の温度は、前記第1熱交換部または前記炉内熱交換部で熱交換された後に前記処理炉の入口においてバイオマスが水熱処理可能な温度とされるプラント。
  2. 前記蒸気タービンから排出された蒸気を凝縮して復水させて前記ボイラに給水する循環流路と、
    前記処理炉から排出された蒸気を凝縮して復水させる復水部と、
    前記復水部による復水に対して不純物の除去処理を行い給水とする復水処理部と、
    前記復水処理部による給水を循環流路に導く復水流路と、を備えた請求項1に記載のプラント。
  3. 前記ボイラで用いられる炭素含有固体燃料を貯蔵する貯炭場と、
    前記処理炉で水熱処理されたバイオマスを脱水する脱水部と、
    前記脱水部においてバイオマスから排出された排水から不純物を除去する処理を行う排水処理部と、
    前記排水処理部で処理された排水を前記貯炭場に貯蔵されている前記炭素含有固体燃料に散水する散水手段と、を備えた請求項1または請求項2に記載のプラント。
  4. 前記排ガス供給路から導かれ前記乾燥炉を通過した排ガスを前記排ガス流路に戻す排ガス排出路と、
    前記処理炉から排出される蒸気と、前記排ガス排出路を流通する排ガスとを熱交換する第2熱交換部と、を備えた請求項1から請求項3のいずれかに記載のプラント。
  5. 前記処理炉から排出された蒸気の保有熱量の少なくとも一部を前記乾燥炉の乾燥用熱源とする第3熱交換部を備えた請求項1から請求項4のいずれかに記載のプラント。
  6. 前記処理炉で水熱処理されたバイオマスを脱水する脱水部と、
    前記処理炉から排出される蒸気と、前記脱水部においてバイオマスから排出された排水とを熱交換する第4熱交換部と、を備えた請求項1から請求項5のいずれかに記載のプラント。
  7. 発電用のボイラに設けられた過熱器で過熱された過熱蒸気の一部を抽気してバイオマスを水熱処理する処理炉と、
    乾燥用熱源として、前記ボイラから排ガス流路に排出される排ガスの保有熱量の少なくとも一部が導かれ、前記処理炉で水熱処理されたバイオマスを乾燥させる乾燥炉と、
    前記処理炉に供給される上流側で前記過熱蒸気の保有熱量を熱交換する第1熱交換部または炉内熱交換部と、
    前記乾燥炉で乾燥されたバイオマスを搬送するバイオマス燃料供給路と、を備え、
    前記バイオマス燃料供給路から燃焼用燃料を搬出可能とするとともに、
    抽気された過熱蒸気の温度は、前記第1熱交換部または前記炉内熱交換部で熱交換された後に前記処理炉の入口においてバイオマスが水熱処理可能な温度とされる、バイオマス燃料製造システム。
  8. 請求項7に記載されたバイオマス燃料製造システムを用いてバイオマス燃料を製造するバイオマス燃料の製造方法。
  9. 請求項1から請求項6のいずれかに記載のプラントから搬送されたバイオマス燃料を利用するバイオマス発電設備であって、
    前記プラントに設けられた前記バイオマス燃料供給路から搬送されたバイオマスを燃焼させるボイラと、
    前記ボイラで生成された蒸気によって回転駆動する蒸気タービンと、
    前記蒸気タービンの回転駆動力によって発電する発電機と、を備えたバイオマス発電設備。
  10. ボイラで生成された蒸気によって回転駆動する蒸気タービンの回転駆動力によって発電する発電工程と、
    前記ボイラに設けられた過熱器で過熱された過熱蒸気の一部を抽気して処理炉に供給する供給工程と、
    前記供給工程で供給された過熱蒸気によって、バイオマスを前記処理炉で水熱処理する水熱処理工程と、
    前記処理炉で水熱処理されたバイオマスを乾燥炉で乾燥させる乾燥工程と、
    前記処理炉に供給前記乾燥炉の乾燥用熱源として、前記ボイラから排ガス流路に排出される排ガスの一部を前記乾燥炉へ導く排ガス供給路を通過する排ガスの保有熱量の少なくとも一部と、前記処理炉に供給される上流側で抽気された過熱蒸気の保有熱量と第1熱交換部または炉内熱交換部と熱交換した熱量とする熱交換工程と、
    前記乾燥炉で乾燥されたバイオマスをバイオマス燃料供給路から搬送するバイオマス燃料搬送工程と、を備え、
    抽気された過熱蒸気の温度は、前記第1熱交換部または前記炉内熱交換部で熱交換された後に前記処理炉の入口においてバイオマスが水熱処理可能な温度とされるプラントの運転方法。
JP2018027111A 2018-02-19 2018-02-19 プラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法 Active JP7102163B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027111A JP7102163B2 (ja) 2018-02-19 2018-02-19 プラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027111A JP7102163B2 (ja) 2018-02-19 2018-02-19 プラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法

Publications (2)

Publication Number Publication Date
JP2019141769A true JP2019141769A (ja) 2019-08-29
JP7102163B2 JP7102163B2 (ja) 2022-07-19

Family

ID=67771543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027111A Active JP7102163B2 (ja) 2018-02-19 2018-02-19 プラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法

Country Status (1)

Country Link
JP (1) JP7102163B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206684A (ja) * 2018-05-25 2019-12-05 株式会社神戸製鋼所 バイオマス燃料の製造方法及びバイオマス燃料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288327A (ja) * 1992-04-07 1993-11-02 Kumagai Gumi Co Ltd エネルギのリサイクル装置
JP2001121196A (ja) * 1999-08-19 2001-05-08 Kobe Steel Ltd シリカ含有泥土スラッジの処理方法
JP2007167782A (ja) * 2005-12-22 2007-07-05 Nippon Steel Engineering Co Ltd 廃棄物処理方法
JP2009220048A (ja) * 2008-03-18 2009-10-01 Taiheiyo Cement Corp 含水有機汚泥の乾燥システム及び乾燥方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288327A (ja) * 1992-04-07 1993-11-02 Kumagai Gumi Co Ltd エネルギのリサイクル装置
JP2001121196A (ja) * 1999-08-19 2001-05-08 Kobe Steel Ltd シリカ含有泥土スラッジの処理方法
JP2007167782A (ja) * 2005-12-22 2007-07-05 Nippon Steel Engineering Co Ltd 廃棄物処理方法
JP2009220048A (ja) * 2008-03-18 2009-10-01 Taiheiyo Cement Corp 含水有機汚泥の乾燥システム及び乾燥方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206684A (ja) * 2018-05-25 2019-12-05 株式会社神戸製鋼所 バイオマス燃料の製造方法及びバイオマス燃料

Also Published As

Publication number Publication date
JP7102163B2 (ja) 2022-07-19

Similar Documents

Publication Publication Date Title
JP5135369B2 (ja) 汚泥乾燥方法
JP2006218383A (ja) 高含水有機廃棄物の処理システム
US6647726B2 (en) Method and arrangement for producing electrical energy at a pulp mill
JP6574504B2 (ja) 有機性廃棄物燃焼プラントの制御方法
JP2008201964A (ja) 固体燃料の製造方法及びシステム
JP4160973B2 (ja) 汚泥濃縮システム
JP2010158616A (ja) 汚泥乾燥装置および汚泥乾燥方法
JP6522085B1 (ja) 燃焼排ガスからの熱回収発電設備及びその制御方法
JP5893964B2 (ja) 汚泥の乾燥システム
JP2005321131A (ja) 汚泥焼却システム
JP7102163B2 (ja) プラント、バイオマス燃料製造システム及びバイオマス発電設備並びにプラントの運転方法及びバイオマス燃料の製造方法
PL181647B1 (pl) Sposób i instalacja do obróbki wilgotnego paliwa PL
WO2007132312A2 (en) A process for improving efficiency, while also decreasing flue gas emissions in stations producing power and heat and the implementation system of this process
JP2009228958A (ja) ガス化発電装置
CA2512227A1 (en) Energy reclaiming process
EP1181486B1 (en) Method and apparatus for burning materials with low combustibility
RU1838636C (ru) Комбинированна парогазотурбинна электростанци и способ утилизации тепловой энергии топлива на комбинированной парогазотурбинной электростанции
JP6270206B2 (ja) 有機性廃棄物の処理装置、および有機性廃棄物の処理方法
WO2020008621A1 (ja) バイオマスを原料とする水素製造方法
JP2001029939A (ja) 排水処理装置
KR100758676B1 (ko) 포화증기를 이용한 발전 장치 및 포화증기를 이용한 발전방법
CN214468540U (zh) 一种利用火电机组凝结水预干燥的污泥掺烧系统
JPH1057998A (ja) 汚泥処理方法及びそのシステム
JP2020165551A (ja) 複合プラント及び複合プラントの余剰熱回収方法
CN214619571U (zh) 一种固体废弃物综合处理系统

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7102163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150