JP2019137605A - Heat proof clay raw material and heat proof ceramic - Google Patents

Heat proof clay raw material and heat proof ceramic Download PDF

Info

Publication number
JP2019137605A
JP2019137605A JP2019020125A JP2019020125A JP2019137605A JP 2019137605 A JP2019137605 A JP 2019137605A JP 2019020125 A JP2019020125 A JP 2019020125A JP 2019020125 A JP2019020125 A JP 2019020125A JP 2019137605 A JP2019137605 A JP 2019137605A
Authority
JP
Japan
Prior art keywords
clay
heat
raw material
resistant
petalite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019020125A
Other languages
Japanese (ja)
Other versions
JP7276812B2 (en
Inventor
祐吉 内山
Yukichi Uchiyama
祐吉 内山
貴文 内山
Takafumi Uchiyama
貴文 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHIYAMA SEITOSHO KK
Original Assignee
UCHIYAMA SEITOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67695027&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2019137605(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by UCHIYAMA SEITOSHO KK filed Critical UCHIYAMA SEITOSHO KK
Publication of JP2019137605A publication Critical patent/JP2019137605A/en
Application granted granted Critical
Publication of JP7276812B2 publication Critical patent/JP7276812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Cookers (AREA)

Abstract

To provide a heat proof clay raw material which can be produced at a low cost without largely depending on conventional petalite that is expensive and has limited supply regions, and is used as a raw material of heat proof ceramic with low expansion and high heat resistance regardless of the firing conditions, and provide heat proof ceramic obtained as a firing body of the heat proof clay raw material.SOLUTION: A heat proof clay raw material contains clay and a low expansion material as main constituents. The low expansion material is composed of any one combination including (1) only molten quartz, (2) the molten quartz and petalite, (3) the molten quartz and cordierite, and (4) the molten quartz, the petalite, and the cordierite. In 100 pts.mass of the total amount of the clay and the low expansion material as the main constituents, the clay is 10 to 70 pts.mass and the balance is the low expansion material. A firing body obtained by oxidation firing of this heat proof clay raw material and a firing body obtained by reduction firing thereof have a thermal expansion coefficient of 0.1 to 4.0×10/K at a room temperature to 700°C.SELECTED DRAWING: None

Description

本発明は、低熱膨張係数を持つ工業素材や家庭用素材などの原料として用いられる耐熱粘土原料に関するものである。特に、直火用などの食器または調理器として使用可能な耐熱陶磁器に用いられる耐熱粘土原料に関する。   The present invention relates to a heat-resistant clay raw material used as a raw material for industrial materials and household materials having a low thermal expansion coefficient. In particular, the present invention relates to a heat-resistant clay raw material used in heat-resistant ceramics that can be used as tableware or cooking equipment for direct fire.

コーディエライト(2MgO・2Al23・5SiO2)またはペタライトを用いた低膨張のセラミックス焼結体は、陶磁器製品や低膨張を特徴とするセラミックとして工業に利用されている。これらは、熱膨張係数が小さく、耐熱衝撃性に優れていることが知られている。 Low expansion ceramic sintered bodies using cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) or petalite are used in the industry as ceramic products and ceramics characterized by low expansion. These are known to have a small thermal expansion coefficient and excellent thermal shock resistance.

従来の直火用の耐熱素材は、土鍋のような耐熱陶器製食器に使用されてきた。他にも瓦やレンガなどの低膨張性能を必要としている製品にも含まれている。日本国内での直火用の耐熱素材は、主流は、ペタライトとコーディエライトであった。陶磁器などが熱衝撃により割れる理由は、加熱・冷却に伴う体積変化による破壊である。ペタライトやコーディエライトは低い熱膨張の素材であり、これを粘土と混合することにより、耐熱性能を向上させることができる。   Conventional heat-resistant materials for direct fires have been used for tableware made of heat-resistant earthenware such as clay pots. It is also included in products that require low expansion performance such as tiles and bricks. The main heat-resistant materials for direct fire in Japan were petalite and cordierite. The reason why ceramics break due to thermal shock is destruction due to volume change accompanying heating and cooling. Petalite and cordierite are materials with low thermal expansion, and heat resistance can be improved by mixing them with clay.

このように、低膨張原料であるペタライトは粘土と混合した混合粘土として利用され、この混合粘土を焼結したものは耐熱陶磁器として広く普及している。例えば、特許文献1では、粘土を20〜80重量%、所定メッシュサイズのペタライトを80〜20重量%の割合で混練した混錬体とし、これを炭素粒子と珪酸化合物の混練体と混練した後、所定の温度で焼成することを特徴とする耐熱材の製造方法が提案されている。   Thus, petalite, which is a low expansion raw material, is used as a mixed clay mixed with clay, and a sintered product of this mixed clay is widely used as a heat-resistant ceramic. For example, in Patent Document 1, a kneaded body in which clay is kneaded in a proportion of 20 to 80% by weight and petalite having a predetermined mesh size in a proportion of 80 to 20% by weight is kneaded with a kneaded body of carbon particles and a silicate compound. A method for producing a heat-resistant material, characterized by firing at a predetermined temperature, has been proposed.

また、特許文献2では、低膨張性セラミックス製容器本体の表面に釉薬を施釉し底面に薄膜導電層を被着形成してなる電磁誘導加熱調理器用容器であって、その容器本体の素地がペタライト70%と粘土30%とからなるものが提案されている。また、特許文献3では、タルク、長石、粘土鉱物、コーディエライト、および融剤からなる直火用磁器素地が提案されている。   Patent Document 2 discloses a container for an electromagnetic induction heating cooker in which a glaze is applied to the surface of a container body made of low expansion ceramics and a thin film conductive layer is formed on the bottom surface. The base of the container body is petalite. A proposal of 70% and 30% clay has been proposed. Patent Document 3 proposes a porcelain body for direct fire made of talc, feldspar, clay mineral, cordierite, and flux.

特開2011−57517号公報JP 2011-57517 A 特開2004−142968号公報JP 2004-142968 A 特開昭63−147852号公報JP-A 63-147852

耐熱陶磁器は、土鍋やご飯炊きの様に一般家庭に広く普及している。主要な構成原料は粘土と低膨張材であり、これに添加材を配合することで焼成した製品に特長を持たせている。従来の良質な日本製土鍋などの陶磁器製品では、低膨張材としてペタライトが多く利用されている。これは、コーディエライトでは十分な精度が得られず、より低膨張のペタライトが好まれるためである。   Heat-resistant ceramics are widely used in ordinary households, such as clay pots and rice cookers. The main constituent materials are clay and low expansion material, and by adding additives to this, the fired product has its characteristics. In ceramic products such as conventional high quality Japanese clay pots, petalite is often used as a low expansion material. This is because cordierite does not provide sufficient accuracy and prefers low-expansion petalite.

ここで、ペタライトは、原産国がブラジルとジンバブエ共和国に限定されている。ブラジルの鉱山は廃坑となっており、現状、国内ではジンバブエ共和国のみから輸入している。また、ジンバブエ共和国は、近年のクーデターと外貨の喪失、ハイパーインフレで、経済が不安定であり、荷物の滞りが起きている。このペタライトの希少性の高さと納入リスクの高さから価格も上昇しており、陶磁器製品の生産コストを増加させる要因となっている。このため、納入の安定性の向上と生産コストの低減が可能な代替原料の開発が求められている。   Here, petalite is limited to Brazil and the Republic of Zimbabwe. Brazil's mines are abandoned and currently imported only from the Republic of Zimbabwe. In Zimbabwe, the economy is unstable due to the recent loss of coups and foreign currency, hyperinflation, and stagnation of luggage. The price of this petalite is rising due to its high scarcity and high delivery risk, which increases the production cost of ceramic products. For this reason, there is a need for the development of alternative raw materials that can improve delivery stability and reduce production costs.

その他、陶磁器の焼成には、酸化焼成と還元焼成があり、特に還元焼成では発色のよい陶磁器が得られる。しかしながら、通常、粘土はこの焼成条件の違いにより熱膨張係数が異なり、十分な低膨張性(耐熱性)が得られない場合がある。このため、焼成条件の如何(酸化・還元)に関わらず、低い熱膨張係数を実現できる耐熱粘土原料の開発も求められている。   In addition, there are oxidation firing and reduction firing in the firing of ceramics, and in particular, a ceramic with good color development is obtained in the reduction firing. However, usually, clay has a different coefficient of thermal expansion due to the difference in firing conditions, and sufficient low expansion (heat resistance) may not be obtained. For this reason, development of a heat-resistant clay raw material capable of realizing a low thermal expansion coefficient regardless of firing conditions (oxidation / reduction) is also demanded.

本発明はこのような背景に鑑みてなされたものであり、従来の高価なペタライトに大きく依存することなく低コストで製造可能であり、かつ、焼成条件に関わらず低膨張で高い耐熱性を備える耐熱陶磁器の原料となる耐熱粘土原料、および、この耐熱粘土原料の焼成体として得られる耐熱陶磁器を提供することを目的とする。   The present invention has been made in view of such a background, and can be manufactured at low cost without largely depending on conventional expensive petalite, and has low expansion and high heat resistance regardless of firing conditions. It aims at providing the heat-resistant clay raw material used as the heat-resistant ceramic raw material, and the heat-resistant ceramic obtained as a fired body of the heat-resistant clay raw material.

本発明の耐熱粘土原料は、粘土および低膨張材を主成分とする耐熱粘土原料であって、上記低膨張材は、(1)溶融石英のみ、(2)溶融石英とペタライト、(3)溶融石英とコーディエライト、(4)溶融石英とペタライトとコーディエライト、のいずれかの組み合わせで構成され、上記記主成分である上記粘土と上記低膨張材との合計100質量部において、上記粘土が10〜70質量部であり、残部が上記低膨張材であることを特徴とする。   The heat-resistant clay raw material of the present invention is a heat-resistant clay raw material mainly composed of clay and a low expansion material, and the low expansion material includes (1) only fused quartz, (2) fused quartz and petalite, and (3) molten material. It is composed of any combination of quartz and cordierite, (4) fused quartz, petalite and cordierite, and the clay is 100 parts by mass of the clay and the low expansion material as the main components. Is 10 to 70 parts by mass, and the remainder is the low expansion material.

上記耐熱粘土原料の酸化焼成による焼成体および還元焼成による焼成体は、室温から700℃における熱膨張係数が0.1〜4.0×10-6/Kであることを特徴とする。 The fired body obtained by oxidation firing and the fired body obtained by reduction firing of the heat-resistant clay material has a thermal expansion coefficient of 0.1 to 4.0 × 10 −6 / K from room temperature to 700 ° C.

なお、本発明における「熱膨張係数」は、室温(25℃)から700℃までの温度領域において、熱機械分析装置を用いて測定した平均線膨張係数であり、試料の初期長さに対する試料長さの変化量を温度差で除した値である。   The “thermal expansion coefficient” in the present invention is an average linear expansion coefficient measured using a thermomechanical analyzer in a temperature range from room temperature (25 ° C.) to 700 ° C., and the sample length relative to the initial length of the sample. This is a value obtained by dividing the amount of change by the temperature difference.

上記耐熱粘土原料は、酸化鉄、蝋石、長石、シャモット、ドロマイト、石灰、タルク、マグネサイト、アルミナ、バリウム化合物、およびストロンチウム化合物から選ばれる少なくとも1つの添加材を、上記主成分100質量部に対して0.1〜30質量部含むことを特徴とする。   The heat-resistant clay raw material is composed of at least one additive selected from iron oxide, wax stone, feldspar, chamotte, dolomite, lime, talc, magnesite, alumina, barium compound, and strontium compound with respect to 100 parts by mass of the main component. And 0.1 to 30 parts by mass.

本発明の耐熱陶磁器は、耐熱粘土原料の焼成体であり、上記耐熱粘土原料が本発明の耐熱粘土原料であることを特徴とする。特に、この耐熱陶磁器は、食器または調理器であることを特徴とする。   The heat-resistant ceramic of the present invention is a fired product of a heat-resistant clay material, and the heat-resistant clay material is the heat-resistant clay material of the present invention. In particular, the heat-resistant ceramic is characterized by being a tableware or a cooker.

本発明の耐熱粘土原料は、主成分として、粘土と、少なくとも溶融石英を含む低膨張材とを、所定割合で含む原料であるので、従来の高価なペタライトやコーディエライトのみに頼ることなく低コストで製造可能であり、かつ、焼成条件に関わらず低膨張で高い耐熱性を備える耐熱陶磁器の原料として好適となる。低膨張は、具体的には、室温から700℃における熱膨張係数が4.0×10-6/K以下の低い値となる。 Since the heat-resistant clay raw material of the present invention is a raw material containing, as main components, clay and a low expansion material containing at least fused quartz at a predetermined ratio, it is low without relying only on conventional expensive petalite and cordierite. It can be manufactured at low cost and is suitable as a raw material for heat-resistant ceramics having low expansion and high heat resistance regardless of firing conditions. Specifically, the low expansion has a low thermal expansion coefficient of 4.0 × 10 −6 / K or less from room temperature to 700 ° C.

耐熱粘土原料は、酸化鉄、蝋石、長石、シャモット、ドロマイト、石灰、タルク、マグネサイト、アルミナ、バリウム化合物、およびストロンチウム化合物から選ばれる少なくとも1つの添加材を、主成分100質量部に対して0.1〜30質量部含むので、製品に種々の特長を付与できる。特に、蝋石や長石を配合することで、吸水率が減ると共に、焼き締まり効果で強度が増し、それらに比例して、耐熱性が向上する。   The heat-resistant clay raw material contains at least one additive selected from iron oxide, wax, feldspar, chamotte, dolomite, lime, talc, magnesite, alumina, barium compound, and strontium compound with respect to 100 parts by mass of the main component. Since it contains 1 to 30 parts by mass, various features can be imparted to the product. In particular, by blending wax or feldspar, the water absorption rate is reduced and the strength is increased by the effect of tightening, and the heat resistance is improved in proportion to them.

本発明の耐熱陶磁器は、上述の本発明の耐熱粘土原料の焼成体であるので、従来の高価なペタライトに大きく依存することなく低コストで製造可能であり、かつ、焼成条件に関わらず低膨張で高い耐熱性を備える。このため、例えば、直火用などの食器または調理器として好適に利用できる。   Since the heat-resistant ceramic of the present invention is a fired body of the heat-resistant clay raw material of the present invention described above, it can be manufactured at low cost without largely depending on the conventional expensive petalite, and low expansion regardless of firing conditions. High heat resistance. For this reason, for example, it can be suitably used as a tableware for a direct fire or a cooker.

本発明の耐熱粘土原料は、粘土および低膨張材を主成分とし、陶磁器などの素地原料となるものである。この耐熱粘土原料では、低膨張材として少なくとも溶融石英を配合することを特徴としている。低膨張材の組み合わせは、(1)溶融石英のみ、(2)溶融石英とペタライト、(3)溶融石英とコーディエライト、(4)溶融石英とペタライトとコーディエライト、のいずれかである。これらの組み合わせは、従来のペタライトの全部または一部を溶融石英を含む他の低膨張材に置換するものであり、いずれの組み合わせにおいてもペタライト配合量の低減が図れる。   The heat-resistant clay raw material of the present invention is mainly composed of clay and a low expansion material, and is a raw material for ceramics and the like. This heat-resistant clay raw material is characterized by blending at least fused quartz as a low expansion material. The combination of the low expansion material is any one of (1) fused quartz only, (2) fused quartz and petalite, (3) fused quartz and cordierite, and (4) fused quartz, petalite and cordierite. These combinations replace all or part of the conventional petalite with other low expansion materials including fused quartz, and in any combination, the amount of petalite can be reduced.

主成分である粘土と低膨張材の合計の耐熱粘土原料全体に対する含有割合は、50質量%以上であり、好ましくは60質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上である。また、耐熱粘土原料全体に対する各成分の含有割合としては、例えば、溶融石英が20質量%以上70質量%未満、粘土が30質量%以上80質量%未満、添加材が数質量%から40質量%程度である。   The total content ratio of the main component clay and the low expansion material to the heat-resistant clay raw material is 50% by mass or more, preferably 60% by mass or more, more preferably 80% by mass or more, and still more preferably. 90% by mass or more. The content ratio of each component with respect to the entire heat-resistant clay raw material is, for example, 20 to 70% by mass of fused quartz, 30 to 80% by mass of clay, and several to 40% by mass of additive. Degree.

母材となる粘土としては、カオリン鉱物群を含む粘土類(蛙目粘土、木節粘土、カオリナイト、ディッカイト、ナクライト、ハロイサイト、ニュージランドカオリン、朝鮮カオリン、河東カオリンなどのカオリン)、セリサイト、ベントナイトなどが挙げられる。   As the base material clay, clays containing kaolin minerals (Kameme clay, Kibushi clay, Kaolinite, Dickite, Nakrite, Halloysite, New Zealand kaolin, Korean kaolin, Kadong kaolin and other kaolins), sericite, bentonite Etc.

粘土は、主成分である粘土と低膨張材との合計100質量部に占める割合が10〜70質量部である。好ましくは30〜70質量部であり、より好ましくは40〜60質量部であり、さらに好ましくは45〜55質量部である。主成分における粘土が、10質量部未満であると製品形状への成形が困難となるおそれがあり、70質量部をこえると、粘土の高い熱膨張係数により十分な耐熱性が得られなくなるおそれがある。   The ratio of the clay as a main component to the total 100 parts by mass of the clay and the low expansion material is 10 to 70 parts by mass. Preferably it is 30-70 mass parts, More preferably, it is 40-60 mass parts, More preferably, it is 45-55 mass parts. If the clay in the main component is less than 10 parts by mass, molding into a product shape may be difficult, and if it exceeds 70 parts by mass, sufficient heat resistance may not be obtained due to the high thermal expansion coefficient of the clay. is there.

溶融石英は、結晶質の石英と異なり、SiO2の純度が高く、アモルファス状態の石英である。本発明で使用できる溶融石英(石英ガラス)としては、水晶、石英を酸水素炎や電気により高温で溶融したものを急冷固化し、これを粉砕した粉末や、化学気相蒸着法、ゾル−ゲル法により得られたものなどが挙げられる。 Fused quartz is different from crystalline quartz in that it has a high SiO 2 purity and is in an amorphous state. As fused quartz (quartz glass) that can be used in the present invention, quartz, quartz melted at a high temperature with an oxyhydrogen flame or electricity is rapidly cooled and solidified, and powder, chemical vapor deposition, sol-gel And the like obtained by the law.

石英は、長石原料などに含まれており、陶磁器原料として広く使用されている。しかし、陶磁器に使用される石英は多くが結晶質のものである。粘土や釉に石英を混ぜる理由としては、焼成後の陶磁器強度の向上や光沢のために添加されることが多いが、熱膨張係数が増加する。耐熱陶磁器は、焼成温度を調整(1300℃以下)することで、陶磁器中のSiO2を完全に溶融させずに焼結させることができる。これにより、ペタライトの様な低膨張の結晶の性能を維持したままの陶磁器を生産できる。溶融石英は非晶質であり、熱膨張係数の低い原料である。自然界にある石英は、ほとんどが結晶質であり、通常、耐熱陶磁器粘土にペタライトとコーディエライトを除く長石類を混ぜることはない。本発明では、ペタライトの全部または一部を溶融石英に置換した耐熱粘土原料とし、溶融石英を完全に溶融させずに焼結させることなどにより、低膨張で高い耐熱性を備えた耐熱陶磁器を実現している。 Quartz is contained in feldspar materials and is widely used as a ceramic material. However, most of the quartz used in ceramics is crystalline. The reason why quartz is mixed with clay or straw is often added to improve the strength of ceramics after baking or to give gloss, but the coefficient of thermal expansion increases. By adjusting the firing temperature (1300 ° C. or less), the heat-resistant ceramic can be sintered without completely melting SiO 2 in the ceramic. As a result, ceramics can be produced while maintaining the performance of low expansion crystals such as petalite. Fused quartz is an amorphous material with a low coefficient of thermal expansion. Quartz in nature is mostly crystalline, and usually refractory ceramic clay is not mixed with feldspars other than petalite and cordierite. In the present invention, a heat-resistant ceramic material with low expansion and high heat resistance is realized by using a heat-resistant clay raw material in which all or part of the petalite is replaced with fused quartz and sintering the fused quartz without completely melting it. doing.

溶融石英は、化学合成によって製造されるため、安定した入手が可能である。この結果、本発明の耐熱粘土原料と耐熱陶磁器の安定供給が可能となる。また、低膨張材として溶融石英を主に用いることで、原料調達がペタライトに大きくは依存せず、ジンバブエ共和国からの荷物の供給の不安定さや価格の高騰に悩まされることがなくなる。   Since fused quartz is manufactured by chemical synthesis, it can be obtained stably. As a result, it becomes possible to stably supply the heat-resistant clay raw material and heat-resistant ceramic of the present invention. In addition, by mainly using fused quartz as a low expansion material, the procurement of raw materials does not depend greatly on petalite, and it will not be bothered by unstable supply of goods from the Republic of Zimbabwe and rising prices.

溶融石英以外の低膨張材として、上記のとおりペタライトとコーディエライトを用いる。ペタライトは、リチウム含有のケイ酸塩鉱物である。コーディエライト(2MgO・2Al23・5SiO2)は、マグネシウム含有のケイ酸塩鉱物である。 As described above, petalite and cordierite are used as a low expansion material other than fused quartz. Petalite is a lithium-containing silicate mineral. Cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) is a magnesium-containing silicate mineral.

低膨張材は、主成分である粘土と低膨張材との合計100質量部に占める割合が30〜90質量部である。この低膨張材は、主成分における粘土を除いた残部であるので、主成分に占める割合は、上述の粘土の範囲から決定できる。
また、低膨張材の組み合わせとして、溶融石英以外を併用するケースである(2)溶融石英とペタライト、(3)溶融石英とコーディエライト、(4)溶融石英とペタライトとコーディエライトの場合は、いずれの場合も、低膨張材の全量に対して溶融石英を半量以上とすることが好ましい。低膨張材の含有割合としては、(溶融石英:それ以外)=(4:1)〜(1:1)とすることが好ましい。
The proportion of the low-expansion material in the total 100 parts by mass of the main component clay and the low-expansion material is 30 to 90 parts by mass. Since this low expansion material is the remainder excluding clay in the main component, the proportion of the main component in the main component can be determined from the above range of clay.
In addition, as a combination of low expansion materials, other than fused quartz, (2) fused quartz and petalite, (3) fused quartz and cordierite, (4) fused quartz, petalite and cordierite In any case, it is preferable that the amount of fused quartz is not less than half the total amount of the low expansion material. The content ratio of the low expansion material is preferably (fused quartz: other than that) = (4: 1) to (1: 1).

本発明では、これらの低膨張材以外に、添加材として他の低膨張な原料を含有してもよい。例えば、β−スポジュメン(Li2O・Al23・4SiO2)、β−ユークリプタイト(Li2O・Al23・2SiO2)などのリチウム系鉱物、ムライト(3Al23・2SiO2)、ジルコン(ZrO2・SiO2)、ホウケイ酸ガラス(Na2O−B23−SiO2)などが挙げられる。 In the present invention, in addition to these low expansion materials, other low expansion materials may be contained as additives. For example, beta-spodumene (Li 2 O · Al 2 O 3 · 4SiO 2), β- eucryptite (Li 2 O · Al 2 O 3 · 2SiO 2) lithium minerals such as mullite (3Al 2 O 3 · 2SiO 2 ), zircon (ZrO 2 · SiO 2 ), borosilicate glass (Na 2 O—B 2 O 3 —SiO 2 ) and the like.

耐熱粘土原料には、一般の耐熱陶磁器原料において公知の添加材を添加してもよい。添加材としては、例えば、酸化鉄、蝋石、長石、シャモット、カオリン、ドロマイト、石灰、タルク、マグネサイト、アルミナ、バリウム化合物、ストロンチウム化合物などが挙げられる。これらは単独でも2種以上を併用してもよい。これらの中でも、酸化鉄、蝋石、長石、シャモットを添加することが好ましい。酸化鉄(酸化第二鉄)は色付けなどに使用され、蝋石は滑材として使用され、長石は光沢出しなどに使用され、シャモットは焼き締まり時のクッション材などに使用される。   Known heat-resistant ceramic materials may be added to the heat-resistant clay raw materials. Examples of the additive include iron oxide, aragonite, feldspar, chamotte, kaolin, dolomite, lime, talc, magnesite, alumina, barium compound, and strontium compound. These may be used alone or in combination of two or more. Among these, it is preferable to add iron oxide, wax, feldspar, and chamotte. Iron oxide (ferric oxide) is used for coloring, wax stone is used as a lubricant, feldspar is used for glossing, and chamotte is used as a cushioning material when tightening.

添加材は、主成分100質量部に対して、例えば合計で0.1〜30質量部配合できる。好ましくは0.1〜10質量部であり、より好ましくは0.1〜5質量部である。   For example, the additive can be blended in an amount of 0.1 to 30 parts by mass with respect to 100 parts by mass of the main component. Preferably it is 0.1-10 mass parts, More preferably, it is 0.1-5 mass parts.

本発明の耐熱陶磁器は、本発明の耐熱粘土原料の焼成体である。耐熱陶磁器は、大きく分けて(A)耐熱粘土原料からなる陶土を成形する、(B)必要に応じて陶土の成形体の表面に施釉する、(C)焼成炉にて焼成し、その後炉冷する、の工程により製造される。   The heat-resistant ceramic of the present invention is a fired body of the heat-resistant clay raw material of the present invention. The heat-resistant ceramics can be broadly divided into (A) forming a clay made of heat-resistant clay raw material, (B) applying the surface of the ceramic clay as necessary, (C) baking in a baking furnace, and then cooling in the furnace It is manufactured by the process of.

(A)の成形工程では、耐熱粘土原料を構成する各鉱物などを所定量混合する。この混合は公知の湿式または乾式法いずれの方法であっても使用できる。湿式法で混合した場合は混合物(泥漿)を脱水、ケーキ化して成形用の陶土とする。材料は、混練後に成形される。成形方法としては、ローラーマシーン成形、プレス成形、圧力鋳込(圧搾)成形、鋳込成形、水コテ成形などを利用でき、土鍋など所定の形状に成形される。   In the molding step (A), a predetermined amount of each mineral constituting the heat-resistant clay raw material is mixed. This mixing can be used by any known wet or dry method. When mixed by a wet method, the mixture (sludge) is dehydrated and caked to form a clay for molding. The material is shaped after kneading. As a molding method, roller machine molding, press molding, pressure casting (squeezing) molding, casting molding, water iron molding, or the like can be used, and a clay pot or the like is molded into a predetermined shape.

(B)の施釉工程は、必要に応じて実施される。この工程では、(A)の工程で成形された成形体の表面に施釉する。釉薬は、ガラス質の釉層を形成できるものであれば使用できる。施釉の方法としては、ディッピング、スプレー掛けなどを利用でき、成形体の表面に施釉される。   The glazing step (B) is performed as necessary. In this step, glazing is applied to the surface of the molded body formed in the step (A). The glaze can be used as long as it can form a glassy glaze layer. As a method of glazing, dipping, spraying, etc. can be used, and glazing is applied to the surface of the molded body.

(C)の焼成工程では、上記で得られた成形体をガス窯や電気窯内に入れ、これを1150〜1300℃の温度、好ましくは1150〜1250℃の温度で焼成する。焼成時間は8〜12時間程度である。1300℃以下で焼成することで、上述のように溶融石英を完全に溶融させずに焼結できる。ここで、焼成条件として、酸化焼成と還元焼成とがあり、いずれの条件としてもよい。酸化焼成は、窯内に多量の空気(酸素)を供給し、十分に酸素が存在する条件化で焼成する方法である。還元焼成は、例えば窯内に木や石炭、ガスなどを不完全燃焼を起こす程度に投入して焼成する方法である。   In the firing step (C), the molded body obtained above is put in a gas kiln or an electric kiln, and fired at a temperature of 1150 to 1300 ° C, preferably 1150 to 1250 ° C. The firing time is about 8 to 12 hours. By firing at 1300 ° C. or lower, the fused quartz can be sintered without being completely melted as described above. Here, as firing conditions, there are oxidation firing and reduction firing, and any conditions may be used. Oxidation firing is a method in which a large amount of air (oxygen) is supplied into the kiln and firing is performed under conditions where oxygen is sufficiently present. The reduction firing is a method in which, for example, wood, coal, gas, or the like is put into a kiln to such an extent that incomplete combustion occurs and is fired.

本発明の耐熱陶磁器は、直火に掛けた場合、経済産業省認定工場のための工業標準化法に基づいたJIS S 2400で規定されている温度差350℃以上の基準を満たすものである。また、粘土と溶融石英のみの調合だけではなく、添加材(溶融鉱物)として蝋石やカオリン、ドロマイト、長石などを添加することで、より焼き締り、低膨張のまま高強度が得られる。溶融石英の使用により、従来の高価なペタライトやコーディエライトを使用しない、または、使用量を低減しつつ、低膨張かつ直火に強い耐熱陶磁器が製造できる。   The heat-resistant ceramic of the present invention satisfies the standard of a temperature difference of 350 ° C. or more defined in JIS S 2400 based on the industrial standardization method for a factory authorized by the Ministry of Economy, Trade and Industry when subjected to direct fire. Moreover, not only preparation of clay and fused quartz alone, but also addition of wax, kaolin, dolomite, feldspar, etc. as an additive (molten mineral), high strength can be obtained while further tightening and low expansion. By using fused silica, it is possible to produce a heat-resistant ceramic that does not use conventional expensive petalite or cordierite, or that reduces the amount of use and that is resistant to direct fire.

陶磁器が熱衝撃により割れる理由は、加熱・冷却に伴う体積変化による破壊である。ペタライトやコーディエライトは低い熱膨張の素材であり、従来は、これを粘土と混合することにより、耐熱陶磁器用の原料の生産を行っている。溶融石英も低い熱膨張を持つ素材であり、本発明ではこれを採用することで新たな耐熱陶磁器用の粘土材料を得ている。   The reason why ceramics break due to thermal shock is destruction due to volume change accompanying heating and cooling. Petalite and cordierite are materials with low thermal expansion. Conventionally, raw materials for heat-resistant ceramics are produced by mixing them with clay. Fused quartz is also a material having low thermal expansion, and in the present invention, a new clay material for heat-resistant ceramics is obtained by adopting this.

このように、溶融石英は低膨張であるため、粘土など膨張係数の高い鉱物と混ぜ合わせることにより、低膨張の耐熱粘土原料が実現できると考えた。しかし、粘土とペタライトを使用する場合と比較すれば、粘土と溶融石英のみでは焼き締まりが劣る。このため、上述のように蝋石などの溶融鉱物を使用することで、焼き締まった低膨張を実現できる。   As described above, since fused quartz has low expansion, it was considered that a low expansion heat-resistant clay raw material can be realized by mixing with a mineral having a high expansion coefficient such as clay. However, as compared with the case where clay and petalite are used, only the clay and fused quartz are inferior in baking. For this reason, by using molten minerals such as wax stone as described above, it is possible to realize squeezed low expansion.

耐熱粘土原料の酸化焼成による焼成体および還元焼成による焼成体は、室温から700℃における熱膨張係数が0.1〜4.0×10-6/Kであることが好ましい。より好ましくは0.1〜3.0×10-6/Kであり、さらに好ましくは0.1〜2.5×10-6/Kである。熱膨張係数が4.0×10-6/Kをこえる場合、用途によっては十分な耐熱性が得られないおそれがある。 It is preferable that the fired body obtained by oxidation firing of the heat-resistant clay raw material and the fired body obtained by reduction firing have a thermal expansion coefficient of 0.1 to 4.0 × 10 −6 / K from room temperature to 700 ° C. More preferably, it is 0.1-3.0 * 10 < -6 > / K, More preferably, it is 0.1-2.5 * 10 < -6 > / K. When the thermal expansion coefficient exceeds 4.0 × 10 −6 / K, there is a possibility that sufficient heat resistance may not be obtained depending on the application.

また、還元焼成と酸化焼成の場合における同温度条件で測定した熱膨張係数の差が、−1.0〜1.0×10-6/Kであることが好ましい。より好ましくは−0.8〜0.8×10-6/Kであり、さらに好ましくは−0.5〜0.5×10-6/Kである。熱膨張係数の差が、±1.0×10-6/K範囲内とすることで、焼成条件に関わらず、十分な低膨張性(耐熱性)が得られる。 Moreover, it is preferable that the difference of the thermal expansion coefficient measured on the same temperature conditions in the case of reduction | restoration baking and oxidation baking is -1.0-1.0 * 10 < -6 > / K. More preferably, it is -0.8-0.8 * 10 < -6 > / K, More preferably, it is -0.5-0.5 * 10 < -6 > / K. When the difference in thermal expansion coefficient is within the range of ± 1.0 × 10 −6 / K, sufficient low expansion (heat resistance) can be obtained regardless of the firing conditions.

本発明の耐熱陶磁器は、後述の実施例に示すように、耐熱粘土原料の組成によっては、ペタライト製の直火用耐熱食器の熱膨張係数の標準値であった熱膨張係数2.0×10-6/K以下の低膨張性(耐熱性)をも実現できる。 The heat-resistant ceramic of the present invention has a coefficient of thermal expansion of 2.0 × 10 which was the standard value of the coefficient of thermal expansion of a heat-resistant tableware made of petalite, depending on the composition of the heat-resistant clay raw material, as shown in the examples described later. -6 / K or less of low expansion (heat resistance) can be realized.

実施例1〜実施例17
表1に示す組成の耐熱粘土原料を調整し、これを用いて所定の試験片を成形し、同表に示す各雰囲気において1200℃で8時間焼成して、試験片を制作した。粘土は、蛙目粘土を用いた。この試験片の熱膨張係数を、熱機械分析装置を用い、昇温速度を7℃/分として室温(25℃)から700℃まで加熱して測定した。結果を表1に示す。なお、実施例16と実施例17については、粘土分が少ないため試験片に脆さがあった。
Examples 1 to 17
A heat-resistant clay raw material having the composition shown in Table 1 was prepared, a predetermined test piece was molded using the raw material, and fired at 1200 ° C. for 8 hours in each atmosphere shown in the same table to produce a test piece. As the clay, Sasame clay was used. The thermal expansion coefficient of the test piece was measured by heating from room temperature (25 ° C.) to 700 ° C. using a thermomechanical analyzer at a rate of temperature increase of 7 ° C./min. The results are shown in Table 1. In addition, about Example 16 and Example 17, since there was little clay content, the test piece had a brittleness.

比較例1、比較例2
表2に示す組成の粘土原料を調整し、これを用いて所定の試験片を成形し、同表に示す各雰囲気において1200℃で8時間焼成して、試験片を制作した。粘土は、蛙目粘土を用いた。この試験片の熱膨張係数を、実施例1と同様に測定した。結果を表2に示す。
Comparative Example 1 and Comparative Example 2
A clay raw material having the composition shown in Table 2 was prepared, a predetermined test piece was molded using the clay raw material, and fired at 1200 ° C. for 8 hours in each atmosphere shown in the same table to produce a test piece. As the clay, Sasame clay was used. The thermal expansion coefficient of this test piece was measured in the same manner as in Example 1. The results are shown in Table 2.

参考例1、参考例2
低膨張材にペタライトのみを用いた場合の例として、表3に示す組成の耐熱粘土原料を調整し、これを用いて所定の試験片を成形し、同表に示す各雰囲気において1200℃で8時間焼成して、試験片を制作した。粘土は、蛙目粘土を用いた。この試験片の熱膨張係数を、実施例1と同様に測定した。結果を表3に示す。
Reference Example 1 and Reference Example 2
As an example when only petalite is used as the low expansion material, a heat-resistant clay raw material having the composition shown in Table 3 is prepared, a predetermined test piece is molded using the raw material, and each specimen shown in FIG. Test pieces were produced by baking for a period of time. As the clay, Sasame clay was used. The thermal expansion coefficient of this test piece was measured in the same manner as in Example 1. The results are shown in Table 3.

Figure 2019137605
Figure 2019137605

Figure 2019137605
Figure 2019137605

Figure 2019137605
Figure 2019137605

実施例1と実施例2に示すように、溶融石英と粘土の単味の調合では、酸化焼成1.934×10-6/Kであり、還元焼成2.516×10-6/Kであり、還元焼成の焼き締まりの結果、還元雰囲気で焼成した方が30%ほど高くなった。
一方、実施例3と実施例4に示すように、溶融石英とペタライトと粘土の混合の調合では、酸化焼成2.182×10-6/Kであり、還元焼成2.178×10-6/Kであり、ほぼ変わらない結果であった。これは、ガラス化したペタライトに溶融石英が付着したためと推察される。
As shown in Example 1 and Example 2, the simple preparation of fused quartz and clay is 1.934 × 10 −6 / K for oxidation firing and 2.516 × 10 −6 / K for reduction firing. As a result of reduction firing, the result of firing in a reducing atmosphere was about 30% higher.
On the other hand, as shown in Example 3 Example 4, in the preparation of a mixed fused silica and petalite and clay, a oxide sintered 2.182 × 10 -6 / K, reduction firing 2.178 × 10 -6 / The result was almost unchanged. This is presumably because fused quartz adhered to vitrified petalite.

実施例11は、粘土50質量部に対し、溶融石英とペタライトを25質量部ずつ2等分に割った上、土鍋などの水漏れ防止の焼結材としてNAT酸化鉄(酸化第二鉄)を3質量部混ぜてある。
この実施例11を実施例3と比較した場合、NAT酸化鉄が混ざると、それに準じて本来、熱膨張係数は悪くなる(大きくなる)が、溶融石英の焼き締まりが緩やかであるため、その分、熱膨張係数は7.9%ほど低くなった。また、実施例12に示すように、同調合で還元焼成の場合、熱膨張係数は3.8%ほど高くなった。これは、還元焼成による鉄の焼き締りが大きいためである。
なお、実施例12は、2.261×10-6/Kという結果であり、これは土鍋や耐熱食器では十分通用する値である。また、JIS S 2400陶磁器製耐熱食器の耐熱検査350℃以上に耐えうるものである。
In Example 11, with respect to 50 parts by mass of clay, 25 parts by mass of fused quartz and petalite were divided into two equal parts, and NAT iron oxide (ferric oxide) was used as a sintered material for preventing water leakage such as clay pots. 3 parts by mass are mixed.
When this Example 11 is compared with Example 3, when NAT iron oxide is mixed, the thermal expansion coefficient is originally deteriorated (increased) accordingly, but the fused quartz is gradually tightened. The thermal expansion coefficient was as low as 7.9%. Moreover, as shown in Example 12, in the case of reduction baking with the same preparation, the thermal expansion coefficient was increased by about 3.8%. This is because iron tightening by reduction firing is large.
In addition, Example 12 is a result of 2.261 × 10 −6 / K, which is a value that can be sufficiently applied to clay pots and heat-resistant dishes. Moreover, it can endure a heat resistance test of 350 ° C. or higher of a JIS S 2400 ceramic heat-resistant tableware.

実施例15は、粘土50質量部に対し、溶融石英とコーディエライトを25質量部ずつ2等分に割った上、土鍋などの水漏れ防止の焼結材としてNAT酸化鉄(酸化第二鉄)を3質量部混ぜてある。
この実施例15を実施例5と比較した場合、上記のとおり、NAT酸化鉄が混ざると、それに準じて本来、熱膨張係数は悪くなる(大きくなる)ものであり、この比較でも極端に悪化していた。これは、コーディエライトが、質が悪く、石英分との結合が特に悪化していることを表している。
In Example 15, with respect to 50 parts by mass of clay, 25 parts by mass of fused quartz and cordierite were divided into two equal parts, and NAT iron oxide (ferric oxide) was used as a sintered material for preventing water leakage such as clay pots. ) 3 parts by mass.
When this Example 15 is compared with Example 5, as described above, when NAT iron oxide is mixed, the thermal expansion coefficient is originally deteriorated (increased) accordingly, and this comparison is extremely deteriorated. It was. This indicates that cordierite is poor in quality and has a particularly poor bond with quartz.

次に、本発明の耐熱陶磁器の物性測定を行った。
表4に示す組成の耐熱粘土原料を調整し、これを用いて同表に示す寸法の試験片を成形し、酸化焼成雰囲気において1200℃で8時間焼成して、試験片を制作した。この試験片について、JIS A 1509−4 陶磁器タイル試験方法を準用して、曲げ強度を測定した。また、この試験片の熱膨張係数を、熱機械分析装置を用い、昇温速度を7℃/分として室温(25℃)から700℃まで加熱して測定した。これらの結果を表4に示す。
Next, the physical properties of the heat-resistant ceramic of the present invention were measured.
A heat-resistant clay raw material having the composition shown in Table 4 was prepared, and a test piece having the dimensions shown in the same table was molded from the raw material, and fired at 1200 ° C. for 8 hours in an oxidizing firing atmosphere to produce a test piece. About this test piece, bending strength was measured applying JIS A 1509-4 ceramic tile test method mutatis mutandis. Moreover, the thermal expansion coefficient of this test piece was measured by heating from room temperature (25 ° C.) to 700 ° C. using a thermomechanical analyzer at a rate of temperature increase of 7 ° C./min. These results are shown in Table 4.

Figure 2019137605
Figure 2019137605

本発明の耐熱粘土原料は、高価で供給地が偏重しているペタライトに大きく依存することなく低コストで製造可能であり、かつ、焼成条件に関わらず低膨張で高い耐熱性を備える耐熱陶磁器の原料となるので、低熱膨張係数が要求される工業素材や家庭用素材などの原料として広く利用できる。特に、直火用などの食器または調理器である耐熱陶磁器として好適に利用できる。また、従来のペタライトは、自然鉱物であるため、リチウムの含有量が不安定であった。それに比較して、溶融石英は、安定性がある。また、供給が安定しており、安定生産による消費者保護に貢献できる。   The heat-resistant clay raw material of the present invention can be manufactured at low cost without greatly depending on expensive and unevenly distributed petalite, and is a low-expansion and high heat-resistant ceramic that has high heat resistance regardless of firing conditions. Since it becomes a raw material, it can be widely used as a raw material for industrial materials and household materials that require a low coefficient of thermal expansion. In particular, it can be suitably used as a heat-resistant ceramic that is a tableware for a direct fire or a cooker. Further, since conventional petalite is a natural mineral, the lithium content was unstable. In comparison, fused quartz is stable. In addition, the supply is stable and can contribute to consumer protection through stable production.

Claims (5)

粘土および低膨張材を主成分とする耐熱粘土原料であって、
前記低膨張材は、(1)溶融石英のみ、(2)溶融石英とペタライト、(3)溶融石英とコーディエライト、(4)溶融石英とペタライトとコーディエライト、のいずれかの組み合わせで構成され、
前記主成分である前記粘土と前記低膨張材との合計100質量部において、前記粘土が10〜70質量部であり、残部が前記低膨張材であることを特徴とする耐熱粘土原料。
A heat-resistant clay raw material mainly composed of clay and a low expansion material,
The low expansion material is composed of any combination of (1) fused quartz only, (2) fused quartz and petalite, (3) fused quartz and cordierite, and (4) fused quartz, petalite and cordierite. And
The heat-resistant clay raw material characterized in that, in a total of 100 parts by mass of the clay as the main component and the low expansion material, the clay is 10 to 70 parts by mass, and the rest is the low expansion material.
前記耐熱粘土原料の酸化焼成による焼成体および還元焼成による焼成体は、室温から700℃における熱膨張係数が0.1〜4.0×10-6/Kであることを特徴とする請求項1記載の耐熱粘土原料。 The fired body obtained by oxidation and firing of the heat-resistant clay material and the fired body obtained by reduction firing have a coefficient of thermal expansion from room temperature to 700 ° C of 0.1 to 4.0 × 10 -6 / K. The heat-resistant clay raw material described. 前記耐熱粘土原料は、酸化鉄、蝋石、長石、シャモット、ドロマイト、石灰、タルク、マグネサイト、アルミナ、バリウム化合物、およびストロンチウム化合物から選ばれる少なくとも1つの添加材を、前記主成分100質量部に対して0.1〜30質量部含むことを特徴とする請求項1または請求項2記載の耐熱粘土原料。   The heat-resistant clay raw material is composed of at least one additive selected from iron oxide, wax stone, feldspar, chamotte, dolomite, lime, talc, magnesite, alumina, barium compound, and strontium compound with respect to 100 parts by mass of the main component. The heat-resistant clay raw material according to claim 1 or 2, characterized by comprising 0.1 to 30 parts by mass. 耐熱粘土原料の焼成体である耐熱陶磁器であって、
前記耐熱粘土原料が、請求項1から請求項3までのいずれか1項記載の耐熱粘土原料であることを特徴とする耐熱陶磁器。
A heat-resistant ceramic that is a fired body of heat-resistant clay,
The heat-resistant clay material according to any one of claims 1 to 3, wherein the heat-resistant clay material is the heat-resistant clay material.
食器または調理器であることを特徴とする請求項4記載の耐熱陶磁器。   The heat-resistant ceramic according to claim 4, which is a tableware or a cooking device.
JP2019020125A 2018-02-06 2019-02-06 Heat-resistant clay raw materials and heat-resistant ceramics Active JP7276812B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018032535 2018-02-06
JP2018032535 2018-02-06

Publications (2)

Publication Number Publication Date
JP2019137605A true JP2019137605A (en) 2019-08-22
JP7276812B2 JP7276812B2 (en) 2023-05-18

Family

ID=67695027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019020125A Active JP7276812B2 (en) 2018-02-06 2019-02-06 Heat-resistant clay raw materials and heat-resistant ceramics

Country Status (1)

Country Link
JP (1) JP7276812B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299829A (en) * 2020-09-30 2021-02-02 徐州赛诺石英有限公司 Production method of high-strength high-compactness fused quartz
CN113321487A (en) * 2021-06-28 2021-08-31 武汉理工大学 Lithium-free heat-resistant domestic ceramic and preparation method thereof
CN113816733A (en) * 2021-11-06 2021-12-21 何祥林 Formula of electrothermal ceramic material, preparation method of electrothermal ceramic blank and heating element
CN113912378A (en) * 2021-11-24 2022-01-11 邱小平 Heat-resistant ceramic and preparation process thereof
CN114213101A (en) * 2021-11-30 2022-03-22 重庆天戈陶瓷有限公司 Heat-resistant ceramic utensil and preparation method thereof
CN114773029A (en) * 2022-04-25 2022-07-22 云南浪鬼建水陶文化有限公司 Jianshui purple pottery with high thermal shock resistance
CN114988857A (en) * 2021-06-11 2022-09-02 佛山市大角鹿大理石瓷砖有限公司 Close-seam continuous-grain low-expansion-coefficient floor heating ceramic tile and preparation method thereof
CN115304365A (en) * 2022-08-25 2022-11-08 胡晓荣 Heat-resistant porcelain and processing technology thereof
CN115893984A (en) * 2022-10-27 2023-04-04 湖南驰鑫特种隔热材料有限公司 Ceramic vermiculite heat insulation plate and preparation process thereof
CN115959892A (en) * 2022-12-22 2023-04-14 江苏诺明高温材料股份有限公司 Thermal shock resistant energy-saving durable furnace door brick for coke oven and preparation method thereof
KR20230077387A (en) * 2021-11-25 2023-06-01 이규빈 Ceramic cup composition, manufacturing turbine blade for cast
CN116375459A (en) * 2023-04-10 2023-07-04 唐山隆昌瓷业有限公司 High-silicon functional porcelain and preparation method thereof
CN116639968A (en) * 2023-06-28 2023-08-25 乡传(福建)艺术品有限公司 Ceramic prepared based on sea mud and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961210A (en) * 1972-10-03 1974-06-13
JPS5298715A (en) * 1976-02-14 1977-08-18 Grossalmeroder Thonwerke Burning asistant having improved temperature change resistance and manufacture
JPS63147852A (en) * 1986-12-10 1988-06-20 財団法人 日本陶磁器検査協会 Ceramic dough for open fire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961210A (en) * 1972-10-03 1974-06-13
JPS5298715A (en) * 1976-02-14 1977-08-18 Grossalmeroder Thonwerke Burning asistant having improved temperature change resistance and manufacture
JPS63147852A (en) * 1986-12-10 1988-06-20 財団法人 日本陶磁器検査協会 Ceramic dough for open fire

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299829A (en) * 2020-09-30 2021-02-02 徐州赛诺石英有限公司 Production method of high-strength high-compactness fused quartz
CN114988857A (en) * 2021-06-11 2022-09-02 佛山市大角鹿大理石瓷砖有限公司 Close-seam continuous-grain low-expansion-coefficient floor heating ceramic tile and preparation method thereof
CN113321487B (en) * 2021-06-28 2023-06-02 武汉理工大学 Lithium-free heat-resistant domestic ceramic and preparation method thereof
CN113321487A (en) * 2021-06-28 2021-08-31 武汉理工大学 Lithium-free heat-resistant domestic ceramic and preparation method thereof
CN113816733A (en) * 2021-11-06 2021-12-21 何祥林 Formula of electrothermal ceramic material, preparation method of electrothermal ceramic blank and heating element
CN113912378A (en) * 2021-11-24 2022-01-11 邱小平 Heat-resistant ceramic and preparation process thereof
KR102688192B1 (en) 2021-11-25 2024-07-23 이규빈 Ceramic cup composition, manufacturing turbine blade for cast
KR20230077387A (en) * 2021-11-25 2023-06-01 이규빈 Ceramic cup composition, manufacturing turbine blade for cast
CN114213101A (en) * 2021-11-30 2022-03-22 重庆天戈陶瓷有限公司 Heat-resistant ceramic utensil and preparation method thereof
CN114773029A (en) * 2022-04-25 2022-07-22 云南浪鬼建水陶文化有限公司 Jianshui purple pottery with high thermal shock resistance
CN115304365A (en) * 2022-08-25 2022-11-08 胡晓荣 Heat-resistant porcelain and processing technology thereof
CN115893984A (en) * 2022-10-27 2023-04-04 湖南驰鑫特种隔热材料有限公司 Ceramic vermiculite heat insulation plate and preparation process thereof
CN115893984B (en) * 2022-10-27 2023-06-27 湖南驰鑫特种隔热材料有限公司 Ceramic vermiculite heat insulation board and preparation process thereof
CN115959892B (en) * 2022-12-22 2023-09-15 江苏诺明高温材料股份有限公司 Energy-saving durable furnace door brick for thermal shock resistant coke furnace and preparation method thereof
CN115959892A (en) * 2022-12-22 2023-04-14 江苏诺明高温材料股份有限公司 Thermal shock resistant energy-saving durable furnace door brick for coke oven and preparation method thereof
CN116375459A (en) * 2023-04-10 2023-07-04 唐山隆昌瓷业有限公司 High-silicon functional porcelain and preparation method thereof
CN116375459B (en) * 2023-04-10 2024-05-03 唐山隆昌瓷业有限公司 High-silicon functional porcelain and preparation method thereof
CN116639968A (en) * 2023-06-28 2023-08-25 乡传(福建)艺术品有限公司 Ceramic prepared based on sea mud and preparation method thereof
CN116639968B (en) * 2023-06-28 2024-05-24 乡传(福建)艺术品有限公司 Ceramic prepared based on sea mud and preparation method thereof

Also Published As

Publication number Publication date
JP7276812B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP7276812B2 (en) Heat-resistant clay raw materials and heat-resistant ceramics
JP3031865B2 (en) Manufacturing method of thermal shock resistant ceramics
KR101196032B1 (en) Heat-resistant ceramic composition and method for manufacturing porcelain using the composition
CN102190482A (en) Daily use ceramics and preparation method thereof
JP5845500B2 (en) Heat resistant product and manufacturing method thereof
CN103420689A (en) Artistic pottery fancy glaze and manufacturing method thereof
EA022052B1 (en) Fireproof ceramic mix, fireproof ceramic molded body formed of said mix, and the use thereof
JP3031872B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
CN109809795A (en) A kind of nanometer glazed ceramic pot and preparation method thereof that heat preservation heat accumulation is good
JPH04114969A (en) Nitride-bonded sic refractory material
JPH1087365A (en) Thermal shock resistant ceramics and its production
JP6330994B2 (en) Low thermal expansion ceramic products
JP2024079509A (en) Heat-resistant clay raw material and heat-resistant porcelain
JP5483026B2 (en) Microwave absorption / self-heating heat-resistant ceramics and method for manufacturing the same
JP2021147275A (en) Magnesia-spinel refractory brick
JP6166854B1 (en) Silicic refractory brick and manufacturing method thereof
KR101819149B1 (en) Composition for functional ceramic ware using pumice and method for calcining thereof
KR101265944B1 (en) Composite for ceramic ware including oxide pigment and manufacturing method of ceramic ware using the pigment
CN109133624B (en) High-whiteness overglaze, application thereof and acid-resistant super-white brick
RU2420481C1 (en) Ceramic mixture for making glased tiles
SU1604766A1 (en) White glaze
SU1025679A1 (en) Transparent glaze
JPS61275141A (en) Silicate raw material for ceramics, manufacture and use
SU1386598A1 (en) Transparent glaze
SU753807A1 (en) Refractory smearing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220125

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R150 Certificate of patent or registration of utility model

Ref document number: 7276812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157