JP2019137386A - 水中環境発電ドローンおよび運転方法 - Google Patents

水中環境発電ドローンおよび運転方法 Download PDF

Info

Publication number
JP2019137386A
JP2019137386A JP2018217215A JP2018217215A JP2019137386A JP 2019137386 A JP2019137386 A JP 2019137386A JP 2018217215 A JP2018217215 A JP 2018217215A JP 2018217215 A JP2018217215 A JP 2018217215A JP 2019137386 A JP2019137386 A JP 2019137386A
Authority
JP
Japan
Prior art keywords
main hull
storage tank
internal storage
water
energy harvesting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018217215A
Other languages
English (en)
Other versions
JP7305336B2 (ja
Inventor
ネイサン・ディー・ヒラー
D Hiller Nathan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2019137386A publication Critical patent/JP2019137386A/ja
Application granted granted Critical
Publication of JP7305336B2 publication Critical patent/JP7305336B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/18Control of attitude or depth by hydrofoils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/22Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/132Submersible electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

【課題】水中環境発電ドローンおよび運転方法が提供される。【解決手段】水中環境発電ドローンは、海洋水中に潜水可能に受容されるべき主船体と、複数の熱電モジュールであって、前記複数の熱電モジュールの各モジュールが主船体と熱接触する第1の動作インタフェースを有する、複数の熱電モジュールと、を有する。熱移送要素が複数の熱電モジュール上の第2の動作インタフェースと接触しており、電力貯蔵装置が複数の熱電モジュールに接続される。主船体と熱移送要素との間に温度勾配をつくるように水中に沈め得る主船体を配置することで熱電モジュールによる発電を誘起し、それによって電力貯蔵装置を充電する。【選択図】図3

Description

本開示に示されている実施形態は、一般に水中無人ビークル(UUV)に関し、より詳細には、UUVが動作する環境における温度差を使用して電力を発生させるために熱電システムを使用するUUVに関する。
UUVは、海底探索、環境モニタリングおよびセキュリティオペレーションにおける様々な仕事に使用される。UUVの動作プロファイル(operational profiles)は、燃料補給要件が制限されている広範な運転能力を魅力的なものにする。深海は内密の軍事オペレーションにとって理想的な環境である。そのようなオペレーションは戦闘および偵察任務をUUVに頼ることが多い。
従来技術のいくつかのUUVは、エネルギー生成または推進効果のために海洋の水温躍層の温度勾配を使用する。しかしながら、この水温躍層は、水深約1000メートル以下で摂氏約3.5度の温度に近づく。したがって、水温躍層の温度勾配に依存するUUVは深海環境ではエネルギーが不足する。したがって、UUVは、燃料補給するために、UUVの視界を増大させために、およびUUVを水上艦船との衝突もしくは進路中断の潜在的リスクに置くために頻繁に浮上しなければならない。
例示的な諸実施形態は、海洋水中に潜水可能に受容されるべき主船体(primary hull)と、複数の熱電モジュールであって、前記複数の熱電モジュールの各モジュールが主船体と熱接触する第1の動作インタフェースを有する、複数の電熱モジュールと、を有する水中環境発電ドローン(underwater energy harvesting drone)を提供する。熱移送要素(thermal transfer element)が複数の熱電モジュール上の第2の動作インタフェースと接触しており、電力貯蔵装置が複数の熱電モジュールに接続される。主船体と熱移送要素との間に温度勾配をつくるように水中に沈め得る主船体を配置することで熱電モジュールによる発電を誘起し、それによって電力貯蔵装置を充電する。
例示的な実施形態は、無人水中ビークル(UUV)を運転する第1の方法を可能にするものであり、この方法では、冷海洋水が第1の位置で内部貯蔵タンク内に引き込まれる。次いで、内部貯蔵タンクは、冷海洋水を貯蔵するために第2の位置に配置される。UUVは熱水噴出孔箇所(hydrothermal vent location)までナビゲートされて主船体を周囲海洋水に比べて「ホットゾーン」内に配置する。電力貯蔵部を充電するために主船体と内部貯蔵タンクとの間の温度勾配に基づいて熱電モジュールで発電される。
例示的な実施形態は、無人水中ビークル(UUV)を運転する第2の方法を可能にするものであり、この方法では、水中に沈められたUUVは熱放散器を空気にさらすために浮上させられる。熱電モジュールは、海洋水中に浸された主船体と空気と対流接触する熱放散器との間の温度差を使用して電力貯蔵装置を充電するための電気エネルギー生成を行うために動作する。
論じられている形態、機能、および利点は、様々な実施形態で独立に実現することができる、あるいは他の実施形態では組み合わされてもよく、かかる形態、機能、および利点のさらなる詳細は、下記の説明および図面を参照して理解することができる。
本明細書に記載されている第1の例示的な実施形態を使用したUUVの絵画的表現図である。 本明細書に記載されている第2の例示的な実施形態を使用したUUVの絵画的表現図である。 図1Aの実施形態の正面断面図である。 矩形輪郭部を有する第1の実施形態の構造的代替実施形態の正面断面図である。 第1の実施形態の概略側面切取図である。 「ポゴ(pogo)」向きの第1の実施形態の側面図である。 ナビゲーションおよび検出構成要素を有する例示的な制御システムのブロック図である。 第2の実施形態の概略側面切取図である。 図7Aが第2の実施形態の動作順序の第1の絵画的表現図、図7Bが第2の絵画的表現図、図7Cが第3の絵画的表現図である。 第2の実施形態の構造的代替実施形態の側面図である。 第2の実施形態の代替実施形態の概略側面切取図である。 第1の実施形態の第1の発電方法を示す流れ図である。 第2の実施形態の第2の発電方法を示す流れ図である。
本明細書に記載されているUUVの例示的な諸実施形態は、複数の熱電モジュール上の第1の動作インタフェースと熱接触する水中に沈め得る主船体と、複数の熱電モジュール上の第2の動作インタフェースと接触する熱移送要素と、を有する、より一般的には環境発電水中ビークルと呼ばれる水中環境発電ドローン(UEHD)であって、主船体と熱移送要素との間に温度勾配を形成するようにUEHDを配置することで熱電モジュールによる発電を誘起する、水中環境発電ドローン(UEHD)を提供する。
図面を参照すると、図1AはUEHD10の第1の実施形態を示す。UEHD10は主船体12を有し、推進機13(例示的に標準的な複数羽根付きスクリューとして示されている)とUEHD10の方向制御用の、主船体12に枢動可能に連結された制御プレーン(control planes)14(例えば、制御フィンまたは流体力学的制御面)とを用いて海洋環境の中で操縦される(例えば、ナビゲートされる)。図2Aに見られるように、内部貯蔵タンク16は、後で説明するように冷海洋水で満たすことができるものであり、熱移送要素として使用される。内部貯蔵タンク16は、図示の実施形態では主船体12内で実質的に同心であり、複数の熱電モジュール18が内部貯蔵タンク16と主船体12との間に、各熱電モジュール18上の第1の動作面20が主船体12と熱接触しかつ第2の動作面22が内部貯蔵タンク16と熱接触した状態で取り付けられる。熱電モジュールは、ペルチェ接合装置(ゼーベック効果、トムソン効果)およびスターリングエンジンの少なくとも一方から選択され得る。主船体12と内部貯蔵タンク16との間の温度差は、熱電モジュール18が動作するための温度勾配をもたらす。
図2AのUEHDは、図示の中心断面において実質的に同心である。例示的な代替実施形態が図2Bに示されており、中心断面は矩形形状であり、主船体12’および内部貯蔵タンク16’は共に矩形断面を有する。熱電モジュール18は、所望の温度勾配を達成するために貯蔵タンク16’の平坦側面17と主船体12’の平坦内側面19の中間に取り付けられる。
図3に見られるように、主船体12は、推進機13用の電気モーター24とUEHD10を運転しナビゲートするための制御システム26とを収容する。特に、制御システム26は、水中でUEHD10を推進させかつナビゲートするために推進機13と制御プレーン14のうちの1つまたは複数の両方を操作する。電力貯蔵装置28は、単一電池要素、リチウムイオン、リチウムイオンポリマー、ニッケルカドミウム、ニッケル水素、鉛などの蓄電池群、またはナノテクノロジースーパーキャパシタなどの容量性貯蔵システム(capacitive storage system)を含む再充電可能電池とすることができ、電圧変成器回路30を介して熱電モジュール18およびモーター24に接続される。制御システム26用の電力は電力貯蔵装置28から供給されてもよい。
図3に示されている例示的な実施形態は、内部貯蔵タンク16を主船体12の外側の海洋水に接続する入口スクープ32およびベント34を有する。入口スクープ32およびベント34は、外部海洋水との選択的流体流通を可能にするために、開閉位置のための引込み式または組込み式扉閉鎖とすることができる。電力貯蔵装置28によって電力供給されるポンプ36を使用して水を入口スクープ32から内部貯蔵タンク16の中にかつベント34の外へ圧送し、それによって内部貯蔵タンク内の水を交換することができる。あるいは、入口スクープ32およびベント34は航行中のUEHD10で外部海洋水に対して開放されてもよく、これにより海洋水の動圧が内部貯蔵タンク16を通る流れを作り出すことが可能になる。入口スクープ32およびベント34が閉鎖位置にあると、内部貯蔵タンク16内に引き込まれる冷海洋水が貯蔵される。
運転中、UEHD10は、制御システム26により、海洋底付近の熱水噴出孔の箇所までの航行プロファイル(ミッション/運航プロファイルの一部として含まれる)に従って自律的にも遠隔的にもナビゲートされる。熱水噴出孔フィールドの世界分布が世界の海洋の至る所に存在する。この種のサーマルベント(thermal vents)は、温度の範囲が60℃〜646℃の熱水プルーム(hot water plumes)を生じさせる。開水域におけるUEHD10の場合、入口スクープ32およびベント34は、内部貯蔵タンク16の第1の位置で展開または開放され、冷海洋水が内部貯蔵タンク16内に引き込まれ、次いで入口スクープ32およびベント34を閉鎖することによって保持されて内部貯蔵タンク16を第2の位置に配置し、それによって冷海洋水を貯蔵する。UEHD10が水深500メートル以下にある場合、12℃〜4℃以下の水温が利用可能である。次いで、UEHD10は、主船体12を熱水噴出孔内に配置するように制御システム26によってナビゲートされ、主船体12が周囲海洋水および内部貯蔵タンク16内に貯蔵された海洋水の初期温度に比べて「ホットゾーン」内に配置された状態を維持するために噴出孔ホットプルーム内をうろうろするか噴出孔プルーム流動をたどるかのどちらかである。主船体12と対流伝導接触するホットプルームと熱キャパシタとして働く内部貯蔵タンク16で貯蔵された冷水との温度差は熱電モジュール18が動作するための温度勾配をもたらし、熱電モジュール18は発電して電力貯蔵装置28を充電する。熱電モジュールの動作は内部貯蔵タンク16内の水の温度上昇を引き起こす。外部噴出孔プルームと内部貯蔵タンクとの間の温度差が、熱電モジュールによる有効発電が停止する段階まで減少すると、UEHD10は制御システム26によって開水域内にまで操縦され、内部貯蔵タンク16は入口スクープ32およびベント34の動作によって放出され再び満たされる。次いで、UEHD10は、電力貯蔵装置28の再充電のために必要に応じて噴出孔プルーム内に再配置され得るまたは別の噴出孔プルームまで移動され得る。充電サイクル相互間に、UEHD10は、制御システム26によってUEHD10の所期のミッションプロファイルで運転され得る。
あるいは、温度勾配は、UEHD10をサーマルベントのプルームの中にまで操縦し入口スクープ32およびベント34を開放してプルームから熱水を引き込むことによって逆向きにされ得る。次いで、UEHD10は、制御システム26によって冷外洋水の中にまでナビゲートされ、主船体12と対流伝導接触する冷海洋水と熱キャパシタとして働く内部貯蔵タンク16で貯蔵されたプルームからの熱水との温度差は熱電モジュール18が動作するための逆温度勾配をもたらし、熱電モジュール18は発電して電力貯蔵装置28を充電する。電圧変成器回路30は、逆温度勾配に基づいて熱電モジュールによって生成される逆電流を検出するとともに電力貯蔵装置28を充電するための整流を可能にするようになされ得る。熱電モジュールの動作は内部貯蔵タンク16内の水の冷却を引き起こす。内部貯蔵タンクと主船体12と接触する外部海洋水との間の温度差が、熱電モジュールによる有効発電が停止する段階まで減少すると、UEHD10は制御システム26によって操縦されてサーマルベントに戻され、内部貯蔵タンク16は入口スクープ32およびベント34の動作によって放出され再び満たされる。
UEHD10内に各システムが設けられることにより、ミッションプロファイルでの実質的に途切れない運航のために熱水噴出孔相互間の「サーフィン(surfing)」で電力貯蔵装置28の再充電を行うことが可能になる。既述のように、ミッション(例えば運航)プロファイルは、探査、環境モニタリング、セキュリティオペレーションなどの活動を含むことができる。
UEHD10のサイズおよび他の考慮事項に応じて、定位バラストタンク(orienting ballast tank)38が、UEHD10のバラストを変化させて、図4に示されているように垂直向き、すなわち「ポゴ」向きを選択的に誘導するために、適切な制御弁40およびポンプもしくは他の通気システム(ポンプ36の例示的な実施使用など)と共に使用され得る。UEHD10は、熱水噴出孔プルーム42の中にまで操縦され、内部貯蔵タンク16が冷海洋水で満たされた場合はバラストタンク38を満たして噴出孔プルームへの主船体12の暴露を増大させることによりポゴ位置に向きを変えることができる。熱電充電サイクルが完了するかまたは内部貯蔵タンク16内の温度差がなくなると、バラストタンク38から水が放出され、UEHD10は、通常の巡航能力を与えるためにUEHD10の通常の運転方向に向きを変えられる。ポゴ向きは、主船体12と内部貯蔵タンク16との間の負温度差が充電サイクルに使用される場合、内部貯蔵タンク16をプルームからの水で満たすのを支援するために使用されてもよい。
図5に見られるように、制御システム26はナビゲーションシステム502を実装しており、ナビゲーションシステム502は、全地球測位システム(GPS)504もしくはGPSセンサ、慣性航法(ガイダンス)システム506または同等のナビゲーション要素からの入力を使用して自律運転用の特定のミッション(例えば、運航)プロファイル503をプレインストールしてもよく、あるいは通信モジュール508および遠隔制御システム509で遠隔制御されてもよい。人工知能(AI)が、ミッションプロファイルの指定パラメータで操縦またはうろうろするために制御プロセッサ510内に実装されてもよい。制御システム26がUEHD10を物理的に制御するための制御信号が、モーター24に接続されるモーターコントローラ512および制御プレーン14に接続される制御プレーン作動システム514によって与えられる。
図1BはUEHD110の第2の実施形態を示す。第1の実施形態と同様に、UEHD110は主船体112を有し、推進機113(例示的に標準複数羽根スクリューとして示されている)および制御プレーン114で海洋環境の中で操縦される。第2の実施形態の熱移送要素は、主船体112の上面117に取り付けられ上面117から延伸するする熱放散器116である。熱放散器116は、表面積を増大させるために入れ子式に延伸可能であり得る。図6に見られるように、主船体112は、推進機113用の電気モーター124とUEHD110を運転するための制御システム126とを収容する。電力貯蔵装置128は、単一電池要素、リチウムイオン、リチウムイオンポリマー、ニッケルカドミウム、ニッケル水素、鉛などの蓄電池群、またはナノテクノロジースーパーキャパシタなどの容量性貯蔵システムとすることができ、電圧変成器回路130を介して熱電モジュール118およびモーター124に接続される。制御システム126用の電力は電力貯蔵装置128から供給されてもよい。熱電モジュール118は、各熱電モジュール118上の第1の動作面120が主船体112と熱接触し第2の動作面122が熱放散器116と熱接触した状態で接続される。
図7A〜図7Cに示されている第2の実施形態の運転で、UEHD110は、制御システム126によって設定されたミッションプロファイルに従って図7Aに示されているように水中に沈められた状態で巡航する。第2の実施形態の予想される運転は北極海で行われ、北極海では、海洋水温度が比較的一定であり、少なくとも−2℃以上であるのに対して、特に夜の空気温度は著しく冷たい(約−20℃、ただし約−60℃〜−10℃の範囲である)。電力貯蔵装置128の充電が必要になると、制御システム126は、図7Bに示されているようにUEHD110を浮上させて熱放散器116を海洋水から空気に選択的にさらす。海洋水140中に浸された主船体112と周囲空気142と対流接触する熱放散器116との間の温度差は、熱電モジュール118の動作が電力貯蔵装置を充電するための電気エネルギーを生成するのに重要かつ十分である。充電が完了するとまたはそうでなければ動作上望ましいときに、制御システム126は、図7Cに見られるように運転を継続するためにUEHD110を水中に沈めさせる。
潜水、浮上および所望の動作深度のためにUEHDの開示済み実施形態の深度制御を行うための様々なバラストタンクおよび関連する動作システムが当技術分野でよく知られており、本明細書では説明しない。
第2の実施形態の代替構造的配置が図8Aおよび図8Bに示されている。図8Aに見られるように、UEHD210は、絶縁バリア213によって分離された上部212aおよび下部212bを有する主船体212を実装している。船体部分212a、212bは絶縁バリア213の上下に対称に示されているが、非対称配置が使用されてもよい。図8Bに見られるように、熱電モジュール218は、各熱電モジュール218上の第1の動作面220が上部212aと熱接触し第2の動作面222が下部212bと熱接触した状態で係合される。伝達板214または他の熱伝導要素が、第2の動作面222と下部212bとの間または逆に第1の動作面220と上部212aとの間の有効接触に使用され得る。第1の構造的配置と同様に、UEHD210は、電力貯蔵装置228、電圧変成器回路230、モーター224、および制御システム226を実装している。UEHD210は、UEHD110と同様に、主船体212の上部212aを空気にさらすために浮上して動作し、上部212aは熱放散器である。
第2の実施形態のいずれの構造的配置でも、UEHD110、210の熱電モジュール118、218を通る熱移送は、気温が水温よりも暖かい場合に逆向きにされ、それによって逆温度勾配をもたらすことができる。逆温度勾配が起こると、熱電モジュール118、218によって生成される電流の方向は逆向きになる。逆電流を取り込み、次いで電力貯蔵装置128、228に電荷を蓄えるために電圧変成器回路130、230のダイオード回路が使用される。
開示されるUEHDの実施形態はUUVを運転する方法を提供する。図9に示されているように(図1Aおよび図3参照)、UEHD10は、制御システム26により海洋底付近の熱水噴出孔の箇所相互間で自律的にも遠隔的にもナビゲートされる(ステップ902)。
第1の順序では、UEHD10は開水域内にあり、入口スクープ32およびベント34は開放位置で展開または配置され、冷海洋水が第1の位置で圧送または動圧によって内部貯蔵タンク16内に引き込まれ(ステップ904)、次いで入口スクープ32およびベント34が閉鎖され(ステップ906)、冷海洋水を貯蔵するために内部貯蔵タンク16を第2の位置に配置する。UEHD10は、制御システム26によって熱水噴出孔箇所までナビゲートされ、主船体12が周囲海洋水および内部貯蔵タンク16内に貯蔵された海洋水の初期温度に比べて「ホットゾーン」内にある状態を維持するために熱水噴出孔のホットプルーム内を主船体12でうろうろするか熱水噴出孔プルーム流動をたどるかのどちらかである(ステップ908)。定位バラストタンク38は満たされて(ステップ910)、UEHD10の向きをポゴ位置にすることができる。このようにして、定位バラストタンク38は、UEHD10の向きをポゴ位置にするために満たされる。主船体12と対流伝導接触するホットプルームと熱キャパシタとして働く内部貯蔵タンク16で貯蔵された冷水との温度差は熱電モジュール18に温度勾配をもたらし、熱電モジュール18は、主船体と内部貯蔵タンクとの間の温度勾配に基づいて発電して電力貯蔵装置28を充電するために動作する(ステップ912)。UEHD10は制御システム26によって開水域内にまで操縦され(ステップ914)、内部貯蔵タンク16は、第1の順序のプロセスを繰り返すために、入口スクープ32およびベント34の動作によって放出され再び満たされる(ステップ904)。
第2の順序では、UEHD10は噴出孔プルーム内にあり、定位バラストタンク38は満たされ(ステップ911)、UEHD10の向きをポゴ位置にすることができる。入口スクープ32およびベント34は展開または開放され、プルームからの熱水が第1の位置で圧送または動圧によって内部貯蔵タンク16内に引き込まれ(ステップ905)、次いで入口スクープ32およびベント34が閉鎖され(ステップ907)、熱水を貯蔵するために内部貯蔵タンク16を第2の位置(例えば、ポゴ位置に対して回転した位置)に配置する。UEHD10は、制御システム26によって噴出孔プルームから外洋の中へナビゲートされ、そこで冷水が内部貯蔵タンク16内の熱水の内部温度に対する負温度差をもたらす(ステップ909)。主船体12と対流伝導接触する冷外洋水と熱キャパシタとして働く内部貯蔵タンク16で貯蔵された熱水との温度差は温度勾配をもたらし、熱電モジュール18は、主船体と内部貯蔵タンクとの間の温度勾配に基づいて発電して電力貯蔵装置28を充電するために動作する(ステップ913)。UEHD10は制御システム26によって操縦されて熱水噴出孔プルームに戻され(ステップ915)、内部貯蔵タンク16は、第2の順序のプロセスを繰り返すために、入口スクープ32およびベント34の動作によって放出され再び満たされる(ステップ905)。どちらの順序でも、次いで、UEHD10は、電力貯蔵装置(28、128、228)を充電するために熱電モジュール(18、118、218)をナビゲートし動作させるのに合わせて、所望のミッションプロファイルで運転され得る(ステップ916)。UEHD10は、ステップ904、905で始まる電力貯蔵装置28の再充電のために必要に応じて噴出孔プルーム内に再配置され得るまたは別の噴出孔プルームまで移動され得る。
図10に示されているように(図1B、図6、図8Aおよび図8B参照)、UEHD110、210は、制御システム126によって指示されたミッションプロファイルで水中に沈められて運転される(ステップ1002)。電力貯蔵装置128の充電が必要になると、制御システム126は、UEHD110、210を浮上させて(ステップ1004)、熱放散器116、212aを空気に選択的にさらす。熱電モジュール118は、海洋水140中に浸された主船体112(または212b)と周囲空気142と対流接触する熱放散器116、212aとの間の温度差を使用して電力貯蔵装置を充電するための電気エネルギー生成を行うために動作する(ステップ1006)。充電が完了するとまたはそうでなければ動作上望ましいときに、制御システム126は、運転を継続するためにUEHD110を水中に沈めさせる(ステップ1008)。
さらに、本開示は下記付記項による例を含む。
付記項1.海洋水中に潜水可能に受容されるべき主船体と、複数の熱電モジュールであって、前記複数の熱電モジュールの各モジュールが主船体と熱接触する第1の動作インタフェースを有する、複数の熱電モジュールと、複数の熱電モジュール上の第2の動作インタフェースと接触する熱移送要素と、複数の熱電モジュールに接続される電力貯蔵装置と、を備える水中環境発電ドローンであって、主船体と熱移送要素との間に温度勾配をつくるように船体を配置することで熱電モジュールによる発電を誘起し、それによって電力貯蔵装置を充電する、水中環境発電ドローン。
付記項2.電力貯蔵装置が、再充電可能電池およびコンデンサの少なくとも一方を含む、付記項1に記載の水中環境発電ドローン。
付記項3.再充電可能電池が、リチウムイオン電池、リチウムイオンポリマー電池、ニッケルカドミウム電池、ニッケル水素電池、または鉛蓄電池のうちの1つである、付記項2に記載の水中環境発電ドローン。
付記項4.コンデンサがナノテクノロジースーパーキャパシタを含む、付記項2に記載の水中環境発電ドローン。
付記項5.熱電モジュールがペルチェ接合装置およびスターリングエンジンの少なくとも一方を含む、付記項1に記載の水中環境発電ドローン。
付記項6.電力貯蔵装置から電力を受けるように接続された電気モーターと、上記電気モーターによって駆動される推進機と、主船体に係合された制御プレーンと、航行プロファイルに従って電気モーターおよび制御プレーンに制御信号を与えるようになされた制御システムと、をさらに備える、付記項1に記載の水中環境発電ドローン。
付記項7.熱移送要素が、冷海洋水を第1の位置で受け入れ冷海洋水を第2の位置で貯蔵するようになされた内部貯蔵タンクを備え、航行プロファイルが、主船体を熱水噴出孔のホットプルーム内に配置する、付記項6に記載の水中環境発電ドローン。
付記項8.内部貯蔵タンクが入口スクープおよびベントを含み、上記入口スクープおよびベントが、内部貯蔵タンクの第1の位置用の開放位置と内部貯蔵タンクを第2の位置に配置する閉鎖位置とを有する、付記項7に記載の水中環境発電ドローン。
付記項9.主船体のポゴ位置を選択的に誘導するようになされたバラストタンクをさらに備える、付記項7に記載の水中環境発電ドローン。
付記項10.熱の内部貯蔵タンクは、航行プロファイルが主船体をホットプルーム中に配置するときに熱水噴出孔のホットプルームから熱水を第1の位置で受け入れ、航行プロファイルが主船体を冷海洋水中に配置するときに熱水を第2の位置で貯蔵し、それによって熱電モジュールが動作するための逆温度勾配を誘起して発電し、それによって電力貯蔵装置を充電するようにさらになされ、変圧器回路が、逆温度勾配に基づいて熱電モジュールによって生成される逆電流を検出し、電力貯蔵装置を充電するための整流を行うようになされる、付記項7に記載の水中環境発電ドローン。
付記項11.熱移送要素が、主船体の上面に取り付けられかつ上面から延伸する熱放散器を備え、航行プロファイルが、海洋水から熱放散器を露出させる主船体の選択的浮上を引き起こす、付記項6に記載の水中環境発電ドローン。
付記項12.主船体が上部および下部を備え、上記上部および下部は絶縁バリアによって分離され、上部が熱移送要素を備え、航行プロファイルが、海洋水から上部を露出させる主船体の選択的浮上を引き起こす、付記項6に記載の水中環境発電ドローン。
付記項13.無人水中ビークル(UUV)を運転する方法であって、冷海洋水を第1の位置で内部貯蔵タンク内に引き込むステップと、冷海洋水を貯蔵するために内部貯蔵タンクを第2の位置に配置するステップと、UUVを熱水噴出孔箇所までナビゲートして主船体を周囲海洋水に比べて噴出孔プルーム「ホットゾーン」内に配置するステップと、電力貯蔵装置を充電するために主船体と内部貯蔵タンクとの間の温度勾配に基づいて熱電モジュールで発電するステップと、を含む方法。
付記項14.UUVの向きをポゴ位置にするために定位バラストタンクを満たすステップをさらに含む、付記項13に記載の方法。
付記項15.開水域内にまで操縦するステップと、内部貯蔵タンクを空にするステップと、入口スクープおよびベントの動作により内部貯蔵タンクを再び満たすステップと、をさらに含む、付記項13に記載の方法。
付記項16.UUVを所望のミッションプロファイルで運転するステップをさらに含む、付記項13に記載の方法。
付記項17.電力貯蔵装置を再充電するために噴出孔プルーム内に再配置するステップまたは別の噴出孔プルームまで移動させるステップをさらに含む、付記項16に記載の方法。
付記項18.無人水中ビークル(UUV)を運転する方法であって、熱放散器を開放空気にさらすために浮上するステップと、海洋水中に浸された主船体と開放空気と対流接触する熱放散器との間の温度差を使用して電力貯蔵装置を充電するための電気エネルギー生成を行うために熱電モジュールを動作させるステップと、を含む方法。
付記項19.充電が完了するとUUVを水中に沈めるステップをさらに含む、付記項18に記載の方法。
付記項20.制御システムによって指示されたミッションプロファイルで水中に沈められて運転するステップをさらに含む、付記項18に記載の方法。
ここで、特許法で求められるように様々な実施形態を詳細に説明してきたが、当業者なら、本明細書で開示される特定の実施形態に対する変更および置換を認識するであろう。かかる変更は、下記の特許請求の範囲で定義される本発明の範囲および意図内である。
10 水中環境発電ドローン、12 主船体、12’ 主船体、13 推進機、14 制御プレーン、16 内部貯蔵タンク、16’ 内部貯蔵タンク、17 平坦側面、18 熱電モジュール、19 平坦内側面、20 第1の動作面,第1の動作インタフェース、22 第2の動作面,第2の動作インタフェース、24 電気モーター、26 制御システム、28 電力貯蔵装置、30 電圧変成器回路、32 入口スクープ、34 ベント、36 ポンプ、38 定位バラストタンク、40 制御弁、42 熱水噴出孔プルーム、110 水中環境発電ドローン、112 主船体、113 推進機、114 制御プレーン、116 熱放散器、117 上面、118 熱電モジュール、120 第1の動作面,第1の動作インタフェース、122 第2の動作面,第2の動作インタフェース、124 モーター、126 制御システム、128 電力貯蔵装置、130 電圧変成器回路、140 海洋水、142 周囲空気、210 水中環境発電ドローン、212 主船体、212a 上部,船体部分,熱放散器、212b 下部,船体部分、213 絶縁バリア、214 伝達板、218 熱電モジュール、220 第1の動作面,第1の動作インタフェース、222 第2の動作面,第2の動作インタフェース、224 モーター、226 制御システム、228 電力貯蔵装置,230 電圧変成器回路、502 ナビゲーションシステム、503 特定のミッションプロファイル、504 全地球測位システム、506 慣性航法(ガイダンス)システム、508 通信モジュール、509 遠隔制御システム、510 制御プロセッサ、512 モーターコントローラ、514 制御プレーン作動システム、902 ステップ、904 ステップ、905 ステップ、906 ステップ、907 ステップ、908 ステップ、909 ステップ、910 ステップ、911 ステップ、912 ステップ、913 ステップ、914 ステップ、915 ステップ、916 ステップ、1002 ステップ、1004 ステップ、1006 ステップ、1008 ステップ

Claims (15)

  1. 海洋水中に潜水可能に受容されるべき主船体(12、112、212)と、
    複数の熱電モジュール(18、118、218)であって、前記複数の熱電モジュールの各モジュールが前記主船体と熱接触する第1の動作インタフェース(20、120、220)を有する、複数の熱電モジュール(18、118、218)と、
    前記複数の熱電モジュール(18、118、218)上の第2の動作インタフェース(22、122、222)と接触する熱移送要素(16、116、212a)と、
    前記複数の熱電モジュールに接続される電力貯蔵装置(28、128、228)と
    を備える水中環境発電ドローン(10、110、210)であって、前記主船体と前記熱移送要素との間に温度勾配をつくるように前記主船体を配置することで前記熱電モジュールによる発電を誘起し、それによって前記電力貯蔵装置を充電する、水中環境発電ドローン。
  2. 前記電力貯蔵装置が、再充電可能電池およびコンデンサの少なくとも一方を含む、請求項1に記載の水中環境発電ドローン。
  3. 前記再充電可能電池が、リチウムイオン電池、リチウムイオンポリマー電池、ニッケルカドミウム電池、ニッケル水素電池、または鉛蓄電池のうちの1つである、請求項2に記載の水中環境発電ドローン。
  4. 前記コンデンサがナノテクノロジースーパーキャパシタを含む、請求項2に記載の水中環境発電ドローン。
  5. 前記熱電モジュールがペルチェ接合装置およびスターリングエンジンの少なくとも一方を含む、請求項1に記載の水中環境発電ドローン。
  6. 前記電力貯蔵装置から電力を受けるように接続された電気モーター(24、124、224)と、
    前記電気モーターによって駆動される推進機(13、113)と、
    前記主船体に係合された制御プレーン(14、114)と、
    航行プロファイルに従って前記電気モーターおよび前記制御プレーンに制御信号を与えるようになされた制御システム(26、126、226)と
    をさらに備える、請求項1に記載の水中環境発電ドローン。
  7. 前記熱移送要素が、冷海洋水を第1の位置で受け入れ前記冷海洋水を第2の位置で貯蔵するようになされた内部貯蔵タンク(16)を備え、前記航行プロファイルが、前記主船体を熱水噴出孔のホットプルーム内に配置する、請求項6に記載の水中環境発電ドローン。
  8. 前記内部貯蔵タンクが入口スクープ(32)およびベント(34)を含み、前記入口スクープおよび前記ベントが、前記内部貯蔵タンクの前記第1の位置のための開放位置と前記内部貯蔵タンクを前記第2の位置に配置する閉鎖位置とを有する、請求項7に記載の水中環境発電ドローン。
  9. 前記主船体のポゴ位置を選択的に誘導するようになされたバラストタンク(38)をさらに備える、請求項7に記載の水中環境発電ドローン。
  10. 前記内部貯蔵タンクは、前記航行プロファイルが前記主船体をホットプルーム中に配置するときに前記熱水噴出孔の前記ホットプルームから熱水を前記第1の位置で受け入れ、前記航行プロファイルが前記主船体を冷海洋水中に配置するときに前記熱水を前記第2の位置で貯蔵し、それによって前記熱電モジュールが動作するための逆温度勾配を誘起して発電し、それによって前記電力貯蔵装置を充電するようにさらになされ、変圧器回路(30)が、前記逆温度勾配に基づいて前記熱電モジュールによって生成される逆電流を検出し、前記電力貯蔵装置を充電するための整流を行うようになされる、請求項7に記載の水中環境発電ドローン。
  11. 前記熱移送要素が、前記主船体の上面(117)に取り付けられかつ前記上面(117)から延伸する熱放散器(116)を備え、前記航行プロファイルが、前記海洋水から前記熱放散器を露出させる前記主船体の選択的浮上を引き起こす、請求項6に記載の水中環境発電ドローン。
  12. 前記主船体が上部(212a)および下部(212b)を備え、前記上部および前記下部は絶縁バリア(213)によって分離され、前記上部が前記熱移送要素を備え、前記航行プロファイルが、前記海洋水から前記上部を露出させる前記主船体の選択的浮上を引き起こす、請求項6に記載の水中環境発電ドローン。
  13. 無人水中ビークル(UUV)を運転する方法であって、
    冷海洋水を第1の位置で内部貯蔵タンク内に引き込むステップ(904)と、
    前記冷海洋水を貯蔵するために前記内部貯蔵タンクを第2の位置に配置するステップ(906)と、
    前記UUVを熱水噴出孔箇所までナビゲートして主船体を周囲海洋水に比べて噴出孔プルーム「ホットゾーン」内に配置するステップ(908)と、
    電力貯蔵装置を充電するために前記主船体と前記内部貯蔵タンクとの間の温度勾配に基づいて熱電モジュールで発電するステップ(912)と
    を含む方法。
  14. 前記UUVの向きをポゴ位置にするために定位バラストタンクを満たすステップ(910)、および
    前記UUVを所望のミッションプロファイルで運転するステップ(916)
    の少なくとも一方をさらに含む、請求項13に記載の方法。
  15. 開水域内にまで操縦するステップ(914)と、
    前記内部貯蔵タンクを空にするステップ(904)と、
    入口およびベントの動作により前記内部貯蔵タンクを再び満たすステップ(904)と
    をさらに含む、請求項13に記載の方法。
JP2018217215A 2018-02-12 2018-11-20 水中環境発電ドローンおよび運転方法 Active JP7305336B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/894,613 US11152555B2 (en) 2018-02-12 2018-02-12 Underwater energy harvesting drone and method for operation
US15/894,613 2018-02-12

Publications (2)

Publication Number Publication Date
JP2019137386A true JP2019137386A (ja) 2019-08-22
JP7305336B2 JP7305336B2 (ja) 2023-07-10

Family

ID=64402008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217215A Active JP7305336B2 (ja) 2018-02-12 2018-11-20 水中環境発電ドローンおよび運転方法

Country Status (7)

Country Link
US (1) US11152555B2 (ja)
EP (1) EP3524507B1 (ja)
JP (1) JP7305336B2 (ja)
KR (1) KR102605462B1 (ja)
CN (1) CN110165940A (ja)
CA (1) CA3029964C (ja)
RU (1) RU2018140081A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110920818A (zh) * 2019-11-01 2020-03-27 浙江大学 基于海洋温差能驱动的剖面运动平台及其升降控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900702B2 (en) * 2018-06-08 2021-01-26 International Business Machines Corporation Automated storage warehouse
US10987987B2 (en) 2018-11-21 2021-04-27 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
CN111186543B (zh) * 2020-01-19 2021-01-01 潍坊学院 一种基于5g通讯的水下机器人系统
CN111332435B (zh) * 2020-03-09 2021-01-29 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种auv模块化载体结构
CN111319760B (zh) * 2020-03-26 2024-05-28 合肥工业大学 一种水空两用无人机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042694A (ja) * 1983-08-19 1985-03-06 川崎重工業株式会社 水中走行体の動力装置
US7262360B1 (en) * 2003-08-18 2007-08-28 United States Of America As Represented By The Secretary Of The Navy Underwater power generation using underwater thermocline
US20110179988A1 (en) * 2009-03-07 2011-07-28 Lockheed Martin Corporation Underwater Vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7012554B2 (en) 2001-12-12 2006-03-14 Hi-Z Technology, Inc. Thermoelectric vehicle tracking device
US6914343B2 (en) 2001-12-12 2005-07-05 Hi-Z Technology, Inc. Thermoelectric power from environmental temperature cycles
US7649138B2 (en) 2005-05-25 2010-01-19 Hi-Z Technology, Inc. Thermoelectric device with surface conforming heat conductor
GB0521292D0 (en) 2005-10-19 2005-11-30 Go Science Ltd Submersible vehicle
KR20120114454A (ko) 2011-04-07 2012-10-17 최광식 수상 태양열 온도차 발전 시스템
US9382902B1 (en) 2012-04-25 2016-07-05 The Boeing Company Undersea energy harvesting electrical power station
JP6583905B2 (ja) * 2014-12-11 2019-10-02 学校法人 東洋大学 熱電素子駆動装置
US20170005250A1 (en) * 2015-06-30 2017-01-05 The Boeing Company Powering aircraft sensors using thermal capacitors
CN106452190A (zh) * 2016-12-06 2017-02-22 电子科技大学 一种利用海底热液能量的海底发电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042694A (ja) * 1983-08-19 1985-03-06 川崎重工業株式会社 水中走行体の動力装置
US7262360B1 (en) * 2003-08-18 2007-08-28 United States Of America As Represented By The Secretary Of The Navy Underwater power generation using underwater thermocline
US20110179988A1 (en) * 2009-03-07 2011-07-28 Lockheed Martin Corporation Underwater Vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110920818A (zh) * 2019-11-01 2020-03-27 浙江大学 基于海洋温差能驱动的剖面运动平台及其升降控制方法
CN110920818B (zh) * 2019-11-01 2020-11-17 浙江大学 基于海洋温差能驱动的剖面运动平台及其升降控制方法

Also Published As

Publication number Publication date
EP3524507B1 (en) 2021-09-01
CA3029964A1 (en) 2019-08-12
CA3029964C (en) 2023-05-16
JP7305336B2 (ja) 2023-07-10
US20190252592A1 (en) 2019-08-15
US11152555B2 (en) 2021-10-19
EP3524507A1 (en) 2019-08-14
KR102605462B1 (ko) 2023-11-22
KR20190098044A (ko) 2019-08-21
RU2018140081A3 (ja) 2022-04-07
RU2018140081A (ru) 2020-05-14
CN110165940A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
JP7305336B2 (ja) 水中環境発電ドローンおよび運転方法
US10589829B2 (en) Gliding robotic fish navigation and propulsion
Webb et al. SLOCUM: An underwater glider propelled by environmental energy
US20120312221A1 (en) Submersible vehicles and methods for propelling and/or powering the same in an underwater environment
US11312463B2 (en) Systems and methods for retractable marine power generation
Jung et al. A study on unmanned surface vehicle combined with remotely operated vehicle system
CN110641637B (zh) 一种基于温差能发电的航迹可控的海洋观测平台
Pyle et al. Leveraging a large UUV platform with a docking station to enable forward basing and persistence for light weight AUVs
Hildebrandt et al. Design of an autonomous under-ice exploration system
EP4375896A2 (en) Autonomous seagoing power replenishment watercraft
CN114604400A (zh) 具有沉底探测功能的水下滑翔机
Sollesnes et al. Towards autonomous ocean observing systems using Miniature Underwater Gliders with UAV deployment and recovery capabilities
Tian et al. Research progress and prospects of gliding robots applied in ocean observation
Raugel et al. Operational and scientific capabilities of Ariane, Ifremer’s hybrid ROV
CN112498144A (zh) 太阳能驱动锚系式自主航行器多功能对接站及对接方法
Barker An analysis of undersea glider architectures and an assessment of undersea glider integration into undersea applications
CN106933242B (zh) 一种自平衡装置、柴电混合动力无人艇及其控制系统
Choi et al. Design and control of a convertible ROV
Bykanova et al. The compact remotely operated underwater vehicle with the variable restoring moment
Alvarez et al. Folaga: a very low cost autonomous underwater vehicle for coastal oceanography
Ksenzenko et al. DESIGN THE CONTACTLESS CHARGER AND CONTACTLESS DATA TRANSFER BETWEEN UNDERWATER ROBOT-SATELLITS AND UNDERWATER 6-LEGGED VEHICLE.
Brege Design and construction of a low cost, modular Autonomous Underwater Vehicle
US20170313396A1 (en) Submersible having variable lift depending on the navigation mode
Schillai Pipefish AUV: The flight style AUV delivering small, purpose built, hover capable AUVs
JP2024066406A (ja) ドローン搭載用カプセルおよびこれを用いた潜水艦の監視偵察システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230628

R150 Certificate of patent or registration of utility model

Ref document number: 7305336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150