JP2019133360A - 保守支援装置 - Google Patents

保守支援装置 Download PDF

Info

Publication number
JP2019133360A
JP2019133360A JP2018014192A JP2018014192A JP2019133360A JP 2019133360 A JP2019133360 A JP 2019133360A JP 2018014192 A JP2018014192 A JP 2018014192A JP 2018014192 A JP2018014192 A JP 2018014192A JP 2019133360 A JP2019133360 A JP 2019133360A
Authority
JP
Japan
Prior art keywords
unit
abnormality
simulation
sensor
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018014192A
Other languages
English (en)
Inventor
愛須 英之
Hideyuki Aisu
英之 愛須
飯野 穣
Minoru Iino
穣 飯野
慎悟 田丸
Shingo Tamaru
慎悟 田丸
拓郎 森山
Takuro Moriyama
拓郎 森山
幹人 岩政
Mikito Iwamasa
幹人 岩政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018014192A priority Critical patent/JP2019133360A/ja
Publication of JP2019133360A publication Critical patent/JP2019133360A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】機器の異常による損失を適切に評価可能な保守支援装置を提供することである。【解決手段】機器から出力されるデータを収集する収集部と、収集部により収集されたデータから、当該データを出力した機器の異常の度合いを示す異常度を出力する異常診断部と、異常診断部によって出力された異常度から、異常な事象の発生に関する確率情報を生成する確率情報生成部と、確率情報生成部によって生成された確率情報から、異常な事象の発生パタンを生成するシナリオ生成部と、シナリオ生成部によって生成された前記発生パタンに基づき、機器の異常をシミュレーションするシミュレーション部と、シミュレーション部によるシミュレーション結果に基づき、機器の異常による損失を評価する評価部と、を備えた。【選択図】図1

Description

本発明の実施形態は、保守支援装置に関する。
ビルやプラントの設備を対象とした異常診断を行うシステムがある。こうしたシステムにおけるセンサ等の機器の異常を自動的に推定する方法がいくつか提案されている。これらの方法の1つとして、統計的なモデルやニューラルネットワークなどを用いた汎用的な機械学習モデルを用いる方法がある。この方法では、正常な状態を学習し、モデルからズレの程度でセンサや機器が異常か否かを判定する。
上記方法は、正常状態からはずれている兆候を検出することに対して有効である。しかし、上記方法では、異常の発生パタンの限定や原因の特定が難しい。そのため、この方法では、シミュレーション評価で異常の発生パタン毎の損失度を評価した上で適正に点検すべき機器やセンサを選定することが困難であった。
特開2016−177682号公報 特許第6240050号公報 WO2017/134908
本発明が解決しようとする課題は、機器の異常による損失を適切に評価可能な保守支援装置を提供することである。
実施形態の保守支援装置は、収集部と、異常診断部と、確率情報生成部と、シナリオ生成部と、シミュレーション部と、評価部とを持つ。収集部は、機器から出力されるデータを収集する。異常診断部は、前記収集部により収集されたデータから、当該データを出力した機器の異常の度合いを示す異常度を出力する。確率情報生成部は、前記異常診断部によって出力された前記異常度から、異常な事象の発生に関する確率情報を生成する。シナリオ生成部は、前記確率情報生成部によって生成された前記確率情報から、異常な事象の発生パタンを生成する。シミュレーション部は、前記シナリオ生成部によって生成された前記発生パタンに基づき、前記機器の異常をシミュレーションする。評価部は、前記シミュレーション部によるシミュレーション結果に基づき、前記機器の異常による損失を評価する。
実施形態の保守支援装置100の全体構成例を示す図。 センサの設置例を示す図。 パラメータ記憶部110が記憶しているデータの一例を示す図。 損失分布評価部120による損失度の表示例を示す図。 損失分布評価部120による損失度の表示例を示す図。 保守支援装置100の処理の流れを示すフローチャート。 モデルキャリブレーション計算を行う場合の保守支援装置100の全体構成例を示す図。
実施形態の保守支援装置では、機器の異常による損失を適切に評価可能となる。以下、実施形態の保守支援装置を、図面を参照して説明する。
図1は、実施形態の保守支援装置100の全体構成例を示す図である。実施形態の保守支援装置100は、機器の一例として空調設備で利用されるセンサを用いている。従って、保守支援装置100は、空調設備におけるセンサの異常による損失を評価する。
保守支援装置100は、センサ計測部102、センサ群104、異常診断部106、確率分布生成部108、パラメータ記憶部110、及びシナリオ生成部112を備える。保守支援装置100は、シミュレーション部114、モデル定義記憶部116、運用条件記憶部118、損失分布評価部120、及び計画策定部122を備える。
このうち、センサ計測部102は、機器から出力されるデータを収集する収集部の一例である。異常診断部106は、収集部により収集されたデータから、当該データを出力した機器の異常の度合いを示す異常度を出力する異常診断部の一例である。確率分布生成部108は、異常診断部によって出力された前記異常度から、異常な事象の発生に関する確率情報を生成する確率情報生成部の一例である。シナリオ生成部112は、確率情報生成部によって生成された前記確率情報から、異常な事象の発生パタンを生成するシナリオ生成部の一例である。シミュレーション部114は、シナリオ生成部によって生成された前記発生パタンに基づき、前記機器の異常をシミュレーションするシミュレーション部の一例である。損失分布評価部120は、シミュレーション部によるシミュレーション結果に基づき、前記機器の異常による損失を評価する評価部の一例である。
センサ群104は、センサ群1〜センサ群Nの複数のセンサ群で構成される。本実施形態において、センサ群1〜センサ群Nの各々のセンサ群は、1つのセンサではなく、複数のセンサで構成されるユニットである。また、センサ群1〜センサ群Nは、それぞれ同種類の複数センサから構成されるセンサユニットである。
センサ群を構成する主なセンサとして、温度センサ、湿度センサ、流量センサ、及び差圧センサ等が挙げられる。こうした各種センサは、空調設備における、冷水温度、給気温度、室内温度、室内湿度、さらにはCO2濃度、外気温度、外気湿度、冷水還温度、冷水流量、ポンプ回転数、ファン回転数等を検知する。
これらセンサ群を構成する各センサの設置例について説明する。図2は、外気を屋内に給気する機器である外調機周辺の設置例を示している。また、センサとして、温度センサ、湿度センサ、流量センサ、及び差圧センサが示されている。図2において、温度センサは「T」で示されている。湿度センサは「H」で示されている。流量センサは「F」で示されている。差圧センサは「P」で示されている。
図2において、外気に対するセンサとして、温度センサ及び湿度センサが設けられている。また、冷水、温水、冷却水に対するセンサとして、温度センサ及び流量センサが設けられている。さらに、外調機からの給気に対するセンサとして、温度センサが設けられている。これらの他にも屋内等に各種センサが設けられている。このように、一つの外調機を制御するために複数の異なる種類のセンサが設置されており、さらに通常のビルでは複数の同種の機器(本例では外調機)を備えているため、同じ種類のセンサから構成されるセンサ群が複数存在するのが普通である。センサの異常が発生した場合には、機器の制御系全体の振る舞いに影響を及ぼし比較的大きな損失が発生することが考えられる。センサの異常を早期に発見し損失を適切に評価可能であれば、損失を抑制することが可能となるが、このように多くのセンサが設けられている状態でセンサの異常が発生した場合には他のセンサの計測値にも影響を与えるため異常の早期発見も損失評価も難しい。
図1において、センサ群1〜センサ群Nが出力したデータは、センサ計測部102に出力される。センサ計測部102は、センサ群1〜センサ群Nが出力したデータを収集し、センサごとに一意に割り当てられた種別IDと紐付けて異常診断部106に出力する。
異常診断部106は、センサ計測部102から出力されたデータから、異常度を確率分布生成部108に出力する。異常診断部106が診断する対象は、例えば消費電力や空調設備周りのセンサの定常的なズレ発生(ドリフト異常)、フィルタ目詰まりなどによる空調設備の性能変動等である。本実施形態では、センサのドリフト異常を例に説明する。また、本実施形態では、ドリフト量は正規分布に従って分布するものとする。
異常診断部106は、予めセンサ群1〜センサ群Nが正常時に出力したデータから正常状態の挙動モデルを学習する。異常診断部106は、正常状態の学習結果に基づき、センサ群1〜センサ群Nが出力したデータの変動を検知して、センサ群1〜センサ群Nごとに性能劣化や異常を診断する。異常診断部106は、診断結果として、異常度を出力する。この異常度は、異常の程度に応じて0以上の値をとる。異常度は、その値が大きいほど、センサ群の異常の程度が大きいことを示す。
本実施形態における異常診断部106は、正常時のデータを用いてブラックボックスモデルによる同定を行い、そこからの変動の度合いを異常度として出力する。なお、設備に対する異常診断方法としては、ニューラルネットワークやワンクラスSVMなど様々な公知手法が提案されている。本実施形態の異常診断部106は、異常度を出力できればよいため、上記公知手法など他の方法を用いて異常度を出力するようにしてもよい。
確率分布生成部108は、異常診断部106から出力された異常度から、パラメータ記憶部110を参照して、確率情報として確率密度関数を生成する。生成された確率密度関数は、シナリオ生成部112に出力される。上述したように、正規分布に従ってドリフト量が分布することから、本実施形態では正規分布の確率密度関数が生成される。パラメータ記憶部110は、正規分布の確率密度関数を生成するためのパラメータとして、平均値と分散をセンサごとに記憶している。
図3は、パラメータ記憶部110が記憶しているデータの一例を示す図である。「種別ID」は、上述した各センサ群を構成するそれぞれのセンサの種類と設置位置を示す識別子である。例えば、図2の外調機の例であれば、5つの温度センサ、3つの流量センサ、湿度センサからなる計9つの種別IDが存在する。「異常度」は、異常診断部106が出力した異常度である。「平均値」は、センサのドリフト平均値である。「分散」は、センサのドリフト分散である。図3に示されるように、異常度が大きい場合には、ドリフト量の絶対値と分散とが大きくなるように設定されている。センサの種類や設置場所に応じて異常度と確率分布の変動の間の関係が異なるため、種別ID毎に個別に定義を行う。また、同じ種類のセンサから構成されるセンサ群が複数存在する場合は、各センサ群に対して同じパラメータデータを使用する場合も、センサ群毎に異なるパラメータデータを使用する場合も、いずれの場合もあり得る。
確率分布生成部108は、異常診断部106から出力された異常度とセンサの種別IDに対応する平均値と分散とをパラメータ記憶部110から取得する。確率分布生成部108は、確率密度関数における平均値と分散に、取得した平均値と分散とをセットすることで確率密度関数を生成する。例えば、異常診断部106から異常度として0.3、種別IDとして1が出力された場合、確率分布生成部108は、平均値を0とし、分散を0.5とした確率密度関数を生成する。
確率分布生成部108は、上述したように、異常診断部106から出力された異常度に応じて確率密度関数を生成する。また、異常診断部106は、現在取得されたセンサのデータから異常度を出力する。従って、確率分布生成部108が生成する確率密度関数は、現在のセンサの状態が反映されたものである。よって、保守支援装置100は、より正確に機器の異常による損失を評価可能となる。
シナリオ生成部112は、確率分布生成部108から出力された確率密度関数に基づき、ドリフト異常の発生パタンを複数回生成する。ここで、ドリフト異常の発生パタンとは、前記確率分布生成部108の生成した確率密度関数に従い決定した、各センサの具体的なドリフト値に対応する。シナリオ生成部112は、生成したドリフト異常の発生パタンをシミュレーション部114に出力する。
シミュレーション部114は、モンテカルロシミュレーションを行う。また、モデル定義記憶部116は、空調設備の物理モデル定義情報を記憶する。物理モデル定義情報には、例えば設備の性能係数などが含まれる。運用条件記憶部118は、変動しないシミュレーション条件を記憶する。シミュレーション条件は、例えば、設備を午前8時から午後6時まで気温28度で運用するなど、運用に関する条件である。
シミュレーション部114は、シナリオ生成部112から出力されたドリフト異常の発生パタンを取得する。次いで、シミュレーション部114は、物理モデル定義情報及びシミュレーション条件を取得する。シミュレーション部114は、ドリフト異常の発生パタン、物理モデル定義情報、及びシミュレーション条件に基づき、モンテカルロシミュレーションを行う。シミュレーション部114は、モンテカルロシミュレーションの結果を集計して損失分布評価部120に出力する。
損失分布評価部120は、シミュレーション部114から出力された結果から、エネルギーロス、経済損失、快適性指標(PMV)の低下などの損失度を定量的に算出する。損失分布評価部120は、算出した損失度を計画策定部122に出力する。計画策定部122は、計画策定部122から出力された損失度をディスプレイ等の表示部に表示する。また、計画策定部122は、利用者が保守点検計画案を設定または変更することが可能である。計画策定部122は、利用者が変更したドリフト異常の発生パタンを用いて、シミュレーション部114によって再度モンテカルロシミュレーションを行うことが可能である。この場合、損失分布評価部120は、再び損失度を算出し、算出された損失度は計画策定部122によって表示される。これにより、センサ群1〜センサ群Nのうち、優先的に点検対象となるセンサ群が選定され、また各センサ群の点検や保全時期が決定されることで、保守点検計画が策定される。
図4、図5は、損失分布評価部120による損失度の表示例を示す図である。図4、図5のいずれも2つのセンサ群A、Bについてモンテカルロシミュレーションを行った結果を示している。図4、図5のいずれも、縦軸は損失度としてエネルギー損失(円)を示し、横軸は不快度を示している。不快度には、PVMの絶対値が用いられている。
図4は、センサ群Aをセンサ群Bより先に点検した場合(以下、「シナリオ1」ともいう)のモンテカルロシミュレーションを10回行った結果を示している。図5は、センサ群Bをセンサ群Aより先に点検した場合(以下、「シナリオ2」ともいう)のモンテカルロシミュレーションを10回行った結果を示している。なお、シナリオ1、シナリオ2の場合のいずれも、点検した際にドリフト異常があった場合には、そのドリフト異常は補正される。すなわち、図4には先に点検されたセンサのドリフト異常が補正された状態でのモンテカルロシミュレーションを行った結果が示されている。
シナリオ1、シナリオ2のモンテカルロシミュレーションを行った結果を比較すると、エネルギー費用損失の平均、及び最悪の損失のいずれもシナリオ2の方がシナリオ1より良好である。また、不快度の平均、及び最悪の不快度のいずれもシナリオ2の方がシナリオ1より良好である。従って、計画策定部122は、シナリオ2を点検計画案の候補として最も損失が少ないものとして選択する。計画策定部122は、点検計画案の候補を自動的に生成し、予め定められた評価基準のもとで行ったモンテカルロシミュレーションの結果に基づき多目的最適化するようにしてもよい。
上述した保守支援装置100の処理の流れをフローチャートを用いて説明する。図6は、保守支援装置100の処理の流れを示すフローチャートである。まず、センサ計測部102は、センサ群1〜センサ群Nが出力したデータを収集し、センサごとに一意に割り当てられた種別IDと紐付けて異常診断部106に出力する(ステップS101)。異常診断部106は、センサ計測部102から出力されたデータから、異常度を確率分布生成部108に出力する(ステップS102)。確率分布生成部108は、異常診断部106から出力された異常度から、パラメータ記憶部110を参照して、確率密度関数を生成する(ステップS103)。
シナリオ生成部112は、確率分布生成部108から出力された確率密度関数に基づき、ドリフト異常の発生パタンを複数回生成する(ステップS104)。シミュレーション部114は、モンテカルロシミュレーションを行う(ステップS105)。損失分布評価部120は、シミュレーション部114から出力された結果から、エネルギーロス、経済損失、快適性指標の低下などの損失度を定量的に算出する(ステップS106)。
計画策定部122は、計画策定部122から出力された損失度をディスプレイ等の表示部に表示する。また上述したように、計画策定部122は、利用者が変更したドリフト異常の発生パタンを用いて、シミュレーション部114によって再度モンテカルロシミュレーションを行うことで、計画を策定する(ステップS107)。
以上説明した実施形態において、モデルキャリブレーション計算を行うようにしてもよい。モデルキャリブレーション計算を行う場合の保守支援装置100の構成を図7に示す。キャリブレーション計算部124は、センサ1〜センサNが出力し、センサ計測部102が収集したデータが入力される。キャリブレーション計算部124は、後述する内部パラメータの確率分布を逐次推定する。キャリブレーション計算部124は、推定した内部パラメータの確率分布をシミュレーション部114に出力する。
図6のフローチャートを用いて説明すると、キャリブレーション計算部124は、ステップS104の前に、センサが出力したデータから、シミュレーション部114の内部パラメータの確率分布を推定する。シミュレーション部114は、推定された確率分布に従い各内部パラメータを変動させる。これと同時に、シミュレーション部114は、異常パタンの発生確率分布に従い異常の発生パタンを生成させ、モンテカルロシミュレーションを行う。
上記内部パラメータとは、保守支援装置100において数値演算を行う際に数値モデルの一部として使用する値(固定された係数)であり、診断対象の設備や機器から直接計測することができない値である。例えば、ビルの空調設備などをシミュレーション対象とする場合は、壁の断熱性能、空調機器の投入したエネルギーに対する冷暖房効率(COP)、 各部屋における人の想定発熱量などが推定対象パラメータの一つになり得る。確率分布生成部108は、パーティクルフィルタやマルコフ連鎖モンテカルロ法などの公知の方法を利用することにより、これらのパラメータのもっとも尤度の高い確率分布を推定する。シナリオ生成部112は、確率分布生成部108により推定された確率密度関数に基づき、ドリフト異常の発生パタンを複数回生成する。シミュレーション部114は、シナリオ生成部112から出力されたドリフト異常の発生パタン、及び、前記キャリブレーション計算部124の推定した内部パラメータの確率分布を用いてモンテカルロシミュレーションを行う。
以上説明した実施形態では、正規分布に従ってドリフト量が分布するため、確率情報として正規分布の確率密度関数が生成されたが、正規分布に限るものではない。確率情報として、機器から出力されるデータの確率分布に応じた確率密度関数を生成してもよい。また、各センサが他のセンサの影響を受けて異常が発生するなど、異常の発生について何らかの相関関係にある場合には、共分散行列を定義するようにしてもよい。ここで定義されるパラメータは、機器から出力されたデータが所定量蓄積するごとに更新されるようにしてもよい。
以上述べた実施形態の保守支援装置によれば、機器の異常による損失を適切に評価可能となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
100…保守支援装置、102…センサ計測部、104…センサ、106…異常診断部、108…確率分布生成部、110…パラメータ記憶部、112…シナリオ生成部、114…シミュレーション部、116…モデル定義記憶部、118…運用条件記憶部、120…損失分布評価部、122…計画策定部

Claims (4)

  1. 機器から出力されるデータを収集する収集部と、
    前記収集部により収集されたデータから、当該データを出力した機器の異常の度合いを示す異常度を出力する異常診断部と、
    前記異常診断部によって出力された前記異常度から、異常な事象の発生に関する確率情報を生成する確率情報生成部と、
    前記確率情報生成部によって生成された前記確率情報から、異常な事象の発生パタンを生成するシナリオ生成部と、
    前記シナリオ生成部によって生成された前記発生パタンに基づき、前記機器の異常をシミュレーションするシミュレーション部と、
    前記シミュレーション部によるシミュレーション結果に基づき、前記機器の異常による損失を評価する評価部と、
    を備えた保守支援装置。
  2. 前記収集部により収集されたデータから、前記シミュレーション部がシミュレーションする際に用いる所定の係数の確率分布を推定する推定部を備え、
    前記シミュレーション部は、前記推定部によって推定された確率分布に従って変動させた前記所定の係数と、前記発生パタンに基づき、前記機器の異常をシミュレーションする請求項1に記載の保守支援装置。
  3. 前記シナリオ生成部は、前記発生パタンを複数生成し、
    前記シミュレーション部は、複数生成された前記発生パタンごとに前記機器の異常をシミュレーションし、
    前記評価部は、前記シミュレーション部によるシミュレーション結果に基づき、複数生成された前記発生パタンごとに損失を評価し、
    前記評価部によって評価された損失のうち、最も損失が少ないものを選択する選択部を備えた請求項1または請求項2に記載の保守支援装置。
  4. 前記機器はセンサである請求項1から請求項3のいずれか1項に記載の保守支援装置。
JP2018014192A 2018-01-30 2018-01-30 保守支援装置 Pending JP2019133360A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018014192A JP2019133360A (ja) 2018-01-30 2018-01-30 保守支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014192A JP2019133360A (ja) 2018-01-30 2018-01-30 保守支援装置

Publications (1)

Publication Number Publication Date
JP2019133360A true JP2019133360A (ja) 2019-08-08

Family

ID=67546279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014192A Pending JP2019133360A (ja) 2018-01-30 2018-01-30 保守支援装置

Country Status (1)

Country Link
JP (1) JP2019133360A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476384B1 (ja) 2023-03-13 2024-04-30 株式会社東芝 設備挙動シミュレーションモデル構築システム及び設備挙動シミュレーションモデル構築方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270004A (ja) * 2002-03-15 2003-09-25 Mitsubishi Heavy Ind Ltd 検出器ドリフトの推定装置、それの推定方法、及び、検出器の監視システム
JP2005182465A (ja) * 2003-12-19 2005-07-07 Toshiba Corp 保守支援方法及びプログラム
JP2012141980A (ja) * 2011-01-04 2012-07-26 General Electric Co <Ge> 生産プロセスにおける予測される障害を訂正するのに使用するためのシステムおよび方法
WO2017134908A1 (ja) * 2016-02-05 2017-08-10 株式会社 東芝 センサ故障診断装置、方法、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270004A (ja) * 2002-03-15 2003-09-25 Mitsubishi Heavy Ind Ltd 検出器ドリフトの推定装置、それの推定方法、及び、検出器の監視システム
JP2005182465A (ja) * 2003-12-19 2005-07-07 Toshiba Corp 保守支援方法及びプログラム
JP2012141980A (ja) * 2011-01-04 2012-07-26 General Electric Co <Ge> 生産プロセスにおける予測される障害を訂正するのに使用するためのシステムおよび方法
WO2017134908A1 (ja) * 2016-02-05 2017-08-10 株式会社 東芝 センサ故障診断装置、方法、及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476384B1 (ja) 2023-03-13 2024-04-30 株式会社東芝 設備挙動シミュレーションモデル構築システム及び設備挙動シミュレーションモデル構築方法

Similar Documents

Publication Publication Date Title
JP7069269B2 (ja) デジタル・ツイン・シミュレーション・データを利用した時系列データに基づく、大規模な産業用監視システム向けの半教師あり深層異常検出のための方法およびシステム
CN107111286B (zh) 用于诊断和控制的自动化功能测试
CN103403463B (zh) 故障检测和诊断算法
US9740545B2 (en) Equipment evaluation device, equipment evaluation method and non-transitory computer readable medium
AU2011265563B2 (en) System and method for detecting and/or diagnosing faults in multi-variable systems
US7031880B1 (en) Method and apparatus for assessing performance of an environmental control system
US10895857B2 (en) Matching a building automation algorithm to a building automation system
US20150235141A1 (en) Automatic fault detection and diagnosis in complex physical systems
West et al. Automated fault detection and diagnosis of HVAC subsystems using statistical machine learning
EP3229083A1 (en) Fault propagation in a building automation system
Zhao et al. A proactive fault detection and diagnosis method for variable-air-volume terminals in building air conditioning systems
JP6862130B2 (ja) 異常検知装置、異常検知方法、およびプログラム
WO2018112352A1 (en) Techniques of automated fault detection and related systems and methods
JP2018190245A (ja) 設備機器の異常診断システム
Liu et al. A novel fault diagnosis and self-calibration method for air-handling units using Bayesian Inference and virtual sensing
Koo et al. In-situ sensor virtualization and calibration in building systems
JP2021076309A (ja) 推定方法、推定装置、プログラム及び学習済みモデルの生成方法
JP2005301582A (ja) プロセス管理装置
JP2019133360A (ja) 保守支援装置
US20200309400A1 (en) Hvac monitoring method and apparatus
JP2016177676A (ja) 診断装置、診断方法、診断システムおよび診断プログラム
KR102017703B1 (ko) Bems 데이터를 이용한 에너지 효율 분석 시스템
CN113934191A (zh) 一种冷水机组故障诊断系统
Mattera et al. Fault detection and diagnostics in ventilation units using linear regression virtual sensors
JP2018055299A (ja) プラントシミュレーション装置およびプラントシミュレーション方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220913