JP2019132094A - Design method and construction method for honeycomb structural body mattress method - Google Patents

Design method and construction method for honeycomb structural body mattress method Download PDF

Info

Publication number
JP2019132094A
JP2019132094A JP2018017070A JP2018017070A JP2019132094A JP 2019132094 A JP2019132094 A JP 2019132094A JP 2018017070 A JP2018017070 A JP 2018017070A JP 2018017070 A JP2018017070 A JP 2018017070A JP 2019132094 A JP2019132094 A JP 2019132094A
Authority
JP
Japan
Prior art keywords
honeycomb structure
honeycomb
cell
force
mattress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018017070A
Other languages
Japanese (ja)
Other versions
JP6353176B1 (en
Inventor
鈴木 規之
Noriyuki Suzuki
規之 鈴木
武志 大山
Takeshi Oyama
武志 大山
道幸 原田
Michiyuki Harada
道幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Printing Ink Mfg Co Ltd
Original Assignee
Tokyo Printing Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Printing Ink Mfg Co Ltd filed Critical Tokyo Printing Ink Mfg Co Ltd
Priority to JP2018017070A priority Critical patent/JP6353176B1/en
Application granted granted Critical
Publication of JP6353176B1 publication Critical patent/JP6353176B1/en
Publication of JP2019132094A publication Critical patent/JP2019132094A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

To provide a design method and a construction method expecting a restraint effect for the cell structure of a honeycomb structural body in a honeycomb structural body mattress method.SOLUTION: The design method for honeycomb structural body mattress method includes arranging strip materials made of a plurality of long pieces of resin or fiber sheets on a structure foundation in a width direction, partially joining the strip materials to each other at predetermined intervals in a zigzag manner repeatedly, and extending this in a direction perpendicular to the width direction, thereby installing a honeycomb structural body made by filling a honeycomb-like three-dimensional reinforcement forming honeycomb-like cells with a filling material. The design method for honeycomb structural body mattress method is characterized to compare ground reaction force P and allowance bearing capacity qa obtained by dividing ultimate bearing capacity qu of a foundation ground by a safety factor Fs and to make up the shortage of the allowance support capacity qa with respect to the ground reaction force P using the increment of bearing capacity σR/Fs by means of a honeycomb structural body mattress method installed on the structure foundation.SELECTED DRAWING: Figure 6

Description

本発明は、複数の長片状の樹脂又は繊維シートからなるストリップ材を幅方向に並設し互いに所定の間隔で千鳥状に繰り返し部分的に接合し、これを前記幅方向と直交する方向に展張することによってハニカム状のセルを形成するハニカム状立体補強材に関し、特に当該ハニカム状立体補強材を展帳して中詰材を充填してなるハニカム構造体を構造物の下に設置するハニカム構造体マットレス工法の設計方法及び施工方法に関する。   In the present invention, strip materials made of a plurality of long pieces of resin or fiber sheets are juxtaposed in the width direction, and are partially joined in a staggered manner at predetermined intervals, and these are joined in a direction perpendicular to the width direction. More specifically, a honeycomb structure in which a honeycomb structure formed by spreading the honeycomb-shaped three-dimensional reinforcing material and filling a filling material is installed under the structure. The present invention relates to a design method and a construction method of a structure mattress construction method.

従来、軟弱地盤上に構造物を構築する際に構造物の基礎部分を砕石等で置き換えて支持力を強化する方法は広く用いられている方法である。また、置き換え厚を小さくするためにジオグリッド等の補強材を利用することも広く行われており、特許文献1ではガソリンスタンドの基礎地盤に砕石をジオグリッドでくるんだマットレス工法が開示されている。   Conventionally, when a structure is constructed on soft ground, a method of replacing the base portion of the structure with crushed stone or the like to strengthen the supporting force is a widely used method. Further, in order to reduce the replacement thickness, it is also widely used a reinforcing material such as a geogrid. Patent Document 1 discloses a mattress method in which crushed stone is wrapped in a geogrid on the foundation ground of a gas station. .

一方、複数の長片状の樹脂又は繊維シートからなるストリップ材を幅方向に並設し互いに所定の間隔で千鳥状に繰り返し部分的に接合し、これを前記幅方向と直交する方向に展張することによってハニカム状のセルを形成するハニカム状立体補強材は知られており、このハニカム状立体補強材は土砂・砕石等を充填して(以下、ハニカム状立体補強材に土砂・砕石等を充填した構造体を「ハニカム構造体」と記す)地盤の補強材、道路の路盤材、歩道の基礎材、仮設道路、擁壁の資材に利用されてきた。   On the other hand, strip materials made of a plurality of long pieces of resin or fiber sheet are juxtaposed in the width direction, and are partially joined in a staggered manner at a predetermined interval, and this is stretched in a direction perpendicular to the width direction. There is known a honeycomb-shaped three-dimensional reinforcing material that forms honeycomb-shaped cells, and this honeycomb-shaped three-dimensional reinforcing material is filled with earth, sand, crushed stone, etc. (hereinafter, honeycomb-shaped three-dimensional reinforcing material is filled with earth, sand, crushed stone, etc. This structure is referred to as a “honeycomb structure”) and has been used for ground reinforcement, road base material, sidewalk foundation materials, temporary roads, and retaining wall materials.

このハニカム構造体を前記マットレス工法に採用することも行われており、特許文献2ではジオグリッドとハニカム構造体と組み合わせた工法を提示している。   This honeycomb structure is also employed in the mattress method, and Patent Document 2 proposes a method combining a geogrid and a honeycomb structure.

しかし、これらの方法は、マットレス範囲全体に砕石を付しこれをジオグリッドで包む構成で構造計算を行っており、ハニカム構造体のセル構造による拘束効果まで加味した構造計算は行われていない。   However, in these methods, structural calculation is performed in a configuration in which crushed stone is attached to the entire mattress range and this is wrapped with a geogrid, and structural calculation that takes into account the restraining effect due to the cell structure of the honeycomb structure is not performed.

特開平8−209670号公報JP-A-8-209670 特開2010−255247号公報JP 2010-255247 A

本発明の目的は、ハニカム構造体マットレス工法において、ハニカム構造体のセル構造の拘束効果を見込んだ設計方法及び施工方法を提供することである。   An object of the present invention is to provide a design method and a construction method that allow for the effect of restraining the cell structure of the honeycomb structure in the honeycomb structure mattress method.

本発明者は、ハニカム構造体マットレス工法において、セル構造による支持力増加効果を見いだし、当該支持力増加効果をマットレス工法の設計方法に盛り込むことにより、従来のマットレス工法よりも置き換え厚が小さくても十分構造物に対する支持力を得ることができることを見いだした。   The present inventor has found a supporting force increase effect due to the cell structure in the honeycomb structure mattress method, and incorporates the supporting force increase effect in the design method of the mattress method, so that even if the replacement thickness is smaller than the conventional mattress method. It has been found that sufficient support for the structure can be obtained.

請求項1記載の発明は、
構造物基礎に、複数の長片状の樹脂又は繊維シートからなるストリップ材を幅方向に並設し互いに所定の間隔で千鳥状に繰り返し部分的に接合し、これを前記幅方向と直交する方向に展張することによってハニカム状のセルを形成するハニカム状立体補強材に中詰材を充填してなるハニカム構造体を設置するハニカム構造体マットレス工法の設計方法であって、
地盤反力Pと、基礎地盤の極限支持力quを安全率Fsで除算した許容支持力qaを比較し、
地盤反力Pに対する許容支持力qaの不足分を構造物基礎に設置するハニカム構造体マットレス工法による支持力増加分σR/Fsで補うことを特徴とするハニカム構造体マットレス工法の設計方法
である。
The invention described in claim 1
A strip material made of a plurality of long pieces of resin or fiber sheets is juxtaposed in the width direction on the foundation of the structure, and partially joined in a staggered manner at predetermined intervals, and this is orthogonal to the width direction. A honeycomb structure mattress construction method in which a honeycomb structure is formed by filling a honeycomb-shaped three-dimensional reinforcing material with a filling material to form a honeycomb-shaped cell by spreading on a honeycomb structure,
Compare the ground reaction force P with the allowable bearing force qa obtained by dividing the ultimate bearing force qu of the foundation ground by the safety factor Fs.
This is a design method for a honeycomb structure mattress method characterized in that a deficiency in the allowable support force qa with respect to the ground reaction force P is compensated by an increase in support force σR / Fs by the honeycomb structure mattress method installed on the structure foundation.

すなわち本発明のハニカム構造体マットレス工法の設計方法は、地盤反力Pに対して地盤の許容支持力qaが小さい場合に、構造物と地盤の間にハニカム構造体マットレスを設置し、不足している許容支持力qaをハニカム構造体マットレスによる支持力増加分σR/Fsで補うことを発明の趣旨とする。   That is, the design method of the honeycomb structure mattress construction method of the present invention is not sufficient when the ground support force qa is small with respect to the ground reaction force P and the honeycomb structure mattress is installed between the structure and the ground. The gist of the invention is to supplement the allowable supporting force qa with the increase in supporting force σR / Fs by the honeycomb structure mattress.

請求項2記載の発明は、
前記ハニカム構造体マットレスによる支持力増加分σRを算出する工程が以下の1)から4)の工程である請求項1記載のハニカム構造体マットレス工法の設計方法。
1)主働土圧係数Kaの算定
Ka= tan(45°−φ/2)
ただし、φはハニカム構造体に充填される中詰材の内部摩擦角
2)セル内の水平応力σmの算定
σm=Ka・σv
ただし、σvはセルに発生する鉛直応力、すなわち前記地盤反力P
3)セルのせん断抵抗力τの算定方法
τ=σm・tanδ
ただし、δはセルとセルの中詰材との壁面摩擦角
4)支持力増加分σRの算定方法
σR = 2・τ・(H/D)・[1+π/(4−π)] ≒ 9・τ・(H/D)
ただしτは前記セルのせん断抵抗力
Hはハニカム構造体を構成するセルの高さ
Dはハニカム構造体を構成するセルを円とみなしたときのみなし直径
である。
The invention according to claim 2
The method for designing a honeycomb structure mattress construction method according to claim 1, wherein the step of calculating a supporting force increase σR by the honeycomb structure mattress is the following steps 1) to 4).
1) Calculation of main earth pressure coefficient Ka Ka = tan 2 (45 ° −φ / 2)
Where φ is the internal friction angle of the filling material filled in the honeycomb structure 2) Calculation of horizontal stress σm in the cell σm = Ka · σv
However, σv is the vertical stress generated in the cell, that is, the ground reaction force P
3) Calculation method of shear resistance τ of cell τ = σm · tanδ
Where δ is the friction angle of the wall between the cell and the filling material of the cell 4) Method for calculating the increase in bearing capacity σR σR = 2 · τ · (H / D) · [1 + π / (4-π)] ≒ 9 · τ ・ (H / D)
Where τ is the shear resistance of the cell
H is the height of the cells constituting the honeycomb structure
D is the diameter only when the cells constituting the honeycomb structure are regarded as circles.

すなわち本発明のハニカム構造体マットレス工法の設計方法のハニカム構造体マットレスによる支持力増加分σRは、ハニカム構造体に充填する中詰材の内部摩擦角φと、セルと中詰材との壁面摩擦角δと、ハニカム構造体を構成するセルの高さHと、 ハニカム構造体を構成するセルを円とみなしたときのみなし直径D、の4つの変数が確定すれば、算出することができる。   That is, the increase in bearing capacity σR by the honeycomb structure mattress in the design method of the honeycomb structure mattress construction method of the present invention is the internal friction angle φ of the filling material filling the honeycomb structure and the wall friction between the cells and the filling material. If the four variables of the angle δ, the height H of the cells constituting the honeycomb structure, and the diameter D only when the cells constituting the honeycomb structure are regarded as a circle are determined, the calculation can be performed.

請求項3記載の発明は、
前記セルとセルの中詰材との壁面摩擦角δがハニカム構造体に充填される中詰材の内部摩擦角φと同じ値である請求項2記載のハニカム構造体マットレス工法の設計方法
である。
The invention described in claim 3
The honeycomb structure mattress construction method according to claim 2, wherein a wall friction angle δ between the cells and the filling material of the cells has the same value as an internal friction angle φ of the filling material filled in the honeycomb structure. .

なお、中詰材の内部摩擦角φと、セルと中詰材との壁面摩擦角δは同じ値となる。   The internal friction angle φ of the filling material and the wall friction angle δ between the cell and the filling material have the same value.

請求項4記載の発明は、
請求項1から3の設計方法で算定された
ハニカム構造体を構成するセルの高さH、及び
ハニカム構造体を構成するセルを円とみなしたときのみなし直径D、
よりハニカム状立体補強材を選定する工程と、
構造物設置箇所の床付け部を当該Hが収まる深さに掘削する工程と、
当該ハニカム状立体補強材を展張して当該ハニカム状立体補強材に前記中詰材を充填してハニカム構造体を設置する工程と、
高さHになるまで当該ハニカム構造体を1層又は複数層設置してハニカム構造体マットレスを設置する工程を含む、
ハニカム構造体マットレス工法の施工方法
である。
The invention according to claim 4
The height H of the cells constituting the honeycomb structure calculated by the design method of claims 1 to 3, and the diameter D only when the cells constituting the honeycomb structure are regarded as a circle,
A process of selecting a honeycomb-shaped three-dimensional reinforcing material,
A step of excavating the flooring portion of the structure installation location to a depth where the H can be accommodated;
Extending the honeycomb-shaped three-dimensional reinforcing material, filling the honeycomb-shaped three-dimensional reinforcing material with the filling material, and installing the honeycomb structure;
Including the step of installing the honeycomb structure mattress by setting one or more layers of the honeycomb structure until the height H is reached,
This is a construction method of the honeycomb structure mattress construction method.

本発明により構造物の下に設置されるマットレスの範囲を必要最低限の深さ及び施工範囲にするハニカム構造体マットレス工法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a honeycomb structure mattress construction method in which the range of the mattress installed under the structure is set to a necessary minimum depth and construction range.

ハニカム状立体補強材の展張前の斜視図である。It is a perspective view before the expansion of a honeycomb-shaped solid reinforcing material. ハニカム状立体補強材を展張した際の斜視図である。It is a perspective view at the time of extending a honeycomb-like solid reinforcing material. 構造物の地盤への荷重の概念を示した断面図である。It is sectional drawing which showed the concept of the load to the ground of a structure. 構造物基礎を良質土で置き換えた際の荷重の概念を示した断面図である。It is sectional drawing which showed the concept of the load at the time of replacing a structure foundation with high quality soil. 構造物(ボックスカルバート)の下にハニカム構造体を設置した際の断面図である。It is sectional drawing at the time of installing a honeycomb structure under a structure (box culvert). 構造物基礎にハニカム構造体を用いた際の荷重の概念を示した断面図である。It is sectional drawing which showed the concept of the load at the time of using a honeycomb structure for a structure foundation. ハニカム構造体に上から荷重が掛かった際の力の伝達の概念を示した断面図である。It is sectional drawing which showed the concept of the transmission of force when a load is applied to a honeycomb structure from the top. ハニカム構造体による支持力増加の概念を説明する平面図である。It is a top view explaining the concept of the supporting force increase by a honeycomb structure. みなし円部分11の斜視図(左)及びみなし円部分11の円周部の展開図である。FIG. 4 is a perspective view (left) of the deemed circle portion 11 and a development view of the circumferential portion of the deemed circle portion 11. みなし谷間部分12の斜視図(左)及びみなし谷間部分12の側面部の展開図である。FIG. 3 is a perspective view (left) of the deemed valley portion 12 and a developed view of a side surface portion of the deemed valley portion 12. 実施例1〜3における試験の概念図(特に実施例2の場合)である。It is a conceptual diagram (especially in the case of Example 2) of the test in Examples 1-3. ハニカム構造体を地盤に設置した際の写真である。It is the photograph at the time of installing a honeycomb structure on the ground. ハニカム構造体に上部から載荷重をかけている際の写真である。It is the photograph at the time of applying a loading load from the upper part to a honeycomb structure. 載荷圧力Pと沈下量Sの関係を表したグラフである。3 is a graph showing a relationship between a loading pressure P and a settlement amount S.

以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様の構成要素には同一の符号を付し、適宜に説明を省略する。また、本実施形態は、本発明を実施するための一形態に過ぎず、本発明は本実施形態によって限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更実施の形態が可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate. Moreover, this embodiment is only one form for implementing this invention, and this invention is not limited by this embodiment, A various change embodiment is in the range which does not deviate from the summary of this invention. Is possible.

〔実施形態〕
本発明は、構造物基礎にハニカム構造体をマットレス状に設置する際の設計方法で、当該設計方法を用いると置き換え幅と置き換え厚を小さくすることができるようになる旨を発明の要旨としているが、このような事例はこれまで知られていない。
Embodiment
The gist of the present invention is a design method for installing a honeycomb structure in a mattress shape on a structure foundation, and that the replacement width and the replacement thickness can be reduced by using the design method. However, no such case has been known so far.

すなわち本発明は、
構造物基礎に、複数の長片状の樹脂又は繊維シートからなるストリップ材を幅方向に並設し互いに所定の間隔で千鳥状に繰り返し部分的に接合し、これを前記幅方向と直交する方向に展張することによってハニカム状のセルを形成するハニカム状立体補強材に中詰材を充填してなるハニカム構造体を設置するハニカム構造体マットレス工法の設計方法であって、
地盤反力Pと、基礎地盤の極限支持力quを安全率Fsで除算した許容支持力qaを比較し、
地盤反力Pに対する許容支持力qaの不足分を構造物基礎に設置するハニカム構造体マットレス工法による支持力増加分σR/Fsで補うことを特徴とするハニカム構造体マットレス工法の設計方法である。
That is, the present invention
A strip material made of a plurality of long pieces of resin or fiber sheets is juxtaposed in the width direction on the foundation of the structure, and partially joined in a staggered manner at predetermined intervals, and this is orthogonal to the width direction. A honeycomb structure mattress construction method in which a honeycomb structure is formed by filling a honeycomb-shaped three-dimensional reinforcing material with a filling material to form a honeycomb-shaped cell by spreading on a honeycomb structure,
Compare the ground reaction force P with the allowable bearing force qa obtained by dividing the ultimate bearing force qu of the foundation ground by the safety factor Fs.
This is a design method for a honeycomb structure mattress method characterized in that a deficiency in the allowable support force qa with respect to the ground reaction force P is compensated by an increase in support force σR / Fs by the honeycomb structure mattress method installed on the structure foundation.

本願発明に使用するハニカム状立体補強材及びハニカム構造体を説明する。
図1は、本願発明に使用するハニカム状立体補強材(3セル)の展張前の斜視図である。本実施形態では3セルのハニカム状立体補強材を例示したが、ハニカム状立体補強材のセル数は3セルに限らず何セルあってもよい。以下、当該ハニカム状立体補強材から作成されるハニカム構造体やハニカム擁壁についても同様である。ハニカム状立体補強材1は、複数の長片状の樹脂又は繊維シートからなるストリップ材2を幅方向に並設し互いに所定の間隔で千鳥状に繰り返し部分的に一定間隔の結合部位4にて結合したものである。このハニカム状立体補強材1は展張方向aに展張してハニカム状のセル構造を形成する。ハニカム状立体補強材に利用される素材は樹脂が好ましく、樹脂の中でも高密度ポリエチレンが好適である。
The honeycomb-shaped three-dimensional reinforcing material and honeycomb structure used in the present invention will be described.
FIG. 1 is a perspective view of a honeycomb-shaped three-dimensional reinforcing material (3 cells) used in the present invention before expansion. In the present embodiment, the three-cell honeycomb three-dimensional reinforcing material is exemplified, but the number of cells of the honeycomb three-dimensional reinforcing material is not limited to three cells and may be any number. The same applies to the honeycomb structure and the honeycomb retaining wall made from the honeycomb-shaped three-dimensional reinforcing material. The honeycomb-shaped three-dimensional reinforcing material 1 has a strip material 2 made of a plurality of long pieces of resin or fiber sheets arranged in parallel in the width direction, and is repeatedly staggered at a predetermined interval and partially at a joint portion 4 at a constant interval. It is a combination. The honeycomb-shaped three-dimensional reinforcing material 1 is expanded in the extending direction a to form a honeycomb-shaped cell structure. Resin is preferable as the material used for the honeycomb-shaped three-dimensional reinforcing material, and among the resins, high-density polyethylene is preferable.

ストリップ材2にはセル内に溜まる水を排出するために孔3を設ける場合がある。孔の大きさや形状はどのようなものでもよい。   In some cases, the strip material 2 is provided with holes 3 for discharging water accumulated in the cells. The hole may have any size or shape.

図2は、図1で示したハニカム状立体補強材(3セル)を展張した際の斜視図である。ハニカム状立体補強材1を展張すると、ハニカム状のセル5が形成される。一般的なハニカム状立体補強材1の使用方法としては、ハニカム状立体補強材セル5内にセルの高さまで中詰材を充填して締め固めを行うことにより、剛性のあるハニカム構造体9を形成させる。   FIG. 2 is a perspective view when the honeycomb-shaped three-dimensional reinforcing material (3 cells) shown in FIG. 1 is stretched. When the honeycomb-shaped three-dimensional reinforcing material 1 is stretched, honeycomb-shaped cells 5 are formed. As a general method for using the honeycomb-shaped three-dimensional reinforcing material 1, the honeycomb-shaped three-dimensional reinforcing material cell 5 is filled with a filling material up to the height of the cell and compacted, whereby a rigid honeycomb structure 9 is obtained. Let it form.

展帳したハニカム状立体補強材のセル5に充填する中詰材としては、砂、土砂、砕石などどのような土質材料のものでも使用できるが、当該マットレス工法の場合には中詰材には砕石が好適である。   As the filling material to be filled in the cell 5 of the expanded honeycomb-shaped reinforcing material, any soil material such as sand, earth and sand, crushed stone can be used, but in the case of the mattress method, the filling material is Crushed stone is preferred.

次に構造物荷重が地盤に掛かる力のメカニズムについて説明する。
図3には、構造物の地盤への荷重の概念を示した。構造物6は地盤に設置した場合には、地盤反力Pが構造物の下部の地盤にかかる。当該地盤反力Pは支持力qと釣り合うことにより、構造物6は安定を保つことができる。一方で、地盤反力Pよりも支持力qのほうが小さい場合には、構造物6の沈下が進行し、地盤7を破壊する。地盤反力Pよりも支持力qが小さい場合には、構造物の下部を良質な砂質土で置き換える置き換え工法が一般的に行われる。
Next, the mechanism of the force that the structural load is applied to the ground will be described.
In FIG. 3, the concept of the load to the ground of a structure was shown. When the structure 6 is installed on the ground, the ground reaction force P is applied to the lower ground of the structure. Since the ground reaction force P is balanced with the support force q, the structure 6 can be kept stable. On the other hand, when the supporting force q is smaller than the ground reaction force P, the settlement of the structure 6 proceeds and the ground 7 is destroyed. When the supporting force q is smaller than the ground reaction force P, a replacement method is generally performed in which the lower part of the structure is replaced with high-quality sandy soil.

ここで支持力q、極限支持力qu、許容支持力qaについて説明する。構造物を地盤上に構築した場合、地盤には構造物から地盤に作用する地盤反力Pと、地盤反力Pに対して地盤が反作用する支持力qが現れる。地盤反力Pに対して地盤が支えられる限界の支持力が極限支持力quである。さらに極限支持力quを安全率Fsで除した値が許容支持力qaであり、安全率が1の時は極限支持力quと許容支持力qaの値は等しい。   Here, the support force q, the ultimate support force qu, and the allowable support force qa will be described. When a structure is constructed on the ground, a ground reaction force P that acts on the ground from the structure and a support force q that the ground reacts against the ground reaction force P appear on the ground. The limit support force with which the ground is supported with respect to the ground reaction force P is the ultimate support force qu. Further, the value obtained by dividing the ultimate support force qu by the safety factor Fs is the allowable support force qa. When the safety factor is 1, the values of the ultimate support force qu and the allowable support force qa are equal.

図4には、構造物基礎を良質土で置き換えた際の荷重の概念を示した。前述のように、構造物基礎を良質土で置き換えるのは構造物の下の極限支持力quが地盤反力Pよりも小さいときである。構造物6の下部を良質な砂質土で置き換えた場合には、当該砂質土の内部摩擦角分に荷重が分散される。構造物基礎を良質土で置き換えた場合、地盤反力Pは良質土による荷重分散効果により、置き換え部分8より下の荷重はσzに低減される。またσzが極限支持力quより小さくなれば構造物を支持できる。すなわち、地盤反力P及び地中鉛直応力σz(極限支持力qu)との関係は一般的に以下の式で表される。

σz = P/[1+2・(z/B)tanθ]+γ・z … 式1

ただし、σz :地中の鉛直応力(kN/m
P :単位面積当たりの地盤反力(kN/m
z :構造物基礎底版からの深さ(m)
B :構造物基礎底版幅(m)
θ :地中の荷重分散角度(°)
γ:単位体積重量(kN/m
FIG. 4 shows the concept of load when the structure foundation is replaced with high-quality soil. As described above, the structure foundation is replaced with high-quality soil when the ultimate supporting force qu under the structure is smaller than the ground reaction force P. When the lower part of the structure 6 is replaced with good-quality sandy soil, the load is distributed to the internal friction angle of the sandy soil. When the structure foundation is replaced with high-quality soil, the ground reaction force P is reduced to σz due to the load dispersion effect of the high-quality soil. If σz is smaller than the ultimate support force qu, the structure can be supported. That is, the relationship between the ground reaction force P and the underground vertical stress σz (extreme support force qu) is generally expressed by the following equation.

σz = P / [1 + 2 · (z / B) tanθ] + γ · z Equation 1

Where σz: underground vertical stress (kN / m 2 )
P: Ground reaction force per unit area (kN / m 2 )
z: Depth from the foundation bottom plate of the structure (m)
B: Structure foundation bottom slab width (m)
θ: underground load distribution angle (°)
γ: Unit volume weight (kN / m 3 )

構造物基礎の良質土に置き換え工法は、単位面積当たりの地盤反力Pを良質土置き換えによって良質土層の下部で低減させる効果があり、低減した単位当たりの荷重が極限支持力quよりも小さくすることにより、構造物の不等沈下を発生させない。しかし、当該工法では良質土の置き換え深さが深くなる傾向があり、土木工事における負担が大きい。   The replacement method with high-quality soil for the structure foundation has the effect of reducing the ground reaction force P per unit area at the bottom of the high-quality soil layer by replacing the high-quality soil, and the reduced load per unit is smaller than the ultimate bearing capacity qu. By doing so, the uneven settlement of the structure does not occur. However, this construction method tends to increase the depth of replacement of high-quality soil, and the burden on civil engineering work is large.

次に構造物基礎にハニカム構造体を用いる工法について説明する。
図5は、コンクリート等で構築された構造物6(ボックスカルバートなど)が不等沈下を起こさないようにハニカム構造体9を構造物6の下に設置した事例を示した。構造物6の地盤反力Pが地盤7の極限支持力quよりも大きいときにはハニカム構造体を構造物基礎に使用して極限支持力quを確保することができる。構造物6の下に設置するハニカム構造体は単層でもいいし、複数層積層してもよい。図5は単層敷設の例を示した。
Next, a method for using a honeycomb structure as a structure foundation will be described.
FIG. 5 shows an example in which the honeycomb structure 9 is installed under the structure 6 so that the structure 6 (box culvert or the like) constructed of concrete or the like does not cause uneven settlement. When the ground reaction force P of the structure 6 is larger than the ultimate support force qu of the ground 7, the honeycomb structure can be used as the structure foundation to ensure the ultimate support force qu. The honeycomb structure to be installed under the structure 6 may be a single layer or a plurality of layers. FIG. 5 shows an example of single layer laying.

図6には、構造物基礎にハニカム構造体を用いた際の荷重の概念を示した。構造物基礎にハニカム構造体を敷設した場合には、ハニカム構造体による支持力増加分σRを見込むことが可能であり、単位面積当たりの地盤反力Pと前記ハニカム構造体による支持力増加分σRとハニカム構造体底版部の極限支持力quは以下の関係式で表される。

P ≦ σR+qu … 式2

ただし、P:単位面積当たりの地盤反力(kN/m
σR:ハニカム構造体による支持力増加分(kN/m
qu:地盤の極限支持力(kN/m
FIG. 6 shows the concept of load when a honeycomb structure is used as the structure base. When the honeycomb structure is laid on the structure foundation, it is possible to estimate the increase in supporting force σR due to the honeycomb structure, and the ground reaction force P per unit area and the increase in supporting force σR due to the honeycomb structure. And the ultimate supporting force qu of the honeycomb structure bottom plate portion is expressed by the following relational expression.

P ≦ σR + qu (2)

However, P: Ground reaction force per unit area (kN / m 2 )
σR: Increase in bearing capacity due to honeycomb structure (kN / m 2 )
qu: Ultimate ground bearing capacity (kN / m 2 )

一般に構造物基礎の支持力を考慮した地盤改良を行う際には地盤反力Pよりも数倍割り増した安全率が考慮され、構造物基礎の地盤支持力quを安全率Fsで除算した許容支持力qaが用いられる。安全率Fsを見込んだ場合、単位面積当たりの地盤反力Pと、安全率を見込んだハニカム構造体による支持力増加分σR/Fsと、許容支持力qaは以下の関係式で表される(安全率を1とした場合は、極限支持力quと許容支持力qaは同じ値となる)。

P ≦ (σR/Fs)+(qu/Fs) = (σR/Fs)+qa … 式3

ただし、P:単位面積当たりの地盤反力(kN/m
σR:ハニカム構造体による支持力増加分(kN/m
qu:地盤の極限支持力(kN/m
qa:地盤の許容支持力(kN/m
Fs:安全率
In general, when performing ground improvement considering the bearing capacity of the structure foundation, a safety factor that is several times higher than the ground reaction force P is considered, and the allowable bearing capacity obtained by dividing the ground bearing capacity qu of the structure foundation by the safety factor Fs. A force qa is used. When the safety factor Fs is expected, the ground reaction force P per unit area, the bearing force increase σR / Fs by the honeycomb structure that allows the safety factor, and the allowable bearing force qa are expressed by the following relational expressions ( When the safety factor is 1, the ultimate support force qu and the allowable support force qa have the same value).

P ≦ (σR / Fs) + (qu / Fs) = (σR / Fs) + qa Equation 3

However, P: Ground reaction force per unit area (kN / m 2 )
σR: Increase in bearing capacity due to honeycomb structure (kN / m 2 )
qu: Ultimate ground bearing capacity (kN / m 2 )
qa: Allowable bearing capacity of the ground (kN / m 2 )
Fs: Safety factor

つぎにハニカム構造体による支持力増加分σRの算定方法について図7〜図10を用いて説明する。
図7は、ハニカム構造体に上から荷重が作用した際の力の伝達の概念を示した断面図である。ハニカム構造体9に荷重qが作用した場合、ハニカム構造体9のセルは水平方向(水平応力σm)に広がろうとし、その際にセル壁10と中詰材との間でせん断抵抗力τが発生し、せん断抵抗力τは荷重qに対する抵抗力として作用する。
Next, a method for calculating the bearing capacity increase σR by the honeycomb structure will be described with reference to FIGS.
FIG. 7 is a cross-sectional view showing the concept of force transmission when a load is applied to the honeycomb structure from above. When the load q is applied to the honeycomb structure 9, the cells of the honeycomb structure 9 try to spread in the horizontal direction (horizontal stress σm), and at that time, the shear resistance τ between the cell wall 10 and the filling material The shear resistance τ acts as a resistance against the load q.

ハニカム構造体9内の中詰材に荷重qが載荷された場合、荷重qに比例したせん断抵抗力τが荷重qと反対方向に作用する。このせん断抵抗力qをハニカム構造体9の単位面積辺りに換算したものがσRである。   When the load q is loaded on the filling material in the honeycomb structure 9, a shear resistance force τ proportional to the load q acts in the direction opposite to the load q. A value obtained by converting the shear resistance q into a unit area of the honeycomb structure 9 is σR.

ハニカム構造体9の水平応力σmは、ハニカム構造体9に荷重qが作用した際、中詰材が横方向に膨らもうとする力として定義され、ハニカム構造体内に作用する鉛直応力σvに主働土圧係数Kaを乗じることで求まり、下記の式で表される。

σm = Ka・σv … 式4

ただし、Ka:主働土圧係数Ka
σv:セルに発生する鉛直応力(地盤反力P) (kN/m

なお、主働土圧係数Kaは、ハニカム構造体に充填される中詰材の内部摩擦角φとの関係から以下の式で導かれる。

Ka = tan(45−φ/2) … 式5
The horizontal stress σm of the honeycomb structure 9 is defined as a force that causes the filling material to expand laterally when a load q is applied to the honeycomb structure 9, and is mainly related to the vertical stress σv that acts on the honeycomb structure. It is obtained by multiplying the working earth pressure coefficient Ka and is expressed by the following equation.

σm = Ka · σv Equation 4

However, Ka: main earth pressure coefficient Ka
σv: vertical stress generated in the cell (ground reaction force P) (kN / m 2 )

The main earth pressure coefficient Ka is derived by the following formula from the relationship with the internal friction angle φ of the filling material filled in the honeycomb structure.

Ka = tan 2 (45−φ / 2) Equation 5

ハニカム構造体9内のせん断抵抗力τは、ハニカム構造体9と壁面摩擦角δとしたときに水平応力σmとの関係は、下記の式で表される。

τ = σm・tanδ … 式6

ただし、σm:セル内の水平応力 (kN/m
δ:セルとセルの中詰材との壁面摩擦角(°)

なお、壁面摩擦角δは大型一面せん断試験により中詰材の内部摩擦角φと同じであることが確認できた。
The relationship between the shear resistance τ in the honeycomb structure 9 and the horizontal stress σm when the honeycomb structure 9 and the wall surface friction angle δ are expressed by the following equation.

τ = σm · tan δ Equation 6

Where σm: horizontal stress in the cell (kN / m 2 )
δ: Wall friction angle between cell and filling material (°)

The wall friction angle δ was confirmed to be the same as the internal friction angle φ of the filling material by a large one-surface shear test.

図8は、ハニカム構造体による支持力増加分の概念を説明する平面図である。ハニカム構造体による支持力増加分σRは、ハニカム構造体の高さH、セルの大きさDに密接に関連する。その支持力増加効果のメカニズムについて、ハニカム構造体9のセルを円形に見立てたみなし円部分11とみなし円部分11以外の部分(みなし谷間部分12)によって説明する。   FIG. 8 is a plan view for explaining the concept of an increase in supporting force by the honeycomb structure. The increase in supporting force σR by the honeycomb structure is closely related to the height H and the cell size D of the honeycomb structure. The mechanism of the effect of increasing the supporting force will be described with reference to the assumed circle portion 11 in which the cells of the honeycomb structure 9 are considered to be circular, and the portion other than the assumed circle portion 11 (deemed valley portion 12).

図8によれば、ハニカム構造体による支持力増加が行われた範囲は、ハニカム構造体9の各セルはそのセルを外接する直径Dの円(みなし円部分11)と、みなし円部分11以外の丸みを帯びた菱形形状の部分(みなし谷間部分12、図8のハッチング部分)に近似される。構造物の下に設置されるハニカム構造体は、構造物の荷重を面で受け止めるため、みなし円部分11とみなし谷間部分12の2つのタイプの形状のセル集合体が荷重を受ける、と近似できる。すなわち、ハニカム構造体による支持力増加分σRは、みなし円部分11の集合体の支持力増加分σR1と、みなし谷間部分12の集合体の支持力増加分σR2、の平均値となり、以下の式で表される。

σR = (σR1+σR2)/2 … 式7

ただし、σR1:みなし円部分11の集合体の支持力増加分(kN)
σR2:みなし谷間部分12の集合体の支持力増加分(kN)
According to FIG. 8, the range in which the supporting force is increased by the honeycomb structure is such that each cell of the honeycomb structure 9 is a circle having a diameter D circumscribed by the cell (deemed circle portion 11) and other than the deemed circle portion 11. It is approximated to a rounded rhombus-shaped portion (deemable valley portion 12, hatched portion in FIG. 8). Since the honeycomb structure installed under the structure receives the load of the structure on the surface, it can be approximated that two types of cell aggregates of the deemed circle portion 11 and the deemed valley portion 12 receive the load. . That is, the supporting force increase amount σR by the honeycomb structure is an average value of the supporting force increase amount σR1 of the assembly of the deemed circle portion 11 and the supporting force increase amount σR2 of the assembly of the deemed valley portion 12, and It is represented by

σR = (σR1 + σR2) / 2 Formula 7

However, σR1: Increase in bearing capacity of the aggregate of the deemed circle portion 11 (kN)
σR2: Increase in bearing capacity of aggregate of deemed valley portion 12 (kN)

次に、一つのセル内に生じるせん断力は、ハニカム構造体を構成するセルの側面(内面側)に作用するせん断力τに1つのセルの側面積(内面積)を乗ずることにより算出される。さらに当該せん断力を当該セルの面積で割れば当該セルの単位面積当たりのせん断力が算出できる。   Next, the shear force generated in one cell is calculated by multiplying the shear force τ acting on the side surface (inner surface side) of the cells constituting the honeycomb structure by the side area (inner area) of one cell. . Furthermore, if the shear force is divided by the area of the cell, the shear force per unit area of the cell can be calculated.

図9には、みなし円部分11の斜視図(左)及びみなし円部分11の円周部の展開図を示した。ハニカム構造体を構成する一つのセルのうち、みなし円部分11のせん断力(みなし円部分11の集合体の支持力増加分σR1)は以下のように算出される。
すなわち、σR1は、みなし円部分11の側面積A1とせん断抵抗力τの積をみなし円部分11の面積S1で割って算出され、以下の式で表される。

σR1 = A1・τ/S1 … 式8

ただし、σR1:みなし円部分11の集合体の支持力増加分(kN)
τ:せん断抵抗力(kN)
A1:みなし円部分11の側面積(m
S1:みなし円部分11の面積(m

また、みなし円部分11の側面積A1及びみなし円部分11の面積S1は以下の式で算出できる。

A1 = πD・H … 式9

S1 = πD/4 … 式10

上記より、式7に式8及び式9を代入して整理すると、以下の式が導き出される。

σR1 = 4・τ・(H/D) … 式11
FIG. 9 shows a perspective view (left) of the deemed circle portion 11 and a developed view of the circumferential portion of the deemed circle portion 11. Of one cell constituting the honeycomb structure, the shearing force of the deemed circle portion 11 (the supporting force increase σR1 of the aggregate of the deemed circle portion 11) is calculated as follows.
That is, σR1 is calculated by dividing the product of the side area A1 of the deemed circle portion 11 and the shear resistance τ by the area S1 of the deemed circle portion 11, and is expressed by the following equation.

σR1 = A1 · τ / S1 Equation 8

However, σR1: Increase in bearing capacity of the aggregate of the deemed circle portion 11 (kN)
τ: Shear resistance (kN)
A1: Side area of the deemed circle portion 11 (m 2 )
S1: Area of the deemed circle portion 11 (m 2 )

Further, the side area A1 of the deemed circle portion 11 and the area S1 of the deemed circle portion 11 can be calculated by the following equations.

A1 = πD · H Equation 9

S1 = πD 2/4 ... formula 10

From the above, substituting Equation 8 and Equation 9 into Equation 7 leads to the following equation.

σR1 = 4 · τ · (H / D) Equation 11

図10には、みなし谷間部分12の斜視図(左)及びみなし谷間部分12の側面部の展開図を示した。ハニカム構造体を構成する一つのセルのうち、みなし谷間部分12のせん断力(みなし谷間部分12の集合体の支持力増加分σR2)は以下のように算出される。すなわち、σR2は、みなし谷間部分12の側面積A2とせん断抵抗力τの積をみなし谷間部分12の面積S2で割って算出され、以下の式で表される。

σR2 = A2・τ/S2 … 式12

ただし、σR2:みなし谷間部分12の集合体の支持力増加分(kN)
τ:せん断抵抗力(kN)
A2:みなし谷間部分12の側面積(m
S2:みなし谷間部分12の面積(m

みなし谷間部分12の側面積A2は、以下のように算出される。すなわち、みなし谷間部分12の側面部分は、みなし円部分11の側面積の4分の1の面積と同じ面積の丸みを帯びた菱形形状の部分が4つから構成されており、みなし円部分11の側面積と同じ面積である。すなわち以下の式で表される。

A2 = (1/4)・π・D・H・4 = π・D・H … 式13

次に、みなし谷間部分12の面積S2は以下ように算出される。みなし谷間部分12の面積S2は、一辺の長さがDの正方形から半径(1/2)・Dの円の1/4円(四分円)4つを除した面積であり、以下の式で表される。

S2 = D−[(1/2)D]・π/4・4 = D・(4−π)/4 … 式14

上記より、式12に式13、式14を代入して整理すると、以下の式が導き出される。

σR2 = A2・τ/S2 = 4・τ・(H/D)[π/(4−π)] … 式15
In FIG. 10, the perspective view (left) of the deemed valley part 12 and the expanded view of the side part of the deemed valley part 12 were shown. Of one cell constituting the honeycomb structure, the shearing force of the deemed valley portion 12 (the increase in supporting force σR2 of the aggregate of the deemed valley portion 12) is calculated as follows. That is, σR2 is calculated by dividing the product of the side area A2 of the deemed valley portion 12 and the shear resistance τ by the area S2 of the deemed valley portion 12, and is expressed by the following equation.

σR2 = A2 · τ / S2 Equation 12

Where σR2: increase in bearing capacity of the aggregate of the deemed valley portion 12 (kN)
τ: Shear resistance (kN)
A2: Side area of deemed valley portion 12 (m 2 )
S2: Area of the deemed valley portion 12 (m 2 )

The side area A2 of the deemed valley portion 12 is calculated as follows. That is, the side surface portion of the deemed valley portion 12 is composed of four rounded rhombus-shaped portions having the same area as a quarter of the side area of the deemed circle portion 11. It is the same area as the side area. That is, it is expressed by the following formula.

A2 = (1/4) · π · D · H · 4 = π · D · H Equation 13

Next, the area S2 of the deemed valley portion 12 is calculated as follows. The area S2 of the deemed valley portion 12 is an area obtained by dividing four squares (quarter circles) of a circle having a radius (1/2) · D from a square having a side length of D by the following formula: It is represented by

S2 = D 2 − [(1/2) D] 2 · π / 4 · 4 = D · (4-π) / 4 Equation 14

From the above, when formulas 13 and 14 are substituted into formula 12 and rearranged, the following formula is derived.

σR2 = A2 · τ / S2 = 4 · τ · (H / D) [π / (4-π)] Equation 15

上記方法で算出されたみなし円部分11の支持力増加分σR1とみなし谷間部分12の支持力増加分σR2の平均が、ハニカム構造体による支持力増加分σRとなる。式7に式11及び式15を代入し整理すると、以下の式が導き出される。

σR = (σR1+σR2)/2 ≒ 9・τ・(H/D) … 式16
The average of the supporting force increase σR1 of the deemed circle portion 11 and the supporting force increase σR2 of the deemed valley portion 12 calculated by the above method is the supporting force increase σR by the honeycomb structure. Substituting Equation 11 and Equation 15 into Equation 7 and rearranging them leads to the following equation.

σR = (σR1 + σR2) / 2≈9 · τ · (H / D) (16)

次に本発明による設計方法を用いたハニカム構造体マットレス工法の設計手順は以下のステップで行われる。まずはじめに不足する支持力を算定する手順を述べる。
1)構造物を設置した場合に地盤にかかる地盤反力Pを算定する。
2)地盤の極限支持力quを平板載荷試験などにより測定して決定する。
3)測定より得られた極限支持力quを当該構造物設置の際に設定した安全率Fsで除して許容支持力qaを算定する。
4)地盤反力Pから許容支持力qaを減法して、不足する支持力(すなわちハニカム構造体マットレス工法による支持力増加分σR/Fsに相当)を算定する。
Next, the design procedure of the honeycomb structure mattress method using the design method according to the present invention is performed in the following steps. First, the procedure for calculating the lack of support capacity is described.
1) Calculate the ground reaction force P applied to the ground when a structure is installed.
2) The ultimate bearing capacity qu of the ground is measured and determined by a flat plate loading test or the like.
3) The allowable bearing force qa is calculated by dividing the ultimate bearing force qu obtained from the measurement by the safety factor Fs set when the structure is installed.
4) By subtracting the allowable bearing force qa from the ground reaction force P, the insufficient bearing force (that is, equivalent to the bearing force increase σR / Fs by the honeycomb structure mattress method) is calculated.

次にハニカム構造体マットレスによる支持力増加分σRの算定に用いられる主働土圧係数Kaと、セル内の水平応力σmと、セル内の水平応力σmの算定方法を述べる。

5)主働土圧係数Kaの算定
ハニカム構造体に充填する中詰材の内部摩擦角φを算定し、その内部摩擦角φを以下の式に代入し、主働土圧係数Kaを算定する。
Ka= tan(45°−φ/2)
ただし、φはハニカム構造体に充填される中詰材の内部摩擦角

6)セル内の水平応力σmの算定
上記手順にて算定した主働土圧係数Kaを下記の式に代入してセル内の水平応力σmを算定する。
σm=Ka・σv
ただし、σvはセルに発生する鉛直応力、すなわち前記地盤反力P

7)セル内の水平応力σmの算定方法
上記手順にて算定したセル内の水平応力σmを下記の式に代入してセル内の水平応力σmを算定する。なお、壁面摩擦角δがハニカム構造体に充填される中詰材の内部摩擦角φと同じ値であることは大型一面せん断試験により確認されている。
τ=σm・tanδ
ただし、δはセルとセルの中詰材との壁面摩擦角
Next, the main earth pressure coefficient Ka used for calculating the bearing capacity increase σR by the honeycomb structure mattress, the horizontal stress σm in the cell, and the calculation method of the horizontal stress σm in the cell will be described.

5) Calculation of main earth pressure coefficient Ka The inner friction angle φ of the filling material filled in the honeycomb structure is calculated, and the inner earth friction angle φ is substituted into the following formula to calculate the main earth pressure coefficient Ka.
Ka = tan 2 (45 ° −φ / 2)
Where φ is the internal friction angle of the filling material filled in the honeycomb structure

6) Calculation of horizontal stress σm in cell The horizontal stress σm in the cell is calculated by substituting the main earth pressure coefficient Ka calculated in the above procedure into the following equation.
σm = Ka · σv
However, σv is the vertical stress generated in the cell, that is, the ground reaction force P

7) Calculation Method of Horizontal Stress σm in Cell The horizontal stress σm in the cell is calculated by substituting the horizontal stress σm in the cell calculated in the above procedure into the following formula. It has been confirmed by a large one-side shear test that the wall friction angle δ is the same value as the internal friction angle φ of the filling material filled in the honeycomb structure.
τ = σm · tanδ
Where δ is the wall friction angle between the cell and the cell filler

次にハニカム構造体マットレスによる支持力増加分σRの算定方法を述べる。
上記の手順で得られた主働土圧係数Kaと、セル内の水平応力σmと、セル内の水平応力σmを用いて、支持力増加分σRを以下のように算定する。

8)支持力増加分σRの算定方法
σR = 2・τ・(H/D)・[1+π/(4−π)] ≒ 9・τ・(H/D)
ただしτは前記セルのせん断抵抗力
Hはハニカム構造体を構成するセルの高さ
Dはハニカム構造体を構成するセルを円とみなしたときのみなし直径

このとき、4)で得られた不足する支持力(すなわちハニカム構造体マットレス工法による支持力増加分σR/Fs)と、8)で得られた支持力増加分σRを安全率Fsで除した値を比較し、セルの高さHと、セルを円とみなしたときのみなし直径Dに数値を代入しながら、不足する支持力よりもハニカム構造体マットレス工法による支持力増加分σR/Fsが大きくなるようにトライアルを行い、H及びDを決定する。
Next, a method for calculating the bearing capacity increase σR by the honeycomb structure mattress will be described.
Using the main earth pressure coefficient Ka obtained by the above procedure, the horizontal stress σm in the cell, and the horizontal stress σm in the cell, the bearing capacity increase σR is calculated as follows.

8) Calculation method of increase in bearing capacity σR σR = 2 · τ · (H / D) · [1 + π / (4-π)] ≈ 9 · τ · (H / D)
Where τ is the shear resistance of the cell
H is the height of the cells constituting the honeycomb structure
D is the diameter only when the cells constituting the honeycomb structure are regarded as circles.

At this time, the insufficient supporting force obtained in 4) (that is, the supporting force increase σR / Fs by the honeycomb structure mattress method) and the supporting force increase σR obtained in 8) are divided by the safety factor Fs. In comparison with the height H of the cell and only when the cell is regarded as a circle, the numerical value is substituted for the diameter D, and the increase in the supporting force σR / Fs by the honeycomb structure mattress method is larger than the insufficient supporting force. A trial is performed so that H and D are determined.

次にハニカム構造体マットレスを施工する手順は以下の1)〜4)の手順である。
1)上記の設計方法で算定されたセルの高さH、セルを円とみなしたときのみなし直径Dを満たすハニカム立体補強材を選定して用意する。
2)構造物設置箇所の床付け部を当該セルの高さHが収まる深さに掘削する。
3)当該ハニカム状立体補強材を展張して、構造物設置箇所の床付け部に当該ハニカム状立体補強材に前記中詰材を充填してハニカム構造体を設置する。
4)高さHになるまで当該ハニカム構造体を1層又は複数層設置してハニカム構造体マットレスを設置する。
Next, the procedures for constructing the honeycomb structure mattress are the following procedures 1) to 4).
1) Select and prepare a honeycomb three-dimensional reinforcing material satisfying the diameter D only when the cell height H calculated by the above design method is considered as a circle and the cell is regarded as a circle.
2) Excavate the flooring part of the structure installation location to a depth where the height H of the cell fits.
3) The honeycomb-shaped three-dimensional reinforcing material is expanded, and the honeycomb structure is installed by filling the honeycomb-shaped three-dimensional reinforcing material with the filling material in the flooring portion of the structure installation location.
4) One or more layers of the honeycomb structure are installed until the height H is reached, and the honeycomb structure mattress is installed.

実施例1〜3は、ハニカム構造体を地盤に設置し、地盤工学会基準(JGS1521)に基づく平板載荷試験を行った。また、比較例として、地盤に何も設置しないで同様の試験を実施した。   In Examples 1 to 3, a honeycomb structure was installed on the ground, and a flat plate loading test based on the Japan Society for Geotechnical Engineering (JGS1521) was performed. As a comparative example, the same test was performed without installing anything on the ground.

図11には、実施例1〜2における試験の概念図(特に図11は実施例2の場合)を示した。図12にはハニカム構造体を地盤に設置した際の写真を示した。図13にはハニカム構造体に上部から載荷重をかけている際の写真を示した。   In FIG. 11, the conceptual diagram of the test in Examples 1-2 (especially FIG. 11 is the case of Example 2) was shown. FIG. 12 shows a photograph when the honeycomb structure is installed on the ground. FIG. 13 shows a photograph when a load is applied to the honeycomb structure from above.

実施例1〜2及び比較例1の上部より荷重をかけてゆき、荷重と変位量を測定した。その際の実験条件は表1に示した。載荷圧力Pと沈下量Sの関係を表したグラフは図14に示した。グラフから実測値の実施例1〜2及び比較例1の極限支持力を算定した。   A load was applied from the upper part of Examples 1 and 2 and Comparative Example 1, and the load and the amount of displacement were measured. The experimental conditions at that time are shown in Table 1. A graph showing the relationship between the loading pressure P and the settlement amount S is shown in FIG. From the graphs, the ultimate supporting forces of actually measured values of Examples 1 and 2 and Comparative Example 1 were calculated.

実施例1〜2の支持力改善効果σRは、それぞれ実施例1〜2の極限支持力と比較例1の極限支持力の差より算出した。すなわち、実測値の支持力増加分は以下のように算出される。

実施例1の支持力増加分=実施例1の極限支持力 ― 比較例1の極限支持力

実施例2の支持力増加分=実施例2の極限支持力 ― 比較例1の極限支持力
The supporting force improvement effect σR of Examples 1-2 was calculated from the difference between the limiting supporting force of Examples 1-2 and the limiting supporting force of Comparative Example 1, respectively. That is, the increase in the supporting force of the actually measured value is calculated as follows.

Increase in bearing capacity of Example 1 = Ultimate bearing capacity of Example 1-Ultimate bearing capacity of Comparative Example 1

Increase in bearing capacity of Example 2 = Ultimate bearing capacity of Example 2-Ultimate bearing capacity of Comparative Example 1

実施例1〜2の理論値のσRは以下のように算定した。
実施例1〜2のハニカム構造体に充填された中詰材は砕石であり、その内部摩擦角はφ=35°であった。
式5より、主働土圧係数Kaは、式5より以下のように求められる。

Ka = tan(45−φ/2) = tan(45−35/2) = 0.271
The theoretical values σR of Examples 1 and 2 were calculated as follows.
The filling material filled in the honeycomb structures of Examples 1 and 2 was crushed stone, and the internal friction angle was φ = 35 °.
From Equation 5, the main earth pressure coefficient Ka is obtained from Equation 5 as follows.

Ka = tan 2 (45−φ / 2) = tan 2 (45−35 / 2) = 0.271

ハニカム構造体内に作用する鉛直応力σvは、実施例2の極限支持力を安全率3で除した90kN/mで計算を行った。なお鉛直応力σvが90kN/mとは、高さ4m程度のコンクリート(単位体積重量が22kN/m)構造体がハニカム構造体上に載荷された状態に相当する。
σv=90kN/mの場合のハニカム構造体9の水平応力σmは、式4より以下のように求められる。

σm = Ka・σv = 0.271 × 90 = 24.39 kN/m
The vertical stress σv acting on the honeycomb structure was calculated at 90 kN / m 2 obtained by dividing the ultimate supporting force of Example 2 by the safety factor 3. The vertical stress σv of 90 kN / m 2 corresponds to a state in which a concrete structure having a height of about 4 m (unit volume weight is 22 kN / m 3 ) is loaded on the honeycomb structure.
The horizontal stress σm of the honeycomb structure 9 in the case of σv = 90 kN / m 2 is obtained from Equation 4 as follows.

σm = Ka · σv = 0.271 × 90 = 24.39 kN / m 2

ハニカム構造体9内のせん断抵抗力τは、式6より以下のように求められる。なお、ハニカム構造体9の壁面摩擦角δは、中詰材の内部摩擦角φと同じであり、φ=δ=35°である。

τ = σm・tanδ = 24.39 × tan35° = 24.39 × 0.7
= 17.07 (kN/m
The shear resistance τ in the honeycomb structure 9 can be obtained from Equation 6 as follows. The wall surface friction angle δ of the honeycomb structure 9 is the same as the internal friction angle φ of the filling material, and φ = δ = 35 °.

τ = σm · tan δ = 24.39 × tan 35 ° = 24.39 × 0.7
= 17.07 (kN / m 2 )

実施例1及び実施例2のハニカム構造体による支持力増加分σRは、式16よりそれぞれ以下のように求められる。
実施例1の場合は、ハニカム構造体の高さH=0.15m、セルの大きさ(直径)D≒0.3mであるから、実施例1のσR(実1)は、

σR(実1) = 9・τ・(H/D)
= 9 × 17.07 × (0.15/0.3) = 76.8 (kN/m
The increase in supporting force σR by the honeycomb structures of Example 1 and Example 2 is obtained from Equation 16 as follows.
In the case of Example 1, since the height H of the honeycomb structure is 0.15 m and the cell size (diameter) D≈0.3 m, σR (Example 1) of Example 1 is

σR (actual 1) = 9 · τ · (H / D)
= 9 × 17.07 × (0.15 / 0.3) = 76.8 (kN / m 2)

実施例2の場合は、ハニカム構造体の高さH=0.3m、セルの大きさ(直径)D≒0.3mであるから、実施例2のσR(実2)は、
σR(実2) = 9・τ・(H/D)
= 9 × 17.07 × (0.3/0.3) = 153.6 (kN/m
In the case of Example 2, since the height H of the honeycomb structure is 0.3 m and the cell size (diameter) D≈0.3 m, σR (Example 2) of Example 2 is
σR (actual 2) = 9 · τ · (H / D)
= 9 × 17.07 × (0.3 / 0.3) = 153.6 (kN / m 2)

上記より導き出された実施例1及び2の理論値を、平板載荷試験結果より導き出されたσRと比較した。比較結果は表1に記載した。実施例1及び実施例2ともに、実測値のσRと理論値のσRは近似する結果となった。

The theoretical values of Examples 1 and 2 derived from the above were compared with σR derived from the plate loading test results. The comparison results are shown in Table 1. In both Example 1 and Example 2, the actually measured value σR and the theoretical value σR approximated each other.

本発明のハニカム構造体マットレス工法の施工方法を構築することで、従来のマットレス工法よりも置き換え面積や置き換え厚が少なくても十分構造物に対する支持力を得ることができる。
By constructing the construction method of the honeycomb structure mattress construction method of the present invention, it is possible to obtain sufficient support force for the structure even if the replacement area and the replacement thickness are smaller than those of the conventional mattress construction method.

1 ハニカム状立体補強材
2 ストリップ材
3 孔
4 結合部位
5 セル
6 構造物
7 地盤
8 置き換え部分
9 ハニカム構造体
10 セル壁
11 ハニカム構造体のみなし円部分
12 ハニカム構造体のみなし谷間部分
13 載荷板
a 展張方向
X 断面図断面
P 単位面積当たりの地盤反力
z 構造物基礎底版からの深さ
B 構造物基礎底版幅
θ 地中の荷重分散角度
q 支持力
qu 極限支持力
σz 地中の鉛直応力
σR ハニカム構造体による支持力増加分
q 荷重
D ハニカム構造体みなし円の直径
H ハニカム構造体の高さ
σm 水平応力
τ ハニカム構造体9内のせん断抵抗力
DESCRIPTION OF SYMBOLS 1 Honeycomb-shaped solid reinforcement 2 Strip material 3 Hole 4 Bonding part 5 Cell 6 Structure 7 Ground 8 Replacement part 9 Honeycomb structure 10 Cell wall 11 Only a honeycomb structure and a circular part 12 Only a honeycomb structure and a valley part 13 Loading board a Stretching direction X Cross section P Ground reaction force per unit area z Depth from structure foundation bottom B Structure foundation bottom width θ Ground load distribution angle q Bearing capacity qu Ultimate bearing force σz Vertical stress in the ground σR Increased bearing capacity due to honeycomb structure q Load D Diameter of honeycomb structure deemed circle H Height of honeycomb structure σm Horizontal stress τ Shear resistance in honeycomb structure 9

請求項1記載の発明は、
構造物基礎に、複数の長片状の樹脂又は繊維シートからなるストリップ材を幅方向に並設し互いに所定の間隔で千鳥状に繰り返し部分的に接合し、これを前記幅方向と直交する方向に展張することによってハニカム状のセルを形成するハニカム状立体補強材に中詰材を充填してなるハニカム構造体を設置するハニカム構造体マットレス工法の設計方法であって、
地盤反力Pと、基礎地盤の極限支持力quを安全率Fsで除算した許容支持力qaを比較し、
地盤反力Pに対する許容支持力qaの不足分を構造物基礎に設置するハニカム構造体マットレスによる支持力増加分σR/Fsで補うことを特徴とし、
当該ハニカム構造体マットレスによる支持力増加分σRを算出する工程が以下の1)から4)の工程であるハニカム構造体マットレス工法の設計方法。
1)主働土圧係数Kaの算定
Ka= tan(45°−φ/2)
ただし、φはハニカム構造体に充填される中詰材の内部摩擦角
2)セル内の水平応力σmの算定
σm=Ka・σv
ただし、σvはセルに発生する鉛直応力、すなわち前記地盤反力P
3)セルのせん断抵抗力τの算定
τ=σm・tanδ
ただし、δはセルとセルの中詰材との壁面摩擦角
4)支持力増加分σRの算定
σR = 2・τ・(H/D)・[1+π/(4−π)] ≒ 9・τ・(H/D)
ただしτは前記セルのせん断抵抗力
Hはハニカム構造体を構成するセルの高さ
Dはハニカム構造体を構成するセルを円とみなしたときのみなし直径
である。
The invention described in claim 1
A strip material made of a plurality of long pieces of resin or fiber sheets is juxtaposed in the width direction on the foundation of the structure, and partially joined in a staggered manner at predetermined intervals, and this is orthogonal to the width direction. A honeycomb structure mattress construction method in which a honeycomb structure is formed by filling a honeycomb-shaped three-dimensional reinforcing material with a filling material to form a honeycomb-shaped cell by spreading on a honeycomb structure,
Compare the ground reaction force P with the allowable bearing force qa obtained by dividing the ultimate bearing force qu of the foundation ground by the safety factor Fs.
The deficiency of the allowable bearing force qa with respect to the ground reaction force P is supplemented by the bearing force increase σR / Fs by the honeycomb structure mattress installed on the structure foundation ,
A method for designing a honeycomb structure mattress method, wherein the steps of calculating the increase in supporting force σR by the honeycomb structure mattress are the following steps 1) to 4).
1) Calculation of main earth pressure coefficient Ka Ka = tan 2 (45 ° −φ / 2)
Where φ is the internal friction angle of the filling material filled in the honeycomb structure 2) Calculation of horizontal stress σm in the cell σm = Ka · σv
However, σv is the vertical stress generated in the cell, that is, the ground reaction force P
3) Calculation of shear resistance τ of cell τ = σm · tanδ
However, δ is the wall friction angle between the cell and the filling material of the cell. 4) Calculation of the increase in bearing force σR σR = 2 · τ · (H / D) · [1 + π / (4-π)] ≈ 9 · τ・ (H / D)
Where τ is the shear resistance of the cell
H is the height of the cells constituting the honeycomb structure
D is the diameter only when the cells constituting the honeycomb structure are regarded as circles.

請求項記載の発明は、
前記セルとセルの中詰材との壁面摩擦角δがハニカム構造体に充填される中詰材の内部摩擦角φと同じ値である請求項記載のハニカム構造体マットレス工法の設計方法である。
The invention according to claim 2
Is the design method of the honeycomb structure mattress method of claim 1 wherein the wall friction angle δ is equal to the internal friction angle φ of Chutsume material to be filled in the honeycomb structure of the filling material in said cell and a cell .

請求項記載の発明は、
請求項1または2の設計方法で算定された
ハニカム構造体を構成するセルの高さH、及び
ハニカム構造体を構成するセルを円とみなしたときのみなし直径D、
よりハニカム状立体補強材を選定する工程と、
構造物設置箇所の床付け部を当該Hが収まる深さに掘削する工程と、
当該ハニカム状立体補強材を展張して当該ハニカム状立体補強材に前記中詰材を充填してハニカム構造体を設置する工程と、
高さHになるまで当該ハニカム構造体を1層又は複数層設置してハニカム構造体マットレスを設置する工程を含む、
ハニカム構造体マットレス工法の施工方法である。
The invention described in claim 3
The height H of the cells constituting the honeycomb structure calculated by the design method according to claim 1 or 2 , and the diameter D only when the cells constituting the honeycomb structure are regarded as a circle,
A process of selecting a honeycomb-shaped three-dimensional reinforcing material,
A step of excavating the flooring portion of the structure installation location to a depth where the H can be accommodated;
Extending the honeycomb-shaped three-dimensional reinforcing material, filling the honeycomb-shaped three-dimensional reinforcing material with the filling material, and installing the honeycomb structure;
Including the step of installing the honeycomb structure mattress by setting one or more layers of the honeycomb structure until the height H is reached,
This is a construction method of the honeycomb structure mattress construction method.

Claims (4)

構造物基礎に、複数の長片状の樹脂又は繊維シートからなるストリップ材を幅方向に並設し互いに所定の間隔で千鳥状に繰り返し部分的に接合し、これを前記幅方向と直交する方向に展張することによってハニカム状のセルを形成するハニカム状立体補強材に中詰材を充填してなるハニカム構造体を設置するハニカム構造体マットレス工法の設計方法であって、
地盤反力Pと、基礎地盤の極限支持力quを安全率Fsで除算した許容支持力qaを比較し、
地盤反力Pに対する許容支持力qaの不足分を構造物基礎に設置するハニカム構造体マットレス工法による支持力増加分σR/Fsで補うことを特徴とするハニカム構造体マットレス工法の設計方法。
A strip material made of a plurality of long pieces of resin or fiber sheets is juxtaposed in the width direction on the foundation of the structure, and partially joined in a staggered manner at predetermined intervals, and this is orthogonal to the width direction. A honeycomb structure mattress construction method in which a honeycomb structure is formed by filling a honeycomb-shaped three-dimensional reinforcing material with a filling material to form a honeycomb-shaped cell by spreading on a honeycomb structure,
Compare the ground reaction force P with the allowable bearing force qa obtained by dividing the ultimate bearing force qu of the foundation ground by the safety factor Fs.
A design method for a honeycomb structure mattress construction method, wherein a deficiency in the allowable bearing force qa with respect to the ground reaction force P is compensated by a supporting force increase σR / Fs by a honeycomb structure mattress construction method installed on a structure foundation.
前記ハニカム構造体マットレスによる支持力増加分σRを算出する工程が以下の1)から4)の工程である請求項1記載のハニカム構造体マットレス工法の設計方法。
1)主働土圧係数Kaの算定
Ka= tan(45°−φ/2)
ただし、φはハニカム構造体に充填される中詰材の内部摩擦角
2)セル内の水平応力σmの算定
σm=Ka・σv
ただし、σvはセルに発生する鉛直応力、すなわち前記地盤反力P
3)セルのせん断抵抗力τの算定
τ=σm・tanδ
ただし、δはセルとセルの中詰材との壁面摩擦角
4)支持力増加分σRの算定
σR = 2・τ・(H/D)・[1+π/(4−π)] ≒ 9・τ・(H/D)
ただしτは前記セルのせん断抵抗力
Hはハニカム構造体を構成するセルの高さ
Dはハニカム構造体を構成するセルを円とみなしたときのみなし直径
The method for designing a honeycomb structure mattress construction method according to claim 1, wherein the step of calculating a supporting force increase σR by the honeycomb structure mattress is the following steps 1) to 4).
1) Calculation of main earth pressure coefficient Ka Ka = tan 2 (45 ° −φ / 2)
Where φ is the internal friction angle of the filling material filled in the honeycomb structure 2) Calculation of horizontal stress σm in the cell σm = Ka · σv
However, σv is the vertical stress generated in the cell, that is, the ground reaction force P
3) Calculation of shear resistance τ of cell τ = σm · tanδ
However, δ is the wall friction angle between the cell and the filling material of the cell. 4) Calculation of the increase in bearing force σR σR = 2 · τ · (H / D) · [1 + π / (4-π)] ≈ 9 · τ・ (H / D)
Where τ is the shear resistance of the cell
H is the height of the cells constituting the honeycomb structure
D is the diameter only when the cells constituting the honeycomb structure are regarded as circles.
前記セルとセルの中詰材との壁面摩擦角δがハニカム構造体に充填される中詰材の内部摩擦角φと同じ値である請求項2記載のハニカム構造体マットレス工法の設計方法。   The method for designing a mattress construction method for a honeycomb structure according to claim 2, wherein a wall friction angle δ between the cells and the filling material of the cells is the same value as an internal friction angle φ of the filling material filled in the honeycomb structure. 請求項1から3の設計方法で算定された
ハニカム構造体を構成するセルの高さH、及び
ハニカム構造体を構成するセルを円とみなしたときのみなし直径D、
よりハニカム状立体補強材を選定する工程と、
構造物設置箇所の床付け部を当該Hが収まる深さに掘削する工程と、
当該ハニカム状立体補強材を展張して当該ハニカム状立体補強材に前記中詰材を充填してハニカム構造体を設置する工程と、
高さHになるまで当該ハニカム構造体を1層又は複数層設置してハニカム構造体マットレスを設置する工程を含む、
ハニカム構造体マットレス工法の施工方法。
The height H of the cells constituting the honeycomb structure calculated by the design method of claims 1 to 3, and the diameter D only when the cells constituting the honeycomb structure are regarded as a circle,
A process of selecting a honeycomb-shaped three-dimensional reinforcing material,
A step of excavating the flooring portion of the structure installation location to a depth where the H can be accommodated;
Extending the honeycomb-shaped three-dimensional reinforcing material, filling the honeycomb-shaped three-dimensional reinforcing material with the filling material, and installing the honeycomb structure;
Including the step of installing the honeycomb structure mattress by setting one or more layers of the honeycomb structure until the height H is reached,
Construction method of honeycomb structure mattress construction method.
JP2018017070A 2018-02-02 2018-02-02 Design method and construction method of honeycomb structure mattress construction method Active JP6353176B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018017070A JP6353176B1 (en) 2018-02-02 2018-02-02 Design method and construction method of honeycomb structure mattress construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018017070A JP6353176B1 (en) 2018-02-02 2018-02-02 Design method and construction method of honeycomb structure mattress construction method

Publications (2)

Publication Number Publication Date
JP6353176B1 JP6353176B1 (en) 2018-07-04
JP2019132094A true JP2019132094A (en) 2019-08-08

Family

ID=62779960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017070A Active JP6353176B1 (en) 2018-02-02 2018-02-02 Design method and construction method of honeycomb structure mattress construction method

Country Status (1)

Country Link
JP (1) JP6353176B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233306B2 (en) * 2019-05-31 2023-03-06 前田工繊株式会社 Structure of improved foundation and construction method of improved foundation
JP6837245B1 (en) * 2019-11-18 2021-03-03 昭和機械商事株式会社 Cylindrical wire mesh frame

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255247A (en) * 2009-04-23 2010-11-11 Tokyo Printing Ink Mfg Co Ltd Soil improving construction method and soil improving structure
JP2015227596A (en) * 2014-06-02 2015-12-17 日建ウッドシステムズ株式会社 Reinforcement method of housing ground, housing ground, and house

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255247A (en) * 2009-04-23 2010-11-11 Tokyo Printing Ink Mfg Co Ltd Soil improving construction method and soil improving structure
JP2015227596A (en) * 2014-06-02 2015-12-17 日建ウッドシステムズ株式会社 Reinforcement method of housing ground, housing ground, and house

Also Published As

Publication number Publication date
JP6353176B1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
US3421326A (en) Constructional works
JP6008725B2 (en) Road structure at the boundary between road structure and embankment
JP6353176B1 (en) Design method and construction method of honeycomb structure mattress construction method
CN214497532U (en) Construction structure for treating local collapse or shallow layer slippage of foundation pit and side slope
JP5500903B2 (en) Retaining wall and how to construct a retaining wall
JP2016102313A (en) Retaining wall structure and construction method thereof
KR20180021144A (en) Packaging method and packaging structure
JP5146117B2 (en) Retaining wall structure consisting of ground improvement body and its construction method
JP6842011B2 (en) Construction unit members and their manufacturing methods, member connections, concrete construction methods
KR101761477B1 (en) Construction method of jointless bridge with reinforced earth retaining wall and spread bearing block
KR101129678B1 (en) Mesh foundation construction method using hollow blocks
JP2017075447A (en) Pavement structure
CN111511992A (en) Thin and stable segmented wall block and soil stabilization system and method
JP2005155145A (en) Construction method for reinforced earth retaining wall and structure of the reinforced earth retaining wall
US4519730A (en) Method for constructing underground structure
JP5800546B2 (en) Precast foundation plates, foundations for precast structures and construction methods for earth retaining structures
KR100629980B1 (en) Waterproof method of corrugated matter plate structure
Lundskog Large-scale testing of reinforced lightweight cellular concrete backfill for mse walls
JP3238678B2 (en) Tire lightweight embankment structure
KR102275813B1 (en) structrue for reinforcement of foundation using mat
KR102296811B1 (en) Foundation construction method for inducing Pseudo-layered soils
KR102376019B1 (en) Corrugated steel wall
JP4966617B2 (en) Rebuilding unit building
JP7401362B2 (en) building foundation structure
JP7461869B2 (en) Reinforcement structure for station platforms and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180412

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6353176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250