JP2010255247A - Soil improving construction method and soil improving structure - Google Patents

Soil improving construction method and soil improving structure Download PDF

Info

Publication number
JP2010255247A
JP2010255247A JP2009105361A JP2009105361A JP2010255247A JP 2010255247 A JP2010255247 A JP 2010255247A JP 2009105361 A JP2009105361 A JP 2009105361A JP 2009105361 A JP2009105361 A JP 2009105361A JP 2010255247 A JP2010255247 A JP 2010255247A
Authority
JP
Japan
Prior art keywords
reinforcing material
ground improvement
ground
mattress
geotextile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009105361A
Other languages
Japanese (ja)
Other versions
JP5254871B2 (en
Inventor
Masashi Yasaka
正史 家坂
Masaru Shimada
優 島田
Masato Sasaki
真人 佐々木
Shinji Arai
真二 荒井
Akinori Hazama
間  昭徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Tokyo Printing Ink Mfg Co Ltd
Original Assignee
Mitsubishi Plastics Inc
Tokyo Printing Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc, Tokyo Printing Ink Mfg Co Ltd filed Critical Mitsubishi Plastics Inc
Priority to JP2009105361A priority Critical patent/JP5254871B2/en
Publication of JP2010255247A publication Critical patent/JP2010255247A/en
Application granted granted Critical
Publication of JP5254871B2 publication Critical patent/JP5254871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil improving construction method which makes a replacing thickness smaller than a replacing thickness by a conventional mattress construction method, and a soil improving structure which exerts high strength even if reduced in thickness to be thinner than a conventional mattress structure. <P>SOLUTION: The soil improving construction method includes a lower layer forming process of laying a lower layer reinforcing material formed of a geotextile, an intermediate layer forming process of laying a honeycomb-like solid reinforcing material on the lower layer reinforcing material, the solid reinforcing material having a plurality of consecutively formed cells with open tops, and filling the cells with a filler to form an intermediate layer, and an upper layer forming process of laying an upper layer reinforcing material formed of the geotextile on the intermediate layer. The soil improving construction method is carried out to lay the soil improving structure having the lower layer reinforcing material, the intermediate layer, and the upper layer reinforcing material on the surface layer or the base layer of the soil. The soil improving structure is manufacturing by the soil improving construction method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、軟弱地盤を補強できる地盤改良工法及び地盤改良用構造物に関する。   The present invention relates to a ground improvement method that can reinforce a soft ground and a structure for ground improvement.

軟弱な地盤上に住宅、擁壁などを設ける場合、もしくは、軟弱な地盤中に配管などを埋設する場合には、マットレス工法という工法を用いることで、それら構造物下の地盤の補強が図られていた。マットレス工法とは、砕石などからなる中詰材をジオテキスタイルで包んでなる人工的に作られた地盤(以下、「マットレス状の構造物」という。)を軟弱な基礎地盤の表層もしくは基層部に敷設することで、上から加えられる荷重(以下、「上載荷重」という。)を該マットレス状の構造物が発揮するせん断抵抗によって分散させ、基礎地盤の支持力を増大させる工法である。   When installing houses, retaining walls, etc. on soft ground, or embedding pipes, etc. in soft ground, the mattress construction method can be used to reinforce the ground under these structures. It was. With the mattress method, artificially created ground (hereinafter referred to as “mattress-like structure”) made by wrapping medium filling material made of crushed stone etc. with geotextile is laid on the surface or base layer of the soft foundation ground. Thus, the load applied from above (hereinafter referred to as “upload”) is dispersed by the shear resistance exerted by the mattress-like structure to increase the supporting force of the foundation ground.

上記したマットレス工法に関連する技術として、例えば、特許文献1には、軟弱地盤上に立設した型枠内にジオテキスタイルを敷き、ジオテキスタイルの周縁部を上方へ起立させて形成した表層材収容部内へセメント系スラリーを充填した後、周縁部をセメント系スラリーの表面上へ折り曲げて被覆し、対向する周縁部同士を重ね合わせて固定し、セメント系スラリーを硬化させて改良表層を構築する工法が開示されている。   As a technique related to the mattress construction method described above, for example, in Patent Document 1, a geotextile is laid in a mold standing on a soft ground, and the peripheral portion of the geotextile is erected upward into a surface layer material accommodating portion. Disclosed is a construction method in which an improved surface layer is constructed by filling a cement-based slurry and then bending and coating the peripheral edge onto the surface of the cement-based slurry, fixing the opposing peripheral edges together, and curing the cement-based slurry. Has been.

特開平11−140859号公報Japanese Patent Laid-Open No. 11-140859

上記特許文献1に開示されているような工法を含めて、従来のマットレス工法でも軟弱地盤を補強する効果は得られていた。しかしながら、従来のマットレス工法で十分な補強効果を得るためには、大きな(厚い)マットレス状の構造物を作製する必要があった。そのような大きなマットレス状の構造物を用いる場合、そのマットレス状の構造物を埋設するための大きな穴を掘る作業が必要であった。すなわち、従来のマットレス工法では、マットレス状の構造物によって置き換える地盤の厚さ(以下、「置き換え厚」ということがある。)が厚かった。   Including the construction method disclosed in Patent Document 1, the effect of reinforcing the soft ground has been obtained even with the conventional mattress construction method. However, in order to obtain a sufficient reinforcing effect by the conventional mattress method, it is necessary to produce a large (thick) mattress-like structure. When such a large mattress-like structure is used, it is necessary to dig a large hole for embedding the mattress-like structure. That is, in the conventional mattress method, the thickness of the ground to be replaced by the mattress-like structure (hereinafter sometimes referred to as “replacement thickness”) is large.

そこで、本発明は、従来のマットレス工法よりも置き換え厚を小さくすることができる地盤改良工法、及び従来のマットレス状の構造物より薄くしても高強度を発揮することができる地盤改良用構造物を提供することを課題とする。   Therefore, the present invention provides a ground improvement method capable of reducing the replacement thickness as compared with the conventional mattress method, and a ground improvement structure capable of exhibiting high strength even when made thinner than the conventional mattress-like structure. It is an issue to provide.

以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図面の形態に限定されるものではない。   The present invention will be described below. In addition, in order to make an understanding of this invention easy, the reference sign of an accompanying drawing is attached in brackets, However, This invention is not limited to the form of drawing.

第1の本発明は、ジオテキスタイルからなる下層補強材(1)を敷設する、下層形成工程(S1)と、該下層補強材の上に、上部が開口した複数のセル(21)が連続して形成されているハニカム状立体補強材(20)を敷設するとともに、該セルに中詰材(22)を充填して中間層(2)を形成する、中間層形成工程(S2)と、該中間層の上に、ジオテキスタイルからなる上層補強材(3)を敷設する、上層形成工程(S3)と、を備える、下層補強材、中間層、及び上層補強材を有する地盤改良用構造物(10)を地盤(100)の表層もしくは基層部に敷設する、地盤改良工法である。   In the first aspect of the present invention, a lower layer forming step (S1) in which a lower layer reinforcing material (1) made of geotextile is laid, and a plurality of cells (21) having an open top are continuously formed on the lower layer reinforcing material. An intermediate layer forming step (S2) for laying the formed honeycomb three-dimensional reinforcing material (20) and filling the cells with the filling material (22) to form the intermediate layer (2); A ground improvement structure (10) having a lower layer reinforcing material, an intermediate layer, and an upper layer reinforcing material, comprising an upper layer forming step (S3) for laying an upper layer reinforcing material (3) made of geotextile on the layer. Is a ground improvement method for laying on the surface or base layer of the ground (100).

本発明において「上部が開口した複数のセルが連続して形成されているハニカム状立体補強材」とは、水平に設置した際に、少なくとも上側が開口しているセルが水平方向に複数連続して備えられており、水平方向の断面形状がハニカム構造になっているものを意味する。また、本発明において、下層補強材と上層補強材とに用いられるジオテキスタイルの種類は特に限定されず、下層補強材と上層補強材とで異なる種類のジオテキスタイルからなるものを用いることもでき、同様のものを用いることもできる。そのため、本発明において、下層補強材と上層補強材とを含めた意味で、単に「補強材」ということがある。   In the present invention, “a honeycomb-shaped three-dimensional reinforcing material in which a plurality of cells having upper openings are continuously formed” means that, when installed horizontally, a plurality of cells having at least upper openings are continuously arranged in the horizontal direction. It means that the cross-sectional shape in the horizontal direction has a honeycomb structure. In the present invention, the type of geotextile used for the lower layer reinforcing material and the upper layer reinforcing material is not particularly limited, and the lower layer reinforcing material and the upper layer reinforcing material may be composed of different types of geotextiles, Things can also be used. Therefore, in the present invention, the term “reinforcing material” may be used simply to include the lower layer reinforcing material and the upper layer reinforcing material.

上記第1の本発明の地盤改良工法において、上層補強材および下層補強材が、3軸方向に特に強い引張強度を有するジオテキスタイルからなることが好ましい。   In the ground improvement method of the first aspect of the present invention, the upper layer reinforcing material and the lower layer reinforcing material are preferably made of a geotextile having particularly strong tensile strength in the triaxial direction.

本発明において「3軸方向に特に強い強度を有するジオテキスタイル」とは、水平に敷設した際に、水平面において3軸方向に特に強い引張強度を有している結果、全方向(360度)に強度を擬似的に有するトラス構造を備えるジオテキスタイルを意味する。このジオテキスタイルの具体例としては、特開2004−44374号公報に開示されているジオグリットを挙げることができる。   In the present invention, “a geotextile having particularly strong strength in the triaxial direction” means that, when laid horizontally, it has a particularly strong tensile strength in the triaxial direction in the horizontal plane, resulting in strength in all directions (360 degrees). This means a geotextile having a truss structure that has a pseudo structure. As a specific example of this geotextile, there can be mentioned Geogrit disclosed in JP-A-2004-44374.

上記第1の本発明の地盤改良工法では、地盤改良用構造物(10)の高さHを、下記式(1)によって決定することができる。   In the ground improvement method of the first aspect of the present invention, the height H of the ground improvement structure (10) can be determined by the following equation (1).

Figure 2010255247
ここに、
Figure 2010255247
here,

Figure 2010255247
である。
(ただし、q:地盤改良用構造物下の地盤の許容支持力、γ:中間層の単位体積質量、Kp:受働土圧係数、φ:中間層のせん断抵抗角、γ:地盤改良用構造物が敷設される地盤の単位体積質量、Df:地表から地盤改良用構造物の上面までの深さ、B:地盤改良用構造物に上載荷重が加えられる部分を長方形と見なした場合の該部分の一辺の長さ、L:地盤改良用構造物に上載荷重が加えられる部分を長方形と見なした場合の該部分のBに直交する方向の辺の長さ、T:補強材の設計強度、θ:補強材の許容伸びに対する変位角、q:上載荷重)
Figure 2010255247
It is.
(Where q a : allowable bearing capacity of the ground under the ground improvement structure, γ 2 : unit volume mass of the intermediate layer, Kp: passive earth pressure coefficient, φ 2 : shear resistance angle of the intermediate layer, γ 1 : ground Unit volume mass of the ground where the improvement structure is laid, Df: Depth from the ground surface to the top surface of the ground improvement structure, B: The portion where the overload is applied to the ground improvement structure was considered as a rectangle L: length of one side of the portion, L: length of a side in a direction perpendicular to B of the portion when a portion to which an overload is applied to the ground improvement structure is regarded as a rectangle, T D : reinforcement Design strength of material, θ: displacement angle relative to allowable elongation of reinforcing material, q: load on top)

従来のマットレス状の構造物が水平に設置された場合、該マットレス状の構造物は2軸方向(水平面に対して平行な面内において、一方向と該方向に直交する方向)に強い強度を有していたため、上載荷重をそれらの方向に分散することができると考えていた。したがって、上載荷重によるマットレス状の構造物内の応力分布はその2軸方向のどちらかの方向に平行な鉛直面(2次元)で計算していた。   When a conventional mattress-like structure is installed horizontally, the mattress-like structure has strong strength in two axial directions (one direction and a direction perpendicular to the direction in a plane parallel to the horizontal plane). Therefore, it was thought that the overload could be distributed in those directions. Therefore, the stress distribution in the mattress-like structure due to the overload is calculated on a vertical plane (two-dimensional) parallel to either of the two axial directions.

一方、本発明の地盤改良工法では、後に詳述するように、該工法で得られる本発明の地盤改良用構造物が水平に設置された場合、該地盤改良用構造物は水平面に対して平行な面内において略全方向に強い強度を有することができるため、上載荷重を全方向に分散させることができると考えられる。そのため、上載荷重による地盤改良用構造物内の応力分布を、水平面に平行な面の2次元と高さの次元との3次元で考えることができる。したがって、上記式(1)のように地盤改良用構造物内の応力分布を3次元的に考えた式によって、地盤改良用構造物に必要な高さHを求めることができる。   On the other hand, in the ground improvement method of the present invention, as will be described in detail later, when the ground improvement structure of the present invention obtained by the method is installed horizontally, the ground improvement structure is parallel to the horizontal plane. Since it is possible to have strong strength in almost all directions within a smooth surface, it is considered that the overload can be dispersed in all directions. Therefore, the stress distribution in the ground improvement structure due to the overload can be considered in three dimensions, that is, a two-dimensional plane parallel to the horizontal plane and a height dimension. Therefore, the height H necessary for the ground improvement structure can be obtained by an expression that three-dimensionally considers the stress distribution in the ground improvement structure as in the above formula (1).

第2の本発明は、ジオテキスタイルからなる下層補強材(1)と、上部が開口した複数のセル(21)が連続して形成されているハニカム状立体補強材(20)、及び該セルに充填された中詰材(22)を有する中間層(2)と、ジオテキスタイルからなる上層補強材(3)と、がその順で積層されている、地盤改良用構造物(10)である。   The second aspect of the present invention relates to a lower layer reinforcing material (1) made of geotextile, a honeycomb-shaped three-dimensional reinforcing material (20) in which a plurality of cells (21) having an open top are continuously formed, and filling the cells. The ground improvement structure (10) in which the intermediate layer (2) having the intermediate filling material (22) and the upper layer reinforcing material (3) made of geotextile are laminated in this order.

上記第2の本発明の地盤改良用構造物において、上層補強材および下層補強材が、3軸方向に特に強い引張強度を有するジオテキスタイルからなることが好ましい。   In the ground improvement structure according to the second aspect of the present invention, the upper layer reinforcing material and the lower layer reinforcing material are preferably made of a geotextile having particularly strong tensile strength in the triaxial direction.

本発明によれば、従来のマットレス工法よりも置き換え厚を小さくすることができる地盤改良工法、及び従来のマットレス状の構造物より薄くしても高強度を発揮することができる地盤改良用構造物を提供することができる。   According to the present invention, a ground improvement method capable of reducing the replacement thickness as compared with the conventional mattress method, and a ground improvement structure capable of exhibiting high strength even if made thinner than the conventional mattress-like structure. Can be provided.

本発明の地盤改良工法に備えられる工程を示すフローチャートである。It is a flowchart which shows the process with which the ground improvement construction method of this invention is equipped. 本発明の地盤改良用構造物の鉛直方向断面を概略的に示す図である。It is a figure which shows roughly the perpendicular direction cross section of the structure for ground improvement of this invention. 上層補強材及び下層補強材に用いることができるジオテキスタイルの一部を概略的に示す上面図である。It is a top view which shows roughly a part of geotextile which can be used for an upper layer reinforcing material and a lower layer reinforcing material. 図3に示したジオテキスタイルの強度を概略的に示す図である。It is a figure which shows roughly the intensity | strength of the geotextile shown in FIG. 本発明に用いることができるハニカム状立体補強材の展張前の姿勢を概略的に示す斜視図である。It is a perspective view which shows roughly the attitude | position before the expansion | deployment of the honeycomb-shaped solid reinforcement material which can be used for this invention. 図5に示したハニカム状立体補強材の展張時の姿勢を概略的に示す斜視図である。FIG. 6 is a perspective view schematically showing a posture of the honeycomb-shaped three-dimensional reinforcing material shown in FIG. 5 during expansion. 本発明の地盤改良用構造物に上載荷重が加えられた場合の応力分布を3次元的に示す概略図である。It is the schematic which shows three-dimensionally the stress distribution when an overlay load is applied to the structure for ground improvement of this invention. 地盤改良用構造物の自重が周辺地盤との押さえ盛土効果によって相殺されるという考えを説明するための図である。It is a figure for demonstrating the idea that the dead weight of the structure for ground improvement is offset by the pressing embankment effect with the surrounding ground.

本発明の上記した作用及び利得は、次に説明する発明を実施するための形態から明らかにされる。   The above-described operation and gain of the present invention will be clarified from embodiments for carrying out the invention described below.

図1は、本発明の地盤改良工法に備えられる工程を示すフローチャートである。図2は、本発明の地盤改良用構造物の鉛直方向断面を概略的に示す図である。以下、図1、図2、及び適宜示す図を参照しつつ、実施形態に基づいて本発明を詳細に説明する。ただし、本発明はこれら実施形態に限定されるものではない。   FIG. 1 is a flowchart showing steps provided in the ground improvement method of the present invention. FIG. 2 is a diagram schematically showing a vertical section of the ground improvement structure of the present invention. Hereinafter, the present invention will be described in detail based on embodiments with reference to FIGS. 1 and 2 and appropriate drawings. However, the present invention is not limited to these embodiments.

図1に示すように、本発明の地盤改良工法は、下層形成工程S1、中間層形成工程S2、及び上層形成工程S3を備えており、これらの工程を経ることで、本発明の地盤改良用構造物10(以下、「マットレス10」ということがある。)を得ることができる。   As shown in FIG. 1, the ground improvement method of the present invention includes a lower layer forming step S1, an intermediate layer forming step S2, and an upper layer forming step S3. By passing through these steps, the ground improving method of the present invention is provided. A structure 10 (hereinafter sometimes referred to as “mattress 10”) can be obtained.

本発明の地盤改良工法に備えられる各工程について、以下に詳細に説明する。   Each step provided in the ground improvement method of the present invention will be described in detail below.

(下面形成工程S1)
工程S1は、図2に示すように、地盤100上、又は地盤100の表層部に形成した窪地の底面に、ジオテキスタイルからなる下層補強材1を敷設する工程である。
(Lower surface forming step S1)
Step S <b> 1 is a step of laying a lower layer reinforcing material 1 made of geotextile on the bottom surface of a depression formed on the ground 100 or on the surface layer portion of the ground 100, as shown in FIG. 2.

本発明に用いることができる下層補強材を構成するジオテキスタイルは特に限定されないが、図3に示すような、メッシュ開口部が略三角形となっており、3軸方向に特に強い引張強度を有している結果、全方向(360度)に強度を擬似的に有するトラス構造を有するジオテキスタイル(例えば、特開2004−44374号公報に開示されているジオグリット。)を用いることが好ましい(以下、この補強材のことを「トラス構造補強材」ということがある。)。なお、図3は、上層補強材及び下層補強材に用いることができるジオテキスタイルの一部を概略的に示す上面図である。   Although the geotextile constituting the lower layer reinforcing material that can be used in the present invention is not particularly limited, the mesh opening as shown in FIG. 3 has a substantially triangular shape and has a particularly strong tensile strength in the triaxial direction. As a result, it is preferable to use a geotextile having a truss structure that has a pseudo strength in all directions (360 degrees) (for example, Geogrit disclosed in JP-A-2004-44374). (This is sometimes called “truss structural reinforcement”). FIG. 3 is a top view schematically showing a part of the geotextile that can be used for the upper layer reinforcing material and the lower layer reinforcing material.

図3に示したジオテキスタイルの強度を図4に示す。図4において、同心円は強度を示しており、最外円の外側に記した数字は強度を有する方向(角度)を意味し、破線がジオテキスタイルの引張強度を示している。図4に示すように、図3に示したジオテキスタイルは3軸方向(0°−180°と60°−240°と120°−300°)に特に強い強度を有している結果、全方向(360度)に強度を擬似的に有している。   FIG. 4 shows the strength of the geotextile shown in FIG. In FIG. 4, concentric circles indicate strength, numbers on the outside of the outermost circle indicate directions (angles) having strength, and broken lines indicate the tensile strength of the geotextile. As shown in FIG. 4, the geotextile shown in FIG. 3 has a particularly strong strength in three axial directions (0 ° -180 °, 60 ° -240 °, and 120 ° -300 °). 360 degrees).

(中間層形成工程S2)
工程S2は、下層補強材1の上に、上部が開口した複数のセル21、21、…が連続して形成されているハニカム状立体補強材20を敷設し、該セル21、21、…に中詰材22を充填することによって、ハニカム状立体補強材20及び中詰材22を備える中間層2を形成する工程である。
(Intermediate layer forming step S2)
In step S2, a honeycomb-shaped three-dimensional reinforcing material 20 in which a plurality of cells 21, 21,... Having upper openings are continuously formed is laid on the lower layer reinforcing material 1, and the cells 21, 21,. In this process, the intermediate layer 2 including the honeycomb three-dimensional reinforcing material 20 and the intermediate filler 22 is formed by filling the intermediate filler 22.

まず、図5及び図6を用いてハニカム状立体補強材20の構成を説明する。図5は本発明に用いることができるハニカム状立体補強材20の展張前の姿勢を概略的に示す斜視図であり、図6は図5に示したハニカム状立体補強材20の展張時の姿勢を概略的に示す斜視図である。   First, the configuration of the honeycomb-shaped three-dimensional reinforcing material 20 will be described with reference to FIGS. 5 and 6. FIG. 5 is a perspective view schematically showing a posture before expansion of the honeycomb-shaped three-dimensional reinforcing material 20 that can be used in the present invention, and FIG. 6 is a posture of the honeycomb-shaped three-dimensional reinforcing material 20 shown in FIG. FIG.

ハニカム状立体補強材20は、上部が開口した複数のセル21、21、…、を備えており、該セル21、21、…、は、高分子材料からなる複数枚のストリップ材23が一定間隔で設けられた結合部位24にて結合されることで構成されている。このハニカム状立体補強材20は、運搬時などは図5に示すようにセル21、21、…、を閉じた姿勢とすることで運搬しやすくすることができ、敷設時には図5に示した矢印Vの方向に引いて展張することで、図6に示すように、セル21、21、…を開くことができる。   The honeycomb-shaped three-dimensional reinforcing material 20 includes a plurality of cells 21, 21,... Opened at the top, and the cells 21, 21,. It is comprised by couple | bonding in the coupling | bond part 24 provided in (4). The honeycomb three-dimensional reinforcing material 20 can be easily transported by placing the cells 21, 21,... In a closed position as shown in FIG. 5 during transportation, and the arrows shown in FIG. By pulling and expanding in the direction of V, the cells 21, 21,... Can be opened as shown in FIG.

図6に示すように、ハニカム状立体補強材20を展張した後、セル21、21、…に中詰材22を充填することで、中間層2が形成される。中詰材22としては、従来のマットレス工法に用いられているものを特に限定されることなく用いることができる。具体的には、砕石などの礫材料の他、砂や粘土などの現地発生土などを用いることができる。   As shown in FIG. 6, the intermediate layer 2 is formed by spreading the honeycomb three-dimensional reinforcing material 20 and then filling the cells 21, 21,. As the filling material 22, what is used for the conventional mattress construction method can be used, without being specifically limited. Specifically, in addition to gravel materials such as crushed stone, locally generated soil such as sand and clay can be used.

また、中間層2の排水性を向上させるという観点からは、ストリップ材23に適宜、複数の孔25を設けることが好ましい。   Further, from the viewpoint of improving the drainage of the intermediate layer 2, it is preferable to provide a plurality of holes 25 in the strip material 23 as appropriate.

ハニカム状立体補強材は展張することによって自立する。そのため、従来のマットレス工法を施工する際には必要であった枠体を設置することなく本発明の地盤改良工法を施工することができる。すなわち、本発明の地盤改良工法では、型枠を設置する作業及び撤去する作業が必要ない。また、ハニカム状立体補強材の各セルが中詰材を拘束することによって中間層が高強度を発揮する。そのため、本発明の地盤改良用構造物は、従来のマットレス状の構造物より薄くしても高強度を発揮することができる。   The honeycomb-shaped three-dimensional reinforcing material is self-supporting by spreading. Therefore, the ground improvement construction method of the present invention can be constructed without installing a frame that is necessary when the conventional mattress construction method is constructed. That is, in the ground improvement construction method of the present invention, the work of installing and removing the mold is not necessary. Further, each cell of the honeycomb-shaped three-dimensional reinforcing material restrains the filling material, so that the intermediate layer exhibits high strength. Therefore, the ground improvement structure of the present invention can exhibit high strength even if it is thinner than a conventional mattress-like structure.

なお、本発明に用いるハニカム状立体補強材は、使用状況に応じて適当な高さのものを選択できる。また、ハニカム状立体補強材を複数重ねて敷設することもできる。   In addition, the honeycomb-shaped three-dimensional reinforcing material used in the present invention can be selected to have an appropriate height according to the use situation. Also, a plurality of honeycomb-shaped three-dimensional reinforcing materials can be laid in piles.

(上面形成工程S3)
工程S3は、中間層2の上に、ジオテキスタイルからなる上層補強材3を敷設する工程である。上層補強材3としては、下層補強材1と同様のものを用いることができるため、説明を省略する。
(Upper surface forming step S3)
Step S <b> 3 is a step of laying an upper layer reinforcing material 3 made of geotextile on the intermediate layer 2. Since the same material as the lower layer reinforcing material 1 can be used as the upper layer reinforcing material 3, the description thereof is omitted.

(マットレス10)
上記した工程S1〜3を経ることで、マットレス10を得ることができる。マットレス10は、水平に敷設した際に水平面において全方向に強度を擬似的に有する下層補強材1及び上層補強材3を用いて、該下層補強材1及び上層補強材3の間に、ハニカム状立体補強材20及び中詰材22を有する中間層2を備える形態とすることができる。かかる形態とすることによって、マットレス10は水平に敷設した際に水平面において全方向に強い強度を有するため、上載荷重を高効率に分散させることができる。そのため、従来のマットレス状の構造物より薄く(高さを低く)しても高強度を発揮することができる。本発明の地盤改良用構造物では、例えば、厚さを30cm程度とすることもできる。
(Mattress 10)
The mattress 10 can be obtained through the steps S1 to S3 described above. The mattress 10 uses a lower layer reinforcing material 1 and an upper layer reinforcing material 3 having pseudo strength in all directions in a horizontal plane when laid horizontally, and is formed in a honeycomb shape between the lower layer reinforcing material 1 and the upper layer reinforcing material 3. The intermediate layer 2 having the three-dimensional reinforcing material 20 and the filling material 22 can be provided. By adopting such a configuration, the mattress 10 has a strong strength in all directions in the horizontal plane when laid horizontally, so that the overload can be dispersed with high efficiency. Therefore, even if it is thinner (lower in height) than a conventional mattress-like structure, high strength can be exhibited. In the ground improvement structure of the present invention, for example, the thickness can be about 30 cm.

上記したように、本発明の地盤改良用構造物は従来のマットレス状の構造物より薄くすることが可能であるため、本発明の地盤改良工法では、従来のマットレス工法よりも置き換え厚さを小さくすることができる。   As described above, since the ground improvement structure of the present invention can be made thinner than the conventional mattress-like structure, the ground improvement method of the present invention has a smaller replacement thickness than the conventional mattress method. can do.

マットレス10を水平に設置する場合、水平方向の面の大きさは、マットレス10の上に設置するものの大きさなどに応じて適宜選択可能であり、必要な高さは以下に説明する方法で決定することができる。   When the mattress 10 is installed horizontally, the size of the horizontal surface can be appropriately selected according to the size of the object to be installed on the mattress 10 and the necessary height is determined by the method described below. can do.

(マットレス10に必要な高さHの求め方)
マットレス10の高さは、中間層2の高さが支配的となる。そのため、中間層2に用いるハニカム状立体補強材20として適当な高さのものを選択することで、マットレス10の高さを適当な高さにすることができる。なお、ハニカム状立体補強材20を複数重ねて敷設する場合は、その合計の高さを適当な高さにすることによって、マットレス10の高さを適当な高さにすることができる。
(How to find the height H required for the mattress 10)
As for the height of the mattress 10, the height of the intermediate layer 2 is dominant. Therefore, the height of the mattress 10 can be set to an appropriate height by selecting an appropriate height of the honeycomb-shaped three-dimensional reinforcing material 20 used for the intermediate layer 2. When a plurality of honeycomb-shaped three-dimensional reinforcing materials 20 are laid in piles, the height of the mattress 10 can be set to an appropriate height by setting the total height to an appropriate height.

図7を参照しつつ、マットレス10に必要な高さHの求め方について説明する。図7は、マットレス10に加えられた上載荷重によるマットレス10内の応力分布を3次元的に示す概略図である。   A method of obtaining the height H necessary for the mattress 10 will be described with reference to FIG. FIG. 7 is a schematic diagram three-dimensionally showing the stress distribution in the mattress 10 due to the overload applied to the mattress 10.

本発明の地盤改良工法によって得られるマットレス10は、これまでに説明したように、水平に敷設した際に水平面において全方向に強度を有することができる。そのため、上載荷重を全方向に分散させることができる。したがって、図7に示すように、上載荷重による地盤改良用構造物10内の応力分布を、水平面に平行な面の2次元と高さの次元との3次元で考えることができる。   As described above, the mattress 10 obtained by the ground improvement method of the present invention can have strength in all directions on a horizontal plane when laid horizontally. Therefore, the loading load can be dispersed in all directions. Therefore, as shown in FIG. 7, the stress distribution in the ground improvement structure 10 due to the overload can be considered in three dimensions, that is, a two-dimensional plane parallel to a horizontal plane and a height dimension.

図7中の片矢印は応力が働く向きを示している。図7中に示した文字の意味を説明する。qは上載荷重、pはマットレス10の下面での分布圧、Bはマットレス10に上載荷重が加えられる部分を長方形と見なした場合の該部分の一辺の長さ、Lはマットレス10に上載荷重が加えられる部分を長方形と見なした場合の該部分のBに直交する方向の辺の長さ、qはマットレス10下の地盤100の許容支持力、Dfは地表からマットレス10の上面までの深さ、Hはマットレス10の高さ、Tは補強材の設計強度、zはマットレス10の上面からの深さ、a,bはそれぞれマットレス10の上面側のある点、c,dはそれぞれマットレス10の下面側のある点を意味する。 A single arrow in FIG. 7 indicates the direction in which the stress acts. The meaning of the characters shown in FIG. 7 will be described. q is an upper load, p is a distributed pressure on the lower surface of the mattress 10, B is a length of one side of the portion when the upper load is applied to the mattress 10 as a rectangle, and L is an upper load on the mattress 10. The length of the side in the direction perpendicular to B of the portion when the portion to which is added is regarded as a rectangle, q a is the allowable bearing force of the ground 100 under the mattress 10, and Df is from the ground surface to the upper surface of the mattress 10 depth, H is the mattress 10 height, T D design strength of the reinforcement, z is depth from the upper surface of the mattress 10, a, b is that each of the upper surface of the mattress 10, c, d, respectively It means a point on the lower surface side of the mattress 10.

荷重qは、マットレス10内を分散角αで分散するとし、高さHのマットレス10の下面での分布圧をpとして、マットレス10の荷重分散効果(以下、「マットレス効果」という。)をMとすれば、上載荷重は、分散後の荷重とマットレス効果Mの和となることから、下記式(2)が成立する。
qBL=p(B+2Htanα)(L+2Htanα)+M (2)
Assuming that the load q is dispersed within the mattress 10 at a dispersion angle α, the distribution pressure on the lower surface of the mattress 10 having a height H is p, and the load dispersion effect of the mattress 10 (hereinafter referred to as “mattress effect”) is M. if E, overburden load, since the sum of the load and the mattress effect M E after dispersion, the following formula (2) is satisfied.
qBL = p (B + 2Htanα) (L + 2Htanα) + M E (2)

マットレス10下の地盤100の許容支持力がqである時、マットレス10下面での分布圧pとマットレス10の自重γH(γは中間層2の単位体積質量。)の和がqに等しいとすれば、下記式(3)のようになる。
p+γH=q (3)
When the allowable bearing capacity of the ground 100 of the lower mattress 10 is q a, the sum of its own weight gamma 2 H distribution pressure p and mattress 10 of mattress 10 lower surface (gamma 2 the unit volume weight of the intermediate layer 2.) Is q if equal to a, so that the following equation (3).
p + γ 2 H = q a (3)

ただし、実際に本発明の地盤改良工法を行う現場において、地盤100を掘削し、地表面から(Df+H)の深さにマットレス10を設置する場合には、式(3)のγHの項は、近似的には考慮しない。これは、マットレス10の自重γHが、図8に示すように、マットレス10が埋設される位置の周辺の地盤100との押さえ盛土効果により働く力γH(γは地盤100の単位体積質量)と相殺されるという考えからである。このため、この補正として下記式(4)のように近似的値を採用することができる。 However, when actually excavating the ground 100 and installing the mattress 10 at a depth of (Df + H) from the ground surface at the site where the ground improvement method of the present invention is actually performed, the term of γ 2 H in the formula (3) Is not considered approximately. This is because the self-weight γ 2 H of the mattress 10 is a force γ 1 H (γ 1 is a unit of the ground 100) that acts due to the pressing embankment effect with the ground 100 around the position where the mattress 10 is embedded, as shown in FIG. This is because it is offset by (volume mass). For this reason, an approximate value as shown in the following formula (4) can be adopted as this correction.

p≒q (4) p≈q a (4)

ここで、分散角α=45゜とすれば、上記式(2)及び(4)から、上載荷重と分散後の荷重の差がマットレス効果Mであると考えて、マットレス効果ME1を下記(5)式によって得ることができる。
E1=qBL−q×(B+2H)(L+2H) (5)
Here, if the dispersion angle alpha = 45 °, following from the equation (2) and (4), consider the difference between the load after dispersion and overburden load is mattress effect M E, the mattress effect M E1 It can be obtained by the equation (5).
M E1 = qBL−q a × (B + 2H) (L + 2H) (5)

一方、マットレス効果Mは次のようにも考えることができる。マットレス10が荷重qによる曲げ応力を受けるとき、マットレス10の上部に圧縮力、下部に引張力が生じ、中間層2が圧縮力に抵抗し、補強材が引張力に抵抗すると考える。すなわち、中間層2のせん断抵抗力をS、補強材の引張抵抗力をTとしたとき、マットレス効果Mは、中間層のせん断力と補強材の張力との和であると考えて、マットレス効果ME2を下記(6)式より得ることができる。 On the other hand, the mattress effect M E can also be considered as follows. When the mattress 10 receives a bending stress due to the load q, it is considered that a compressive force is generated on the upper portion of the mattress 10 and a tensile force is generated on the lower portion, the intermediate layer 2 resists the compressive force, and the reinforcing material resists the tensile force. That is, the shear resistance of the intermediate layer 2 S, when the tensile resistance of the reinforcing material is T, the mattress effect M E is considered to be the sum of the tensile shear strength of the intermediate layer and the reinforcing material, mattress The effect M E2 can be obtained from the following equation (6).

E2=S+T (6) M E2 = S + T (6)

まず、補強材の引張抵抗Tについて考える。下層補強材の引張抵抗をTunder、とし、上層補強材の引張抵抗をTupperとすると、それぞれを次式で得られる。
under=2TD1×2 (7)
upper=2TD2×2 (8)
ここに、TD1は下層補強材の設計強度であり、TD2は上層補強材の設計強度である。
そして、各安全率を考慮した下層補強材の設計強度及び上層補強材の設計強度の和である補強材の設計強度Tは、
ΣT=Tunder+Tupper (9)
と表せる。もしくは、
T=ΣT×sinθ (10)
と表せる。
ここに、θは下層補強材もしくは上層補強材の許容伸びに対する変位角である。
なお、上記(7)及び(8)式は、下層補強材及び上層補強材にトラス構造補強材を用いた場合であり、2軸方向(水平面に対して平行な面内において、一方向と該方向に直交する方向)に強い強度を有するテンサーを用いた場合は、引張抵抗が1/2になる。
First, consider the tensile resistance T of the reinforcing material. When the tensile resistance of the lower layer reinforcing material is Tunder , and the tensile resistance of the upper layer reinforcing material is Tupper, each is obtained by the following equation.
T under = 2T D1 × 2 (7)
T upper = 2T D2 × 2 (8)
Here, T D1 is the design strength of the lower layer reinforcing material, and T D2 is the design strength of the upper layer reinforcing material.
The design strength T D of the reinforcing member is the sum of the design strength of the design strength and the upper reinforcement of the lower reinforcement Considering the safety factor,
ΣT D = T under + T upper (9)
It can be expressed. Or
T = ΣT D × sin θ (10)
It can be expressed.
Here, θ is a displacement angle with respect to the allowable elongation of the lower layer reinforcing material or the upper layer reinforcing material.
The above formulas (7) and (8) are for the case where a truss structure reinforcing material is used for the lower layer reinforcing material and the upper layer reinforcing material, and two directions (in a plane parallel to the horizontal plane) When a tensor having strong strength in the direction orthogonal to the direction is used, the tensile resistance is halved.

次に、中間層2のせん断抵抗Sは、荷重が分散するac、bdの面上に於て発揮されるとする。これらの面上では、荷重qによる地盤内鉛直応力は0と見なすことができ、鉛直方向応力σvは次式(11)で表される。
σv=γDf+γz (11)
Next, it is assumed that the shear resistance S of the intermediate layer 2 is exerted on the surfaces of ac and bd where the load is dispersed. On these surfaces, the vertical stress in the ground due to the load q can be regarded as 0, and the vertical stress σv is expressed by the following equation (11).
σv = γ 1 Df + γ 2 z (11)

ここで、簡単の為、ac、bd面上のせん断抵抗は、それらの面の中点を通る鉛直面上で評価できると仮定すれば、Sは次式(12)で算定される。
S=(2∫K・σv・tanφ・dz)×2 (12)
Here, for the sake of simplicity, assuming that the shear resistance on the ac and bd planes can be evaluated on a vertical plane passing through the midpoint of those planes, S is calculated by the following equation (12).
S = (2∫K · σv · tanφ 2 · dz) × 2 (12)

ここに、φは中間層2のせん断抵抗角であり、Kはマットレス10内の深さzの位置における土圧係数である。水平力は、マットレス10において曲げ変形が生じると上部で圧縮、下部で引張力となるため、深さによる変数となる。このため次の様に考える。 Here, φ 2 is the shear resistance angle of the intermediate layer 2, and K is the earth pressure coefficient at the position of the depth z in the mattress 10. The horizontal force becomes a variable depending on the depth because when the bending deformation occurs in the mattress 10, it is compressed at the upper part and is pulled at the lower part. For this reason, the following is considered.

マットレス10が曲げ応力を受けた時、マットレス10上部では圧縮力が生じるので、z=0においてはK=Kp(受働土圧係数)とする。また、マットレス10下部では引張力が生じるが、中間層2の変形を拘束している補強材が、その引張力に抵抗する為に、中間層2の間には引張力が生じるまでには至らず、z=HにおいてK=0とする。そして、この間ではKは深さとともに直線的に変化するとすれば、次式で表される。   When the mattress 10 is subjected to bending stress, a compressive force is generated at the upper part of the mattress 10, so that K = Kp (passive earth pressure coefficient) at z = 0. In addition, a tensile force is generated at the lower portion of the mattress 10, but the reinforcing material that restrains the deformation of the intermediate layer 2 resists the tensile force, so that a tensile force is not generated between the intermediate layers 2. First, K = 0 when z = H. If K changes linearly with depth during this period, it is expressed by the following equation.

K=(1−z/H)Kp
Z=0 → K=Kp
Z=H → K=0
Kp=tan(45゜+φ/2) (13)
K = (1-z / H) Kp
Z = 0 → K = Kp
Z = H → K = 0
Kp = tan 2 (45 ° + φ 2/2) (13 )

ここで、式(11)、(13)を式(12)に代入して積分すると、下記式(14)が得られる。   Here, when the equations (11) and (13) are substituted into the equation (12) and integrated, the following equation (14) is obtained.

Figure 2010255247
Figure 2010255247

従って、式(5)と(14)を考慮した式(6)を等置すると、マットレス10下層土の許容支持力qから定まるマットレス10の必要高さHが以下に示す二次方程式(16)の解として求められる。 Thus, equation (5) and (14) a When enumeration equation (6) in consideration, the quadratic equation should the height H of the mattress 10 which is determined from the allowable bearing capacity q a mattress 10 subsoil is shown below (16 ).

Figure 2010255247
Figure 2010255247

E1=ME2より、 From M E1 = M E2 ,

Figure 2010255247
Figure 2010255247

上記式(16)の解として得られるHの値は、マットレス10に必要な高さであり、マットレス10の高さはその値より高くてもよい。したがって、マットレス10の高さHは、下記式(1)によって与えられる。   The value of H obtained as a solution of the above equation (16) is a height necessary for the mattress 10, and the height of the mattress 10 may be higher than that value. Therefore, the height H of the mattress 10 is given by the following formula (1).

Figure 2010255247
ここに、
Figure 2010255247
here,

Figure 2010255247
である。
Figure 2010255247
It is.

なお、これまでの説明では、マットレス10の必要高さHを算出しているが、マットレス10の必要高さHを一定値とした場合には、下記式(18)によって、補強材強度Treqを逆算することもできる。 In the description so far, the required height H of the mattress 10 is calculated. However, when the required height H of the mattress 10 is set to a constant value, the reinforcing material strength T D is obtained by the following equation (18). req can also be calculated backward.

Figure 2010255247
Figure 2010255247

また、上記式(18)では上載荷重による応力分布を3次元的に考えた場合であるが、従来のように2次元的に考える場合には、下記式(19)になる。   Further, in the above formula (18), the stress distribution due to the overload is considered three-dimensionally, but when considered two-dimensionally as in the prior art, the following formula (19) is obtained.

Figure 2010255247
Figure 2010255247

以上、現時点において最も実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は本願明細書中に開示された実施形態に限定されるものではなく、特許請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う地盤改良工法、及び地盤改良用構造物もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   Although the present invention has been described in connection with the most practical and preferred embodiments at the present time, the present invention is not limited to the embodiments disclosed herein, The present invention can be changed as appropriate without departing from the scope or spirit of the invention that can be read from the claims and the entire specification, and the ground improvement method and the structure for ground improvement accompanying such changes are also within the technical scope of the present invention. It must be understood as included.

1 下層補強材
2 中間層
3 上層補強材
10 地盤改良用構造物(マットレス)
20 ハニカム状立体補強材
21 セル
22 中詰材
23 ストリップ材
24 結合部位
25 孔
100 地盤
DESCRIPTION OF SYMBOLS 1 Lower layer reinforcement material 2 Middle layer 3 Upper layer reinforcement material 10 Structure for ground improvement (mattress)
20 Honeycomb three-dimensional reinforcing material 21 Cell 22 Filling material 23 Strip material 24 Bonding site 25 Hole 100 Ground

Claims (5)

ジオテキスタイルからなる下層補強材を敷設する、下層形成工程と、
前記下層補強材の上に、上部が開口した複数のセルが連続して形成されているハニカム状立体補強材を敷設するとともに、前記セルに中詰材を充填して中間層を形成する、中間層形成工程と、
前記中間層の上に、ジオテキスタイルからなる上層補強材を敷設する、上層形成工程と、
を備える、前記下層補強材、前記中間層、及び前記上層補強材を有する地盤改良用構造物を地盤の表層もしくは基層部に敷設する、地盤改良工法。
A lower layer forming step of laying a lower layer reinforcing material made of geotextile,
On the lower layer reinforcing material, a honeycomb-shaped three-dimensional reinforcing material in which a plurality of cells having upper openings are continuously formed is laid, and an intermediate layer is formed by filling the cells with a filling material. A layer forming step;
An upper layer forming step of laying an upper layer reinforcing material made of geotextile on the intermediate layer;
A ground improvement construction method comprising laying a ground improvement structure having the lower layer reinforcing material, the intermediate layer, and the upper layer reinforcing material on a surface layer or a base layer portion of the ground.
前記上層補強材および前記下層補強材が、3軸方向に特に強い引張強度を有するジオテキスタイルからなる、請求項1に記載の地盤改良工法。 The ground improvement construction method according to claim 1, wherein the upper layer reinforcing material and the lower layer reinforcing material are made of a geotextile having a particularly strong tensile strength in a triaxial direction. 前記地盤改良用構造物の高さHを、下記式(1)によって決定する、請求項1または2に記載の地盤改良工法。
Figure 2010255247
ここに、
Figure 2010255247
である。
(ただし、q:地盤改良用構造物下の地盤の許容支持力、γ:中間層の単位体積質量、Kp:受働土圧係数、φ:中間層のせん断抵抗角、γ:地盤改良用構造物が敷設される地盤の単位体積質量、Df:地表から地盤改良用構造物の上面までの深さ、B:地盤改良用構造物に上載荷重が加えられる部分を長方形と見なした場合の該部分の一辺の長さ、L:地盤改良用構造物に上載荷重が加えられる部分を長方形と見なした場合の該部分のBに直交す方向の辺の長さ、T:補強材の設計強度、θ:補強材の許容伸びに対する変位角、q:上載荷重)
The ground improvement construction method according to claim 1 or 2, wherein the height H of the structure for ground improvement is determined by the following formula (1).
Figure 2010255247
here,
Figure 2010255247
It is.
(Where q a : allowable bearing capacity of the ground under the ground improvement structure, γ 2 : unit volume mass of the intermediate layer, Kp: passive earth pressure coefficient, φ 2 : shear resistance angle of the intermediate layer, γ 1 : ground Unit volume mass of the ground where the improvement structure is laid, Df: Depth from the ground surface to the top surface of the ground improvement structure, B: The portion where the overload is applied to the ground improvement structure was considered as a rectangle L: length of one side of the portion, L: length of a side in a direction perpendicular to B of the portion when a portion to which an overload is applied to the ground improvement structure is regarded as a rectangle, T D : reinforcement Design strength of material, θ: displacement angle relative to allowable elongation of reinforcing material, q: load on top)
ジオテキスタイルからなる下層補強材と、
上部が開口した複数のセルが連続して形成されているハニカム状立体補強材、及び該セルに充填された中詰材を有する中間層と、
ジオテキスタイルからなる上層補強材と、
がその順で積層されている、地盤改良用構造物。
A lower layer reinforcement made of geotextile,
A honeycomb-shaped three-dimensional reinforcing material in which a plurality of cells having an open top are continuously formed, and an intermediate layer having a filling material filled in the cells;
An upper layer reinforcement made of geotextile,
A structure for ground improvement, stacked in that order.
前記上層補強材および前記下層補強材が、3軸方向に特に強い引張強度を有するジオテキスタイルからなる、請求項4に記載の地盤改良用構造物。 The structure for ground improvement according to claim 4, wherein the upper layer reinforcing material and the lower layer reinforcing material are made of a geotextile having particularly strong tensile strength in three axial directions.
JP2009105361A 2009-04-23 2009-04-23 Ground improvement method and structure for ground improvement Active JP5254871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105361A JP5254871B2 (en) 2009-04-23 2009-04-23 Ground improvement method and structure for ground improvement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105361A JP5254871B2 (en) 2009-04-23 2009-04-23 Ground improvement method and structure for ground improvement

Publications (2)

Publication Number Publication Date
JP2010255247A true JP2010255247A (en) 2010-11-11
JP5254871B2 JP5254871B2 (en) 2013-08-07

Family

ID=43316453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105361A Active JP5254871B2 (en) 2009-04-23 2009-04-23 Ground improvement method and structure for ground improvement

Country Status (1)

Country Link
JP (1) JP5254871B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661962B1 (en) * 2014-06-02 2015-01-28 中日本ハイウェイ・メンテナンス北陸株式会社 Slope structure for road step
JP2016532798A (en) * 2013-09-30 2016-10-20 ジオテック テクノロジーズ リミテッド Pavement system with geocell and geogrid
JP6353176B1 (en) * 2018-02-02 2018-07-04 東京インキ株式会社 Design method and construction method of honeycomb structure mattress construction method
JP2018131743A (en) * 2017-02-13 2018-08-23 岡三リビック株式会社 Reinforcement structure for box culvert foundation and construction method thereof, and design verification system
JP2019173394A (en) * 2018-03-28 2019-10-10 公益財団法人鉄道総合技術研究所 Honeycomb structure
JP2020197018A (en) * 2019-05-31 2020-12-10 前田工繊株式会社 Improved base structure, and construction method of improved base
US11129422B2 (en) 2016-07-18 2021-09-28 The H.D. Lee Company, Inc. Body-enhancing garment and garment construction
USD945121S1 (en) 2016-01-29 2022-03-08 The H.D. Lee Company, Inc. Pant with anatomy enhancing pockets
US11344071B2 (en) 2013-10-18 2022-05-31 The H.D. Lee Company, Inc. Anatomy shading for garments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181750A (en) * 1997-12-24 1999-07-06 Ando Kensetsu Kk Ground improving method for preventing liquefaction, leakage and run-off preventing method in embankment work, earth retaining method of banking, and ground improving method for preventing land slide
JP2006274714A (en) * 2005-03-30 2006-10-12 Shimizu Corp Ground construction method
JP2008248655A (en) * 2007-03-30 2008-10-16 Tokyo Printing Ink Mfg Co Ltd Support tool for constructing honeycomb structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181750A (en) * 1997-12-24 1999-07-06 Ando Kensetsu Kk Ground improving method for preventing liquefaction, leakage and run-off preventing method in embankment work, earth retaining method of banking, and ground improving method for preventing land slide
JP2006274714A (en) * 2005-03-30 2006-10-12 Shimizu Corp Ground construction method
JP2008248655A (en) * 2007-03-30 2008-10-16 Tokyo Printing Ink Mfg Co Ltd Support tool for constructing honeycomb structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532798A (en) * 2013-09-30 2016-10-20 ジオテック テクノロジーズ リミテッド Pavement system with geocell and geogrid
US11344071B2 (en) 2013-10-18 2022-05-31 The H.D. Lee Company, Inc. Anatomy shading for garments
JP5661962B1 (en) * 2014-06-02 2015-01-28 中日本ハイウェイ・メンテナンス北陸株式会社 Slope structure for road step
USD945121S1 (en) 2016-01-29 2022-03-08 The H.D. Lee Company, Inc. Pant with anatomy enhancing pockets
US11129422B2 (en) 2016-07-18 2021-09-28 The H.D. Lee Company, Inc. Body-enhancing garment and garment construction
JP2018131743A (en) * 2017-02-13 2018-08-23 岡三リビック株式会社 Reinforcement structure for box culvert foundation and construction method thereof, and design verification system
JP6353176B1 (en) * 2018-02-02 2018-07-04 東京インキ株式会社 Design method and construction method of honeycomb structure mattress construction method
JP2019132094A (en) * 2018-02-02 2019-08-08 東京インキ株式会社 Design method and construction method for honeycomb structural body mattress method
JP2019173394A (en) * 2018-03-28 2019-10-10 公益財団法人鉄道総合技術研究所 Honeycomb structure
JP7016750B2 (en) 2018-03-28 2022-02-07 公益財団法人鉄道総合技術研究所 Honeycomb structure
JP2020197018A (en) * 2019-05-31 2020-12-10 前田工繊株式会社 Improved base structure, and construction method of improved base
JP7233306B2 (en) 2019-05-31 2023-03-06 前田工繊株式会社 Structure of improved foundation and construction method of improved foundation

Also Published As

Publication number Publication date
JP5254871B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5254871B2 (en) Ground improvement method and structure for ground improvement
JP5516975B2 (en) Foundation structure
JP2010236249A (en) Foundation structure of building on soft ground
JP5984085B2 (en) Foundation structure and foundation construction method
JP5668971B2 (en) Construction method for underground structures
JP2016102313A (en) Retaining wall structure and construction method thereof
JP4906931B2 (en) Civil engineering block
JP5309378B2 (en) Self-supporting retaining wall
JP6238088B2 (en) Improved ground and ground improvement method
JP2013011099A (en) Method of laying honeycomb three-dimensional solid cell structure fixing plane material
RU2645032C1 (en) Method of slope strengthening
JP5896351B2 (en) Foundation structure and foundation construction method
KR101146757B1 (en) Stackable retaining walls and the construction method using the same
JP2005155145A (en) Construction method for reinforced earth retaining wall and structure of the reinforced earth retaining wall
JP2014029100A (en) Retaining wall structure
JP2008308844A (en) Reinforced soil wall structure
KR101125173B1 (en) Pile for reducing negative skin friction, foundation structure using the same and construction method thereof
JP2005314926A (en) Foundation structure of building and its construction method
JP2008284551A (en) Water-barrier structure and water-barrier construction for maritime disposal station
JP5773840B2 (en) Installation method of decorative panel on reinforced soil wall
JP2012046908A (en) Bank protection retaining wall structure
JP2006037342A (en) Lightweight landfill and construction method therefor
JP5948665B2 (en) Gravity pier structure
JP5945167B2 (en) Basic construction method, photovoltaic panel construction method and building construction method
JP2007197954A (en) Earth retaining wall construction method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5254871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250