JP2019131858A - Aluminum alloy fin material for heat exchanger excellent in strength, conductivity, corrosion resistance, and brazability, and heat exchanger - Google Patents

Aluminum alloy fin material for heat exchanger excellent in strength, conductivity, corrosion resistance, and brazability, and heat exchanger Download PDF

Info

Publication number
JP2019131858A
JP2019131858A JP2018014557A JP2018014557A JP2019131858A JP 2019131858 A JP2019131858 A JP 2019131858A JP 2018014557 A JP2018014557 A JP 2018014557A JP 2018014557 A JP2018014557 A JP 2018014557A JP 2019131858 A JP2019131858 A JP 2019131858A
Authority
JP
Japan
Prior art keywords
brazing
aluminum alloy
strength
conductivity
fin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018014557A
Other languages
Japanese (ja)
Other versions
JP7107690B2 (en
Inventor
茂紀 中西
Shigenori Nakanishi
茂紀 中西
祐介 今井
Yusuke Imai
祐介 今井
岩尾 祥平
Shohei Iwao
祥平 岩尾
篤 佐治
Atsushi Saji
篤 佐治
貴弘 篠田
Takahiro Shinoda
貴弘 篠田
正信 飯尾
Masanobu Iio
正信 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Denso Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2018014557A priority Critical patent/JP7107690B2/en
Priority to US16/965,134 priority patent/US20210040586A1/en
Priority to PCT/JP2018/046965 priority patent/WO2019150822A1/en
Priority to DE112018006989.3T priority patent/DE112018006989T5/en
Priority to CN201880088121.2A priority patent/CN111630196A/en
Publication of JP2019131858A publication Critical patent/JP2019131858A/en
Application granted granted Critical
Publication of JP7107690B2 publication Critical patent/JP7107690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Abstract

To provide an aluminum alloy fin material for heat exchanger excellent in strength, conductivity, corrosion resistance, and brazability without brazing defect due to fin deformation during brazing, and a heat exchanger.SOLUTION: An aluminum alloy fin material for heat exchanger consists of an aluminum alloy having a composition containing Mn:1.2 to 2.0%, Si:0.5 to 1.3%, Cu:0.001 to less than 0.05%, Fe:0.1 to 0.5%, Zn:0.5 to 2.5% and the balance Al with inevitable impurities, and having tensile strength of 140 MPa or more, 0.2% bearing force of 50 MPa or more, conductivity of 42%IACS or more, electrical potential of -800 mV to -710 mV, and corrosion weight loss after 16 weeks in a neutral saline spraying test of 120 mg/dmor less at an ordinary temperature after brazing heating.SELECTED DRAWING: None

Description

本発明は、強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材および熱交換器に関する。   The present invention relates to an aluminum alloy fin material for a heat exchanger and a heat exchanger that are excellent in strength, conductivity, corrosion resistance, and brazing properties.

自動車用の熱交換器用アルミニウム合金フィン材では、車載時の繰り返しの振動に耐えうる強度のほか、高い熱伝導性や耐食性が要求される。さらに、ろう付接合時においてフィン材の座屈によって接合不良が生じないろう付性が求められている。そこで、強度、導電性、耐食性、およびろう付性に優れる熱交換器用フィン材の研究が進められている。   Aluminum alloy fin materials for automotive heat exchangers are required to have high thermal conductivity and corrosion resistance in addition to the strength to withstand repeated vibrations when mounted on a vehicle. Furthermore, there is a demand for brazing that does not cause poor bonding due to the buckling of the fin material during brazing. Therefore, research on fin materials for heat exchangers that are excellent in strength, electrical conductivity, corrosion resistance, and brazing is underway.

例えば、特許文献1では、Fe含有量が0.5%以上の組成においても、低コストで、しかも優れたろう付け性と耐サグ性を実現することを目的として、質量%で、Si:0.6〜1.6%、Fe:0.5〜1.2%、Mn:1.2〜2.6%、Zn:0.4〜3.0%、Cu:0.2%未満を含み、残部不可避的不純物とAlからなり、不純物としてのMgを0.05%未満に限定し、ろう付け加熱前の抗張力が160〜260MPaであり、ろう付け加熱前の抗張力と0.2%耐力との差が10〜50MPaであることを特徴とするフィン材が提案されている。   For example, in Patent Document 1, even in a composition having an Fe content of 0.5% or more, Si: 0.005% by mass is intended to realize low brazing and sag resistance at low cost. 6 to 1.6%, Fe: 0.5 to 1.2%, Mn: 1.2 to 2.6%, Zn: 0.4 to 3.0%, Cu: less than 0.2%, The balance is inevitable impurities and Al, Mg as impurities is limited to less than 0.05%, the tensile strength before brazing heating is 160 to 260 MPa, the tensile strength before brazing heating and 0.2% proof stress A fin material characterized by a difference of 10 to 50 MPa has been proposed.

特許文献2では、Si:0.5〜1.5質量%、Fe:1.0質量パーセントを越え2.0質量%以下、Mn:0.4〜1.0質量%、Zn:0.4〜1.0質量%を含有し、残部がAl及び不可避的不純物からなり、ろう付加熱前の金属組織として第2層粒子の大きさと分布密度を規定し、ろう付加熱前の引張強さとろう付加熱後の引張強さ、フィン材の板厚を規定したコルゲート成形性およびろう付加熱後の強度に優れた熱交換器用アルミニウム合金フィン材が提案されている。   In Patent Document 2, Si: 0.5 to 1.5 mass%, Fe: more than 1.0 mass percent to 2.0 mass% or less, Mn: 0.4 to 1.0 mass%, Zn: 0.4 -1.0% by mass, the balance being Al and inevitable impurities, defining the size and distribution density of the second layer particles as a metal structure before brazing addition heat, and the tensile strength before brazing addition heat There has been proposed an aluminum alloy fin material for a heat exchanger that has excellent tensile strength after heat addition, corrugated formability that defines the plate thickness of the fin material, and strength after heat addition to brazing.

特許文献3では、Si:0.7〜1.4wt%、Fe:0.5〜1.4wt%、Mn:0.7〜1.4wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部不可避的不純物とAlからなる組成を有し、ろう付後の抗張力と耐力、ろう付け後の再結晶粒径、且つろう付け後の導電率を規定した、高強度、伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性に優れた熱交換器用アルミニウム合金フィン材が提案されている。   Patent Document 3 includes Si: 0.7 to 1.4 wt%, Fe: 0.5 to 1.4 wt%, Mn: 0.7 to 1.4 wt%, Zn: 0.5 to 2.5 wt% Further, Mg as an impurity is limited to 0.05 wt% or less, and the balance is inevitable impurities and Al, and the tensile strength and proof strength after brazing, the recrystallized grain size after brazing, and after brazing An aluminum alloy fin material for heat exchangers having high electrical conductivity, excellent heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect and self-corrosion resistance has been proposed.

特許文献4では、強度、導電性、ろう付性に優れる熱交換器用アルミニウム合金フィン材として、質量%で、Mn:1.2〜2.0%、Cu:0.05〜0.20%、Si:0.5〜1.30%、Fe:0.05〜0.5%、Zn:1.0〜3.0%を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなり、ろう付加熱後において、引張強さが140MPa以上、耐力が50MPa以上、導電率が42%IACS以上、平均結晶粒径が150μm以上700μm未満、電位が−800mV以上−720mV以下であるフィン材が記載されている。   In Patent Document 4, as an aluminum alloy fin material for a heat exchanger that is excellent in strength, conductivity, and brazing, it is expressed by mass%, Mn: 1.2 to 2.0%, Cu: 0.05 to 0.20%, From an aluminum alloy containing Si: 0.5 to 1.30%, Fe: 0.05 to 0.5%, Zn: 1.0 to 3.0%, and the balance of Al and inevitable impurities A fin material having a tensile strength of 140 MPa or more, a proof stress of 50 MPa or more, an electrical conductivity of 42% IACS or more, an average crystal grain size of 150 μm or more and less than 700 μm, and a potential of −800 mV or more and −720 mV or less after brazing heat. Is described.

特開2015−218343号公報Japanese Patent Laying-Open No. 2015-218343 特開2015−14034号公報Japanese Patent Laying-Open No. 2015-14034 特開2012−211393号公報JP 2012-212393 A 特開2016−121393号公報Japanese Patent Laying-Open No. 2006-121393

しかし、生産性の向上のために、さらに、ろう付時間を短縮すると、Al‐Siろうが熱交換器全体に行きわたり難いことやフィンが他部材からの熱膨張に伴う変形を受けて形状を維持できなくなるなどの理由でフィンと各部材間で接合不良の割合が多くなる。また、熱交換器の軽量化を行った場合でも必要な剛性を得るためには、ろう付後のフィン材の強度が必要で、放熱性能を十分に発揮するためには、フィンの腐食による穴あきや脱落が無い様にするための自己耐食性も求められる。   However, if the brazing time is further shortened in order to improve productivity, the shape of Al-Si brazing is difficult to reach the entire heat exchanger and the fins undergo deformation due to thermal expansion from other members. The ratio of poor bonding between the fin and each member increases due to the fact that it cannot be maintained. In addition, in order to obtain the required rigidity even when the heat exchanger is reduced in weight, the strength of the fin material after brazing is necessary. Self-corrosion resistance is also required so that there is no gap or dropout.

本発明は上記課題を背景としてなされたものであり、強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材および熱交換器を提供することを目的とする。   The present invention has been made against the background of the above problems, and an object thereof is to provide an aluminum alloy fin material for a heat exchanger and a heat exchanger that are excellent in strength, conductivity, corrosion resistance, and brazing.

本願発明では、合金組成と、ろう付途中の軟化過程での温度と強度に注目することで、従来よりも接合不良が少なく高いろう付性を持つフィンを得ることができる。
すなわち、本発明の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材のうち、第1の形態は、質量%で、Mn:1.2〜2.0%、Si:0.5〜1.3%、Cu:0.001〜0.05%未満、Fe:0.1〜0.5%、Zn:0.5〜2.5%を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなり、
ろう付加熱後において、常温で、引張強さが140MPa以上、0.2%耐力が50MPa以上、導電率が42%IACS以上、電位が−800mV以上−710mV以下、中性塩水噴霧試験で16週間後の腐食減量が120mg/dm以下であることを特徴とする。
In the present invention, by paying attention to the alloy composition and the temperature and strength in the softening process during brazing, it is possible to obtain a fin with less brazing and higher brazing properties than in the past.
That is, among the aluminum alloy fin materials for heat exchangers excellent in strength, conductivity, corrosion resistance, and brazing properties of the present invention, the first form is mass%, Mn: 1.2 to 2.0%, Si : 0.5 to 1.3%, Cu: 0.001 to less than 0.05%, Fe: 0.1 to 0.5%, Zn: 0.5 to 2.5%, the balance being Al And an aluminum alloy having a composition consisting of inevitable impurities,
After brazing heat, at normal temperature, tensile strength is 140 MPa or more, 0.2% proof stress is 50 MPa or more, conductivity is 42% IACS or more, potential is −800 mV or more and −710 mV or less, neutral salt spray test for 16 weeks The subsequent weight loss by corrosion is 120 mg / dm 2 or less.

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、前記アルミニウム合金が、さらに、質量%で、Ti:0.01〜0.20%、Cr:0.01〜0.20%、Mg:0.01〜0.20%、Zr:0.01〜0.20%のうち、1種または2種以上を含有することを特徴とする。   The invention of the aluminum alloy fin material for heat exchangers having excellent strength, electrical conductivity, corrosion resistance, and brazing properties in another form is the above-described form. In the above form, the aluminum alloy further contains, in mass%, Ti: 0.01-0. 20%, Cr: 0.01 to 0.20%, Mg: 0.01 to 0.20%, Zr: 0.01 to 0.20%, containing one or more. Features.

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、前記アルミニウム合金が、関係式(i)… 2.1≦[Mn含有量(質量%)]+[Si含有量(質量%)]+7.5*[Cu含有量(質量%)]≦3.4、かつ、関係式(ii)… [Zn含有量(質量%)]−18.8*[Cu含有量(質量%)]≧0.2を満たす組成を有することを特徴とする。   In another aspect of the invention of the aluminum alloy fin material for heat exchangers excellent in strength, conductivity, corrosion resistance, and brazing property, the aluminum alloy has a relational expression (i) ... 2.1 ≦ [Mn content Amount (mass%)] + [Si content (mass%)] + 7.5 * [Cu content (mass%)] ≦ 3.4 and relational expression (ii) ... [Zn content (mass%) )]-18.8 * [Cu content (% by mass)] ≧ 0.2.

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、ろう付加熱後の平均結晶粒径が100μm以上2000μm以下であることを特徴とする。   The invention of the aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance, and brazing properties in another form is that the average crystal grain size after brazing addition heat is 100 μm or more and 2000 μm or less in the above form. Features.

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、400〜550℃の範囲における各温度で0.2%耐力が15〜40MPaの範囲内であることを特徴とする。   The invention of the aluminum alloy fin material for heat exchangers excellent in the strength, conductivity, corrosion resistance, and brazing properties of other forms is the above-mentioned form, in which the 0.2% proof stress is 15 to 15 at each temperature in the range of 400 to 550 ° C. It is within the range of 40 MPa.

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、ろう付加熱前において、円相当径で0.01〜0.10μmのAl−Mn系、Al−Mn−Si系、Al−Fe−Si系の第二相粒子の個数密度が1.0×10個/mm以上であり、金属組織が繊維状な結晶粒組織であることを特徴とする。 The invention of the aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance, and brazing properties in other forms is the above-described form. The number density of Al—Mn, Al—Mn—Si, and Al—Fe—Si second phase particles is 1.0 × 10 5 particles / mm 2 or more, and the crystal structure is a fibrous metal structure It is characterized by being.

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、ろう付加熱後において、円相当径で1.0μm以上のAl−Fe系の晶出物の個数密度が1.0×10個/mm以下で、円相当径が0.01〜0.10μmのAl−Mn系、Al−Mn−Si系およびAl−Fe−Si系の第二相粒子が1.0×10個/mm以上、円相当径で0.05μm以上のAl−Cu系の第二相粒子が1.0×10個/mm以下で存在することを特徴とする。 The invention of the aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance, and brazing properties in another form is the Al-Fe having an equivalent circle diameter of 1.0 μm or more after the brazing addition heat in the above form. Al-Mn-based, Al-Mn-Si-based, and Al-Fe- having a number density of the crystallization system of 1.0 × 10 4 pieces / mm 2 or less and an equivalent circle diameter of 0.01 to 0.10 μm. Si-type second phase particles are 1.0 × 10 4 particles / mm 2 or more, and Al—Cu-based second phase particles having an equivalent circle diameter of 0.05 μm or more are 1.0 × 10 3 particles / mm 2 or less. It exists in.

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、板厚が100μm以下であることを特徴とする。   Another aspect of the invention of the aluminum alloy fin material for heat exchangers excellent in strength, conductivity, corrosion resistance, and brazing property is characterized in that the plate thickness is 100 μm or less.

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、腐食電流密度が0.05mA/cm以下であることを特徴とする。 The invention of the aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance, and brazing properties in another form is characterized in that, in the form, the corrosion current density is 0.05 mA / cm 2 or less. .

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、ろう付加熱前において、常温の引張強さが250MPa以下、常温の0.2%耐力が230MPa以下であることを特徴とする。   The invention of the aluminum alloy fin material for heat exchangers having excellent strength, electrical conductivity, corrosion resistance, and brazing properties in another form is the above-described form, in which the tensile strength at room temperature is 250 MPa or less and 0 .2% proof stress is 230 MPa or less.

他の形態の強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態において、ろう付前において、再結晶完了温度が450℃以下であることを特徴とする。   The invention of the aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance, and brazing properties in another form is characterized in that, in the above form, the recrystallization completion temperature is 450 ° C. or less before brazing. And

本発明の熱交換器のうち、第1の形態は、本発明の熱交換器用アルミニウム合金フィン材を備えることを特徴とする。   Among the heat exchangers of the present invention, the first mode is characterized by including the aluminum alloy fin material for heat exchangers of the present invention.

以下、本発明における化学組成や機械的特性等の限定理由について説明する。なお、化学組成はいずれも質量%である。   Hereinafter, the reasons for limitation of the chemical composition and mechanical properties in the present invention will be described. In addition, all chemical composition is the mass%.

・Mn:1.2〜2.0%
MnはAl−Mn−Si系金属間化合物を析出させ、分散強化によるろう付後の強度を得るために添加する。Mnが1.2%未満ではAl−Mn−Si系化合物による分散強化の効果が小さく、所望のろう付後強度を得られない。また、Mnが2.0%を超えて添加されると、鋳塊の鋳造時にAl−Mn系の巨大金属間化合物が晶出し、圧延時破断に至る懸念がある。また、マトリクスへの固溶度が大きくなり固相線温度(融点)が低下し、ろう付時にフィンが溶融してしまう場合があり、好ましくない。このため、Mnの含有量を上記範囲とする。
なお、同様の理由で、Mn含有量の下限を1.4%、上限を1.8%とするのが好ましい。
・ Mn: 1.2-2.0%
Mn is added to precipitate Al—Mn—Si intermetallic compounds and obtain strength after brazing by dispersion strengthening. If Mn is less than 1.2%, the effect of dispersion strengthening by the Al—Mn—Si compound is small, and the desired strength after brazing cannot be obtained. Moreover, when Mn is added exceeding 2.0%, there is a concern that an Al—Mn-based giant intermetallic compound is crystallized at the time of casting the ingot and breaks during rolling. Further, the solid solubility in the matrix increases, the solidus temperature (melting point) decreases, and the fins may melt during brazing, which is not preferable. For this reason, content of Mn is made into the said range.
For the same reason, it is preferable that the lower limit of the Mn content is 1.4% and the upper limit is 1.8%.

・Si:0.5〜1.3%
Siは、Al−Mn−Si系金属間化合物を析出させ、分散強化によってろう付後の強度を得るために添加する。Si添加が0.5%未満ではAl−Mn−Si系化合物による分散強化の効果が小さく、所望のろう付後強度が得られない。また、1.3%を超えてSiを添加すると、マトリクスへの固溶度が大きくなり、固相線温度(融点)が低下し、ろう付時にフィンが溶融してしまう場合があり、好ましくない。このため、Siの含有量を上記範囲とする。
なお、同様の理由で、Si含有量の下限を0.7%、上限を1.2%とするのが望ましい。
・ Si: 0.5 to 1.3%
Si is added to precipitate an Al—Mn—Si intermetallic compound and obtain strength after brazing by dispersion strengthening. If Si addition is less than 0.5%, the effect of dispersion strengthening by the Al—Mn—Si compound is small, and the desired strength after brazing cannot be obtained. If Si is added in excess of 1.3%, the solid solubility in the matrix increases, the solidus temperature (melting point) decreases, and the fins may melt during brazing, which is not preferable. . For this reason, content of Si is made into the said range.
For the same reason, it is desirable that the lower limit of Si content is 0.7% and the upper limit is 1.2%.

・Cu:0.001〜0.05%未満
Cuは、Alマトリクスへ固溶するか、Al−Cu系化合物を生成して存在する。Cuが0.001%未満であると、固溶強化によるろう付後の強度への寄与が小さい。一方、Cuが0.05%以上では、マトリクスよりも電位が貴なθ−CuAl安定相やθ'−CuAl準安定相が化合物として存在し、腐食の起点となり耐食性を低下させるため好ましくない。このため、Cuの含有量を上記範囲とする。
なお、同様の理由で、Cu含有量の下限を0.003%、上限を0.045%とするのが望ましい。
Cu: 0.001 to less than 0.05% Cu is present as a solid solution in an Al matrix or by generating an Al-Cu compound. If Cu is less than 0.001%, the contribution to the strength after brazing by solid solution strengthening is small. On the other hand, if Cu is 0.05% or more, a θ-CuAl 2 stable phase or θ′-CuAl 2 metastable phase having a higher potential than the matrix is present as a compound, which becomes a starting point of corrosion and lowers corrosion resistance. . For this reason, content of Cu is made into the said range.
For the same reason, it is desirable that the lower limit of the Cu content is 0.003% and the upper limit is 0.045%.

・Fe:0.1〜0.5%
Feは、Al−Fe系およびAl−Fe−Si系金属間化合物を晶出、析出し、分散強化によるろう付後の強度を得るために添加する。Feが0.1%未満ではその効果が小さく、所望のろう付後強度が得られない。また高純度地金の使用に限定されるためコストアップとなるため好ましくない。一方、Feが0.5%超では、Al−Fe系、Al−Fe−Si系化合物が腐食の起点として作用し耐食性が低下するため、好ましくない。このため、Feの含有量を上記範囲とする。
なお、同様の理由で、Fe含有量の下限を0.15%、上限を0.4%とするのが望ましい。
・ Fe: 0.1-0.5%
Fe is added to obtain Al-Fe-based and Al-Fe-Si-based intermetallic compounds for crystallization and precipitation, and to obtain strength after brazing by dispersion strengthening. If Fe is less than 0.1%, the effect is small, and the desired strength after brazing cannot be obtained. Moreover, since it is limited to the use of high-purity bullion, it is not preferable because it increases costs. On the other hand, if the Fe content exceeds 0.5%, an Al—Fe-based or Al—Fe—Si-based compound acts as a starting point of corrosion and corrosion resistance is lowered, which is not preferable. For this reason, content of Fe is made into the said range.
For the same reason, it is desirable that the lower limit of the Fe content is 0.15% and the upper limit is 0.4%.

・Zn:0.5〜2.5%
Znは、Alマトリクス中に固溶して電位を卑にさせる作用があり、フィンの犠牲陽極効果を得るために添加する。ただし、0.5%未満では電位を卑にさせる作用が小さく、所望の犠牲陽極効果を得られず、組み合わされるチューブの侵食深さが大きくなる。一方、2.5%を超えると電位が過剰に卑となり、フィンの自己耐食性が低下するため好ましくない。このため、Znの含有量を上記範囲とする。
なお、同様の理由で、Zn含有量の下限を0.7%、上限を2.2%とするのが望ましい。
Zn: 0.5-2.5%
Zn has the effect of dissolving in the Al matrix and lowering the potential, and is added to obtain the sacrificial anode effect of the fins. However, if it is less than 0.5%, the action of lowering the potential is small, the desired sacrificial anode effect cannot be obtained, and the erosion depth of the combined tube becomes large. On the other hand, if it exceeds 2.5%, the potential becomes excessively low and the self-corrosion resistance of the fin is lowered, which is not preferable. For this reason, content of Zn is made into the said range.
For the same reason, it is desirable that the lower limit of Zn content is 0.7% and the upper limit is 2.2%.

・Ti:0.01〜0.20%、Cr:0.01〜0.20%、Mg:0.01〜0.20%、Zr:0.01〜0.20%のうち、1種または2種以上
Ti、Cr、Mg、Zrはアルミニウムと金属間化合物を形成し、分散強化および固溶強化により強度を向上させるので、所望により1種以上を含有する。ただし、それぞれの含有量が下限未満であると、分散強化および固溶強化への影響が小さく、強度が向上する効果が小さい。Ti、Cr、Zrがそれぞれの上限を超えると鋳塊の鋳造時に巨大金属間化合物が晶出し、圧延時破断に至る懸念がある。また、Mgは、上限を超えるとろう付性が低下する。したがって、各元素の含有量が上記範囲であることが望ましい。
なお、同様の理由で、Ti、Cr、Mg、Zrは、下限0.03%、上限0.15%とするのがさらに望ましい。
-Ti: 0.01-0.20%, Cr: 0.01-0.20%, Mg: 0.01-0.20%, Zr: One of 0.01-0.20% or Two or more types Ti, Cr, Mg, Zr forms an intermetallic compound with aluminum, and improves the strength by dispersion strengthening and solid solution strengthening. However, when each content is less than the lower limit, the influence on dispersion strengthening and solid solution strengthening is small, and the effect of improving the strength is small. If Ti, Cr, and Zr exceed their respective upper limits, a huge intermetallic compound may crystallize during casting of the ingot, and there is a concern that fracture may occur during rolling. On the other hand, when Mg exceeds the upper limit, the brazing property is lowered. Therefore, it is desirable that the content of each element is in the above range.
For the same reason, Ti, Cr, Mg, and Zr are more preferably set to a lower limit of 0.03% and an upper limit of 0.15%.

・ろう付加熱後の常温引張強さ:140MPa以上
熱交換器の軽量化の要望に合わせて、フィン材においても薄肉、高強度材が求められている。フィンのろう付後強度が低いと、車載時に熱交換器に負荷される繰返しの振動や冷却水の膨張、圧縮を抑制することができず、チューブは太鼓状に膨張し、早期の破断、つまり内部冷却水の漏れにつながる。このため、フィンの厚さを100μm以下とした場合、140MPa以上の引張強さを有していることが望ましい。
-Tensile strength at normal temperature after brazing heat: 140 MPa or more In accordance with the demand for weight reduction of heat exchangers, thin and high strength materials are also required for fin materials. If the strength of the fin after brazing is low, repeated vibrations applied to the heat exchanger when mounted on the vehicle and expansion and compression of the cooling water cannot be suppressed, and the tube expands like a drum and breaks early. It leads to leakage of internal cooling water. For this reason, when the thickness of the fin is 100 μm or less, it is desirable to have a tensile strength of 140 MPa or more.

・ろう付加熱後の常温0.2%耐力:50MPa以上
0.2%耐力はフィンの弾性限度を示しており、ろう付後の耐力が低い場合、車搭載時の繰返し振動により、フィン破断に至らなくても塑性変形を生じて原形を留めることができず熱交換器コアが変形してしまう。フィンの板厚が100μm以下であってもろう付後の耐力が50MPa以上であれば、上記変形を防ぐことができるため、ろう付加熱後の0.2%耐力が50MPa以上であることが望ましい。
-Normal temperature 0.2% proof stress after brazing heat: 50 MPa or more 0.2% proof stress indicates the elastic limit of the fin, and if the proof strength after brazing is low, the fin may break due to repeated vibration when mounted on the car. Even if not reached, plastic deformation occurs and the original shape cannot be retained, and the heat exchanger core is deformed. Even if the plate thickness of the fin is 100 μm or less, if the yield strength after brazing is 50 MPa or more, the above deformation can be prevented. Therefore, the 0.2% yield strength after brazing addition heat is desirably 50 MPa or more. .

・ろう付加熱後の導電率:42%IACS以上
熱交換器として用いられた場合の熱伝導性を確保するため、ろう付後の導電率が42%IACS以上とすることが望ましい。
-Conductivity after brazing heat addition: 42% IACS or more In order to ensure thermal conductivity when used as a heat exchanger, it is desirable that the conductivity after brazing is 42% IACS or more.

・ろう付加熱後の電位:−800mV以上−710mV以下(vs Ag/AgCl)
フィンの電位が−800mV未満の場合、接合される他部材に対して電位が過度に卑(低い)なため、ガルバニック腐食により、フィンの腐食が加速してしまう。フィンの電位が−710mV超の場合、接合される他部材を対象として、電位差を十分に得ることができず犠牲陽極効果が得られない。この場合、例えばチューブの腐食が加速してしまう。より好ましくは、−720mV以下とすることである。
このため、フィン材の電位が上記範囲内であることが望ましい。
-Potential after brazing heat: -800 mV to -710 mV (vs Ag / AgCl)
When the potential of the fin is less than −800 mV, the potential of the fin is excessively low (low) with respect to the other members to be joined. Therefore, corrosion of the fin is accelerated by galvanic corrosion. When the potential of the fin exceeds -710 mV, a sufficient potential difference cannot be obtained for other members to be joined, and the sacrificial anode effect cannot be obtained. In this case, for example, corrosion of the tube is accelerated. More preferably, it is −720 mV or less.
For this reason, it is desirable that the potential of the fin material is within the above range.

・ろう付加熱後の中性塩水噴霧試験における16週間後の腐食減量:120mg/dm以下
フィン材の自己耐食性を確保するため、JIS Z2371(2015年)準拠の方法の中性塩水噴霧試験により測定したフィン材の16週間後の腐食減量が120mg/dm以下であることが望ましい。16週間後の腐食減量が120mg/dm以下であれば、実際の使用環境であってもフィン自体の腐食による性能劣化や部分的な脱落を抑制できるので、熱交換器としての特性を維持することができる。
・ Corrosion weight loss after 16 weeks in neutral salt spray test after brazing heat: 120 mg / dm 2 or less It is desirable that the measured weight loss after 16 weeks of the fin material is 120 mg / dm 2 or less. If the corrosion weight loss after 16 weeks is 120 mg / dm 2 or less, performance deterioration and partial dropout due to corrosion of the fin itself can be suppressed even in the actual use environment, so the characteristics as a heat exchanger are maintained. be able to.

・関係式(i)
2.1≦[Mn含有量(質量%)]+[Si含有量(質量%)]+7.5*[Cu含有量(質量%)]≦3.4
・関係式(ii)
[Zn含有量(質量%)]−18.8*[Cu含有量(質量%)]≧0.2
上記、関係式(i)、(ii)を満たすことで、強度、導電性、耐食性に優れる熱交換器用アルミニウム合金フィン材を得ることができる。
関係式(i)は、Cu量に対するMn、Si量の関係で、フィン材の材料強度を表す。関係式(i)の結果が2.1未満の場合は、ろう付途中の高温での0.2%耐力、常温での引張強さと0.2%耐力が低く、フィン接合率が低下する傾向にあった。関係式(i)の結果が3.4を超える場合は、ろう付前の引張強さ、0.2%耐力が高く、フィンの成形が困難になる場合や、固相線温度が低い、腐食減量が多いフィンが多かった。
関係式(ii)は、Cu量に対するZn量の関係で、電位を表す式である。Cuはアルミニウムの電位を貴にする元素、Znは電位を卑にする元素であり、それぞれ電位に対する寄与度が大きい。その割合を制御することで電位を狙いの範囲に調整することができるが、その関係は線形ではなく上記関係式を満たす必要があることが分かった。
関係式(ii)の結果が0.2以上のものは、チューブに対して必要十分な電位差を有し所望の犠牲陽極効果を得ることができる。
-Relational expression (i)
2.1 ≦ [Mn content (mass%)] + [Si content (mass%)] + 7.5 * [Cu content (mass%)] ≦ 3.4
-Relational expression (ii)
[Zn content (mass%)]-18.8 * [Cu content (mass%)] ≧ 0.2
By satisfying the above relational expressions (i) and (ii), an aluminum alloy fin material for a heat exchanger that is excellent in strength, conductivity, and corrosion resistance can be obtained.
Relational expression (i) represents the material strength of the fin material in relation to the amount of Mn and Si relative to the amount of Cu. When the result of the relational expression (i) is less than 2.1, the 0.2% yield strength at a high temperature during brazing, the tensile strength at room temperature and the 0.2% yield strength are low, and the fin joint ratio tends to decrease. It was in. If the result of the relational expression (i) exceeds 3.4, the tensile strength before brazing and the 0.2% proof stress are high, and it is difficult to form the fin, the solidus temperature is low, and the corrosion There were many fins with many weight loss.
The relational expression (ii) is an expression representing a potential in relation to the amount of Zn with respect to the amount of Cu. Cu is an element that makes the electric potential of aluminum noble, and Zn is an element that makes the electric potential base, and each contributes greatly to the electric potential. By controlling the ratio, the potential can be adjusted to the target range, but it has been found that the relationship is not linear but needs to satisfy the above relational expression.
When the result of the relational expression (ii) is 0.2 or more, it has a necessary and sufficient potential difference with respect to the tube, and a desired sacrificial anode effect can be obtained.

・ろう付加熱後の平均結晶粒径:100μm以上2000μm未満
ろう付後の平均結晶粒径が100μm未満と細かいと、結晶粒界を経路としたろう侵食(エロージョン)が起こりやすくフィンの座屈を生じやすくなる。一方で、ろう付後の結晶粒が粗大で2000μm以上の場合、Hall−Petch則(結晶粒径が耐力値に及ぼす関係式)で表されるとおりフィンの強度が低下する。特に薄肉フィンの場合、ろう付性と高強度化とを考慮した結晶粒径の範囲に制御する必要がある。
このため、ろう付加熱後の結晶粒径が上記範囲であることが望ましい。
-Average crystal grain size after brazing heat: 100 μm or more and less than 2000 μm If the average crystal grain size after brazing is as fine as less than 100 μm, braze erosion (erosion) is likely to occur along the crystal grain boundary, resulting in buckling of the fins. It tends to occur. On the other hand, when the grain size after brazing is coarse and is 2000 μm or more, the strength of the fin is lowered as represented by the Hall-Petch rule (relational expression that the crystal grain size affects the proof stress value). In particular, in the case of thin fins, it is necessary to control the crystal grain size in consideration of brazability and high strength.
For this reason, it is desirable that the crystal grain size after brazing heat is in the above range.

・400〜550℃における0.2%耐力:15〜40MPa
ろう付加熱中の高温400〜550℃における0.2%耐力値が15MPa以上であると、ろう付中の際に他部材の熱膨張に伴い発生する応力に対してもフィンは成形後の形状を維持できるので、ろう付中のフィン材の変形を防ぐことができる。一方、400〜550℃の範囲で40MPaを超える0.2%耐力を有している場合、ろう付中に回復・再結晶してO材調質となる過程で大きく強度が低下するので、外圧に対しての変形量が大きく、チューブとフィンの間に隙間が生じて接合不良に至り易いことを検証の結果突き止めた。このため、400〜550℃における0.2%耐力は上記範囲内であることが望ましい。
-0.2% yield strength at 400-550 ° C: 15-40 MPa
When the 0.2% proof stress value at a high temperature of 400 to 550 ° C. during brazing addition heat is 15 MPa or more, the fin has a shape after molding even with respect to stress generated due to thermal expansion of other members during brazing. Since it can maintain, the deformation | transformation of the fin material during brazing can be prevented. On the other hand, when it has a 0.2% proof stress exceeding 40 MPa in the range of 400 to 550 ° C., the strength is greatly reduced in the process of recovery and recrystallization during brazing and tempering of the O material. As a result of the verification, it was found that the amount of deformation with respect to the above was large, and a gap was formed between the tube and the fin, which was likely to lead to poor bonding. For this reason, it is desirable that the 0.2% proof stress at 400 to 550 ° C. be within the above range.

・ろう付加熱前において、
・円相当径で0.01〜0.10μmのAl−Mn系、Al−Mn−Si系、Al−Fe−Si系の第二相粒子の個数密度:1.0×10個/mm以上
・金属組織:繊維状の結晶粒組織
ろう付前の金属間化合物の分散状態と金属組織は、主にろう付中の再結晶挙動に大きな影響を及ぼす。0.01〜0.10μmの微細な第二相粒子は、ろう付の初期に回復に伴う転位セルを形成する妨げとなるほか、亜結晶粒界の移動を妨げる作用で再結晶温度は相対的に高温となるので、結晶粒径の粗大化に寄与する効果がある。また、ろう付前の圧延率が高く塑性ひずみが蓄積して金属組織が繊維状の結晶組織(本発明では、観察視野内で結晶粒の平均縦横比が7.0以上であるものを繊維状の結晶組織を有すると定義した)であると、ろう付中の低い温度で再結晶する。本発明では、繊維状の結晶粒組織で再結晶温度を低下させる効果と、0.01〜0.10μmの第二相粒子の分布状態をバランスさせることで、ろう付加熱中の再結晶温度と材料強度を制御している。
・ Before heat addition
-Number density of Al-Mn-based, Al-Mn-Si-based, Al-Fe-Si-based second phase particles having an equivalent circle diameter of 0.01 to 0.10 μm: 1.0 × 10 5 particles / mm 2 -Metal structure: Fibrous crystal grain structure The dispersion state and metal structure of the intermetallic compound before brazing have a major effect on the recrystallization behavior during brazing. The fine second-phase particles of 0.01 to 0.10 μm prevent the formation of dislocation cells accompanying recovery at the initial stage of brazing, and the recrystallization temperature is relatively low due to the effect of preventing the movement of subgrain boundaries. Therefore, it has an effect of contributing to the coarsening of the crystal grain size. Further, the rolling ratio before brazing is high and plastic strain is accumulated, and the metal structure is a fibrous crystal structure (in the present invention, the average aspect ratio of crystal grains within the observation field of view is 7.0 or more. Recrystallized at a low temperature during brazing. In the present invention, the balance between the effect of lowering the recrystallization temperature with a fibrous crystal grain structure and the distribution state of the second phase particles of 0.01 to 0.10 μm allows the recrystallization temperature and material during brazing heat to be added. Strength is controlled.

・ろう付加熱後において、円相当径が0.01〜0.10μmのAl−Mn系、Al−Mn−Si系およびAl−Fe−Si系の第二相粒子が1.0×10個/mm以上
ろう付加熱後の金属間化合物の状態は、分散強化として寄与するフィンの材料強度に影響を及ぼす。Al−Mn系、Al−Mn−Si系およびAl−Fe−Si系の第二相粒子が1.0×10個/mm以上で存在する組織では、ろう付後に高い材料強度を得ることができる。
・ After brazing heat addition, 1.0 × 10 4 Al-Mn, Al—Mn—Si, and Al—Fe—Si second phase particles having an equivalent circle diameter of 0.01 to 0.10 μm / mm 2 or more The state of the intermetallic compound after the brazing addition heat affects the material strength of the fin contributing as dispersion strengthening. In a structure in which Al-Mn, Al-Mn-Si, and Al-Fe-Si second phase particles are present at 1.0 × 10 4 particles / mm 2 or more, high material strength is obtained after brazing. Can do.

・ろう付後において、円相当径で1.0μm以上のAl−Fe系の晶出物の個数密度が1.0×10個/mm以下で、0.05μm以上のAl−Cu系の第二相粒子が1.0×10個/mm以下
Al−Fe系の晶出物、Al−Cu系の第二相粒子はマトリクスよりも電位が貴で、腐食の起点として作用するため、フィンの自己耐食性を低下させる原因となる。このため、1.0μm以上のAl−Fe系晶出物が1.0×10個/mm以下、0.05μm以上のAl−Cu系の第二相粒子の含有量を1.0×10個/mm以下に制御することが望ましい。
-After brazing, the number density of Al-Fe-based crystallized crystals having an equivalent circle diameter of 1.0 μm or more is 1.0 × 10 4 pieces / mm 2 or less, and the Al—Cu-based crystal is 0.05 μm or more. The second phase particles are 1.0 × 10 3 particles / mm 2 or less. The Al—Fe-based crystallized substance and the Al—Cu-based second phase particles have a higher potential than the matrix and act as a starting point for corrosion. , Causing the self-corrosion resistance of the fins to decrease. For this reason, the content of Al-Fe-based crystallized substances of 1.0 μm or more is 1.0 × 10 4 particles / mm 2 or less, and the content of Al—Cu-based second phase particles of 0.05 μm or more is 1.0 × It is desirable to control to 10 3 pieces / mm 2 or less.

・板厚:100μm以下
熱交換器コアの軽量化を達成するため、フィンの板厚は100μm以下であることが望ましく、強度向上の効果が顕著になる。なお、下限は30μmとすることが望ましい。
Plate thickness: 100 μm or less In order to achieve a reduction in the weight of the heat exchanger core, the plate thickness of the fins is desirably 100 μm or less, and the effect of improving the strength becomes remarkable. The lower limit is preferably 30 μm.

・腐食電流密度:0.05mA/cm以下
腐食電流密度が、0.05mA/cmを超えると腐食速度が大きく、腐食電流密度が0.05mA/cm以下であると、フィンの腐食速度が小さく自己耐食性に優れている。このため、腐食電流密度が0.05mA/cm以下であることが望ましい。
- Corrosion current density: 0.05 mA / cm 2 or less corrosion current density, larger the corrosion rate exceeds 0.05 mA / cm 2, the corrosion current density is 0.05 mA / cm 2 or less, the corrosion rate of the fin Is small and has excellent self-corrosion resistance. For this reason, it is desirable that the corrosion current density is 0.05 mA / cm 2 or less.

・ろう付加熱前において、常温の引張強さ:250MPa以下、常温の0.2%耐力:230MPa以下
フィンはコイル状あるいはそれを多条スリットした後、金型成形、例えば、コルゲート状に成形される。成形フィン材を熱交換器用の他部材と組み合わせてろう付する。この時、ろう付加熱前において、常温の引張強さが250MPa以上、0.2%耐力が230MPa以上であると、曲げ変形が容易でなく、正しい形状のフィンを得ることが困難である。
・ Before brazing heat, normal temperature tensile strength: 250 MPa or less, normal temperature 0.2% proof stress: 230 MPa or less Fins are coiled or molded into multiple shapes, for example, corrugated The The formed fin material is brazed in combination with other members for the heat exchanger. At this time, if the tensile strength at room temperature is 250 MPa or more and the 0.2% proof stress is 230 MPa or more before the brazing heat, bending deformation is not easy and it is difficult to obtain a fin having a correct shape.

・フィン材の固相線温度は高いほどろう付が容易である。通常のろう付方法の場合、615℃以上あれば、フィンが溶融することなくろう付が可能である。 -The higher the solidus temperature of the fin material, the easier it is to braze. In the case of a normal brazing method, if the temperature is 615 ° C. or higher, brazing can be performed without melting the fins.

・ろう付加熱途中の450℃以下で再結晶が完了
ろう付前の金属間化合物の分布を規定し、かつ金属組織を繊維状の結晶組織とすることで、ろう付加熱中のフィンを450℃以下で軟化させることができる。フィンが450℃以下で再結晶するような条件では、400〜550℃の各温度で0.2%耐力が15〜40MPaの範囲にできるため、ろう付時の接合不良を低下させることができる。
・ Recrystallization is completed at 450 ° C or less during brazing addition heat Defines the distribution of intermetallic compounds before brazing and makes the metal structure a fibrous crystalline structure, so that the fin during brazing addition heat is 450 ° C or less Can be softened. Under the condition that the fin is recrystallized at 450 ° C. or lower, the 0.2% proof stress can be in the range of 15 to 40 MPa at each temperature of 400 to 550 ° C., so that the bonding failure at the time of brazing can be reduced.

本発明によれば、従来よりも接合不良が少なく高いろう付性を持つ熱交換器用アルミニウム合金フィン材および熱交換器を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the aluminum alloy fin material for heat exchangers and heat exchangers which have few joining defects compared with the past, and have high brazing property.

本発明の一実施形態における熱交換器の一部を示す斜視図である。It is a perspective view which shows a part of heat exchanger in one Embodiment of this invention. 実施例No.22、33と比較例No.19、21における顕微鏡写真を示す図面代用写真である。Example No. 22, 33 and Comparative Example No. 19 is a drawing-substituting photograph showing micrographs in FIGS. 実施例および比較例における関係式(i)に関連した成分分布を示すグラフである。It is a graph which shows the component distribution relevant to the relational expression (i) in an Example and a comparative example. 実施例および比較例における関係式(ii)に関連した成分分布を示すグラフである。It is a graph which shows the component distribution relevant to relational expression (ii) in an Example and a comparative example.

以下、本発明の一実施形態について説明する。
まず、アルミニウム合金フィン材の製法について説明する。
アルミニウム合金フィン材は、例えば溶湯を半連続鋳造(DC法)し、鋳塊を均質化処理、熱間圧延、冷間圧延して製造してもよく、あるいは双ロール鋳造機等の連続鋳造圧延(CC法)を用いて鋳造し、鋳造板を均質化処理、冷間圧延して製造することもできる。
質量%で、Mn:1.2〜2.0%、Si:0.5〜1.3%、Cu:0.001〜0.05%未満、Fe:0.1〜0.5%、Zn:0.5〜2.5%を含有させ、所望により、さらに、質量%で、Ti:0.01〜0.20%、Cr:0.01〜0.20%、Mg:0.01〜0.20%、Zr:0.01〜0.20%のうち、1種または2種以上を含有させたアルミニウム合金の溶湯を作製し、DC(Direct chill Casting)法、CC(Continuous Casting)法等の常法によってアルミニウム合金の鋳塊あるいは鋳造板を得る。
なお、成分組成においては、Cu、Mn、Si、Znの含有量に関して、
関係式(i)… 2.1≦[Mn含有量(質量%)]+[Si含有量(質量%)]+7.5*[Cu含有量(質量%)]≦3.4、かつ、関係式(ii)… [Zn含有量(質量%)]−18.8*[Cu含有量(質量%)]≧0.2を満たしていることが望ましい。
Hereinafter, an embodiment of the present invention will be described.
First, the manufacturing method of an aluminum alloy fin material is demonstrated.
The aluminum alloy fin material may be manufactured, for example, by semi-continuous casting (DC method) of molten metal and homogenizing, hot rolling, or cold rolling of the ingot, or continuous casting rolling of a twin roll casting machine or the like. It can also be manufactured by casting using (CC method) and homogenizing and cold rolling the cast plate.
In mass%, Mn: 1.2 to 2.0%, Si: 0.5 to 1.3%, Cu: 0.001 to less than 0.05%, Fe: 0.1 to 0.5%, Zn : 0.5 to 2.5%, if desired, further, by mass, Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20%, Mg: 0.01 to A molten aluminum alloy containing one or more of 0.20% and Zr: 0.01 to 0.20% is manufactured, and a DC (Direct Hill Casting) method and a CC (Continuous Casting) method. An aluminum alloy ingot or cast plate is obtained by a conventional method such as the above.
In addition, in the component composition, regarding the contents of Cu, Mn, Si, Zn,
Relational expression (i): 2.1 ≦ [Mn content (mass%)] + [Si content (mass%)] + 7.5 * [Cu content (mass%)] ≦ 3.4 and relation It is desirable that the formula (ii) ... [Zn content (% by mass)]-18.8 * [Cu content (% by mass)] ≧ 0.2.

得られたアルミニウム合金の鋳塊あるいは鋳造板に対しては適切な条件で均質化処理を行う必要がある。均質化処理は、例えば、昇温速度を25〜75℃/時、保持温度を350〜480℃、保持時間を1〜10時間、冷却速度を20〜50℃/時とした熱処理条件によって行う。関係式(i)に示すMn、Si、Cuの組成範囲とし、均質化処理をこの範囲で実施することによって、分散強化と固溶強化がバランスよく両立し、ろう付前、ろう付中、およびろう付後に所望するフィンの強度を得ることができる。   It is necessary to homogenize the obtained aluminum alloy ingot or cast plate under appropriate conditions. The homogenization treatment is performed, for example, under heat treatment conditions of a temperature rising rate of 25 to 75 ° C./hour, a holding temperature of 350 to 480 ° C., a holding time of 1 to 10 hours, and a cooling rate of 20 to 50 ° C./hour. By setting the composition range of Mn, Si, and Cu shown in the relational expression (i) and performing the homogenization treatment within this range, both dispersion strengthening and solid solution strengthening are balanced, and before brazing, during brazing, and The desired fin strength can be obtained after brazing.

その後、得られたアルミニウム合金に対して、DC法では熱間圧延および冷間圧延を、CC法では、冷間圧延を行う。DC法で熱間圧延を行う場合は、均質化処理の温度以下で実施し、分散強化と固溶強化のバランスを維持する必要がある。冷間圧延の途中では、圧延率が60%以上となった後に中間焼鈍を行う。中間焼鈍は、温度を200〜300℃、保持時間を6時間として行い、中間焼鈍後に圧延率10〜25%で冷間圧延を行うことで、ろう付加熱前に繊維状の結晶組織を有し、所望の厚さのアルミニウム合金フィン材を得る。なお、板厚は、30〜100μmとすることが望ましい。
上記工程により、熱交換器用のフィン材を得ることができる。
Thereafter, the obtained aluminum alloy is subjected to hot rolling and cold rolling in the DC method, and cold rolling in the CC method. When performing hot rolling by the DC method, it is necessary to carry out at a temperature equal to or lower than the temperature of the homogenization treatment to maintain a balance between dispersion strengthening and solid solution strengthening. In the middle of cold rolling, intermediate annealing is performed after the rolling rate reaches 60% or more. Intermediate annealing is performed at a temperature of 200 to 300 ° C. and a holding time of 6 hours, and after intermediate annealing, cold rolling is performed at a rolling rate of 10 to 25%, so that the fiber has a crystalline structure before brazing addition heat. Then, an aluminum alloy fin material having a desired thickness is obtained. In addition, as for plate | board thickness, it is desirable to set it as 30-100 micrometers.
The fin material for heat exchangers can be obtained by the above process.

得られたフィン材は、強度、導電性、耐食性、およびろう付性に優れており、熱交換器用フィン材として好適である。
特に、フィン材はろう付中の軟化過程において、400〜550℃の各温度において、0.2%耐力が15〜40MPaの範囲内となっていることから、ろう付中に他の部材の熱膨張に伴い発生する応力に対してもフィン材は成形後の形状を維持できるので、ろう付中の変形を防ぐことができる。
さらに、ろう付加熱に供された場合、ろう付加熱後のフィン材は、常温で、引張強さが140MPa以上、0.2%耐力が50MPa以上、導電率が42%IACS以上、電位が−800mV以上−710mV以下、中性塩水噴霧試験で16週間後の腐食減量が120mg/dm以下、腐食電流密度が0.05mA/cm以下、ろう付加熱後の平均結晶粒径が100μm以上2000μm未満となっており、強度、導電性、および耐食性に優れている。
The obtained fin material is excellent in strength, conductivity, corrosion resistance, and brazing property, and is suitable as a fin material for heat exchangers.
In particular, the fin material has a 0.2% proof stress within the range of 15 to 40 MPa at each temperature of 400 to 550 ° C. during the softening process during brazing. Since the fin material can maintain the shape after the molding against the stress generated with the expansion, the deformation during brazing can be prevented.
Further, when subjected to brazing heat, the fin material after brazing heat has a tensile strength of 140 MPa or more, a 0.2% proof stress of 50 MPa or more, a conductivity of 42% IACS or more, and a potential of − 800 mV to −710 mV, corrosion weight loss after 16 weeks in neutral salt spray test is 120 mg / dm 2 or less, corrosion current density is 0.05 mA / cm 2 or less, average grain size after brazing heat is 100 μm to 2000 μm The strength, conductivity, and corrosion resistance are excellent.

また、得られたフィン材にコルゲート加工してフィンとし、ヘッダー、チューブ、サイドプレート等の熱交換器用の部材と組み合わせてろう付接合を行うことで、熱交換器を製造することができる。本発明としてはろう付の熱処理条件や方法(ろう付温度、雰囲気、フラックスの有無、ろう材の種類等)は特に限定されず、所望の方法によってろう付を行うことができる。
得られた熱交換器は本実施形態のフィン材を備えているため、ろう付接合が良好で、かつ強度、導電性、および耐食性に優れたものとなっている。
図1は、本実施形態のフィン4にチューブ3、ヘッダー2、サイドプレート5を組み付けてろう付けにより製造された熱交換器1を示している。
In addition, a heat exchanger can be manufactured by corrugating the obtained fin material into fins and performing brazing joining in combination with a heat exchanger member such as a header, a tube, or a side plate. In the present invention, brazing heat treatment conditions and method (brazing temperature, atmosphere, presence / absence of flux, type of brazing material, etc.) are not particularly limited, and brazing can be performed by a desired method.
Since the obtained heat exchanger is provided with the fin material of this embodiment, the brazing joint is good and the strength, conductivity, and corrosion resistance are excellent.
FIG. 1 shows a heat exchanger 1 manufactured by assembling a tube 3, a header 2, and a side plate 5 to the fin 4 of this embodiment and brazing.

本実施形態によれば、強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材および熱交換器を得ることができる。   According to this embodiment, it is possible to obtain an aluminum alloy fin material for a heat exchanger and a heat exchanger that are excellent in strength, conductivity, corrosion resistance, and brazing.

以下に本発明の実施例について説明する。
表1に示す成分(残部Alと不可避不純物)となるように調整した溶湯からアルミニウム合金鋳塊あるいは鋳造板を作製した。得られた鋳塊あるいは鋳造板に対して、表2に示すように、昇温速度を25〜75℃/時、保持温度を350〜480℃、保持時間を1〜10時間、冷却速度を20〜50℃/時とした均質化処理を行い、その後、DC法では熱間圧延、冷間圧延の順に、CC法では、冷間圧延を行った。
冷間圧延の途中では、圧延率が60%以上となった後に中間焼鈍を行った。中間焼鈍およびその後の冷間圧延については、実施例1〜45、比較例1〜17、20、22、24〜37では、繊維状結晶組織を得るために200〜300℃で6時間保持する中間焼鈍を行い、その後、表2に示す圧延率(10〜25%)で冷間圧延を行った。比較例18、19、21、23では、再結晶組織を得るために350℃で6時間保持する中間焼鈍を行った後に、表2に示す圧延率(25〜40%)で冷間圧延を行った。これにより、表3に示す板厚のH14調質のフィン材を作製した。
得られたフィン材に対し、以下の測定を行った。結果を表3、4に示す。また、一部の供試材では、顕微鏡写真を図2に示した。
Examples of the present invention will be described below.
An aluminum alloy ingot or cast plate was produced from the molten metal adjusted to have the components shown in Table 1 (the balance Al and inevitable impurities). As shown in Table 2, with respect to the obtained ingot or cast plate, the heating rate was 25 to 75 ° C./hour, the holding temperature was 350 to 480 ° C., the holding time was 1 to 10 hours, and the cooling rate was 20 Homogenization was performed at ˜50 ° C./hour, and then, in the DC method, hot rolling and cold rolling were performed in this order, and in the CC method, cold rolling was performed.
In the middle of cold rolling, intermediate annealing was performed after the rolling rate reached 60% or more. About intermediate annealing and subsequent cold rolling, in Examples 1-45 and Comparative Examples 1-17, 20, 22, 24-37, in order to obtain a fibrous crystal structure, it hold | maintains at 200-300 degreeC for 6 hours. Annealing was performed, and then cold rolling was performed at a rolling rate shown in Table 2 (10 to 25%). In Comparative Examples 18, 19, 21, and 23, in order to obtain a recrystallized structure, after intermediate annealing held at 350 ° C. for 6 hours, cold rolling was performed at a rolling rate shown in Table 2 (25 to 40%). It was. Thus, H14 tempered fin material having a thickness shown in Table 3 was produced.
The following measurements were performed on the obtained fin material. The results are shown in Tables 3 and 4. Moreover, in some sample materials, the micrograph was shown in FIG.

1.ろう付加熱前
得られたフィン材の供試材に対し、固相線温度、常温での引張強さ、常温での0.2%耐力、円相当径が0.01〜0.10μmの第二相粒子の個数密度、結晶組織を測定した。測定方法は以下の通りである。なお、測定結果は表3に示した。
1. Before heat addition to brazing The test piece of fin material obtained was subjected to solidus temperature, tensile strength at room temperature, 0.2% proof stress at room temperature, and an equivalent circle diameter of 0.01 to 0.10 μm. The number density and crystal structure of the two-phase particles were measured. The measuring method is as follows. The measurement results are shown in Table 3.

(固相線温度)
示差熱分析装置(DTA)を用いて、フィン材の固相線温度を測定した。
(Solidus temperature)
The solidus temperature of the fin material was measured using a differential thermal analyzer (DTA).

(ろう付前の常温強度)
圧延方向と平行にサンプルを切り出してJIS13B形状の試験片を作製し、引張速度5mm/分の条件で、常温で引張試験を実施し、試験片の引張強さおよび0.2%耐力を測定した。
(Normal temperature strength before brazing)
A sample was cut out parallel to the rolling direction to prepare a JIS13B-shaped test piece, and a tensile test was performed at room temperature under a condition of a tensile speed of 5 mm / min, and the tensile strength and 0.2% proof stress of the test piece were measured. .

(金属間化合物の分布状態)
フィン材の供試材について、第二相粒子(円相当径が0.01〜0.10μm)の個数密度(個/mm)を透過型電子顕微鏡(TEM)によって測定した。測定方法は、ろう付前は素材に400℃×15秒のソルトバス焼鈍を行って変形ひずみを除去して化合物を観察しやすくした後、通常の方法で機械研磨、および電解研磨を行って薄膜を作製し、透過型電子顕微鏡を用いて、50000倍で写真を撮影した。写真撮影は各5視野について行い、写真の画像解析によって第二相粒子のサイズおよび個数密度を計測した。
(Distribution of intermetallic compounds)
With respect to the test material of the fin material, the number density (number / mm 2 ) of the second phase particles (equivalent circle diameter of 0.01 to 0.10 μm) was measured by a transmission electron microscope (TEM). Before brazing, the material is subjected to salt bath annealing at 400 ° C. for 15 seconds to remove the deformation strain to make the compound easy to observe, and then mechanical polishing and electrolytic polishing are performed by ordinary methods to form a thin film. And a photograph was taken at 50000 times using a transmission electron microscope. Photographing was performed for each of five visual fields, and the size and number density of the second phase particles were measured by image analysis of the photograph.

2.ろう付加熱中
ろう付加熱中のフィン材の強度を想定して、400〜550℃における0.2%耐力を測定した。また、フィン材の再結晶温度の測定も行った。測定方法は以下の通りである。なお、測定結果は表3に示した。
2. During brazing addition heat Assuming the strength of the fin material during brazing addition heat, 0.2% yield strength at 400 to 550 ° C. was measured. The recrystallization temperature of the fin material was also measured. The measuring method is as follows. The measurement results are shown in Table 3.

(ろう付加熱中の0.2%耐力)
ろう付前のフィン材から圧延方向と平行にサンプルを切り出し、JIS5号形状に機械加工して試験片を作製し、予備加熱をした恒温槽内に試験片を投入した後、試験片が400℃、450℃、および550℃の各温度に達した直後から高温引張試験を実施した。高温引張試験の引張速度は1mm/分とし、高温における0.2%耐力を測定した。
(0.2% proof stress during brazing heat)
A sample was cut out from the fin material before brazing in parallel with the rolling direction, and machined into a JIS No. 5 shape to prepare a test piece. After the test piece was put into a preheated thermostat, the test piece was 400 ° C. , 450 ° C., and 550 ° C. immediately after reaching each temperature, a high temperature tensile test was performed. The tensile rate of the high temperature tensile test was 1 mm / min, and 0.2% yield strength at high temperature was measured.

(再結晶温度)
ろう付加熱を想定して常温から600℃まで一定の速度(100℃/分)で昇温し、所定の各温度に到達後、常温まで冷却した。冷却後にサンプル表面を観察し、表面積300mmのフィン材表面の80%以上が再結晶する温度を再結晶温度とした。
(Recrystallization temperature)
Assuming brazing heat, the temperature was raised from room temperature to 600 ° C. at a constant rate (100 ° C./min), and after reaching each predetermined temperature, it was cooled to room temperature. The sample surface was observed after cooling, and the temperature at which 80% or more of the fin material surface with a surface area of 300 mm 2 was recrystallized was defined as the recrystallization temperature.

3.ろう付後
フィン材に対してろう付相当の熱処理を行い、加熱後のフィン材について、常温で、引張強さ、0.2%耐力、導電率、平均結晶粒径、電位、腐食減量、腐食電流密度、円相当径が1.0μm以上のAl−Fe系晶出物の個数密度、円相当径が0.01〜0.10μmの第二相粒子の個数密度、円相当径が0.05μm以上のAl−Cu系第二相粒子の個数密度を算出した。
さらに、ろう付性の評価を行うために、フィン材をコルゲート成形して他の部材と組み合わせてろう付熱処理を行い、接合箇所を観察してフィン接合率を算出した。ろう付熱処理条件および各項目の測定方法・評価方法は以下の通りである。なお、測定結果は表4に示した。
3. After brazing The fin material is subjected to a heat treatment equivalent to brazing, and the heated fin material is subjected to tensile strength, 0.2% proof stress, conductivity, average crystal grain size, potential, corrosion weight loss, corrosion at room temperature. Current density, number density of Al-Fe-based crystals having an equivalent circle diameter of 1.0 μm or more, number density of second phase particles having an equivalent circle diameter of 0.01 to 0.10 μm, equivalent circle diameter of 0.05 μm The number density of the above Al—Cu second phase particles was calculated.
Furthermore, in order to evaluate brazeability, the fin material was corrugated and subjected to brazing heat treatment in combination with other members, and the joint locations were observed to calculate the fin joint rate. The brazing heat treatment conditions and the measurement / evaluation methods for each item are as follows. The measurement results are shown in Table 4.

(ろう付熱処理条件)
室温から600℃まで平均昇温速度50℃/分で昇温し、600℃で3分間保持後、100℃/分の降温速度で降温冷却する熱処理の条件にて、ろう付相当熱処理を行った。
(Brazing heat treatment conditions)
The temperature was increased from room temperature to 600 ° C. at an average temperature increase rate of 50 ° C./minute, held at 600 ° C. for 3 minutes, and then subjected to brazing equivalent heat treatment under the conditions of heat treatment to cool at a temperature decrease rate of 100 ° C./minute. .

(ろう付後の引張強さ、0.2%耐力)
ろう付相当の熱処理をした試料から圧延方向と平行にサンプルを切り出し、JIS13B形状の試験片を作製した。試験片に対して常温で引張試験を実施し、引張強さおよび0.2%耐力を測定した。引張速度は5mm/分とした。
(Tensile strength after brazing, 0.2% yield strength)
A sample was cut out in parallel with the rolling direction from a sample subjected to heat treatment equivalent to brazing, and a JIS 13B-shaped test piece was produced. A tensile test was performed on the test piece at room temperature, and tensile strength and 0.2% yield strength were measured. The tensile speed was 5 mm / min.

(導電率)
JIS H0505記載の導電率測定方法により、ダブルブリッジ導電率計にて導電率の測定を行った。
(conductivity)
The conductivity was measured with a double bridge conductivity meter by the conductivity measuring method described in JIS H0505.

(平均結晶粒径)
ろう付相当熱処理を施した供試材に対して、塩酸、フッ酸、硝酸の混合液にてサンプル表面をエッチングして結晶粒を露出させ、表面の写真を撮影し、撮影された表面結晶粒組織写真を用いて、直線切断法により平均結晶粒径を測定した。
(Average crystal grain size)
Etching the sample surface with a mixed solution of hydrochloric acid, hydrofluoric acid, and nitric acid, and taking a photograph of the surface of the test material that has undergone heat treatment equivalent to brazing. The average crystal grain size was measured by a linear cutting method using a structure photograph.

(電 位)
上記のろう付相当熱処理を施したフィン材から電位測定用のサンプルを切り出し、サンプルを、50℃に加熱した5%NaOH溶液に30秒浸漬し、その後、30%HNO溶液中に60秒浸漬し、さらに、水道水、イオン交換水で洗浄し、乾燥させずにそのまま25℃の5%NaCl溶液(酢酸にてpH3に調整)に60分浸漬後の電位を測定した。参照電極には、銀‐塩化銀電極(Ag/AgCl)を使用した。
(Potential)
A sample for potential measurement was cut out from the fin material subjected to the brazing equivalent heat treatment, and the sample was immersed in a 5% NaOH solution heated to 50 ° C. for 30 seconds, and then immersed in a 30% HNO 3 solution for 60 seconds. Further, the sample was washed with tap water and ion-exchanged water, and the potential after being immersed in a 5% NaCl solution (adjusted to pH 3 with acetic acid) at 25 ° C. for 60 minutes without being dried was measured. A silver-silver chloride electrode (Ag / AgCl) was used as the reference electrode.

(腐食減量)
JIS Z2371準拠の方法で中性塩水噴霧試験(NNS:neutral salt spray test)を実施した。フィン材から、120mm×40mmのサンプルを切出し、1条件につき3本のサンプルを腐食環境中へ投入し、試験前後の重量差から腐食減量を求めた。試験液は5%NaCl、試験液のpHは6.5−7.2の範囲とし、試験槽温度は35±2℃で行った。
(Corrosion weight loss)
A neutral salt spray test (NNS) was performed by a method according to JIS Z2371. A 120 mm × 40 mm sample was cut out from the fin material, and three samples per condition were put into a corrosive environment, and the corrosion weight loss was determined from the weight difference before and after the test. The test solution was 5% NaCl, the pH of the test solution was in the range of 6.5-7.2, and the test bath temperature was 35 ± 2 ° C.

(腐食電流密度)
ろう付相当熱処理を施した供試材に対して、15mm×60mmの試験片を作製した。作製した試験片について、測定面積の1cmを暴露し、それ以外はマスキングで保護し、電位測定と同様の前処理(50℃に加熱した5%NaOH溶液に30秒浸漬し、その後、30%HNO3溶液中に60秒浸漬し、さらに、水道水、イオン交換水で洗浄)を行った後、分極測定を実施した。分極測定は、25℃の5%NaCl溶液(酢酸にてpH3に調整)中に試験片を5分浸漬し自然電位が安定した後、掃引速度0.5mV/sで電位を上昇させてアノード分極測定を実施し、アノード分極曲線を得た。
また、自然電位から電位を同掃引速度で下降させてカソード分極測定を実施し、カソード分極曲線を得た。アノード分極曲線およびカソード分極曲線の交点における電流密度を腐食電流密度とした。
(Corrosion current density)
A test piece of 15 mm × 60 mm was prepared for the test material subjected to brazing equivalent heat treatment. About the prepared test piece, 1 cm 2 of the measurement area was exposed, and the others were protected by masking, and pretreated in the same manner as the potential measurement (immersion in a 5% NaOH solution heated to 50 ° C. for 30 seconds, and then 30% After immersing in HNO3 solution for 60 seconds and further washing with tap water and ion-exchanged water), polarization measurement was performed. Polarization measurement was performed by immersing the test piece in a 5% NaCl solution (adjusted to pH 3 with acetic acid) at 25 ° C. for 5 minutes to stabilize the natural potential, and then increasing the potential at a sweep rate of 0.5 mV / s to anodic polarization. Measurement was carried out to obtain an anodic polarization curve.
Further, cathodic polarization measurement was carried out by decreasing the potential from the natural potential at the same sweep rate to obtain a cathodic polarization curve. The current density at the intersection of the anodic polarization curve and the cathodic polarization curve was taken as the corrosion current density.

(金属間化合物の分布状態)
ろう付相当熱処理を施した供試材に対して、Al−Fe系晶出物(円相当径が1.0μm以上)、Al−Cu系の第二相粒子(円相当径が0.05μm以上)、Al−Mn系、Al−Mn−Si系およびAl−Fe−Si系の第二相粒子(円相当径が0.01〜0.10μm)の個数密度(個/mm)を透過型電子顕微鏡(TEM)によって測定した。測定方法は、通常の方法で機械研磨、および電解研磨を行って薄膜を作製し、透過型電子顕微鏡を用いて、Al−Fe系晶出物については3000倍、Al−Cu系、Al−Mn系、Al−Mn−Si系およびAl−Fe−Si系の第二相粒子については50000倍でそれぞれ写真を撮影した。写真撮影は各5視野について行い、写真の画像解析によって金属間化合物のサイズおよび個数密度を計測した。
(Distribution of intermetallic compounds)
For specimens subjected to brazing equivalent heat treatment, Al-Fe-based crystallized material (equivalent circle diameter is 1.0 μm or more), Al-Cu second phase particles (equivalent circle diameter is 0.05 μm or more) ), The number density (number / mm 2 ) of Al—Mn, Al—Mn—Si, and Al—Fe—Si based second phase particles (equivalent circle diameter of 0.01 to 0.10 μm) is transmitted. It was measured by an electron microscope (TEM). The measurement method is mechanical polishing and electropolishing by ordinary methods to produce a thin film, and using a transmission electron microscope, the Al-Fe-based crystallized product is 3000 times, Al-Cu-based, Al-Mn As for the second phase particles of the system, Al—Mn—Si system and Al—Fe—Si system, photographs were taken at 50000 times. Photographing was performed for each of five visual fields, and the size and number density of intermetallic compounds were measured by image analysis of the photographs.

(フィン接合率)
作製したフィン材をコルゲート成形し、他部材(ヘッダープレート、チューブ、サイドプレート)と組み合わせて型組み後、フラックスを塗布してろう付して縦50cm×横50cmの熱交換器を作製した。その後、熱交換器のフィンとチューブとの接合箇所を観察し、不良接合箇所の数を求め、良好なフィンの接合率として、(1−(不良接合箇所/全接合箇所))×100(%)を算出した。接合率95%以上を○(良好な接合状態)、90〜95%を△(必要十分な接合状態)、90%以下を×(接合不良)として評価した。
(Fin bonding rate)
The produced fin material was corrugated, combined with other members (header plate, tube, side plate) and assembled, and then flux was applied and brazed to produce a heat exchanger measuring 50 cm in length and 50 cm in width. Then, the joint location of the fin and tube of a heat exchanger is observed, the number of defective joint locations is calculated | required, and it is (1- (defective joint location / all joint locations)) x100 (% ) Was calculated. A bonding rate of 95% or more was evaluated as ○ (good bonding state), 90 to 95% as Δ (necessary and sufficient bonding state), and 90% or less as × (bonding failure).


表1〜表4に示すように、本発明で規定する成分組成および特性を有する実施例1〜45はいずれも強度、導電性、耐食性、およびろう付性(フィン接合率)において優れていたのに対し、本発明の規定のいずれか一つ以上を満たしていない比較例1〜37では、強度、導電性、耐食性、ろう付性等のいずれか一つ以上において良い結果が得られなかった。   As shown in Tables 1 to 4, all of Examples 1 to 45 having the component composition and characteristics defined in the present invention were excellent in strength, conductivity, corrosion resistance, and brazing (fin bonding rate). On the other hand, in Comparative Examples 1 to 37 that did not satisfy any one or more of the provisions of the present invention, good results were not obtained in any one or more of strength, conductivity, corrosion resistance, brazing property, and the like.

上記実施例および比較例について、関係式(i)について各成分に応じた分布を図3に示し、関係式(ii)について各成分に応じた分布を図4に示した。
関係式(i)については、実施例6、17、24、27、29、30、35、36と比較例の一部が算出値が2.1未満であり、表3、4に示すように、ろう付途中の高温での0.2%耐力、常温での引張強さと0.2%耐力が低く、フィン接合率が低下する傾向にあった。また、実施例3、15、18、21、31と比較例の一部は、同じく関係式(i)の算出値が3.4を超えており、ろう付前の引張強さ、0.2%耐力が高く、フィンの成形が困難になる場合や、固相線温度が低い、腐食減量が多いフィン材であった。
関係式(ii)については、実施例3、4、17、18、20、33、42、45と比較例の一部が、算出値が0.2未満であり、表3、4に示すように、フィン材の電位がより好ましい範囲にはなかった。
With respect to the above examples and comparative examples, the distribution according to each component for relational expression (i) is shown in FIG. 3, and the distribution according to each component for relational expression (ii) is shown in FIG.
Regarding relational expression (i), Examples 6, 17, 24, 27, 29, 30, 35, and 36 and some of the comparative examples have calculated values less than 2.1, as shown in Tables 3 and 4 The 0.2% yield strength at a high temperature during brazing, the tensile strength at normal temperature and the 0.2% yield strength were low, and the fin joint ratio tended to decrease. Further, in Examples 3, 15, 18, 21, and 31 and some of the comparative examples, the calculated value of the relational expression (i) exceeds 3.4, and the tensile strength before brazing is 0.2. It was a fin material with high% yield strength, which makes fin formation difficult, or has a low solidus temperature and a large amount of corrosion weight loss.
Regarding relational expression (ii), Examples 3, 4, 17, 18, 20, 33, 42, and 45 and some of the comparative examples have calculated values less than 0.2, as shown in Tables 3 and 4 Further, the potential of the fin material was not in a more preferable range.

1 熱交換器
2 ヘッダー
3 チューブ
4 フィン
5 サイドプレート
1 Heat exchanger 2 Header 3 Tube 4 Fin 5 Side plate

Claims (12)

質量%で、Mn:1.2〜2.0%、Si:0.5〜1.3%、Cu:0.001〜0.05%未満、Fe:0.1〜0.5%、Zn:0.5〜2.5%を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなり、
ろう付加熱後において、常温で、引張強さが140MPa以上、0.2%耐力が50MPa以上、導電率が42%IACS以上、電位が−800mV以上−710mV以下、中性塩水噴霧試験で16週間後の腐食減量が120mg/dm以下であることを特徴とする強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。
In mass%, Mn: 1.2 to 2.0%, Si: 0.5 to 1.3%, Cu: 0.001 to less than 0.05%, Fe: 0.1 to 0.5%, Zn : 0.5 to 2.5%, the balance is made of an aluminum alloy having a composition consisting of Al and inevitable impurities,
After brazing heat, at normal temperature, tensile strength is 140 MPa or more, 0.2% proof stress is 50 MPa or more, conductivity is 42% IACS or more, potential is −800 mV or more and −710 mV or less, neutral salt spray test for 16 weeks An aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance, and brazing characteristics, characterized in that the subsequent weight loss by corrosion is 120 mg / dm 2 or less.
前記アルミニウム合金が、さらに、質量%で、Ti:0.01〜0.20%、Cr:0.01〜0.20%、Mg:0.01〜0.20%、Zr:0.01〜0.20%のうち、1種または2種以上を含有することを特徴とする請求項1に記載の強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。   The aluminum alloy is further, in mass%, Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20%, Mg: 0.01 to 0.20%, Zr: 0.01 to The aluminum alloy fin material for heat exchangers having excellent strength, electrical conductivity, corrosion resistance, and brazing characteristics according to claim 1, comprising one or more of 0.20%. 前記アルミニウム合金が、関係式(i)… 2.1≦[Mn含有量(質量%)]+[Si含有量(質量%)]+7.5*[Cu含有量(質量%)]≦3.4、かつ、関係式(ii)… [Zn含有量(質量%)]−18.8*[Cu含有量(質量%)]≧0.2を満たす組成を有することを特徴とする請求項1または2に記載の強度、導電率、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。   The aluminum alloy has a relational expression (i): 2.1 ≦ [Mn content (mass%)] + [Si content (mass%)] + 7.5 * [Cu content (mass%)] ≦ 3. 4 and a relational expression (ii) ... [Zn content (% by mass)]-18.8 * [Cu content (% by mass)] ≧ 0.2 Or the aluminum alloy fin material for heat exchangers which is excellent in strength, electrical conductivity, corrosion resistance, and brazing characteristics described in 2. ろう付加熱後の平均結晶粒径が100μm以上2000μm未満であることを特徴とする請求項1〜3のいずれか1項に記載の強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。   The average crystal grain size after brazing addition heat is 100 µm or more and less than 2000 µm, for a heat exchanger excellent in strength, conductivity, corrosion resistance, and brazing characteristics according to any one of claims 1 to 3 Aluminum alloy fin material. 400〜550℃の範囲における各温度で0.2%耐力が15〜40MPaの範囲内であることを特徴とする請求項1〜4のいずれか1項に記載の強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。   The strength, conductivity, corrosion resistance, and the resistance according to any one of claims 1 to 4, wherein 0.2% proof stress is within a range of 15 to 40 MPa at each temperature in a range of 400 to 550 ° C. Aluminum alloy fin material for heat exchangers with excellent brazing characteristics. ろう付加熱前において、円相当径で0.01〜0.10μmのAl−Mn系、Al−Mn−Si系、Al−Fe−Si系の第二相粒子の個数密度が1.0×10個/mm以上であり、金属組織が繊維状の結晶粒組織であることを特徴とする請求項1〜5のいずれか1項に記載の強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。 Prior to brazing heat, the number density of Al-Mn, Al-Mn-Si, and Al-Fe-Si second phase particles having an equivalent circle diameter of 0.01 to 0.10 μm is 1.0 × 10 and five or / mm 2 or more, the strength of any one of claims 1 to 5, wherein the metal structure is crystalline grain structure of the fibrous, conductive, corrosion resistance, and brazing properties Excellent aluminum alloy fin material for heat exchanger. ろう付加熱後において、円相当径が0.01〜0.10μmのAl−Mn系、Al−Mn−Si系およびAl−Fe−Si系の第二相粒子が1.0×10個/mm以上、円相当径が1.0μm以上のAl−Fe系晶出物と円相当径で0.05μm以上のAl−Cu系の第二相粒子が1.0×10個/mm以下で存在することを特徴とする請求項1〜6のいずれか1項に記載の強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。 After brazing heat addition, 1.0 × 10 4 second phase particles of Al—Mn, Al—Mn—Si, and Al—Fe—Si based on an equivalent circle diameter of 0.01 to 0.10 μm / mm 2 or more, an equivalent circle diameter of second phase particles of 0.05μm or more Al-Cu system in a Al-Fe-based crystallized matter and the circle equivalent diameter of more than 1.0μm is 1.0 × 10 3 cells / mm 2 The aluminum alloy fin material for heat exchangers according to any one of claims 1 to 6, which is excellent in strength, conductivity, corrosion resistance, and brazing characteristics. 板厚が100μm以下であることを特徴とする請求項1〜7のいずれか1項に記載の強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。   The aluminum alloy fin material for a heat exchanger having excellent strength, conductivity, corrosion resistance, and brazing characteristics according to any one of claims 1 to 7, wherein the plate thickness is 100 µm or less. 腐食電流密度が0.05mA/cm以下であることを特徴とする請求項1〜8のいずれか1項に記載の強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。 The aluminum alloy fin for heat exchangers having excellent strength, conductivity, corrosion resistance and brazing characteristics according to any one of claims 1 to 8, wherein the corrosion current density is 0.05 mA / cm 2 or less. Wood. ろう付加熱前において、常温の引張強さが250MPa以下、常温の0.2%耐力が230MPa以下であることを特徴とする請求項1〜9のいずれか1項に記載の強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。   Before brazing addition heat, normal temperature tensile strength is 250 MPa or less, 0.2% proof stress at normal temperature is 230 MPa or less, strength, conductivity according to any one of claims 1 to 9, Aluminum alloy fin material for heat exchangers with excellent corrosion resistance and brazing characteristics. ろう付加熱前において、再結晶完了温度が450℃以下であることを特徴とする請求項1〜10のいずれか1項に記載の強度、導電性、耐食性、およびろう付特性に優れる熱交換器用アルミニウム合金フィン材。   11. The heat exchanger excellent in strength, conductivity, corrosion resistance, and brazing characteristics according to any one of claims 1 to 10, wherein the recrystallization completion temperature is 450 ° C. or lower before brazing addition heat. Aluminum alloy fin material. 請求項1〜11のいずれか1項に記載の熱交換器用アルミニウム合金フィン材を備えることを特徴とする熱交換器。   A heat exchanger comprising the aluminum alloy fin material for a heat exchanger according to any one of claims 1 to 11.
JP2018014557A 2018-01-31 2018-01-31 Aluminum alloy fin material for heat exchangers and heat exchangers with excellent strength, electrical conductivity, corrosion resistance, and brazeability Active JP7107690B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018014557A JP7107690B2 (en) 2018-01-31 2018-01-31 Aluminum alloy fin material for heat exchangers and heat exchangers with excellent strength, electrical conductivity, corrosion resistance, and brazeability
US16/965,134 US20210040586A1 (en) 2018-01-31 2018-12-20 Aluminum alloy fin stock for heat exchangers having excellent strength, electric conductivity, corrosion resistance and brazability, and heat exchanger
PCT/JP2018/046965 WO2019150822A1 (en) 2018-01-31 2018-12-20 Aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance and brazability, and heat exchanger
DE112018006989.3T DE112018006989T5 (en) 2018-01-31 2018-12-20 Aluminum alloy fin assembly for heat exchangers with excellent strength, electrical conductivity, corrosion resistance and solderability and heat exchangers
CN201880088121.2A CN111630196A (en) 2018-01-31 2018-12-20 Aluminum alloy fin material for heat exchanger excellent in strength, conductivity, corrosion resistance and brazeability, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014557A JP7107690B2 (en) 2018-01-31 2018-01-31 Aluminum alloy fin material for heat exchangers and heat exchangers with excellent strength, electrical conductivity, corrosion resistance, and brazeability

Publications (2)

Publication Number Publication Date
JP2019131858A true JP2019131858A (en) 2019-08-08
JP7107690B2 JP7107690B2 (en) 2022-07-27

Family

ID=67478030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014557A Active JP7107690B2 (en) 2018-01-31 2018-01-31 Aluminum alloy fin material for heat exchangers and heat exchangers with excellent strength, electrical conductivity, corrosion resistance, and brazeability

Country Status (5)

Country Link
US (1) US20210040586A1 (en)
JP (1) JP7107690B2 (en)
CN (1) CN111630196A (en)
DE (1) DE112018006989T5 (en)
WO (1) WO2019150822A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7152352B2 (en) * 2019-04-24 2022-10-12 Maアルミニウム株式会社 Aluminum alloy fins and heat exchangers with excellent strength, formability, and corrosion resistance
EP4284953A1 (en) * 2021-02-01 2023-12-06 Novelis, Inc. High strength, sag resistant aluminum alloys for use as fin stock and methods of making the same
CN113005334A (en) * 2021-02-09 2021-06-22 江苏鼎胜新能源材料股份有限公司 High-strength non-composite fin material for PTC and manufacturing method thereof
CN113182789A (en) * 2021-05-10 2021-07-30 江苏通盛换热器有限公司 Production process of train heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002383A (en) * 2003-06-10 2005-01-06 Nippon Light Metal Co Ltd Method of producing high strength aluminum alloy fin material for heat exchanger
JP2007031778A (en) * 2005-07-27 2007-02-08 Nippon Light Metal Co Ltd High strength aluminum alloy fin material and producing method therefor
JP2014047384A (en) * 2012-08-30 2014-03-17 Denso Corp High strength aluminum alloy fin material and producing method therefor
WO2015141698A1 (en) * 2014-03-19 2015-09-24 株式会社Uacj Aluminum alloy fin material for heat exchanger, method for manufacturing same, and heat exchanger
JP2016121373A (en) * 2014-12-24 2016-07-07 三菱アルミニウム株式会社 Fin material for heat exchanger and installing body for heat exchanger
JP2016121393A (en) * 2014-12-24 2016-07-07 三菱アルミニウム株式会社 Aluminum alloy fin material for heat exchanger excellent in strength, conductivity and solderability, manufacturing method of aluminum alloy fin material for heat exchanger and heat exchanger having aluminum alloy fin for heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050150642A1 (en) * 2004-01-12 2005-07-14 Stephen Baumann High-conductivity finstock alloy, method of manufacture and resultant product
JP5614829B2 (en) * 2009-06-24 2014-10-29 株式会社Uacj Aluminum alloy heat exchanger
CN101724770A (en) * 2009-12-09 2010-06-09 长沙众兴铝业有限公司 Brazed aluminum alloy foil with high strength and high corrosion resistance and manufacturing method thereof
KR101988704B1 (en) * 2013-08-08 2019-06-12 노벨리스 인크. High strength aluminum alloy fin stock for heat exchanger
CN105734368B (en) * 2014-12-24 2020-03-17 三菱铝株式会社 Aluminum alloy fin material, method for producing same, and heat exchanger provided with same
JP6557476B2 (en) * 2015-02-10 2019-08-07 三菱アルミニウム株式会社 Aluminum alloy fin material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002383A (en) * 2003-06-10 2005-01-06 Nippon Light Metal Co Ltd Method of producing high strength aluminum alloy fin material for heat exchanger
JP2007031778A (en) * 2005-07-27 2007-02-08 Nippon Light Metal Co Ltd High strength aluminum alloy fin material and producing method therefor
JP2014047384A (en) * 2012-08-30 2014-03-17 Denso Corp High strength aluminum alloy fin material and producing method therefor
WO2015141698A1 (en) * 2014-03-19 2015-09-24 株式会社Uacj Aluminum alloy fin material for heat exchanger, method for manufacturing same, and heat exchanger
JP2016121373A (en) * 2014-12-24 2016-07-07 三菱アルミニウム株式会社 Fin material for heat exchanger and installing body for heat exchanger
JP2016121393A (en) * 2014-12-24 2016-07-07 三菱アルミニウム株式会社 Aluminum alloy fin material for heat exchanger excellent in strength, conductivity and solderability, manufacturing method of aluminum alloy fin material for heat exchanger and heat exchanger having aluminum alloy fin for heat exchanger

Also Published As

Publication number Publication date
JP7107690B2 (en) 2022-07-27
WO2019150822A1 (en) 2019-08-08
DE112018006989T5 (en) 2020-10-08
CN111630196A (en) 2020-09-04
US20210040586A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
JP5576666B2 (en) Aluminum alloy clad material used for heat exchanger and core material for aluminum alloy clad material used therefor
JP5371173B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP4725019B2 (en) Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material
WO2019150822A1 (en) Aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance and brazability, and heat exchanger
WO2015104760A1 (en) Aluminium-alloy clad material and production method therefor, and heat exchanger using said aluminium-alloy clad material and production method therefor
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JPWO2015015767A1 (en) Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
CN105814219A (en) Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor
JPWO2015001725A1 (en) Aluminum alloy brazing sheet and method for producing the same
JP5188116B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
US11002498B2 (en) Aluminum alloy fin material for heat exchanger excellent in strength, electrical conductivity, and brazeability, method for manufacturing aluminum alloy fin material for heat exchanger, and heat exchanger comprising aluminum alloy fin material for heat exchanger
JP5195837B2 (en) Aluminum alloy fin material for heat exchanger
JP5192718B2 (en) Fin material and heat exchanger with excellent strength, sacrificial anode effect, and corrosion resistance
JP6617012B2 (en) Aluminum alloy fin material for heat exchangers excellent in strength, conductivity and brazing properties, and heat exchanger provided with the aluminum alloy fin materials for heat exchangers
JP6407253B2 (en) Aluminum alloy clad material excellent in corrosion resistance and brazing and method for producing the same
WO2020218511A1 (en) Aluminum alloy fin material for heat exchangers, and heat exchanger
JP5952995B2 (en) Aluminum alloy fin material for heat exchanger
JP5545798B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JP6635652B2 (en) Fin material for heat exchanger and assembled body for heat exchanger
JP5762387B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP3977978B2 (en) Aluminum alloy for heat exchangers with excellent corrosion resistance
JP6738666B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JPH07116542B2 (en) Aluminum alloy fin material for heat exchangers with excellent self-corrosion resistance and sacrificial anode effect
JP5809720B2 (en) Aluminum alloy clad material used for heat exchanger and core material for aluminum alloy clad material used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220714

R150 Certificate of patent or registration of utility model

Ref document number: 7107690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150