JP2019130612A - Plane grinding method of workpiece and double-head plane grinder - Google Patents

Plane grinding method of workpiece and double-head plane grinder Download PDF

Info

Publication number
JP2019130612A
JP2019130612A JP2018014849A JP2018014849A JP2019130612A JP 2019130612 A JP2019130612 A JP 2019130612A JP 2018014849 A JP2018014849 A JP 2018014849A JP 2018014849 A JP2018014849 A JP 2018014849A JP 2019130612 A JP2019130612 A JP 2019130612A
Authority
JP
Japan
Prior art keywords
grinding
workpiece
cutting
grindstone
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018014849A
Other languages
Japanese (ja)
Other versions
JP2019130612A5 (en
JP6909739B2 (en
Inventor
聡 川畑
Satoshi Kawabata
聡 川畑
浩二 中口
Koji Nakaguchi
浩二 中口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Machine Systems Corp
Original Assignee
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Machine Industries Co Ltd filed Critical Koyo Machine Industries Co Ltd
Priority to JP2018014849A priority Critical patent/JP6909739B2/en
Publication of JP2019130612A publication Critical patent/JP2019130612A/en
Publication of JP2019130612A5 publication Critical patent/JP2019130612A5/ja
Application granted granted Critical
Publication of JP6909739B2 publication Critical patent/JP6909739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

To further efficiently and accurately grind a workpiece which is composed of a complex material of hard grains and a metal base material by using a pair of grinding stones.SOLUTION: When plane-grinding a workpiece 6 composed of a complex material 3 of hard grains 1 and a metal base material 2 by using a pair of grinding stones 7, 8, at least the grinding stone 7 out of the pair of grinding stones 7, 8 is intermittently cut at a constant time interval T by a constant cut-in amount D. The constant cut-in amount D is an amount at which the grinding stone 7 can grind the workpiece 6 within a constant time, and can perform only spark-out grinding prior to succeeding cut-in. As the grinding stones 7, 8, used is a grinding stone whose grain size ratio A/B of an average abrasive grain size A of the grinding stones 7, 8 and grain sizes B of the hard grains 1 of the workpiece 6 is a proper grain size ratio.SELECTED DRAWING: Figure 1

Description

本発明は、硬質粒と母材との複合材料からなるワークを研削砥石により平面研削するワークの平面研削方法及び両頭平面研削盤に関するものである。   The present invention relates to a surface grinding method and a double-sided surface grinding machine for grinding a workpiece made of a composite material of hard particles and a base material with a grinding wheel.

放熱部材用として、ダイヤモンド粒1と金属母材2との複合材料3を使用することがある。この複合材料3は、例えば図13(a)に示すように、ダイヤモンド粒1と、そのダイヤモンド粒1を保持する金属母材2とで構成されている。金属母材2には、例えば銀や銅のような、ビッカース硬さ20〜150程度の柔らかい金属材料が使用されている。   A composite material 3 of diamond grains 1 and a metal base material 2 may be used for a heat dissipation member. For example, as shown in FIG. 13A, the composite material 3 includes diamond grains 1 and a metal base material 2 that holds the diamond grains 1. For the metal base material 2, a soft metal material having a Vickers hardness of about 20 to 150, such as silver or copper, is used.

このような複合材料3からなるワークを研削する場合には、図13(b)に示すように、研削面のダイヤモンド粒1を脱落させることなく研削面4を平滑状に仕上げる必要がある。これは、ワークの研削中に研削面側のダイヤモンド粒1が脱落したり、ダイヤモンド粒1の周辺の金属母材2がすり減ったりして、研削後のワークの研削面4が図13(c)に示すように凹凸状になれば、放熱部材と取り付け部位との間に隙間ができ、放熱部材への熱伝達効率が低下して放熱効果が悪くなるためである。   When a workpiece made of such a composite material 3 is ground, it is necessary to finish the ground surface 4 smoothly without dropping the diamond particles 1 on the ground surface, as shown in FIG. This is because the diamond grain 1 on the grinding surface side falls off during grinding of the workpiece, or the metal base material 2 around the diamond grain 1 is worn away, so that the grinding surface 4 of the workpiece after grinding is shown in FIG. If it becomes uneven | corrugated as shown in FIG. 3, it is because a clearance gap will be made between a heat radiating member and an attachment site | part, the heat transfer efficiency to a heat radiating member will fall, and the heat dissipation effect will worsen.

このよう複合材料3であるワークを平面研削盤を用いて、そのメタルボンドダイヤモンド砥石等の研削砥石により平面研削するに際しては、一般にインフィード・オシレート方式が採用される。この場合の平面研削法には、所定速度で研削砥石を連続的に切り込む連続的研削法(図14参照)と、研削砥石の前進、後退を交互に繰り返しながら研削砥石を断続的に切り込む断続的研削法(特許文献1)とがある。   In general, the infeed / oscillate method is employed when the workpiece as the composite material 3 is subjected to surface grinding with a grinding wheel such as a metal bond diamond wheel using a surface grinding machine. In this case, the surface grinding method includes a continuous grinding method (see FIG. 14) in which the grinding wheel is continuously cut at a predetermined speed, and an intermittent cutting method in which the grinding wheel is intermittently cut while alternately moving forward and backward. There is a grinding method (Patent Document 1).

連続的研削法は、図14に示すように、負荷電流I1の変化を測定しながら、所定の連続的切込特性E3に沿って一定の切込速度V1で研削砥石を連続的に切り込み、負荷電流I1が設定値I2以上に上昇した時点を切込速度変化点Pとして、その切込速度変化点Pから以降は切込速度V1から切込速度V2まで減速して、その切込速度V2でワークが所定の仕上がり寸法になるまで連続的に切り込む研削方法である。   As shown in FIG. 14, the continuous grinding method continuously cuts the grinding wheel at a constant cutting speed V1 along a predetermined continuous cutting characteristic E3 while measuring the change in the load current I1. The point at which the current I1 rises above the set value I2 is defined as a cutting speed change point P. From the cutting speed change point P, the speed is reduced from the cutting speed V1 to the cutting speed V2, and the cutting speed V2 is reached. This is a grinding method in which the workpiece is continuously cut until a predetermined finished size is obtained.

また断続的研削法は、ワークに対して研削砥石の前進移動と後退移動とを交互に繰り返しながら、ワークが所定の仕上がり寸法になるまで研削砥石を断続的に切り込む研削方法である。   The intermittent grinding method is a grinding method in which the grinding wheel is intermittently cut until the workpiece has a predetermined finished size while alternately repeating the forward movement and the backward movement of the grinding wheel with respect to the workpiece.

特開2001−225249号公報JP 2001-225249 A

従来の連続的研削法は、研削砥石をワークに対して連続的に切り込み続けるため、ワークの切り屑が研削砥石の砥粒に付着して研削砥石の切れ味が低下する。その結果、研削負荷が上昇し、図13(c)に示すように、ワークの研削面側のダイヤモンド粒1が脱落したり、ダイヤモンド粒1の周辺の金属母材2がすり減ってダイヤモンド粒1が突出したりして、研削面4を平滑状に高精度に研削できないという問題がある。   In the conventional continuous grinding method, since the grinding wheel is continuously cut into the workpiece, the chips of the workpiece adhere to the abrasive grains of the grinding wheel and the sharpness of the grinding wheel is lowered. As a result, the grinding load increases, and as shown in FIG. 13 (c), the diamond particles 1 on the grinding surface side of the workpiece fall off, or the metal base material 2 around the diamond particles 1 is worn away to form the diamond particles 1. There is a problem that the ground surface 4 cannot be ground with high accuracy.

一方、断続的研削法は、研削砥石が前進、後退を交互に繰り返しながらワークを研削するため、研削砥石とワークとの隙間にクーラントが入り易くなって切り屑を速やかに排出でき、また研削砥石の切れ味が向上して研削面を平滑状に高精度に研削できる利点がある。しかし、この断続的研削法は、研削開始時点から研削終了時点までの全時間の内、研削砥石が直接ワークの研削に関与し得ない研削不能時間が全時間の半分前後を占めるため、研削のサイクルタイムが非常に長くなり、ワークの研削能率が低下するという欠点がある。   On the other hand, the intermittent grinding method grinds the workpiece while the grinding wheel repeats forward and backward alternately, so that coolant can easily enter the gap between the grinding wheel and the workpiece, and chips can be discharged quickly. There is an advantage that the sharpness can be improved and the ground surface can be ground smoothly and with high precision. However, in this intermittent grinding method, the grinding time during which the grinding wheel cannot directly participate in grinding of the workpiece accounts for about half of the total time from the start of grinding to the end of grinding. There are disadvantages that the cycle time becomes very long and the grinding efficiency of the workpiece is lowered.

本発明は、このような従来の問題点に鑑み、硬質粒と金属母材との複合材料からなるワークを一対の研削砥石により能率的に高精度に研削できるワークの平面研削方法及び両頭平面研削盤を提供することを目的とするものである。   In view of such conventional problems, the present invention provides a workpiece surface grinding method and double-sided surface grinding capable of efficiently and accurately grinding a workpiece made of a composite material of hard grains and a metal base material with a pair of grinding wheels. The purpose is to provide a board.

本発明に係るワークの平面研削方法は、硬質粒と金属母材との複合材料からなるワークを一対の研削砥石により平面研削するに際して、一対の研削砥石の少なくとも一方の研削砥石を一定時間間隔で一定切込量ずつ間欠的に切り込むステップ切込を行うものである。
In the surface grinding method for a workpiece according to the present invention, when a workpiece made of a composite material of hard particles and a metal base is surface ground with a pair of grinding wheels, at least one of the pair of grinding wheels is fixed at regular intervals. Step cutting is performed by intermittently cutting a certain amount of cutting.

一定切込量は、一定時間内に研削砥石がワークを研削可能な最大研削量未満であることが望ましい。ステップ切込は、次の一定切込量の切込前にスパークアウト研削又は研削休止を有することが望ましい。研削砥石は、該研削砥石の砥粒の平均砥粒径とワークの硬質粒の粒径との粒径比が適正範囲のものを用いることが望ましい。   The constant cutting amount is preferably less than the maximum grinding amount that the grinding wheel can grind the workpiece within a predetermined time. The step incision preferably has a spark-out grinding or grinding pause before the next constant infeed amount. As the grinding wheel, it is desirable to use a grinding wheel having an appropriate ratio of the average grain size of the abrasive grains of the grinding wheel and the hard grains of the workpiece.

切込量の判らない研削砥石を使用するに際しては、既知の砥石の粒径比、切込量を基準に、当該研削砥石の粒径比に対する切込量を比例的に算出して、この算出された切込量を当該研削砥石の切込上限量とすることが望ましい。研削砥石の粒径比は、研削時にワークの硬質粒が脱落しない範囲であることが望ましい。   When using a grinding wheel whose depth of cut is not known, this calculation is performed by proportionally calculating the depth of cut with respect to the particle size ratio of the grinding wheel based on the known grain size ratio and depth of cut of the grinding wheel. It is desirable to set the cut depth as the upper limit cut depth of the grinding wheel. The particle size ratio of the grinding wheel is desirably in a range in which hard particles of the workpiece do not fall off during grinding.

本発明に係るワークの両頭平面研削盤は、硬質粒と金属母材との複合材料からなるワークを一対の研削砥石により研削する際に、一対の研削砥石の少なくとも一方の研削砥石を一定時間間隔で一定切込量ずつ間欠的に切り込むステップ切込を行うステップ切込制御手段を備えたものである。   The double-sided surface grinder for a workpiece according to the present invention is configured to grind at least one grinding wheel of a pair of grinding wheels at a constant time interval when a workpiece made of a composite material of hard grains and a metal base material is ground by the pair of grinding wheels. And step cutting control means for performing step cutting intermittently by a predetermined cutting amount.

本発明によれば、一対の研削砥石によりワークを研削するに際して、一対の研削砥石の少なくとも一方の研削砥石を一定時間間隔で一定切込量ずつ間欠的に切り込むステップ切込を行うので、硬質粒と金属母材との複合材料からなるワークを能率的に高精度に研削できる利点がある。   According to the present invention, when grinding a workpiece with a pair of grinding wheels, step cutting is performed in which at least one of the pair of grinding wheels is intermittently cut by a fixed cutting amount at fixed time intervals. There is an advantage that a workpiece made of a composite material of a metal base material can be efficiently and precisely ground.

本発明の第1の実施形態を示す縦型両頭平面研削盤の概略図である。1 is a schematic view of a vertical double-head surface grinding machine showing a first embodiment of the present invention. 同研削状態の説明図である。It is explanatory drawing of the grinding state. 同研削砥石の動きと負荷電流の関係を示す図である。It is a figure which shows the relationship between the movement of the grinding wheel, and load current. 同ステップ切込の説明図である。It is explanatory drawing of the step cutting. 同切込量の説明図である。It is explanatory drawing of the cut amount. 同研削と負荷電流の関係を示す図である。It is a figure which shows the relationship between the grinding and load current. 同砥石番手と平均砥粒径との関係を示す図である。It is a figure which shows the relationship between the grindstone count and average abrasive grain diameter. 同砥石番手と粒径比との関係を示す図である。It is a figure which shows the relationship between the grindstone count and particle size ratio. 同研削結果を示す図である。It is a figure which shows the grinding result. 同砥石番手と切込上限量等の関係を示す図である。It is a figure which shows the relationship between the grindstone count and the cutting upper limit amount. 本発明の第2の実施形態を示す制御系のブロック図である。It is a block diagram of a control system showing a second embodiment of the present invention. 同フローチャートである。It is the same flowchart. 複合材料及び研削状態の説明図である。It is explanatory drawing of a composite material and a grinding state. 従来の研削法の研削砥石の動きと負荷電流の関係を示す図である。It is a figure which shows the relationship between the motion of the grinding wheel of the conventional grinding method, and load current.

以下、本発明の実施形態を図面に基づいて詳述する。図1〜図10は本願発明の第1の実施形態を例示する。図1は縦型両頭平面研削盤5の概略図を示す。この縦型両頭平面研削盤5は、図1に示すように、ワーク6を上下両側から研削する上下一対の研削砥石7,8と、各研削砥石7,8が相対向する端部側に着脱自在に装着された上下方向の砥石軸9,10とを有する。なお、この縦型両頭平面研削盤5はインフィード・オシレート方式を採用して、上下一対の研削砥石7,8によりワーク6の上下両面を研削するようになっている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 to 10 illustrate a first embodiment of the present invention. FIG. 1 shows a schematic view of a vertical double-head surface grinding machine 5. As shown in FIG. 1, this vertical double-head surface grinding machine 5 has a pair of upper and lower grinding wheels 7 and 8 that grind the workpiece 6 from both the upper and lower sides, and is attached to and detached from the opposite ends of the grinding wheels 7 and 8. The grinding wheel shafts 9 and 10 are mounted in a vertical direction. The vertical double-sided surface grinding machine 5 employs an in-feed / oscillate system, and grinds the upper and lower surfaces of the workpiece 6 with a pair of upper and lower grinding wheels 7 and 8.

研削砥石7,8にはメタルボンドダイヤモンド砥石が使用されている。この研削砥石7,8は、図2に示すように、ダイヤモンド砥粒18と、このダイヤモンド砥粒18を保持する砥石母材(メタルボンド材)19とにより構成されている。なお、ワーク6は、ダイヤモンド粒1と金属母材2との複合材料3である。   As the grinding wheels 7 and 8, metal bond diamond wheels are used. As shown in FIG. 2, the grinding wheels 7 and 8 are composed of diamond abrasive grains 18 and a grindstone base material (metal bond material) 19 that holds the diamond abrasive grains 18. The work 6 is a composite material 3 of diamond grains 1 and a metal base material 2.

研削砥石7,8は砥石軸9,10に固定された砥石取り付け台11,12の相対向する端部側に着脱自在に取り付けられている。砥石軸9,10は上下方向の同一軸心上に回転自在に配置され、砥石軸用駆動モータ13,14の駆動により上下方向の軸心周りに回転可能であり、送り用駆動モータ15,16の駆動により上下方向に移動可能である。   The grinding wheels 7 and 8 are detachably attached to opposite ends of the grinding wheel mounting bases 11 and 12 fixed to the grinding wheel shafts 9 and 10. The grindstone shafts 9 and 10 are rotatably arranged on the same vertical axis, and can be rotated around the vertical axis by driving of the grindstone shaft drive motors 13 and 14. It is possible to move up and down by driving.

そのステップ切込を行うために、上側の研削砥石7を送り方向に駆動する送り用駆動モータ15の制御装置には、上側の研削砥石7のステップ切込動作を制御するステップ切込制御手段17が設けられている。このステップ切込制御手段17は送り用駆動モータ15の停止・駆動による上側の研削砥石7のステップ切込を制御するためのものであって、上側の研削砥石7がワーク6の上面側の研削を開始する研削開始時点から、ワーク6が所定の仕上がり寸法になって上下の研削砥石7,8がワーク6の研削を終了する研削終了時点までの一連の研削動作において、一定時間間隔T毎に一定切込量Dずつ上側の研削砥石7をワーク6へと間欠的に切り込むステップ切込を繰り返すように、送り用駆動モータ15をステップ切込特性Eに従って制御すべく構成されている。   In order to perform the step cutting, the control device of the feed drive motor 15 that drives the upper grinding wheel 7 in the feeding direction includes a step cutting control means 17 that controls the step cutting operation of the upper grinding wheel 7. Is provided. The step cutting control means 17 is for controlling the step cutting of the upper grinding wheel 7 by stopping and driving the feed drive motor 15, and the upper grinding wheel 7 grinds the upper surface side of the workpiece 6. In a series of grinding operations from the start of grinding starting to the end of grinding when the workpiece 6 has a predetermined finished size and the upper and lower grinding wheels 7 and 8 finish grinding the workpiece 6, at regular time intervals T. The feed drive motor 15 is configured to be controlled in accordance with the step cutting characteristic E so as to repeat step cutting in which the upper grinding wheel 7 is intermittently cut into the workpiece 6 by a constant cutting amount D.

ステップ切込特性Eは、図3に示すように、上側の研削砥石7の切り込みを一定時間間隔Tだけ停止する停止ステップE1と、上側の研削砥石7を一定切込量Dだけ切り込む切込ステップE2とを一組として1ステップ動作が構成されており、そのステップ動作毎に停止ステップE1と切込ステップE2とを一定時間間隔Tで交互に繰り返すように設定されている。   As shown in FIG. 3, the step cutting characteristic E includes a stop step E1 for stopping the cutting of the upper grinding wheel 7 for a fixed time interval T, and a cutting step for cutting the upper grinding wheel 7 by a fixed cutting amount D. A one-step operation is configured with E2 as a set, and the stop step E1 and the cutting step E2 are alternately repeated at a constant time interval T for each step operation.

従って、ステップ切込制御手段17は、上側の研削砥石7が一定時間間隔T毎に切り込みを停止する停止ステップE1と、上側の研削砥石7が一定時間間隔T毎に一定切込量Dずつ切り込む切込ステップE2とを交互に繰り返すステップ切込を行うように上側の研削砥石7を制御する。そのため上下一対の研削砥石7,8がワーク6の上下両面を略同時に略同一量だけ研削することになり、ワーク6の研削面を能率的に高精度に研削することができる。   Accordingly, the step cutting control means 17 stops the cutting step E1 in which the upper grinding wheel 7 stops cutting at every fixed time interval T, and the upper grinding wheel 7 cuts by a predetermined cutting amount D at every fixed time interval T. The upper grinding wheel 7 is controlled so as to perform step cutting that alternately repeats the cutting step E2. Therefore, the pair of upper and lower grinding wheels 7 and 8 grind the upper and lower surfaces of the workpiece 6 at substantially the same amount substantially simultaneously, so that the grinding surface of the workpiece 6 can be efficiently and accurately ground.

一定切込量Dは、1秒の一定時間間隔Tで上側の研削砥石7を切り込んだ場合に、停止ステップE1の停止時間の1秒間に上下の研削砥石7,8がワーク6を研削可能な最大研削量未満であって、その研削と次の切込ステップE2との間に軽負荷のスパークアウト研削又はそれに近い状態で研削(以下、スパークアウト研削という)できる時間ができるように設定されている。   When the upper grinding wheel 7 is cut at a constant time interval T of 1 second, the upper and lower grinding wheels 7 and 8 can grind the workpiece 6 in one second of the stop time of the stop step E1. The amount of grinding is less than the maximum grinding amount, and is set so that a time during which grinding can be performed with light load spark-out grinding or in a state close thereto (hereinafter referred to as spark-out grinding) between the grinding and the next cutting step E2 is set. Yes.

因みに粒径B=20μmのダイヤモンド粒1と金属母材2との複合材料3からなるワーク6を、砥石番手#400のメタルボンドダイヤモンド砥石製の研削砥石7,8により平面研削する場合には、後述のような理由により、一定時間間隔T=1秒とし、一定切込量D=1.0μmとすることが望ましい。   Incidentally, when the workpiece 6 made of the composite material 3 of the diamond particle 1 having a particle size B = 20 μm and the metal base material 2 is subjected to surface grinding with the grinding stones 7 and 8 made of a metal bond diamond grinding stone having a grinding stone count # 400, For reasons described later, it is desirable that the fixed time interval T = 1 second and the fixed cutting depth D = 1.0 μm.

なお、図14に示す従来の場合には、4μmを研削するまでに4秒の時間を要しているので、これを参考にして、図3のステップ切込では、一定時間間隔T=1秒とし、一定切込量D=1.0μmとした。また一定時間間隔T、一定切込量Dは、文言通りの一定の他に、それに近く一定と同一視し得る範囲にある略一定を含む概念である。また上下の研削砥石7,8の回転方向は同一方向でもよいし、逆方向でもよい。   In the case of the conventional case shown in FIG. 14, it takes 4 seconds to grind 4 μm. With reference to this, in the step cutting of FIG. 3, a constant time interval T = 1 second. And a constant cutting depth D = 1.0 μm. Moreover, the fixed time interval T and the fixed cutting amount D are concepts including substantially fixed values in a range that can be equated to a fixed value in addition to the fixed value as written. The rotation directions of the upper and lower grinding wheels 7 and 8 may be the same direction or the opposite directions.

また図3では説明を簡略化するために、切込ステップE2での上側の研削砥石7の切込動作は瞬時に行われるものとして、停止ステップE1で上側の研削砥石7の停止時間を一定時間間隔Tと同じにしている。しかし、実際には事実上無視できる程度とは云え、上側の研削砥石7の切込動作に極短い時間tを要するとすれば、停止ステップE1での停止時間はT−tとなる。   Further, in order to simplify the explanation in FIG. 3, it is assumed that the cutting operation of the upper grinding wheel 7 in the cutting step E2 is performed instantaneously, and the stop time of the upper grinding wheel 7 is set to a fixed time in the stop step E1. It is the same as the interval T. However, even though it is practically negligible, if the cutting operation of the upper grinding wheel 7 requires a very short time t, the stop time at the stop step E1 is T−t.

この両頭平面研削盤5を用いて、メタルボンドダイヤモンド砥石製の上下一対の研削砥石7,8によりワーク6の上下両面を研削する場合には、下側の研削砥石8を所定の前進位置に保持した状態で、上下の研削砥石7,8を砥石軸9,10周りに回転させて、上側の研削砥石7を一定時間間隔T毎にて一定切込量Dずつ間欠的に切り込むステップ切込を行いながら、インフィード・オシレート方式で研削する。   When the upper and lower surfaces of the workpiece 6 are ground using a pair of upper and lower grinding wheels 7 and 8 made of a metal bond diamond grinding wheel, the lower grinding wheel 8 is held at a predetermined advance position. In this state, the upper and lower grinding wheels 7, 8 are rotated around the grinding wheel shafts 9, 10, and the upper grinding wheel 7 is intermittently cut by a constant cutting amount D at regular time intervals T. Grind with in-feed oscillating method while doing.

ワーク6の研削に際しては、先ず図1に示すように下側の研削砥石8を所定高さの前進研削位置に停止させて上下方向に位置決めし、次いで上側の研削砥石7をワーク6と緩衝しない位置まで移動させる。その状態で上下の研削砥石7,8を砥石軸9、10周りに回転させる。そして、その上下の研削砥石7,8間にワーク6を挿入する。ワーク6の挿入が完了すれば、上側の研削砥石7をエアーカット速度で研削開始位置まで早送りする。   When grinding the workpiece 6, first, as shown in FIG. 1, the lower grinding wheel 8 is stopped at the forward grinding position of a predetermined height and positioned in the vertical direction, and then the upper grinding wheel 7 is not buffered with the workpiece 6. Move to position. In this state, the upper and lower grinding wheels 7 and 8 are rotated around the grinding wheel shafts 9 and 10. Then, the workpiece 6 is inserted between the upper and lower grinding wheels 7 and 8. When the insertion of the workpiece 6 is completed, the upper grinding wheel 7 is rapidly fed to the grinding start position at the air cut speed.

そして、上側の研削砥石7が研削開始位置まで移動した後は、その研削開始位置から上側の研削砥石7を所定の研削速度で前進させて、研削砥石7,8間でその砥石面に沿う方向にワーク6を往復移動させながら、上下の研削砥石7,8によりワーク6の上下両面を研削する。   Then, after the upper grinding wheel 7 has moved to the grinding start position, the upper grinding wheel 7 is advanced from the grinding start position at a predetermined grinding speed, and the direction along the grinding wheel surface between the grinding wheels 7, 8. The upper and lower surfaces of the workpiece 6 are ground by the upper and lower grinding wheels 7 and 8 while the workpiece 6 is moved back and forth.

この研削砥石7,8によるワーク6の研削中は、ステップ切込制御手段17の制御により、上側の研削砥石7をステップ切込特性Eに従って切り込むステップ切込を行う。このステップ切込では、ステップ切込特性Eに従って上側の研削砥石7が一定時間間隔T=1秒毎に切り込みを停止する停止ステップE1と、一定切込量D=1.0μmずつ切り込む切込ステップE2とを交互に繰り返して、一定時間間隔T=1秒毎に一定切込量D=1.0μmずつ上側の研削砥石7をワーク6に対して間欠的に切り込んで行く。これによって上下の研削砥石7,8がワーク6の上下両面を同時に研削することになり、ワーク6の上下両面を能率的に高精度に研削することができる。   During grinding of the workpiece 6 by the grinding wheels 7 and 8, step cutting is performed to cut the upper grinding wheel 7 in accordance with the step cutting characteristic E under the control of the step cutting control means 17. In this step cutting, a stop step E1 in which the upper grinding wheel 7 stops cutting every predetermined time interval T = 1 second according to the step cutting characteristic E, and a cutting step for cutting by a constant cutting amount D = 1.0 μm. E2 is alternately repeated, and the upper grinding wheel 7 is intermittently cut into the workpiece 6 by a constant cutting amount D = 1.0 μm every predetermined time interval T = 1 second. As a result, the upper and lower grinding wheels 7 and 8 simultaneously grind the upper and lower surfaces of the workpiece 6, and the upper and lower surfaces of the workpiece 6 can be efficiently and accurately ground.

即ち、上側の研削砥石7を図1、図4に示すようにD1,D2,D3・・・と一定時間間隔T=1秒毎に一定切込量D=1.0μmずつ間欠的に切り込むステップ切込を行うと、上下一対の研削砥石7,8間の間隔が1ステップ切込毎に1.0μmずつ小さくなる。その結果、上下の各研削砥石7,8をワーク6に対して上下両側から0.5μmずつ同時に切り込むことになり、ワーク6の上下両側の研削面を同時に0.5μmずつ研削することができる。   That is, as shown in FIGS. 1 and 4, the upper grinding wheel 7 is intermittently cut by D1, D2, D3... And a constant cutting interval D = 1.0 μm every fixed time interval T = 1 second. When cutting is performed, the distance between the pair of upper and lower grinding wheels 7 and 8 is reduced by 1.0 μm for each step cutting. As a result, the upper and lower grinding wheels 7 and 8 are simultaneously cut into the workpiece 6 by 0.5 μm from both the upper and lower sides, and the upper and lower grinding surfaces of the workpiece 6 can be simultaneously ground by 0.5 μm.

このように上側の研削砥石7を一定時間間隔T=1秒毎に一定切込量D=1.0μmずつ間欠的に切り込んで行くステップ切込を採用すれば、研削負荷による砥石軸用駆動モータ13,14の負荷電流I1は、図3に示すように設定値I2の下側で1秒毎に鋸歯状に変化するだけであり、研削時の負荷電流I1の上昇を防止することができる。   In this way, if a step cutting is employed in which the upper grinding wheel 7 is intermittently cut by a constant cutting amount D = 1.0 μm every fixed time interval T = 1 second, the grinding wheel drive motor for the grinding wheel is used. As shown in FIG. 3, the load current I1 of 13 and 14 only changes in a sawtooth shape every second on the lower side of the set value I2, and an increase in the load current I1 during grinding can be prevented.

何故ならば、図3のステップ切込特性Eに従ってステップ切込を行う場合には、図5(b)に示すように切込ステップE2−1において上側の研削砥石7を1.0μm切り込んだ後、上側の研削砥石7がその切込位置で停止する停止ステップE2に移行するため、上下の研削砥石7,8がその研削砥石7,8を含む装置全体の弾性変形を伴いながら、ワーク6を上下両側から0.5μmずつ切り込む。そのため図5(a)(b)に示すように、上側の研削砥石7を1.0μm切り込んだ切込ステップE2−1において、上下の研削砥石7,8の研削負荷が実際の切込量=0.5μm分だけ急激に上昇して砥石軸用駆動モータ13,14の負荷電流I1が急激に立ち上がる(I1−1)。   This is because when step cutting is performed in accordance with the step cutting characteristic E of FIG. 3, after cutting the upper grinding wheel 7 by 1.0 μm in the cutting step E2-1 as shown in FIG. 5 (b). Since the upper grinding wheel 7 is shifted to the stop step E2 where the upper grinding wheel 7 stops at the cutting position, the upper and lower grinding wheels 7 and 8 move the workpiece 6 while being accompanied by elastic deformation of the entire apparatus including the grinding wheels 7 and 8. Cut 0.5 μm from both the top and bottom sides. Therefore, as shown in FIGS. 5A and 5B, in the cutting step E2-1 in which the upper grinding wheel 7 is cut by 1.0 μm, the grinding load of the upper and lower grinding wheels 7 and 8 is the actual cutting amount = The load current I1 of the grindstone shaft drive motors 13 and 14 rises sharply by 0.5 μm (I1-1).

しかし、切込ステップE2−1後の停止ステップE1中は、上側の研削砥石7の切り込みが行われず、各研削砥石7,8は研削の進行に伴って弾性変形が戻りつつワーク6の研削を実行するため、砥石軸用駆動モータ13,14の研削負荷が徐々に軽くなり、その研削負荷の低下に伴って負荷電流I1も傾斜状に立ち下がる(I1−2)。   However, during the stop step E1 after the cutting step E2-1, the upper grinding wheel 7 is not cut, and the grinding wheels 7 and 8 grind the workpiece 6 while elastic deformation returns as the grinding progresses. Therefore, the grinding load of the grindstone shaft drive motors 13 and 14 gradually decreases, and the load current I1 also falls in an inclined manner as the grinding load decreases (I1-2).

上下の研削砥石7,8が0.5μm近く研削して装置全体の弾性変形が戻りに近くなれば、研削砥石7,8は次の切込ステップE2−2までの間に軽負荷状態でスパークアウト研削をするため、その後の負荷電流I1は次の切込ステップE2−2まで略一定値を辿る(I1−3)。   If the upper and lower grinding wheels 7 and 8 are ground close to 0.5 μm and the elastic deformation of the entire apparatus is close to return, the grinding wheels 7 and 8 are sparked in a light load state until the next cutting step E2-2. In order to perform the out grinding, the subsequent load current I1 follows a substantially constant value until the next cutting step E2-2 (I1-3).

ステップ切込中に繰り返される各1ステップ動作の一定時間間隔T=1秒間を解析した場合、図5に示すように、その最初の時間T1内に上下の研削砥石7,8による実質的な切込・研削が全て略終了し、その切込・研削に続いてスパークアウト研削する時間T2ができる。そのため負荷電流I1は、図5に示すように、各ステップ切込毎にI1−1からI1−2を経てI1−3へと鋸歯状に変化する。なお、スパークアウト研削に変えて、研削休止時間を設けてもよい。   When a fixed time interval T = 1 second of each one-step operation repeated during the step cutting is analyzed, as shown in FIG. 5, the substantial cutting by the upper and lower grinding wheels 7 and 8 within the first time T1 is performed. All the cutting / grinding is almost completed, and a time T2 for performing the spark-out grinding following the cutting / grinding is made. Therefore, as shown in FIG. 5, the load current I1 changes in a sawtooth shape from I1-1 through I1-2 to I1-3 at each step cutting. Instead of spark-out grinding, a grinding stop time may be provided.

このように上側の研削砥石7を一定時間間隔T=1秒毎に一定切込量=1.0μmずつ切り込むステップ切込法を採用すれば、前後の切込ステップE2−1,E2−2間にスパークアウト研削を設けることができる。そして、そのスパークアウト研削中は、図2に示すように、各研削砥石7,8のダイヤモンド砥粒18とワーク6の研削面との間に隙間28ができて、その隙間28にクーラントが入り込み易くなり、そのクーラントによって研削砥石7,8とワーク6との隙間28に入り込んだ研削屑を速やかに排出することができ、研削負荷の上昇が抑えられる。   In this way, if the step cutting method of cutting the upper grinding wheel 7 by a constant cutting amount = 1.0 μm every certain time interval T = 1 second is adopted, the distance between the preceding and following cutting steps E2-1 and E2-2 is adopted. Can be provided with spark-out grinding. During the spark-out grinding, as shown in FIG. 2, a gap 28 is formed between the diamond abrasive grains 18 of the grinding wheels 7 and 8 and the grinding surface of the work 6, and coolant enters the gap 28. It becomes easy, and the coolant can quickly discharge the grinding debris that has entered the gap 28 between the grinding wheels 7 and 8 and the workpiece 6, thereby suppressing an increase in the grinding load.

従って、研削砥石7,8の所定の切れ味を維持し、また所定の研削性を維持することが可能であり、ワーク6の研削面を能率よく高精度に研削することができる。ステップ切込の各ステップ動作において、上下の研削砥石7,8がワーク6のスパークアウト研削を繰り返すため、そのスパークアウト研削によりワーク6の研削面の仕上がり状態が更に向上する利点がある。   Therefore, the predetermined sharpness of the grinding wheels 7 and 8 can be maintained, and the predetermined grindability can be maintained, and the ground surface of the workpiece 6 can be efficiently and accurately ground. In each step operation of step cutting, since the upper and lower grinding wheels 7 and 8 repeat the spark-out grinding of the workpiece 6, there is an advantage that the finished state of the ground surface of the workpiece 6 is further improved by the spark-out grinding.

またステップ切込中は研削砥石7,8が切込ステップE2と停止ステップE1とを交互に繰り返すだけであって研削砥石7,8の後退動作がないので、研削開始から研削終了までの間にロスタイムがなく研削サイクルを短縮でき能率的に研削することができる。   Further, during the step cutting, the grinding wheels 7 and 8 only repeat the cutting step E2 and the stop step E1 alternately and there is no backward movement of the grinding wheels 7 and 8. There is no loss time, the grinding cycle can be shortened and grinding can be performed efficiently.

更にダイヤモンド粒1の粒径Bが20μmのワーク6に対し、その研削砥石7,8として砥石番手#400の砥石を用いており、ダイヤモンド砥粒18の平均砥粒径A=37μmとダイヤモンド粒1の粒径B=20μmとの粒径比A/Bが小さいので、ワーク6側のダイヤモンド粒1の脱落を抑えることができる。   Further, for a workpiece 6 having a diamond particle diameter B of 20 μm, a grindstone # 400 is used as the grinding wheel 7, 8, and the diamond abrasive grain 18 has an average abrasive particle diameter A = 37 μm and a diamond particle 1 Since the particle size ratio A / B with the particle size B = 20 μm is small, the diamond particles 1 on the workpiece 6 side can be prevented from falling off.

即ち、研削砥石7,8の平均砥粒径Aとワーク6のダイヤモンド粒1の粒径Bとの粒径比A/Bが大きくなれば、研削砥石7,8側の砥石母材19がダイヤモンド砥粒18を保持する砥粒保持力、研削砥石7,8の回転力や遠心力等の複数の要素が関連して、研削砥石7,8側のダイヤモンド砥粒18の砥粒保持力がワーク6側のダイヤモンド粒1の保持力よりも大になるため、研削時にワーク6のダイヤモンド粒1の脱落が生じる。   That is, when the particle size ratio A / B between the average abrasive grain size A of the grinding wheels 7 and 8 and the grain size B of the diamond grains 1 of the workpiece 6 is increased, the grinding wheel base material 19 on the side of the grinding wheels 7 and 8 becomes diamond. The abrasive grain holding force of the diamond abrasive grains 18 on the grinding wheel 7 and 8 side is related to a plurality of factors such as the abrasive grain holding force for holding the abrasive grains 18 and the rotational force and centrifugal force of the grinding wheels 7 and 8. Since it is larger than the holding force of the diamond particles 1 on the 6 side, the diamond particles 1 of the workpiece 6 fall off during grinding.

しかし、研削砥石7,8として平均砥粒径A=37μmの砥石番手#400の砥石を使用しており、これに対してワーク6のダイヤモンド粒1の粒径Bが20μmであり、両者の粒径比A/Bが1.85と小さいため、ワーク6側のダイヤモンド粒1の脱落を抑えることができる。   However, as the grinding stones 7 and 8, the grindstone of the grindstone count # 400 having an average abrasive grain diameter A = 37 μm is used, whereas the grain diameter B of the diamond grain 1 of the workpiece 6 is 20 μm. Since the diameter ratio A / B is as small as 1.85, dropping of the diamond grains 1 on the workpiece 6 side can be suppressed.

メタルボンドダイヤモンド砥石には、砥石番手#400の他にも、砥石番手#100、#200、#325、#600、#1000、#1200、#1500等と多種類のものがある。しかし、ステップ切込を採用すれば、どの砥石番手のメタルボンドダイヤモンド砥石を使用しても、常にワーク6を能率的に高精度で研削できるものではない。これは、メタルボンドダイヤモンド砥石の砥石番手によってダイヤモンド砥粒の平均砥粒径Aが異なり(図6参照)、その平均砥粒径Aとワーク6のダイヤモンド粒1の粒径Bとの粒径比A/Bが異なるためである。なお、図6の各メタルボンドダイヤモンド砥石の平均砥粒径Aは、砥石メーカーのカタログ値を参照した。   In addition to the grindstone count # 400, there are many types of metal bond diamond grindstones such as a grindstone count # 100, # 200, # 325, # 600, # 1000, # 1200, # 1500, and the like. However, if the step cutting is employed, the workpiece 6 cannot always be efficiently and accurately ground regardless of the grindstone number of the metal bond diamond grindstone. This is because the average abrasive grain size A of the diamond abrasive grains differs depending on the grinding stone count of the metal bond diamond grinding wheel (see FIG. 6), and the grain size ratio between the average abrasive grain diameter A and the grain size B of the diamond grain 1 of the workpiece 6 is different. This is because A / B is different. In addition, the average grinding particle diameter A of each metal bond diamond grindstone of FIG. 6 referred the catalog value of the grindstone manufacturer.

そこで、各種のメタルボンドダイヤモンド砥石を使用して、ステップ切込により実際のワーク6を研削する実研削テストを行い、そのテスト結果に基づいてステップ切込の条件を考察したところ、次のような知見を得た。   Then, the actual grinding test which grinds the actual workpiece | work 6 by step cutting using various metal bond diamond grindstones was performed, and when the conditions of step cutting were considered based on the test result, the following is shown. Obtained knowledge.

実研削テストでは、砥石番手#100、#325、#400、#1200のメタルボンドダイヤモンド砥石を使用した。またステップ切込は一定時間間隔T=1秒とし、切込量を変えて一定切込量D=1.0μmずつ切り込む場合と、一定切込量D=0.1μmずつ切り込む場合とについて実研削テストを行い、その研削面の仕上がり状態を目視により確認した。   In the actual grinding test, metal bond diamond grindstones of grindstone counts # 100, # 325, # 400, and # 1200 were used. Further, the step cutting is performed at a constant time interval T = 1 second, and the actual grinding is performed when the cutting amount is changed and the constant cutting amount D = 1.0 μm and when the constant cutting amount D = 0.1 μm. A test was performed, and the finished state of the ground surface was confirmed visually.

このテスト結果は、図7に示す通りである。図7において、「○」印はワーク6の研削面の仕上がり状態が良好であることを示し、ワーク6の上下何れの研削面においてもダイヤモンド粒1の脱落は認められなかった。「×」印はワーク6の研削面の仕上がり状態が不良であることを示す。なお、「−」印は実研削テストを行っていないことを示す。   The test results are as shown in FIG. In FIG. 7, the mark “◯” indicates that the finished state of the ground surface of the workpiece 6 is good, and the diamond particles 1 were not dropped on either the upper or lower ground surface of the workpiece 6. The “x” mark indicates that the finished state of the ground surface of the workpiece 6 is poor. The “−” mark indicates that an actual grinding test is not performed.

図7のテスト結果に示すように、砥石番手#100、#325のメタルボンドダイヤモンド砥石を使用した場合は、一定切込量Dが1.0μm、0.1μmの何れの場合にも、ワーク6の研削面の面粗度が大となり、またダイヤモンド粒の脱落の問題もあって、研削精度を確保できなかった。   As shown in the test results of FIG. 7, when the metal bond diamond grindstones of # 100 and # 325 are used, the workpiece 6 is obtained regardless of whether the constant cutting depth D is 1.0 μm or 0.1 μm. Grinding accuracy could not be ensured due to the large roughness of the ground surface and the problem of diamond dropout.

また砥石番手#400のメタルボンドダイヤモンド砥石を使用した場合は、逆に一定切込量Dが1.0μm、0.1μmの何れの場合にも、ワーク6の研削面の仕上がり状態が良好であった。しかし、同じステップ切込でも一定切込量Dが1.0μmと0.1μmとでは研削時間に大きな違いがあり、研削能率の点からは一定切込量D=1.0μmで切り込む方が能率的であることが判った。更に砥石番手#1200のメタルボンドダイヤモンド砥石を使用した場合は、一定切込量Dが0.1μmの場合にワーク6の研削面の仕上がり状態が良好であった。   On the other hand, when a metal bond diamond grindstone of # 400 is used, the finished state of the ground surface of the workpiece 6 is good regardless of whether the constant cutting depth D is 1.0 μm or 0.1 μm. It was. However, even with the same step cutting, there is a big difference in grinding time between the constant cutting depth D of 1.0 μm and 0.1 μm. From the viewpoint of grinding efficiency, it is more efficient to cut with the constant cutting depth D = 1.0 μm. It turned out to be the target. Furthermore, when the metal bond diamond grindstone with a grindstone count of # 1200 was used, the finished state of the ground surface of the workpiece 6 was good when the constant cutting depth D was 0.1 μm.

このテスト結果からすれば、ワーク6がダイヤモンド粒1の粒径B=20μmの複合材料3の場合には、砥石番手#400以上のメタルボンドダイヤモンド砥石を使用して、一定時間間隔T=1秒、一定切込量D=1.0μmでステップ切込を行うのが、研削精度、研削能率の何れの点でも良いことが判った。   According to this test result, when the workpiece 6 is the composite material 3 having a diamond particle diameter B of 20 μm, a metal bond diamond grindstone with a grindstone count # 400 or more is used, and a constant time interval T = 1 second. It was found that the step cutting with the constant cutting amount D = 1.0 μm may be performed at any point of grinding accuracy and grinding efficiency.

次にその理由を考察する。先ず実研削テストで使用した砥石番手#325、#400、#1200のメタルボンドダイヤモンド砥石について、その平均砥粒径Aとワーク6のダイヤモンド粒1の粒径B=20μmとの粒径比A/Bと、ワーク6の研削面の仕上がり状態の良否との関係について考える。   Next, the reason is considered. First, with respect to the metal bond diamond grinding stones # 325, # 400, and # 1200 used in the actual grinding test, the grain size ratio A / of the average abrasive grain size A and the grain size B of the diamond grain 1 of the workpiece 6 is 20 μm. Consider the relationship between B and the quality of the ground surface of the workpiece 6.

砥石番手#325、#400、#1200のメタルボンドダイヤモンド砥石の平均砥粒径Aは図6に示す通りであるから、砥石番手#325の粒径比A/Bは2.20となり、砥石番手#400の粒径比A/Bは1.85となり、砥石番手#1200の粒径比A/Bは0.65となる。これらの粒径比A/Bとなる砥石番手#325、#400、#1200と、ワーク6の研削面の良否との関係は、図8に示す通りである。   Since the average abrasive grain size A of the metal bond diamond grinding stones of the grinding wheel counts # 325, # 400, and # 1200 is as shown in FIG. 6, the grain size ratio A / B of the grinding stone count # 325 is 2.20. The particle size ratio A / B of # 400 is 1.85, and the particle size ratio A / B of the grindstone count # 1200 is 0.65. The relationship between the grindstone counts # 325, # 400, and # 1200 having these particle size ratios A / B and the quality of the ground surface of the workpiece 6 is as shown in FIG.

各砥石番手の粒径比A/Bとワーク6の研削面の良否との関係をみると、砥石番手#325の粒径比A/Bは2.20であり、ワーク6の研削面の仕上がり状態が悪かった。一方、砥石番手#400の粒径比A/Bは1.85であり、砥石番手#1200の粒径比A/Bは0.65であって、ワーク6の研削面の仕上がり状態が共に良好であった。この場合の粒径比A/Bは何れも2未満である。   Looking at the relationship between the grain size ratio A / B of each grinding wheel count and the quality of the grinding surface of the workpiece 6, the grain size ratio A / B of grinding stone count # 325 is 2.20, and the grinding surface finish of the workpiece 6 is finished. The condition was bad. On the other hand, the particle size ratio A / B of the grinding wheel count # 400 is 1.85, the particle size ratio A / B of the grinding wheel count # 1200 is 0.65, and the finished state of the ground surface of the workpiece 6 is good. Met. In this case, the particle size ratio A / B is less than 2.

この図8に示すテスト結果から、ワーク6がダイヤモンド粒1の粒径B=20μmの複合材料3を研削する場合には、粒径比A/B=1.85の砥石番手#400よりも番手数の大きい(粒径比A/Bの小さい)メタルボンドダイヤモンド砥石を使用すべきことが判った。   From the test results shown in FIG. 8, when the workpiece 6 grinds the composite material 3 with the diamond particle size B = 20 μm, the workpiece number is higher than the grindstone count # 400 with the particle size ratio A / B = 1.85. It has been found that a metal bond diamond wheel with a large number (small particle size ratio A / B) should be used.

これは、ダイヤモンド砥粒18の平均砥粒径Aとダイヤモンド粒1の粒径Bとの粒径比A/Bが砥石番手#325のように大きくなれば、ダイヤモンド砥粒18の保持力がワーク6の研削面のダイヤモンド粒1の保持力より大きくなり過ぎる等により、研削面のダイヤモンド粒1が脱落し易くなって仕上がり状態が低下するためである。   This is because the holding power of the diamond abrasive grains 18 is increased when the grain size ratio A / B of the average abrasive grain diameter A of the diamond abrasive grains 18 and the grain diameter B of the diamond grains 1 is increased as in the grinding stone count # 325. This is because the diamond grain 1 on the grinding surface is easily dropped off due to the excessive holding force of the diamond grain 1 on the grinding surface 6 and the finished state is lowered.

従って、ワーク6がダイヤモンド粒1の粒径B=20μmの複合材料3の場合には、使用するメタルボンドダイヤモンド砥石の粒径比A/Bは、砥石番手#325の粒径比2.20と砥石番手#400の粒径比1.85との中間の略2未満(又は2以下)、望ましくは砥石番手#400の粒径比1.85以下程度に抑える等、研削時にワーク6のダイヤモンド粒1が脱落しない範囲に抑える必要がある。   Therefore, when the workpiece 6 is the composite material 3 having a diamond particle diameter B of 20 μm, the particle diameter ratio A / B of the metal bond diamond grindstone used is 2.20 of the grindstone count # 325. The diamond grains of the workpiece 6 during grinding, such as being less than about 2 (or 2 or less) in the middle of the grain size ratio 1.85 of the grinding wheel count # 400, preferably about 185 or less, preferably the grain size ratio of the grinding wheel count # 400. It is necessary to keep it within a range where 1 does not fall off.

次に実研削テストに使用した砥石番手#325、#400について、その粒径比A/Bと切込量と研削面の良否と切込回数と実研削時間との関係を図9に示す。なお説明の都合上、切込回数と実研削時間は全研削量を10μmとして算出した。   Next, with respect to the grindstone counts # 325 and # 400 used in the actual grinding test, the relationship among the particle size ratio A / B, the cutting amount, the quality of the grinding surface, the number of cuttings, and the actual grinding time is shown in FIG. For convenience of explanation, the number of cuttings and the actual grinding time were calculated with the total grinding amount being 10 μm.

メタルボンドダイヤモンド砥石が砥石番手#325の場合には、一定切込量Dが1.0μmと0.1μmの何れの場合にも、ワーク6の研削面の仕上がり状態が悪かった。これは粒径比A/B=2.20と大であるため、一定切込量Dの大小に関係なく、ワーク6の研削面のダイヤモンド粒1が脱落し易くなるためである。   When the metal bond diamond grindstone was the grindstone count # 325, the finished state of the ground surface of the workpiece 6 was poor regardless of whether the constant cutting depth D was 1.0 μm or 0.1 μm. This is because the particle size ratio A / B = 2.20 is large, so that the diamond particles 1 on the ground surface of the workpiece 6 easily fall off regardless of the size of the constant cutting depth D.

メタルボンドダイヤモンド砥石が砥石番手#400の場合には、一定切込量Dを1.0μm、0.1μmの何れにしても研削面の仕上がり状態が良かった。これは粒径比A/B=1.85が適正であるため、一定切込量Dの大小に関係なくワーク6の研削面のダイヤモンド粒1の脱落を防止できるためである。これらは上述した通りである。   When the metal bond diamond grindstone was a grindstone count # 400, the finished state of the ground surface was good regardless of whether the constant cutting depth D was 1.0 μm or 0.1 μm. This is because the particle size ratio A / B = 1.85 is appropriate, so that the diamond grains 1 on the ground surface of the workpiece 6 can be prevented from falling off regardless of the size of the constant cutting depth D. These are as described above.

しかし、研削面の仕上がり状態は良好であるが、一定切込量D=1.0μmでステップ切込をした場合には、全研削量10μmを研削するまでの切込回数が10回であり、10秒間の実研削時間で能率的に研削できるのに対して、一定切込量D=0.1μmでステップ切込をした場合には、全研削量10μmを研削するまでの切込回数が100回となり、100秒間の実研削時間を要し研削能率が大きく低下することになる。   However, although the finished state of the ground surface is good, when step cutting is performed with a constant cutting amount D = 1.0 μm, the number of cuttings until the total grinding amount of 10 μm is ground is 10 times. While efficient grinding is possible with an actual grinding time of 10 seconds, when step cutting is performed with a constant cutting amount D = 0.1 μm, the number of cuttings until the total grinding amount of 10 μm is ground is 100. Thus, an actual grinding time of 100 seconds is required, and the grinding efficiency is greatly reduced.

この実研削テストの結果からすると、ワーク6がダイヤモンド粒1の粒径B=20μmの複合材料3の場合には、粒径比A/B=2未満( 又は2以下) 、望ましくは粒径比A/B=1.85以下のメタルボンドダイヤモンド砥石を使用する場合には、1回の一定切込量Dがメタルボンドダイヤモンド砥石の研削量、ワーク6の全研削量に対して過度に大きくなければ、一定切込量Dの大小に関係なく所定の研削精度を確保することが判った。従って、メタルボンドダイヤモンド砥石自体が粒径比A/Bの条件を満たす限りは、ステップ切込において、一定時間間隔T毎に切り込む一定切込量Dは、研削能率を考慮して適宜決定すればよい。   From the result of this actual grinding test, when the workpiece 6 is a composite material 3 having a diamond particle diameter B of 20 μm, the particle diameter ratio A / B is less than 2 (or less than 2), preferably the particle diameter ratio. When using a metal bond diamond grindstone with A / B = 1.85 or less, the constant cutting depth D must be excessively large relative to the grinding amount of the metal bond diamond grindstone and the total grinding amount of the workpiece 6. For example, it has been found that a predetermined grinding accuracy is ensured regardless of the size of the constant cutting depth D. Therefore, as long as the metal bond diamond grindstone itself satisfies the condition of the particle size ratio A / B, in the step cutting, the constant cutting amount D to be cut at every constant time interval T can be appropriately determined in consideration of the grinding efficiency. Good.

なお、ステップ切込における一定時間間隔Tと一定切込量Dとの関係は、メタルボンドダイヤモンド砥石の切れ味との関係で相対的に決まるものであり、砥石番手によって切れ味も違い、ワーク6の種類によって粒径比A/Bも違うので、それらの違いを考慮して決定する必要がある。   In addition, the relationship between the fixed time interval T and the fixed cutting amount D in the step cutting is relatively determined by the relationship with the sharpness of the metal bond diamond grindstone, and the sharpness varies depending on the grindstone count. Since the particle size ratio A / B differs depending on the type, it is necessary to determine the difference in consideration.

ワーク6がダイヤモンド粒1の粒径B=20μmの複合材料3の場合には、実研削テストのテスト結果から粒径比A/B=1.85の砥石番手#400のメタルボンドダイヤモンド砥石を使用して、一定時間間隔T=1秒毎に一定切込量D=1.0μmでステップ切込を行えば良いことが判った。   When the workpiece 6 is a composite material 3 having a diamond particle size B = 20 μm, a metal bond diamond wheel # 400 having a particle size ratio A / B = 1.85 is used from the result of an actual grinding test. Then, it has been found that step cutting may be performed with a constant cutting amount D = 1.0 μm every certain time interval T = 1 second.

一定切込量Dは研削能率を左右する重要な条件であり、粒径比A/B=1.85以下の条件を満足する場合でも、メタルボンドダイヤモンド砥石によってその一定切込量Dの値が大きく異なる。そのため一定切込量Dが判らない他のメタルボンドダイヤモンド砥石(例えば砥石番手#600の砥石)を使用する必要が生じた場合には、そのメタルボンドダイヤモンド砥石に適した一定切込量Dを求めて、ステップ切込時の一定切込量Dをその値に変更する必要がある。   The constant depth of cut D is an important condition that affects the grinding efficiency. Even when the particle size ratio A / B = 1.85 or less is satisfied, the value of the constant depth of cut D depends on the metal bond diamond grindstone. to differ greatly. Therefore, when it is necessary to use another metal bond diamond grindstone whose constant cut amount D is not known (for example, a grindstone with a grinding wheel count # 600), a constant cut amount D suitable for the metal bond diamond grindstone is obtained. Therefore, it is necessary to change the constant cutting amount D at the time of step cutting to the value.

このような場合には、次のような手法で計算により算出すればよい。即ち、例えば砥石番手#600のメタルボンドダイヤモンド砥石の一定切込量Dが判らない場合には、その平均砥粒径A(=30μm)がカタログ等の記載から判るので、この平均砥粒径Aとダイヤモンド粒1の粒径B(=20μm)とから、先ず切込量Yを算出すべきメタルボンドダイヤモンド砥石の粒径比C6(=A/B)が判る。   In such a case, it may be calculated by the following method. That is, for example, when the constant cutting depth D of the metal bond diamond grindstone of the grindstone count # 600 is not known, the average abrasive grain size A (= 30 μm) can be found from the description in the catalog or the like. From the particle diameter B of the diamond grains 1 (= 20 μm), the particle diameter ratio C6 (= A / B) of the metal bond diamond grindstone for which the cutting depth Y should be calculated first can be determined.

一方、砥石番手#400のメタルボンドダイヤモンド砥石を使用してワーク6を研削すれば、研削能率、研削性能が共に良好であり、しかもその粒径比A/B=1.85が既知であることから、この砥石番手#400のメタルボンドダイヤモンド砥石を標準的砥石とする。そして、この砥石番手#400の粒径比A/B=1.85を適正粒径比C4とし、その一定切込量D=1.0μmを適正切込量D4として、砥石番手#400の適正粒径比C4と、砥石番手#600の粒径比C6との比率に応じて比例的にメタルボンドダイヤモンド砥石の切込量D6を算出し(D6=C6・D4/C4)、その切込量D6を砥石番手#600のメタルボンドダイヤモンド砥石を使用する際の切込上限量D6max(=一定切込量D)として設定する。   On the other hand, if the workpiece 6 is ground using a metal bond diamond grindstone of # 400, the grinding efficiency and grinding performance are both good, and the particle size ratio A / B = 1.85 is known. Therefore, the metal bond diamond grindstone of the grindstone count # 400 is used as a standard grindstone. Then, the particle size ratio A / B = 1.85 of the grindstone count # 400 is set to an appropriate particle size ratio C4, and the constant cut amount D = 1.0 μm is set to an appropriate cut amount D4. The cutting amount D6 of the metal bond diamond grindstone is calculated proportionally according to the ratio of the particle size ratio C4 and the particle size ratio C6 of the grinding wheel count # 600 (D6 = C6 · D4 / C4). D6 is set as the cutting upper limit amount D6max (= constant cutting amount D) when using the metal bond diamond grindstone of # 600 grindstone.

因みに各砥石番手#400、#600、#1000、#1200、#1500のメタルボンドダイヤモンド砥石の切込上限量等は、図10に示す通りである。   Incidentally, the cutting upper limit amount of the metal bond diamond grindstones of the grindstone counts # 400, # 600, # 1000, # 1200, and # 1500 are as shown in FIG.

このようにすれば、使用するメタルボンドダイヤモンド砥石が変わる毎に、そのメタルボンドダイヤモンド砥石の一定切込量Dを実研削テストで確認する必要がなく、ワーク6の研削前の段取りも迅速に行える利点がある。またワーク6の研削に際しても、そのメタルボンドダイヤモンド砥石に適した切込上限量で研削できるので、研削能率の向上を図ることができる。   In this way, every time the metal bond diamond wheel to be used changes, it is not necessary to confirm the constant cutting amount D of the metal bond diamond wheel by an actual grinding test, and the workpiece 6 can be set up quickly before grinding. There are advantages. Further, since the workpiece 6 can be ground with a cutting upper limit suitable for the metal bond diamond grindstone, the grinding efficiency can be improved.

図11、図12は本発明の第2の実施形態を例示する。この実施形態では、図11に示すように、砥石番手、ワーク6のダイヤモンド粒1の粒径B等の条件を設定する設定手段20と、この設定手段20により設定された条件に基づいてステップ切込制御条件である粒径比A/B、切込上限量Dmaxを演算する演算手段21と、この演算手段21で演算された切込上限量Dmaxを一定切込量Dとして一定時間間隔T毎に研削砥石7を間欠的に切り込むように送り用駆動モータ15を制御するステップ切込制御手段17とを備えている。   11 and 12 illustrate a second embodiment of the present invention. In this embodiment, as shown in FIG. 11, the setting means 20 for setting conditions such as the grindstone count, the grain size B of the diamond grains 1 of the workpiece 6, and the step cutting based on the conditions set by the setting means 20 The calculation means 21 for calculating the particle size ratio A / B and the cutting upper limit amount Dmax, which are the cutting control conditions, and the cutting upper limit amount Dmax calculated by the calculation means 21 as the constant cutting amount D at every constant time interval T And a step cutting control means 17 for controlling the drive motor 15 so as to cut the grinding wheel 7 intermittently.

設定手段20は、砥石番手を設定する砥石番手設定部22と、ワーク6のダイヤモンド粒1の粒径Bを設定する粒径設定部23とを有する。演算手段21は、砥石番手設定部22により設定された砥石番手と粒径設定部23で設定されたダイヤモンド粒1の粒径Bとから、その砥石番手の砥石とワーク6との粒径比A/Bを演算する粒径比演算部24と、粒径比演算部24で演算された粒径比A/Bからワーク6に対してその砥石番手の砥石が適当か否かを判定する適否判定部25と、適否判定部25がその砥石番手の砥石を適当と判定した場合に、粒径比演算部24で演算された粒径比A/Bから砥石のステップ切込時の一定時間間隔Tを演算する切込時間間隔演算部26と、適否判定部25が砥石を適当と判定した場合に、粒径比演算部24で演算された粒径比A/Bの砥石の切込上限量Dmaxを、予め記憶する標準的砥石の適正粒径比C4、適正切込量D4に基づいて比例的に演算する切込上限量演算部27とを備えている。   The setting means 20 includes a grindstone count setting unit 22 that sets the grindstone count, and a particle size setting unit 23 that sets the particle size B of the diamond grains 1 of the workpiece 6. The calculating means 21 calculates the particle size ratio A between the grindstone count grindstone and the workpiece 6 from the grindstone count set by the grindstone count setting unit 22 and the particle size B of the diamond grain 1 set by the particle size setting unit 23. Particle size ratio calculating unit 24 for calculating / B, and suitability determination for determining whether or not the grindstone of the grindstone count is appropriate for the workpiece 6 from the particle size ratio A / B calculated by the particle size ratio calculating unit 24 When the unit 25 and the suitability determination unit 25 determine that the grindstone is appropriate, the constant time interval T at the time of step cutting of the grindstone from the particle size ratio A / B calculated by the particle size ratio calculation unit 24 When the cutting time interval calculating unit 26 and the suitability determining unit 25 determine that the grindstone is suitable, the cutting upper limit Dmax of the grindstone with the particle size ratio A / B calculated by the particle size ratio calculating unit 24 is calculated. Is proportional based on the appropriate particle size ratio C4 and the appropriate cutting depth D4 of the standard grindstone stored in advance. And a cutting limit calculation unit 27 for calculating the.

ステップ切込制御手段17は、切込時間間隔演算部26で演算された一定時間間隔Tと、切込上限量演算部27で演算された一定切込量Dとに従って、ワーク6の研削の開始から研削が終了するまで一定時間間隔T毎に一定切込量Dずつ間欠的に砥石をワーク6に切り込むように送り用駆動モータ15を制御するべく構成されている。なお、適否判定部25が砥石を不適当と判定した場合には、図外の報知手段でそれを報知して砥石番手の変更等を促すようになっている。   The step cutting control means 17 starts the grinding of the workpiece 6 in accordance with the fixed time interval T calculated by the cutting time interval calculating unit 26 and the fixed cutting amount D calculated by the cutting upper limit amount calculating unit 27. The feed drive motor 15 is controlled so that the grindstone is intermittently cut into the workpiece 6 by a constant cutting amount D every fixed time interval T until grinding is completed. In addition, when the suitability determination unit 25 determines that the grindstone is unsuitable, it is informed by a not-shown informing means to prompt the change of the grindstone count and the like.

この実施形態では、図12に示すような過程を経て設定から研削終了までの処理を行う。先ず、ワーク6の研削を開始する前に設定手段20により各設定を行い、演算手段21によりステップ切込制御の条件を自動的に演算する。そして、他の種類の砥石、ワーク6に変更する等、設定手段20により設定した条件の変更がない限り、演算手段21の演算結果に従ってステップ切込制御手段17がステップ切込制御を行い、順次インフィード・オシレート方式の下でワーク6を研削する。   In this embodiment, processing from setting to the end of grinding is performed through the process shown in FIG. First, each setting is performed by the setting means 20 before the grinding of the workpiece 6 is started, and the condition for the step cutting control is automatically calculated by the calculation means 21. Then, unless the condition set by the setting means 20 is changed, such as changing to another type of grindstone or workpiece 6, the step cutting control means 17 performs step cutting control according to the calculation result of the calculation means 21, and sequentially The workpiece 6 is ground under the in-feed oscillating method.

設定手段20では、砥石番手設定部22によりワーク6の研削に供する砥石番手を設定し(S1)、また粒径設定部23により、研削すべきワーク6のダイヤモンド粒1の粒径Bを設定して(S2)、全ての条件の設定が終了しているか否かを判断する(S3)。   In the setting means 20, the grindstone count used for grinding the workpiece 6 is set by the grindstone count setting unit 22 (S1), and the particle size B of the diamond particle 1 of the workpiece 6 to be ground is set by the particle size setting unit 23. (S2), it is determined whether or not all the conditions have been set (S3).

全ての条件が設定済みであれば、粒径比演算部24が砥石番手とダイヤモンド粒1の粒径Bとから、砥石のダイヤモンド砥粒18とワーク6のダイヤモンド粒1との粒径比A/Bを演算する(S4)。次に適否判定部25が粒径比演算部24で演算された粒径比A/Bが2未満(又は2以下)、望ましくは1.85以下か否かにより、ワーク6の研削に対して設定された砥石番手の砥石が適当か否かを判定する(S5)。   If all the conditions have been set, the particle size ratio calculation unit 24 calculates the particle size ratio A / between the diamond abrasive grains 18 of the grinding wheel and the diamond grains 1 of the workpiece 6 from the grindstone count and the particle diameter B of the diamond grains 1. B is calculated (S4). Next, whether or not the particle size ratio A / B calculated by the particle size ratio calculation unit 24 is less than 2 (or 2 or less), preferably 1.85 or less, is used for grinding the workpiece 6. It is determined whether or not the set grinding wheel count is appropriate (S5).

そして、粒径比A/Bが1.85を越える場合には、ワーク6に対して砥石が不適当であるため、それを報知して砥石の交換を促し処理を終了する(S6)。粒径比A/Bが1.85以下であれば、ワーク6の研削にその砥石番手の砥石が適当と判断し(S5)、切込時間間隔演算部26がその砥石番手の砥石でワーク6を研削する場合の一定時間間隔Tを演算する(S7)。この場合、切込時間間隔は各粒径比A/Bに対応して変更するようにしてもよいし、粒径比A/Bの大小に関係なく一律の一定時間(例えば1秒間)にすることも可能である。   If the particle size ratio A / B exceeds 1.85, the grindstone is inappropriate for the workpiece 6, and this is notified to prompt the exchange of the grindstone and the process is terminated (S6). If the particle size ratio A / B is equal to or less than 1.85, it is determined that the grindstone of the grindstone is suitable for grinding the workpiece 6 (S5), and the cutting time interval calculation unit 26 uses the grindstone with the grindstone count of the work 6 A fixed time interval T for grinding is calculated (S7). In this case, the cutting time interval may be changed corresponding to each particle size ratio A / B, or it may be a constant time (for example, 1 second) regardless of the size of the particle size ratio A / B. It is also possible.

次いで切込上限量演算部27が粒径比演算部24で演算された粒径比A/Bの場合のワーク6に対する切込上限量Dmaxを、砥石番手#400の砥石を標準的砥石として比例的に演算する(S8)。   Next, the cutting upper limit amount calculation unit 27 is proportional to the cutting upper limit amount Dmax with respect to the workpiece 6 in the case of the particle size ratio A / B calculated by the particle size ratio calculation unit 24, with the grindstone of # 400 as the standard grindstone. (S8).

全ての演算等が終了すると研削開始指令を待って(S94)、ステップ切込制御手段17が送り用駆動モータ15を介して砥石を一定時間間隔Tで一定切込量Dずつワーク6に対して間欠的に切り込むステップ切込制御を行う(S10)。そして、ワーク6が所定の仕上がり寸法になるまでステップ切込制御を継続し(S10、S11)、所定の仕上がり寸法になれば(S11)、ステップ切込制御によるワーク6の研削を終了する。   When all the calculations are completed, a grinding start command is waited (S94), and the step cutting control means 17 applies the grinding wheel to the workpiece 6 by a fixed cutting amount D at a fixed time interval T through the feed drive motor 15. Step cutting control for intermittent cutting is performed (S10). Then, the step cutting control is continued until the workpiece 6 has a predetermined finished dimension (S10, S11). When the workpiece 6 has a predetermined finished dimension (S11), the grinding of the workpiece 6 by the step cutting control is finished.

このようにすれば、ワーク6の研削に使用する砥石の砥石番手と、ワーク6のダイヤモンド粒1の粒径Bとを設定することにより、粒径比A/Bの演算、粒径比A/Bの適否の判断、一定時間間隔Tの演算、切込上限量Dmaxの演算等を行い、それに従って砥石をワーク6に対して一定時間間隔Tで一定切込量Dずつ間欠的に切り込むステップ切込制御を自動的に実行することができる。   In this way, by setting the grindstone count of the grindstone used for grinding the workpiece 6 and the grain size B of the diamond grains 1 of the workpiece 6, the computation of the grain size ratio A / B, the grain size ratio A / Step cutting for determining whether B is appropriate, calculating a fixed time interval T, calculating a cutting upper limit Dmax, etc., and intermittently cutting the grindstone with respect to the work 6 by a fixed cutting amount D at a fixed time interval T. Control can be executed automatically.

以上、本発明の各実施形態について詳述したが、本発明はこの実施形態に限定されるものではなく種々の変更が可能である。例えば、実施形態では、上下一対の研削砥石7,8を備えた縦型両頭平面研削盤5の場合を例示しているが、左右に一対の研削砥石7,8を備えた横型両頭平面研削盤でも同様に実施可能である。   As mentioned above, although each embodiment of this invention was explained in full detail, this invention is not limited to this embodiment, A various change is possible. For example, in the embodiment, the case of the vertical double-sided surface grinder 5 provided with a pair of upper and lower grinding wheels 7 and 8 is illustrated, but the horizontal double-headed surface grinder provided with a pair of grinding wheels 7 and 8 on the left and right. But it can be done in the same way.

また実施形態では、縦型両頭平面研削盤5において、上側の研削砥石7を一定時間間隔Tで一定切込量Dずつ間欠的に切り込むステップ切込制御を例示しているが、上下一対の研削砥石7,8の内、その下側の研削砥石8を一定時間間隔Tで一定切込量Dずつ間欠的に切り込むようにしてもよいし、上下両方の研削砥石7,8を同時に一定時間間隔Tで一定切込量D/2ずつ間欠的に切り込むようにしてもよい。ただし、両方の研削砥石7,8を同時に切り込む場合には、各研削砥石7,8の一定切込量Dは、片側の研削砥石7又は研削砥石8を切り込む場合の略半分にすることが望ましい。これは横型両頭平面研削盤でも同様である。   In the embodiment, in the vertical double-sided surface grinder 5, step cutting control is illustrated in which the upper grinding wheel 7 is intermittently cut by a constant cutting amount D at a constant time interval T. Of the grindstones 7 and 8, the lower grinding wheel 8 may be intermittently cut by a constant cutting amount D at a constant time interval T, or both the upper and lower grinding wheels 7 and 8 may be simultaneously cut at a constant time interval. You may make it cut intermittently by fixed cutting amount D / 2 by T. However, when both the grinding wheels 7 and 8 are cut simultaneously, it is desirable that the constant cutting amount D of each grinding wheel 7 and 8 is approximately half that of the case where the grinding wheel 7 or the grinding stone 8 on one side is cut. . The same applies to a horizontal double-sided surface grinder.

実施形態では、ワーク6としてダイヤモンド粒1の粒径Bが20μmの複合材料3を例示しているが、ダイヤモンド粒1以外の硬質粒を含む複合材料3でも同様に実施可能である。その硬質粒は、金属母材2よりも硬質の天然材、人工材が考えられる。従って、複合材料3は、ダイヤモンド粒1又はそれ以外の天然材、人工材を含む硬質粒と、これを保持する柔らかい金属母材2とを含むものであれば十分である。研削砥石7,8はメタルボンドダイヤモンド砥石以外のものでもよい。   In the embodiment, the composite material 3 in which the grain size B of the diamond grains 1 is 20 μm is illustrated as the workpiece 6, but the composite material 3 including hard grains other than the diamond grains 1 can be similarly implemented. The hard particles may be natural materials or artificial materials that are harder than the metal base material 2. Therefore, it is sufficient for the composite material 3 to include the diamond particles 1 or hard particles including other natural materials or artificial materials, and the soft metal base material 2 that holds the hard particles. The grinding wheels 7 and 8 may be other than metal bond diamond wheels.

また実施形態では、ダイヤモンド粒1の粒径B20μmの複合材料3を、平均砥粒径A37μmの砥石番手#400の砥石で研削した場合の研削結果が良好だったので、砥石番手#400の砥石を標準的砥石として、それを基準に他の砥石番手の砥石の切込上限量Dmaxを演算している。   In the embodiment, since the grinding result when the composite material 3 having the diamond particle size B of 20 μm was ground with the grindstone of the grindstone count # 400 having the average abrasive grain size A of 37 μm was good, the grindstone of the grindstone count # 400 was used. As a standard grindstone, the cutting upper limit amount Dmax of the grindstone of another grindstone count is calculated based on the standard grindstone.

しかし、ダイヤモンド粒1の粒径B20μm以外の複合材料3であるワーク6を、平均砥粒径A37μm以外の砥石番手のメタルボンドダイヤモンド砥石の研削砥石7,8で研削する場合には、その複合材料3のダイヤモンド粒1の粒径Bと、その砥石番手のメタルボンドダイヤモンド砥石の平均砥粒径Aとの組み合わせから標準的砥石を決めてもよい。従って、標準的砥石は砥石番手#400に限定されるものではない。   However, when the workpiece 6 which is the composite material 3 other than the diamond particle diameter B of 20 μm is ground with the grinding stones 7 and 8 of the metal bond diamond grindstone other than the average abrasive particle diameter A of 37 μm, the composite material is used. A standard grindstone may be determined from the combination of the particle diameter B of the diamond particle 1 of 3 and the average grindstone diameter A of the metal bond diamond grindstone of the grindstone count. Therefore, the standard grindstone is not limited to the grindstone count # 400.

また面粗度の小さい仕様のワーク6を研削する場合には、研削砥石7,8として砥石番手#400以外のメタルボンドダイヤモンド砥石、例えば砥石番手#1000、#1500等のメタルボンドダイヤモンド砥石を使用することにより、効率的にワーク6を研削することも可能である。この場合には、砥石番手#1000、#1500等のメタルボンドダイヤモンド砥石が標準的砥石となることもある。   When grinding a workpiece 6 having a low surface roughness, a metal bond diamond grindstone other than the grindstone count # 400, for example, a metal bond diamond grindstone such as a grindstone count # 1000 or # 1500 is used as the grinding wheels 7 and 8. By doing so, it is also possible to grind the workpiece 6 efficiently. In this case, a metal bond diamond grindstone such as a grindstone count # 1000 or # 1500 may be a standard grindstone.

更に研削砥石7,8をステップ切込する場合の一定時間間隔T、一定切込量D、切込上限量は、研削砥石の平均砥粒径Aと、ワーク6のダイヤモンド粒の粒径Bとの相対関係により定まるものであり、実施形態の数値に限定されるものではない。   Further, when the grinding wheels 7 and 8 are stepped, the fixed time interval T, the constant cutting amount D, and the cutting upper limit amount are the average grinding particle size A of the grinding wheel and the grain size B of the diamond grains of the workpiece 6. And is not limited to the numerical values of the embodiments.

実施形態では、研削砥石7,8の切込上限量Dmaxを求めて、研削砥石7,8をワーク6に切り込むときの一定切込量D(適正切込量)を切込上限量Dmaxとして説明したが、実際にワーク6を研削する一定切込量Dは、切込上限量Dmaxよりも若干少ない切込量Dを適正切込量Xとしてもよい。   In the embodiment, the cutting upper limit amount Dmax of the grinding wheels 7 and 8 is obtained, and the constant cutting amount D (appropriate cutting amount) when cutting the grinding wheels 7 and 8 into the workpiece 6 is described as the cutting upper limit amount Dmax. However, the constant cutting amount D for actually grinding the workpiece 6 may be a cutting amount D slightly smaller than the cutting upper limit amount Dmax as the appropriate cutting amount X.

1 ダイヤモンド粒(硬質粒)
2 金属母材
3 複合材料
6 ワーク
7,8 研削砥石
9,10 砥石軸
13,14 砥石軸用駆動モータ
15,16 送り用駆動モータ
17 ステップ切込制御手段
18 ダイヤモンド砥粒
19 砥石母材
20 設定手段
21 演算手段
22 砥石番手設定部
23 粒径設定部
24 粒径比演算部
26 切込時間間隔演算部
27 切込上限量演算部
T 一定時間間隔
D 一定切込量
A 平均砥粒径
B 粒径
1 Diamond grains (hard grains)
2 Metal base material 3 Composite material 6 Work piece 7 and 8 Grinding wheel 9 and 10 Grinding wheel shaft 13 and 14 Grinding wheel shaft drive motor 15 and 16 Feeding drive motor 17 Step cutting control means 18 Diamond abrasive grain 19 Grinding wheel base material 20 Setting Means 21 Calculation means 22 Grinding wheel count setting unit 23 Particle size setting unit 24 Particle size ratio calculation unit 26 Cutting time interval calculation unit 27 Cutting upper limit amount calculation unit T Constant time interval D Constant cutting amount A Average abrasive grain size B grain Diameter

Claims (7)

硬質粒と金属母材との複合材料からなるワークを一対の研削砥石により平面研削するに際して、一対の研削砥石の少なくとも一方の研削砥石を一定時間間隔で一定切込量ずつ間欠的に切り込むステップ切込を行うことを特徴とするワークの平面研削方法。   When surface grinding a workpiece made of a composite material of hard grains and a metal base with a pair of grinding wheels, step cutting is performed by intermittently cutting at least one of the pair of grinding wheels by a constant cutting amount at regular time intervals. A surface grinding method for a workpiece, characterized in that the grinding is performed. 一定切込量は、一定時間内に研削砥石がワークを研削可能な最大研削量未満であることを特徴とする請求項1に記載のワークの平面研削方法。   2. The surface grinding method for a workpiece according to claim 1, wherein the constant cutting amount is less than a maximum grinding amount with which the grinding wheel can grind the workpiece within a predetermined time. ステップ切込は、次の一定切込量の切込前にスパークアウト研削又は研削休止を有することを特徴とする請求項1又は2に記載のワークの平面研削方法。   3. The method of surface grinding of a workpiece according to claim 1, wherein the step cutting has a spark-out grinding or a grinding pause before the next constant cutting amount. 研削砥石は、該研削砥石の砥粒の平均砥粒径とワークの硬質粒の粒径との粒径比が適正範囲のものを用いることを特徴とする請求項1〜3の何れかに記載のワークの平面研削方法。   4. The grinding wheel according to claim 1, wherein the grinding wheel has an appropriate particle size ratio between the average grain size of the abrasive grains of the grinding wheel and the grain size of the hard grains of the workpiece. Surface grinding method for workpieces. 切込量の判らない研削砥石を使用するに際しては、既知の砥石の粒径比、切込量を基準に、当該研削砥石の粒径比に対する切込量を比例的に算出して、この算出された切込量を当該研削砥石の切込上限量とすることを特徴とする請求項1〜4の何れかに記載のワークの平面研削方法。   When using a grinding wheel whose depth of cut is not known, this calculation is performed by proportionally calculating the depth of cut with respect to the particle size ratio of the grinding wheel based on the known grain size ratio and depth of cut of the grinding wheel. The method for surface grinding of a workpiece according to any one of claims 1 to 4, wherein the cut depth is set as a cut upper limit amount of the grinding wheel. 研削砥石の粒径比は、研削時にワークの硬質粒が脱落しない範囲であることを特徴とする請求項1〜5の何れかに記載のワークの平面研削方法。   The method of surface grinding of a workpiece according to any one of claims 1 to 5, wherein the particle size ratio of the grinding wheel is within a range in which hard particles of the workpiece do not fall off during grinding. 硬質粒と金属母材との複合材料からなるワークを一対の研削砥石により研削する際に、一対の研削砥石の少なくとも一方の研削砥石を一定時間間隔で一定切込量ずつ間欠的に切り込むステップ切込を行うステップ切込制御手段を備えたことを特徴とするワークの両頭平面研削盤。   When cutting a workpiece made of a composite material of hard particles and a metal base material with a pair of grinding wheels, step cutting is performed by intermittently cutting at least one of the pair of grinding wheels by a constant cutting amount at regular time intervals. A double-sided surface grinding machine for workpieces, comprising step cutting control means for carrying out setting.
JP2018014849A 2018-01-31 2018-01-31 Work surface grinding method and double-headed surface grinding machine Active JP6909739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018014849A JP6909739B2 (en) 2018-01-31 2018-01-31 Work surface grinding method and double-headed surface grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014849A JP6909739B2 (en) 2018-01-31 2018-01-31 Work surface grinding method and double-headed surface grinding machine

Publications (3)

Publication Number Publication Date
JP2019130612A true JP2019130612A (en) 2019-08-08
JP2019130612A5 JP2019130612A5 (en) 2020-04-16
JP6909739B2 JP6909739B2 (en) 2021-07-28

Family

ID=67546662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014849A Active JP6909739B2 (en) 2018-01-31 2018-01-31 Work surface grinding method and double-headed surface grinding machine

Country Status (1)

Country Link
JP (1) JP6909739B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192743A (en) * 1982-04-29 1983-11-10 Toyoda Mach Works Ltd Cam grinding method
JPH0699352A (en) * 1992-09-22 1994-04-12 Sinto Brator Co Ltd Electrolytic in process dressing grinding method
JPH10180630A (en) * 1996-12-20 1998-07-07 Toshiba Mach Co Ltd Dressing method for grinding wheel
JP2001225249A (en) * 2000-02-17 2001-08-21 Waida Seisakusho:Kk Grinding method
JP2004175626A (en) * 2002-11-28 2004-06-24 Sumitomo Electric Ind Ltd High thermal conductivity diamond sintered compact, heat sink for mounting semiconductor using the same, and its manufacturing method
JP2006123133A (en) * 2004-10-29 2006-05-18 Waida Seisakusho:Kk Truing method
JP2007160436A (en) * 2005-12-12 2007-06-28 Fujisanki Inc Grinder and grinding method
JP2008166579A (en) * 2006-12-28 2008-07-17 Allied Material Corp Heat dissipation member and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192743A (en) * 1982-04-29 1983-11-10 Toyoda Mach Works Ltd Cam grinding method
JPH0699352A (en) * 1992-09-22 1994-04-12 Sinto Brator Co Ltd Electrolytic in process dressing grinding method
JPH10180630A (en) * 1996-12-20 1998-07-07 Toshiba Mach Co Ltd Dressing method for grinding wheel
JP2001225249A (en) * 2000-02-17 2001-08-21 Waida Seisakusho:Kk Grinding method
JP2004175626A (en) * 2002-11-28 2004-06-24 Sumitomo Electric Ind Ltd High thermal conductivity diamond sintered compact, heat sink for mounting semiconductor using the same, and its manufacturing method
JP2006123133A (en) * 2004-10-29 2006-05-18 Waida Seisakusho:Kk Truing method
JP2007160436A (en) * 2005-12-12 2007-06-28 Fujisanki Inc Grinder and grinding method
JP2008166579A (en) * 2006-12-28 2008-07-17 Allied Material Corp Heat dissipation member and semiconductor device

Also Published As

Publication number Publication date
JP6909739B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
KR102252945B1 (en) Surface grinding method for workpiece
US7121928B2 (en) High smoothness grinding process and apparatus for metal material
KR20090131268A (en) Polishing apparatus of substrate end face and polishing determining method
JP5856433B2 (en) Grinding method of sapphire substrate
JPH10217095A (en) Wire saw and work cutting method by wire saw
JP2000042887A (en) Wafer chamfering method
JP6909739B2 (en) Work surface grinding method and double-headed surface grinding machine
KR102047717B1 (en) Dressing mechanism of blade, cutting device provided with the mechanism, and dressing method of blade using the mechanism
JP2003159642A (en) Work cutting method and multi-wire saw system
US6981909B2 (en) Method for conditioning superabrasive tools
JP7113456B2 (en) Grinding device and grinding method
JP2008023690A (en) Truing method for wafer chamfering grinding wheel and wafer chamfering device
JP2006123066A (en) Grooving grinding method
JPH09239655A (en) Deburring method for rotor of motor
JP2002307210A (en) Single crystal diamond cutting tool and its manufacturing method
JP5589717B2 (en) Grinding method and grinding machine
JP2008137094A (en) Grinding method for workpiece such as material for long drill
JP2006312217A (en) Blade conditioning method
JPH11207731A (en) Narrow width cutting and narrow groove working method
JP2001225249A (en) Grinding method
JP2016221641A (en) Cutting device and cutting method
JP2005212019A (en) Apparatus and method for truing abrasive wheel
JP2000176832A (en) Grinding method
JP2023105763A (en) Action abrasive grain determination device and method for grinding grind stone
JP2000135675A (en) Grinding device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6909739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350