JP2006123066A - Grooving grinding method - Google Patents

Grooving grinding method Download PDF

Info

Publication number
JP2006123066A
JP2006123066A JP2004313944A JP2004313944A JP2006123066A JP 2006123066 A JP2006123066 A JP 2006123066A JP 2004313944 A JP2004313944 A JP 2004313944A JP 2004313944 A JP2004313944 A JP 2004313944A JP 2006123066 A JP2006123066 A JP 2006123066A
Authority
JP
Japan
Prior art keywords
grinding
groove
grinding wheel
grooving
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004313944A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nagashima
長島善之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGASHIMA SEIKO KK
Original Assignee
NAGASHIMA SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGASHIMA SEIKO KK filed Critical NAGASHIMA SEIKO KK
Priority to JP2004313944A priority Critical patent/JP2006123066A/en
Publication of JP2006123066A publication Critical patent/JP2006123066A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grooving grinding method for machining grooves of predetermined grinding finish width with high accuracy in a short time and at a low cost while reducing a machining time. <P>SOLUTION: Grooving grinding is performed for workpieces 12, 13, 14, 15 by reciprocating the workpieces 12, 13, 14, 15 in the extended direction of the grooves 18 while continuously carrying out depth of cuts of a rotating grinding wheel 7 and periodically reciprocating the grinding wheel 7 in the width direction of the grooves 18 within the finish width of the grooves 18. When the depth of cut of the grinding wheel becomes the set depth of the groove 18, grooving grinding with the grinding wheel 7 is completed. The grooves of set width and set depth are thus formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば半導体チップを実装するためのリードフレームをプレスにより打抜き加工するために用いられる多数の溝を櫛刃状に有する打抜き用金型等の溝を有する打抜き用金型を研削加工により製造する際に、溝入れを行うことための溝入れ研削加工方法の技術分野に関する。   The present invention provides, for example, grinding a punching die having grooves such as a punching die having a plurality of grooves in a comb blade shape used for punching a lead frame for mounting a semiconductor chip by pressing. The present invention relates to a technical field of a grooving grinding method for grooving when manufacturing.

従来、例えば半導体チップを実装するために金属製のリードフレームが用いられているが、このリードフレームは所定のパターンに形成された多数のリードを有している。このようなリードフレームは、櫛刃状の打抜き用金型を用いて打抜き加工により製造されている。   Conventionally, for example, a metal lead frame is used for mounting a semiconductor chip, and this lead frame has a large number of leads formed in a predetermined pattern. Such a lead frame is manufactured by punching using a comb-shaped punching die.

櫛刃状の打抜き用金型は多数の溝を有していることから、この櫛刃状の打抜き用金型を製造するためには、多数の溝を形成するために溝入れ加工を行う必要がある。
従来の溝入れ加工として、図6に示すように研削加工により櫛刃状に配置された多数の溝aをワークbに形成することが知られている。
Since the comb-blade punching die has a large number of grooves, in order to produce this comb-blade punching die, it is necessary to perform grooving to form a large number of grooves. There is.
As a conventional grooving process, as shown in FIG. 6, it is known to form a large number of grooves a arranged in a comb blade shape on a workpiece b by grinding.

図7に示すように、ワークbを溝入れ加工する研削砥石cの側面をドレッシングして砥石cの厚みを溝aの所定の研削仕上げ幅の寸法に合わせるとともに、ワークbに対して溝aの所定の深さに等しい切り込み量の切り込みを砥石cに与えて溝入れ加工を行う方法が知られている(例えば、非特許文献1参照)。   As shown in FIG. 7, the side surface of the grinding wheel c for grooving the workpiece b is dressed to adjust the thickness of the grinding wheel c to the predetermined grinding finish width of the groove a, and the groove a There is known a method in which a grooving process is performed by giving a cutting stone having a cutting depth equal to a predetermined depth to a grindstone c (for example, see Non-Patent Document 1).

この非特許文献1に開示の溝入れ研削加工方法では、砥石側面が摩耗して砥石cの厚みの寸法が減少すると、加工される溝aの寸法も所定の研削仕上げ幅の寸法より小さくなってしまう。そこで、砥石側面が摩耗して厚みの寸法が減少すれば、砥石自体を交換する必要がある。このため、砥石cの交換頻度が多くなり、交換に要する手間および時間がかかるばかりでなく、製造コストが高くなるという問題がある。   In the grooving grinding method disclosed in Non-Patent Document 1, when the side surface of the grindstone is worn and the thickness dimension of the grindstone c is reduced, the dimension of the groove a to be machined is also smaller than the dimension of the predetermined grinding finish width. End up. Therefore, if the side surface of the grindstone is worn and the thickness dimension decreases, it is necessary to replace the grindstone itself. For this reason, there is a problem that not only the replacement frequency of the grindstone c is increased, labor and time required for the replacement, but also the manufacturing cost is increased.

そこで、図8(a)および(b)に示すように側面のドレッシングにより厚みを溝aの研削仕上げ幅の寸法より小さくかつこの溝aの研削仕上げ幅の寸法の半分より少し大きく設定した研削砥石cを用いた溝入れ研削加工方法が提案されている。この溝入れ研削加工方法では、まず、図8(a)に示すように研削砥石cをワークbに対して加工しようとする溝aの片側(左側)で溝aの所定の仕上げ深さに等しい切り込み量の切り込みを研削砥石cに与えて、溝aの片側で所定の研削仕上げ幅の寸法より小さい寸法の幅の溝a′を研削加工し、次いで、図8(b)に示すように研削砥石cを溝aの幅方向(右方向)に所定量移動させた後、ワークbに対して加工しようとする溝aの反対の片側(右側)で溝aの所定の仕上げ深さとなるまで切り込むことで、所定の研削仕上げ幅の寸法の溝aを研削加工するという、2工程に分けて研削している。この溝入れ研削加工方法によれば、砥石側面が摩耗して厚みの寸法が減少しても、砥石cの溝幅方向への移動を補正することで、所定の研削仕上げ幅の寸法の溝aを研削加工することができるので、前述の図7に示す溝入れ研削加工方法に比べて、研削砥石cの交換頻度が減少し、その分、交換に要する手間および時間を節約できるとともに、製造コストの上昇を抑制することができる。
でか版技能ブックス7 研削盤活用マニュアル、編著 ツールエンジニア編集部、3版、2001年(平成13年)6月5日発行、株式会社大河出版発行、[102頁および図3「研削盤の性能を現場でチェックする、加工例]。
Therefore, as shown in FIGS. 8 (a) and 8 (b), a grinding wheel whose thickness is set to be smaller than the grinding finish width dimension of the groove a and slightly larger than half the grinding finish width dimension of the groove a by side dressing. A grooving grinding method using c has been proposed. In this grooving grinding method, first, as shown in FIG. 8A, the grindstone c is to be machined with respect to the workpiece b, and is equal to a predetermined finishing depth of the groove a on one side (left side) of the groove a. An incision amount of incision is given to the grinding wheel c to grind a groove a ′ having a width smaller than a predetermined grinding finish width on one side of the groove a, and then grinding as shown in FIG. After moving the grindstone c by a predetermined amount in the width direction (right direction) of the groove a, the workpiece c is cut to the predetermined finish depth of the groove a on one side (right side) opposite to the groove a to be machined. Thus, the groove a having a predetermined grinding finish width is ground in two steps of grinding. According to this grooving grinding method, even if the side surface of the grindstone is worn and the thickness is reduced, the groove a having a predetermined grinding finish width is obtained by correcting the movement of the grindstone c in the groove width direction. Therefore, compared with the grooving grinding method shown in FIG. 7 described above, the replacement frequency of the grinding wheel c is reduced, so that the labor and time required for the replacement can be saved and the manufacturing cost can be saved. Can be suppressed.
Dekaban Skills Book 7 Grinder Utilization Manual, Editing Tool Engineer Editorial Department, 3rd Edition, published on June 5, 2001 (published by Okawa Publishing Co., Ltd., page 102 and Fig. 3 “Grinder Performance”) Example of processing]

しかしながら、前述の図8(a)および(b)に示す溝入れ研削加工方法では、2工程に分けて研削加工を行うため、多くの加工時間がかかってしまう(図7に示す溝入れ研削加工方法に比べて約2倍の時間がかかる)。
また、図8(b)に示す2回目の研削加工時に、砥石cの逃げ(倒れ)によりワークbの端縁の溝開口部が広がってしまい、幅広の開口部を有する溝aに仕上がってしまい、所定の研削仕上げ幅の寸法の溝aを形成することが難しく、加工精度が低下するという問題がある。
However, in the grooving grinding method shown in FIGS. 8 (a) and 8 (b), since the grinding process is performed in two steps, a lot of processing time is required (grooving grinding process shown in FIG. 7). It takes about twice as long as the method).
In addition, at the time of the second grinding process shown in FIG. 8B, the groove opening at the edge of the workpiece b is widened due to the escape (falling) of the grindstone c, resulting in a groove a having a wide opening. There is a problem that it is difficult to form the groove a having a predetermined grinding finish width, and the processing accuracy is lowered.

本発明は、このような事情に鑑みてなされたものであって、その目的は、加工時間を低減しつつ、所定の研削仕上げ幅の溝を高精度にかつ短時間に、しかも安価に加工することのできる溝入れ研削加工方法を提供することである。   The present invention has been made in view of such circumstances, and an object thereof is to process a groove having a predetermined grinding finish width with high accuracy, in a short time, and at low cost while reducing the processing time. It is to provide a grooving grinding method that can be used.

前述の課題を解決するために、請求項1の発明は、ワークに対して研削砥石の切込みを設定し、前記研削砥石を回転させながら前記ワークを形成する溝の延設方向に往復動させて研削加工を行うことで、前記ワークに溝を形成する溝入れ研削加工方法において、前記研削砥石または前記ワークを前記溝の仕上げ幅内で前記溝の幅方向に周期的に往復動させながら前記ワークに対して研削加工を行うことで、前記ワークに溝を形成することを特徴としている。
また、請求項2の発明は、前記研削砥石の切込みを連続的に行うことを特徴としている。
In order to solve the above-mentioned problems, the invention of claim 1 sets a notch of a grinding wheel with respect to a workpiece, and reciprocates in the extending direction of a groove forming the workpiece while rotating the grinding wheel. In the grooving grinding method for forming a groove in the work by performing grinding, the work is performed while periodically reciprocating the grinding wheel or the work in the width direction of the groove within the finished width of the groove. A groove is formed in the workpiece by grinding.
The invention of claim 2 is characterized in that the grinding wheel is continuously cut.

このように構成された本発明の溝入れ研削加工方法によれば、回転する研削砥石の切り込みを設定しかつ溝の仕上げ幅内で研削砥石またはワークの溝幅方向の周期的な往復動を行いながら、ワークを溝の延設方向に往復動させることにより、ワークに対して溝入れ研削加工を行うようにしているので、研削砥石にかかる負荷が局部的に大きくならず、研削砥石の砥粒の摩滅あるいは脱落を抑制することができる。これにより、研削砥石の厚み(砥石幅)を少なくすることができ、研削砥石のドレッシングの間隔を長くすることができるとともに、研削砥石の交換頻度を低減することができる。   According to the grooving grinding method of the present invention configured as described above, the cutting of the rotating grinding wheel is set and the grinding wheel or workpiece is periodically reciprocated in the groove width direction within the finished width of the groove. However, since the workpiece is reciprocated in the groove extending direction to perform grooving grinding on the workpiece, the load applied to the grinding wheel does not increase locally, and the abrasive grains of the grinding wheel Can be prevented from being worn or dropped. Thereby, the thickness (grinding wheel width) of the grinding wheel can be reduced, the dressing interval of the grinding wheel can be lengthened, and the replacement frequency of the grinding wheel can be reduced.

また、研削砥石の溝幅方向の周期的な往復動を形成しようとする溝の仕上げ幅内で行っているので、溝幅の加工精度を高くすることができる。
研削砥石の切込みを連続的に行うことにより、図7および図8に示す従来の各溝入れ研削加工方法による溝形成に比べて、研削加工時間を短縮することができるとともに、安価に溝入れ加工を行うことができる。
Moreover, since the reciprocating motion in the groove width direction of the grinding wheel is performed within the finished width of the groove, the processing accuracy of the groove width can be increased.
By continuously cutting the grinding wheel, the grinding time can be shortened and the grooving can be performed at a lower cost than the conventional grooving method shown in FIGS. 7 and 8. It can be performed.

以下、図面を用いて本発明を実施するための最良の形態について説明する。
図1は、本発明に係る溝入れ研削加工方法の実施の形態の一例に用いられる平面研削盤の一例を模式的にかつ概略的に示し、(a)は正面図、(b)は右側面図である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 schematically and schematically shows an example of a surface grinding machine used in an example of an embodiment of a grooving grinding method according to the present invention, where (a) is a front view and (b) is a right side view. FIG.

図1(a)および(b)に示すように、この例の溝入れ研削加工方法に用いられる平面研削盤1は、公知の平面研削盤と同様に、本体2に前後方向に往復動可能に設けられる前後方向移動テーブル3と、この前後方向移動テーブル3に左右方向に往復動可能に設けられた左右方向移動テーブル4と、この左右方向移動テーブル4に設けられ、ワークを固定してセットするチャック5と、本体2に上下動可能に設けられた上下方向移動部材6と、研削砥石7と、研削砥石7が交換可能に固定される台金8と、この台金8に連結された砥石回転軸9と、この砥石回転軸9を回転させる砥石回転用モータ10と、上下方向移動部材6に前後移動可能に設けられかつ砥石回転用モータ10を支持する砥石前後方向移動部材11と、この砥石前後方向移動部材11を前後方向に移動する砥石前後方向移動用サーボモータ11′とを備えている。   As shown in FIGS. 1A and 1B, the surface grinder 1 used in the grooving grinding method of this example can reciprocate in the front-rear direction with respect to the main body 2 in the same manner as a known surface grinder. The front / rear direction moving table 3 provided, the left / right direction moving table 4 provided on the front / rear direction moving table 3 so as to be capable of reciprocating in the left / right direction, and the left / right direction moving table 4 are fixedly set. A chuck 5, a vertically moving member 6 provided on the main body 2 so as to be movable up and down, a grinding wheel 7, a base 8 to which the grinding wheel 7 is fixed so as to be exchangeable, and a grinding stone connected to the base 8 A rotating shaft 9, a grinding wheel rotating motor 10 that rotates the grinding wheel rotating shaft 9, a grinding wheel front / rear direction moving member 11 that is provided on the vertical moving member 6 so as to be movable back and forth and supports the grinding wheel rotating motor 10, Wheel front-rear direction shift And a grinding wheel longitudinal direction movement servo motor 11 'for moving the member 11 in the longitudinal direction.

チャック5は固定チャック部材5aと可動チャック部材5bとからなり、これらの固定チャック部材5aと可動チャック部材5bとの間に、溝入れ研削加工が施されるワークが挟圧されてセットされるようになっている。すなわち図2に示すように、例えば4個の第1ないし第4ワーク12,13,14,15が順に互いに整合されかつ隣どうしが接触されて配置されるとともに、第1ワーク12に隣接して第1ダミー16を配置しかつ第4ワーク15に隣接して第2ダミー17を配置して、固定チャック部材5aにセットする。そして、可動チャック部材を締め付けることで、第1および第2ダミー16,17が第1ないし第4ワーク12,13,14,15を挟圧するようにして、4個の第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17をチャック5に固定する。このように、両側に第1および第2ダミー16,17を用いることで、第1ないし第4ワークの12,13,14,15の上面仕上げ時に両側のワークのエッジ部に生じるダレを第1および第2ダミー16,17に生じさせて、第1ないし第4ワーク12,13,14,15には生じさせないようにしている。   The chuck 5 is composed of a fixed chuck member 5a and a movable chuck member 5b, and a workpiece to be subjected to grooving grinding is sandwiched and set between the fixed chuck member 5a and the movable chuck member 5b. It has become. That is, as shown in FIG. 2, for example, four first to fourth workpieces 12, 13, 14, and 15 are sequentially aligned with each other and arranged adjacent to each other, and adjacent to the first workpiece 12. The first dummy 16 is disposed and the second dummy 17 is disposed adjacent to the fourth work 15 and set on the fixed chuck member 5a. Then, by tightening the movable chuck member, the first and second dummy members 16 and 17 clamp the first to fourth workpieces 12, 13, 14, and 15, and the four first to fourth workpieces 12. , 13, 14, 15 and the first and second dummy 16, 17 are fixed to the chuck 5. In this way, by using the first and second dummies 16 and 17 on both sides, the sagging that occurs at the edges of the workpieces on both sides when the top surfaces of the first to fourth workpieces 12, 13, 14, and 15 are finished is first. It is generated in the second dummy 16, 17 and not in the first to fourth workpieces 12, 13, 14, 15.

研削砥石7は、例えばダイヤモンドまたはCBNから直径d1の円盤状に形成される。図3に示すように、この研削砥石7は、外周面7aの幅(厚み)t1が研削加工しようとする溝18の幅Wより若干小さく設定されている。また、研削砥石7の両側面のうち、外周面7aから、この外周面7aの直径d1との差が溝18の深さDの2倍より大きい直径d2{(d1−d2) >2 D}の円周の間の部分は、外周面7aから直径d2の円周に向かって砥石7の厚みが直線的に漸減するバックテーパ面7b,7cとされている。これらのバックテーパ面7b,7cにより研削加工時の第1ないし第4ワーク12,13,14,15の研削屑を加工中の溝18から排出させて研削加工をし易くしている。この研削砥石7のバックテーパのドレッシングは、研削砥石7を平面研削盤1の台金8に固定した後に行われる。なお、研削砥石7の外周面7aのエッジはR部とされている。 The grinding wheel 7 is formed in a disk shape having a diameter d 1 from, for example, diamond or CBN. As shown in FIG. 3, in this grinding wheel 7, the width (thickness) t 1 of the outer peripheral surface 7a is set slightly smaller than the width W of the groove 18 to be ground. Further, the diameter d 2 {(d 1 −d 2 ) in which the difference between the outer peripheral surface 7 a and the diameter d 1 of the outer peripheral surface 7 a is larger than twice the depth D of the groove 18 among both side surfaces of the grinding wheel 7. > portions between the circumference of the 2 D}, the thickness of the grinder 7 toward the circumference of the diameter d 2 from the outer peripheral surface 7a is a back taper surface 7b, 7c for decreasing linearly. By these back taper surfaces 7b and 7c, grinding scraps of the first to fourth workpieces 12, 13, 14, and 15 at the time of grinding are discharged from the groove 18 being processed to facilitate the grinding. The back taper dressing of the grinding wheel 7 is performed after the grinding wheel 7 is fixed to the base 8 of the surface grinding machine 1. The edge of the outer peripheral surface 7a of the grinding wheel 7 is an R portion.

そして、砥石前後方向移動用サーボモータ11′を駆動して砥石前後方向移動部材11を前後方向に移動することによりワークに対する研削砥石7の前後位置を設定(位置決め)するとともに、上下方向移動部材6によりワークに対する研削砥石7の切り込み量を設定する。次いで、砥石回転用モータ10を回転駆動させた後、図4に示すように左右方向移動テーブル4により第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17を左右方向、つまり溝18の延設方向に移動させる。これにより、第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17に対して研削砥石7による溝入れ研削加工が行われる。   Then, the front / rear position of the grinding wheel 7 relative to the workpiece is set (positioned) by driving the grinding wheel front / rear direction moving servo motor 11 'to move the grinding wheel front / rear direction moving member 11 in the front / rear direction, and the vertical direction moving member 6 Is used to set the cutting amount of the grinding wheel 7 with respect to the workpiece. Next, after the grindstone rotating motor 10 is rotationally driven, the first to fourth workpieces 12, 13, 14, 15 and the first and second dummies 16, 17 are moved by the horizontal movement table 4 as shown in FIG. It is moved in the left-right direction, that is, in the extending direction of the groove 18. Thus, the grooving grinding process by the grinding wheel 7 is performed on the first to fourth workpieces 12, 13, 14, 15 and the first and second dummy 16, 17.

次に、本発明の実施の形態におけるこの例の溝入れ研削加工方法について説明する。
図5に示すように、この例の溝入れ研削加工方法は、まず、第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17を前述のように平面研削盤1のチャック5に配置して固定する。次に、砥石前後方向移動用サーボモータ11′を駆動して駆動砥石前後方向移動部材11により研削砥石7を前後方向に移動させて、研削砥石7の幅方向の中心C1が加工しようとする溝18の中心C2に一致させる。そして、前述のように砥石回転用モータ10を回転駆動させた状態で、上下方向移動部材6により研削砥石7を連続的に下降させて、第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17に対して所定の切り込み速度v1で連続的に切込みを行いつつ、左右方向移動テーブル4により第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17を左右方向に所定の往復回数(例えば、1分間の左右方向の往復回数)n1で往復動させて、研削砥石7による溝18の研削加工を開始する。このとき、研削砥石7を溝18の幅方向(平面研削盤1の前後方向)αに研削砥石7の中心C1に関して等量だけ、つまり、溝18の所定の仕上げ幅Wと研削砥石7の外周面7aの幅t1との差の2分の1{(W−t1)/2}だけ、砥石前後方向移動用サーボモータ11′を駆動制御することで往復回数(例えば、1分間の溝幅方向の往復回数)n2で周期的に溝幅方向つまり前後方向に繰り返し往復動させる。
Next, the grooving grinding method of this example in the embodiment of the present invention will be described.
As shown in FIG. 5, the grooving grinding method of this example is as follows. First, the first to fourth workpieces 12, 13, 14, 15 and the first and second dummy 16, 17 are surface grinders as described above. It is arranged on the chuck 5 of 1 and fixed. Next, the grinding wheel 7 is moved in the front-rear direction by the driving wheel front-rear direction moving member 11 by driving the front-rear direction moving servo motor 11 ′, and the center C 1 in the width direction of the grinding wheel 7 is about to be processed. Align with the center C 2 of the groove 18. Then, in the state where the grinding wheel rotating motor 10 is driven to rotate as described above, the grinding wheel 7 is continuously lowered by the up-and-down direction moving member 6, and the first to fourth workpieces 12, 13, 14, 15 and while performing continuous cuts at a predetermined cut speed v 1 relative to the first and second dummy 16,17, the left-right direction moving table 4 and the first to fourth work 12, 13, 14, 15 first and The second dummy 16, 17 is reciprocated in the left-right direction at a predetermined number of reciprocations (for example, the number of reciprocations in the left-right direction for 1 minute) n 1 , and grinding of the groove 18 by the grinding wheel 7 is started. At this time, the grinding wheel 7 is equal to the width C of the groove 18 (front-rear direction of the surface grinding machine 1) α with respect to the center C 1 of the grinding wheel 7, that is, the predetermined finish width W of the groove 18 and the grinding wheel 7. The number of reciprocations (for example, 1 minute) is controlled by driving and controlling the grinding wheel longitudinal movement servomotor 11 'by a half {(W−t 1 ) / 2} of the difference from the width t 1 of the outer peripheral surface 7a. The number of reciprocations in the groove width direction) is periodically reciprocated in the groove width direction, that is, the front-rear direction at n 2 .

このように、研削砥石7を第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17に対して連続的に切り込みさせた状態で、研削砥石7を回転かつ溝18の幅方向に溝18の仕上げ幅W内で周期的に繰り返し往復動させながら、左右方向移動テーブル4により第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17を左右方向に往復動させて、研削砥石7による溝18の研削加工を行う。切り込み量が溝の仕上げ深さDになるまで、同様の研削加工を連続的に行う。こうして、第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17に、それぞれ所定の仕上げ幅Wかつ所定の深さDの溝18が1工程で1つ形成される。   In this manner, the grinding wheel 7 is rotated and grooved while the grinding wheel 7 is continuously cut into the first to fourth workpieces 12, 13, 14, 15 and the first and second dummy 16, 17. The first to fourth workpieces 12, 13, 14, 15 and the first and second dummies 16, 16 are moved by the horizontal movement table 4 while being reciprocated periodically within the finishing width W of the groove 18 in the width direction 18. The groove 18 is ground by the grinding wheel 7 by reciprocating 17 in the left-right direction. The same grinding process is continuously performed until the cut amount reaches the finishing depth D of the groove. Thus, one groove 18 having a predetermined finishing width W and a predetermined depth D is formed in each of the first to fourth workpieces 12, 13, 14, 15 and the first and second dummy 16, 17 in one step. The

次に、形成された溝18に隣接して、第1ないし第4ワーク12,13,14,15の溝加工位置(次の溝18の幅方向中心C2の位置)に前述と同様にして研削砥石7の幅方向の中心C1を一致させて、研削砥石7を設定する。前述と同様にして、研削砥石7による溝18の研削加工を行い、第1ないし第4ワーク12,13,14,15と第1および第2ダミー16,17に、それぞれ所定の仕上げ幅Wかつ所定の深さDの2つ目の溝18を形成する。以下、同様の研削砥石7による研削加工を繰り返すことで、第1ないし第4ワーク12,13,14,15に所定数の溝18が櫛刃状に形成された4個の打抜き用金型が形成される。このとき、第1および第2ダミー16,17のエッジ部にダレが生じる可能性はあるが、このダレは第1ないし第4ワーク12,13,14,15には生じなく、高品質の打抜き用金型が形成される。 Next, adjacent to the formed groove 18, the groove machining position of the first to fourth workpieces 12, 13, 14, 15 (position of the next groove 18 in the width direction center C 2 ) is the same as described above. The grinding wheel 7 is set so that the center C 1 in the width direction of the grinding wheel 7 coincides. In the same manner as described above, the groove 18 is ground by the grinding wheel 7, and the first to fourth workpieces 12, 13, 14, 15 and the first and second dummy 16, 17 are each provided with a predetermined finishing width W and A second groove 18 having a predetermined depth D is formed. Thereafter, by repeating the same grinding process with the grinding wheel 7, four punching dies in which a predetermined number of grooves 18 are formed in a comb blade shape on the first to fourth workpieces 12, 13, 14, 15 are obtained. It is formed. At this time, there is a possibility that the edge of the first and second dummies 16 and 17 may sag, but this sag does not occur in the first to fourth workpieces 12, 13, 14 and 15, and high quality punching is performed. A mold is formed.

この例の溝入れ研削加工方法によれば、回転する研削砥石7の切り込みを連続的に行いかつ研削砥石7の溝幅方向の周期的な往復動を行いながら、ワークを平面研削盤1の左右方向、つまり溝幅方向と直交方向に往復動させることにより、ワークに対して溝入れ研削加工を行うようにしているので、研削砥石7にかかる負荷が局部的に大きくならず、研削砥石7の砥粒の摩滅あるいは脱落を抑制することができる。これにより、研削砥石の厚み(砥石幅)t1を少なくすることができ、研削砥石7のドレッシングの間隔を長くすることができるとともに、研削砥石7の交換頻度を低減することができる。 According to the grooving grinding method of this example, the workpiece is transferred to the left and right sides of the surface grinder 1 while continuously cutting the rotating grinding wheel 7 and periodically reciprocating the grinding wheel 7 in the groove width direction. Since the workpiece is subjected to grooving grinding by reciprocating in the direction perpendicular to the groove width direction, the load applied to the grinding wheel 7 does not increase locally. Abrasion or falling off of abrasive grains can be suppressed. Thus, it is possible to reduce the grinding wheel thickness (grindstone width) t 1, it is possible to increase the interval of dressing the grinding wheel 7, it is possible to reduce the frequency of replacement of the grinding wheel 7.

また、研削砥石7の溝幅方向の周期的な往復動を形成しようとする溝18の仕上げ幅内で行っているので、溝幅の加工精度を高くすることができる。
更に、研削砥石7の切込みを連続的に行うことにより、図7および図8に示す従来の各溝入れ研削加工方法による溝形成に比べて、研削加工時間を短縮することができるとともに、安価に溝入れ加工を行うことができる。
In addition, since the grinding wheel 7 is moved within the finishing width of the groove 18 to form a periodic reciprocation in the groove width direction, the processing accuracy of the groove width can be increased.
Further, by continuously cutting the grinding wheel 7, the grinding time can be shortened and the cost can be reduced as compared with the conventional groove forming method shown in FIGS. 7 and 8. Grooving can be performed.

なお、前述の例では、櫛刃状に設けられた多数の溝18を形成するための溝入れ研削加工方法について述べているが、本発明はこれに限定されるものではなく、1個以上の任意の数の溝18を形成するための溝入れ研削加工方法にも適用することができる。しかし、本発明の前述の効果を顕著に得るようにするためには、櫛刃状に設けられた多数の溝18の溝入れ研削加工に本発明の溝入れ研削加工方法を適用することが好ましい。   In the above-described example, the grooving grinding method for forming a large number of grooves 18 provided in a comb-blade shape is described, but the present invention is not limited to this, and one or more grooving grinding methods are described. The present invention can also be applied to a grooving grinding method for forming an arbitrary number of grooves 18. However, in order to obtain the above-described effects of the present invention remarkably, it is preferable to apply the grooving grinding method of the present invention to the grooving grinding of a large number of grooves 18 provided in a comb blade shape. .

また、前述の例では、研削砥石7を溝幅方向に周期的に往復動させているが、本発明の溝入れ研削加工方法は、研削砥石7を溝幅方向に往復動させずに、ワークを溝幅方向に周期的に往復動させるようにすることもできる。   In the above example, the grinding wheel 7 is periodically reciprocated in the groove width direction. However, the grooving grinding method of the present invention does not reciprocate the grinding wheel 7 in the groove width direction. Can be reciprocated periodically in the groove width direction.

次に、本発明の溝入れ研削加工方法の具体例について説明する。
1. 研削砥石7について
(1)外径d1:φ150
(2)砥石:ダイヤモンド
(3)砥粒:#600
(4)外周面7aの厚み(幅)t1:0.28m
(5)外周面7aのエッジのR部:0.1mm
(6)直径d2:φ139
(7)厚み(幅)t2:0.27mm
2. ワークについて
(1)ワークおよびダミー材質:超硬
(2)ワークの板厚:1.5mm
(3)ダミーの板厚:1.0mm
(4)ワークの枚数:4枚
(5)ダミーの枚数:2枚
(6)溝の幅W:0.30mm
(7)溝の深さD:4.0mm
(8)溝間の櫛刃の幅:0.2mm
(9)溝数:20
(10)ワークの溝方向の全長:10.2mm
3. 研削条件について
(1)研削砥石の回転数:3600rpm
(2)研削砥石の周速:約1700m/min
(3)ワークの左右方向の往復回数n1:500回往復/min
(4)連続切込み速度v1(1分間の砥石切込み量):0.5mm/min
(5)ワークの溝幅方向(前後方向)の往復回数n2:500回往復/min
(6)(W−t1)/2:0.01mm
4. 研削時間について
総研削時間T:T = t1+t2+t3 ≒ 200min
全溝研削加工時間t1:(溝の深さ×溝数)/1分間の砥石切込み量
=(4.0×20)/0.5 = 160min
非研削加工時間t2:砥石のワークへの移動等の実際の研削以外に要した時間
= 1溝あたり0.5mm×20 = 10min
計測・砥石ドレッシング時間t3:約10min
5. 本発明の研削方法による研削時間と従来の研削方法による研削時間との比較
(1)図7に示す従来の溝入れ研削加工方法による溝入れの研削時間
図7に示す溝入れ研削加工方法での条件
(a)研削砥石および ワークについては、それぞれ前述の本発明の具体例の1. 研削砥石およびワークと同じ。
(b)研削条件において、研削砥石の回転数、研削砥石の周速、およびワークの 左右方向の往復回数については、それぞれ前述の本発明の具体例の3. (1)ないし(3)と同じ。
従来一般に、通常の切込み寸法は左右テーブル4の1往復に対して片側の 復端毎に1μmの切込みに設定されている。したがって、連続切込み速度 v1(1分間の砥石切込み量):1μmm/secである。そこで、従来 の図7に示す溝入れ研削加工方法による全溝入れ研削加工時間は、
従来の溝入れ研削加工方法による溝入れの研削時間
= (4.0×20)/0.001 = 1333min
したがって、研削加工時間は、160/1333 = 1/8.3となり、本発明の溝入れ研削方法によれば、研削加工時間が図7に示す従来の溝入れ研削加工方法より、約1/8だけ短縮される。
6. 研削ピッチ等の精度
本発明の研削加工方法によって形成された溝幅は、いずれも、溝幅精度0.3±0.01mmをクリアした。また、溝と次の溝とのピッチは、いずれも、ピッチ精度0.5±0.002mmをクリアした。したがって、溝18の高い加工精度が得られることがわかった。
Next, a specific example of the grooving grinding method of the present invention will be described.
1. About grinding wheel 7 (1) Outer diameter d 1 : φ150
(2) Whetstone: Diamond (3) Abrasive grain: # 600
(4) Thickness (width) t 1 of the outer peripheral surface 7a: 0.28 m
(5) R part of edge of outer peripheral surface 7a: 0.1 mm
(6) Diameter d 2 : φ139
(7) Thickness (width) t 2 : 0.27 mm
2. Workpieces (1) Workpiece and dummy material: Carbide (2) Workpiece thickness: 1.5mm
(3) Dummy plate thickness: 1.0mm
(4) Number of workpieces: 4 (5) Number of dummy: 2 (6) Groove width W: 0.30 mm
(7) Groove depth D: 4.0 mm
(8) Width of comb blade between grooves: 0.2 mm
(9) Number of grooves: 20
(10) Overall length in workpiece groove direction: 10.2 mm
3. Grinding conditions (1) Number of revolutions of grinding wheel: 3600 rpm
(2) Peripheral speed of grinding wheel: about 1700 m / min
(3) Number of reciprocations of workpiece in the left-right direction n 1 : 500 reciprocations / min
(4) Continuous cutting speed v 1 (Wheel cutting depth per minute): 0.5 mm / min
(5) Number of reciprocations in the groove width direction (front-rear direction) of the workpiece n 2 : 500 reciprocations / min
(6) (W-t 1 ) /2:0.01mm
4. About grinding time Total grinding time T: T = t1 + t2 + t3≈200 min
Total groove grinding time t1: (groove depth x number of grooves) / grinding wheel cutting amount per minute
= (4.0 × 20) /0.5=160min
Non-grinding time t2: Time required other than actual grinding such as movement of the grinding wheel to the workpiece
= 0.5 mm x 20 per groove = 10 min
Measurement / whetstone dressing time t3: about 10 min
5. Comparison of grinding time by the grinding method of the present invention and grinding time by the conventional grinding method (1) Grooving grinding time by the conventional grooving grinding method shown in FIG. 7 Grooving grinding method shown in FIG. (A) The grinding wheel and workpiece are the same as those of the above-described specific example 1. Grinding wheel and workpiece of the present invention, respectively.
(B) Under grinding conditions, the number of revolutions of the grinding wheel, the peripheral speed of the grinding wheel, and the number of reciprocations of the workpiece in the left-right direction are the same as those in the above-described specific examples of the present invention 3. (1) to (3) .
In general, the normal cut size is set to 1 μm for each return end on one side for one reciprocation of the left and right tables 4. Therefore, the continuous cutting speed v 1 (the grinding wheel cutting amount per minute): 1 μmm / sec. Therefore, the total grooving grinding time by the conventional grooving grinding method shown in FIG.
Grooving time by conventional grooving grinding method
= (4.0 × 20) /0.001=1333 min
Therefore, the grinding time is 160/1333 = 1 / 8.3. According to the grooving grinding method of the present invention, the grinding time is about 1/8 of the conventional grooving grinding method shown in FIG. Only shortened.
6. Accuracy of grinding pitch etc. The groove widths formed by the grinding method of the present invention all cleared the groove width accuracy of 0.3 ± 0.01 mm. The pitch between the groove and the next groove cleared the pitch accuracy of 0.5 ± 0.002 mm. Therefore, it was found that high machining accuracy of the groove 18 can be obtained.

本発明の溝入れ研削加工方法は、例えば半導体チップを実装するためのリードフレームをプレスにより打抜き加工するために用いられる多数の溝を櫛刃状に有する打抜き用金型等の溝を有する打抜き用金型の研削加工に好適に利用することができる。   The grooving grinding method of the present invention is for punching having a groove such as a punching die having a number of grooves used in a comb blade shape, for example, for punching a lead frame for mounting a semiconductor chip by pressing. It can be suitably used for grinding a mold.

本発明に係る溝入れ研削加工方法の実施の形態の一例に用いられる平面研削盤の一例を模式的にかつ概略的に示し、(a)は正面図、(b)は右側面図である。BRIEF DESCRIPTION OF THE DRAWINGS An example of the surface grinder used for an example of embodiment of the grooving grinding method which concerns on this invention is shown typically and schematically, (a) is a front view, (b) is a right view. この例の溝入れ研削加工方法におけるワークの平面研削盤へのセットの一例を示す図である。It is a figure which shows an example of the set to the surface grinder in the grooving grinding method of this example. この例の溝入れ研削加工方法に用いられる研削砥石を説明する図である。It is a figure explaining the grinding wheel used for the grooving grinding method of this example. この例の溝入れ研削加工方法による研削時のワークの移動を説明する図である。It is a figure explaining the movement of the workpiece | work at the time of grinding by the grooving grinding method of this example. この例の溝入れ研削加工方法を説明する図である。It is a figure explaining the grooving grinding method of this example. 従来の溝入れ研削加工方法により形成された櫛刃状の溝を有する加工物の一例を示す図である。It is a figure which shows an example of the processed material which has the comb-tooth shaped groove | channel formed by the conventional grooving grinding method. 従来の溝入れ研削加工方法の一例を説明する図である。It is a figure explaining an example of the conventional grooving grinding method. 従来の溝入れ研削加工方法の他の例を説明する図である。It is a figure explaining the other example of the conventional grooving grinding method.

符号の説明Explanation of symbols

1…平面研削盤、2…本体、3…前後方向移動テーブル、4…左右方向移動テーブル、5…チャック、6…上下方向移動部材、7…研削砥石、8…台金、9…砥石回転軸、10…砥石回転用モータ、11…砥石前後方向移動部材、11′…砥石前後方向移動用サーボモータ、12,13,14,15…第1ないし第4ワーク、18…溝 DESCRIPTION OF SYMBOLS 1 ... Surface grinder, 2 ... Main body, 3 ... Front / rear direction moving table, 4 ... Left / right direction moving table, 5 ... Chuck, 6 ... Vertical moving member, 7 ... Grinding wheel, 8 ... Base metal, 9 ... Grinding wheel rotation axis DESCRIPTION OF SYMBOLS 10 ... Grinding wheel rotation motor, 11 ... Grinding wheel longitudinal movement member, 11 '... Grinding wheel longitudinal movement servo motor, 12, 13, 14, 15 ... 1st thru | or 4th workpiece | work, 18 ... Groove

Claims (2)

ワークに対して研削砥石の切込みを設定し、前記研削砥石を回転させながら前記ワークを形成する溝の延設方向に往復動させて研削加工を行うことで、前記ワークに溝を形成する溝入れ研削加工方法において、
前記研削砥石または前記ワークを前記溝の仕上げ幅内で前記溝の幅方向に周期的に往復動させながら前記ワークに対して研削加工を行うことで、前記ワークに溝を形成することを特徴とする溝入れ研削加工方法。
A groove is formed in the workpiece by setting a cutting depth of the grinding wheel to the workpiece and reciprocating in the extending direction of the groove forming the workpiece while rotating the grinding wheel. In the grinding method,
A groove is formed in the workpiece by grinding the workpiece while the grinding wheel or the workpiece is periodically reciprocated in the width direction of the groove within the finished width of the groove. Grooving grinding method.
前記研削砥石の切込みを連続的に行うことを特徴とする請求項1記載の溝入れ研削加工方法。 The grooving grinding method according to claim 1, wherein the grinding wheel is continuously cut.
JP2004313944A 2004-10-28 2004-10-28 Grooving grinding method Pending JP2006123066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313944A JP2006123066A (en) 2004-10-28 2004-10-28 Grooving grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004313944A JP2006123066A (en) 2004-10-28 2004-10-28 Grooving grinding method

Publications (1)

Publication Number Publication Date
JP2006123066A true JP2006123066A (en) 2006-05-18

Family

ID=36718279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313944A Pending JP2006123066A (en) 2004-10-28 2004-10-28 Grooving grinding method

Country Status (1)

Country Link
JP (1) JP2006123066A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268664A (en) * 2006-03-31 2007-10-18 Jtekt Corp Method and device for grinding work piece
JP2009064780A (en) * 2007-09-07 2009-03-26 Robert Bosch Gmbh Method for manufacturing spark plug equipped with ground electrode fitted at side
JP2014188628A (en) * 2013-03-27 2014-10-06 Nagase Integrex Co Ltd Groove processing method
JP2020093307A (en) * 2018-12-10 2020-06-18 株式会社ディスコ Fine Kenzan manufacturing method
CN113290428A (en) * 2021-06-16 2021-08-24 无锡微研股份有限公司 Blade fixing plate forming process
CN114178945A (en) * 2021-12-27 2022-03-15 沈阳和研科技有限公司 Machining method for improving narrow groove precision of metal material
CN116810503A (en) * 2023-08-30 2023-09-29 长沙华实半导体有限公司 Processing method of C-shaped cavity of plasma confinement ring
CN117095937A (en) * 2023-09-05 2023-11-21 珠海市崧源电子企业有限公司 Method for processing transformer framework

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268664A (en) * 2006-03-31 2007-10-18 Jtekt Corp Method and device for grinding work piece
JP2009064780A (en) * 2007-09-07 2009-03-26 Robert Bosch Gmbh Method for manufacturing spark plug equipped with ground electrode fitted at side
JP2014188628A (en) * 2013-03-27 2014-10-06 Nagase Integrex Co Ltd Groove processing method
JP2020093307A (en) * 2018-12-10 2020-06-18 株式会社ディスコ Fine Kenzan manufacturing method
JP7306818B2 (en) 2018-12-10 2023-07-11 株式会社ディスコ Fine sword blade manufacturing method
CN113290428A (en) * 2021-06-16 2021-08-24 无锡微研股份有限公司 Blade fixing plate forming process
CN113290428B (en) * 2021-06-16 2023-07-04 无锡微研股份有限公司 Blade fixing plate forming process
CN114178945A (en) * 2021-12-27 2022-03-15 沈阳和研科技有限公司 Machining method for improving narrow groove precision of metal material
CN116810503A (en) * 2023-08-30 2023-09-29 长沙华实半导体有限公司 Processing method of C-shaped cavity of plasma confinement ring
CN117095937A (en) * 2023-09-05 2023-11-21 珠海市崧源电子企业有限公司 Method for processing transformer framework
CN117095937B (en) * 2023-09-05 2024-03-12 珠海市崧源电子企业有限公司 Method for processing transformer framework

Similar Documents

Publication Publication Date Title
JP5087213B2 (en) Dressing method and dressing tool for cylindrical grinding worm in continuous generation grinding of gear
KR20180090888A (en) Device and method for coarse and fine-machined gears
JP5018058B2 (en) Truing device and truing method for grinding wheel
CN102513899B (en) Single-direction inclined-shaft profiling precision grinding method of array optical elements of micro circular troughs
JP2674882B2 (en) How to sharpen a cutting blade
JP2006123066A (en) Grooving grinding method
CN105345665A (en) Finishing tool for ultra-hard grinding wheel for plane grinding and finishing method
JPH04315574A (en) Minute cutting edge diamond block for fixed truing and dressing and its method of application
JP6270921B2 (en) Cutting device with blade dressing mechanism
CN205201321U (en) Superhard grinding wheel dressing tool for face grinding
JP6170699B2 (en) Grooving method
CN116615307A (en) Adjustment of super wear-resistant grinding tool
JP2007245288A (en) Method for dressing superabrasive grinding wheel and device to be used in the same method
JPH09239647A (en) Edge finishing device of long sized cutter
RU2464166C1 (en) Method of sawing hard stone rock
JP2000052144A (en) Method and apparatus for manufacturing carbic coupling
JP3989211B2 (en) High smooth grinding method
JP2003291069A (en) Grinding wheel for grinder and grinding method using grinding wheel
JP5010421B2 (en) Centerless grinding method and centerless grinding apparatus for workpiece outer diameter surface and flat surface
JP2001225249A (en) Grinding method
JP2001009733A (en) Diamond tools
RU2184025C1 (en) Method for dressing coaxially mounted end grinding discs
JP2004066433A (en) Method of forming groove on work by grinding
KR102375419B1 (en) Super finishing apparatus for roll type work
JPH07136932A (en) Truing method for super abrasive grain grinding wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Effective date: 20081001

Free format text: JAPANESE INTERMEDIATE CODE: A02