JP2019120677A - 航空機の対気速度を決定するための方法及びシステム - Google Patents

航空機の対気速度を決定するための方法及びシステム Download PDF

Info

Publication number
JP2019120677A
JP2019120677A JP2018222177A JP2018222177A JP2019120677A JP 2019120677 A JP2019120677 A JP 2019120677A JP 2018222177 A JP2018222177 A JP 2018222177A JP 2018222177 A JP2018222177 A JP 2018222177A JP 2019120677 A JP2019120677 A JP 2019120677A
Authority
JP
Japan
Prior art keywords
aircraft
time frame
altitude
geometric
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018222177A
Other languages
English (en)
Other versions
JP7150578B2 (ja
Inventor
ジア・ルオ
Jia Luo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2019120677A publication Critical patent/JP2019120677A/ja
Application granted granted Critical
Publication of JP7150578B2 publication Critical patent/JP7150578B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • B64D43/02Arrangements or adaptations of instruments for indicating aircraft speed or stalling conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/005Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels altimeters for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/62Devices characterised by the determination or the variation of atmospheric pressure with height to measure the vertical components of speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/66Devices characterised by the determination of the time taken to traverse a fixed distance using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】航空機並びに航空機の対気速度を決定するための方法及びシステムを提供する。【解決手段】本方法及びシステムにより、地面近傍及び地上の航空機の動作において対気速度を計算することができる。現在の時間フレームについて、航空機のGPS高度及び垂直加速度が取得される。以前の時間フレームの幾何学的高度を決定し、幾何学的高度の変化率を計算するために、GPS高度と幾何学的高度との差を、垂直加速度と組み合わせる。幾何学的高度の変化率は、圧力高度の変化率を計算するために使用され、圧力高度の変化率は、航空機の圧力高度を計算するために使用される。圧力高度から静圧が計算され、静圧を使用して対気速度が計算される。【選択図】図2

Description

本開示のシステム及び方法は、航空機の対気速度を決定するための方法及びシステムに関し、より詳細には、航空機の高度及び垂直加速度の計測値に基づいて、航空機の対気速度を決定するための方法及びシステムに関する。
航空機の対気速度を正確に計測することは、航空機の制御に不可欠であり、飛行のすべてのフェーズにおける航空機のシステム動作及び安全性に影響を与える。対気速度は、例えば、ピトープローブからの計測された全圧と、航空機の胴体又はピトープローブの側面に備え付けられた静圧孔からの静圧と、を使用して、直接決定することができる。静圧孔又は他のタイプの孔若しくは管は、地面効果からの汚染又は影響、航空機自体からの逆推力装置の流出物などの静圧孔の汚染がほぼ確実にない条件にある、航空機が地上から高いところにある飛行段階で有用であり得る。航空機の地面近傍又は地上での動作中に、航空機の外部に備え付けられた静圧孔は、様々なタイプの汚染によって汚れ、対気速度の計測値がゆがめられ、航空機の安全性及び動作が影響を受ける可能性がある。よって、航空機の静圧孔又は他の孔からの直接計測にのみ依拠するのではない、航空機の対気速度を決定するための方法が必要とされている。
本明細書で開示される本発明の例は、航空機の対気速度を決定するための方法及びシステムを提供し、また、航空機であって、そのような航空機の対気速度を決定するための改良された方法及びシステムを実現する航空機を提供する。本開示の発明の技術的効果及び利益により、航空機は、対気速度計測のための航空機の外部静圧孔に依拠することなく、航空機の対気速度を正確に決定することができ、航空機が地面近傍又は地上で動作する際の外部静圧孔汚染の問題を解決する。本開示の発明により、航空機が、GPS高度計測値及び慣性基準装置の計測値を使用して、幾何学的高度の変化率及び圧力高度の変化率を決定し、圧力高度の変化率の計算を使用して、静圧値を決定することを可能にする。静圧値は、他の計測値と組み合わせて、航空機の対気速度を決定するために使用される。
一例では、航空機の対気速度を決定するための方法が開示される。本方法は、航空機のGPS装置から、現在の時間フレームの航空機のGPS高度と、航空機の1つ以上の慣性基準装置から、現在の時間フレームの航空機の垂直加速度と、を取得するステップを含む。現在の時間フレームより前の時間フレームの航空機の幾何学的高度が保存され、次の時間フレームのために使用される。GPS高度と幾何学的高度との間の差が決定され、この差が、航空機の幾何学的高度の変化率を計算するために、垂直加速度と共に使用される。幾何学的高度の変化率から圧力高度の変化率が計算され、圧力高度の変化率は、現在の時間フレームの圧力高度を計算するために使用される。圧力高度は、現在の時間フレームの静圧を計算するために使用され、静圧は、航空機の対気速度を決定するために使用される。
別の例では、航空機の対気速度を決定するためのシステムが開示される。本システムは、航空機のGPS高度を決定することができる航空機のGPS装置と、航空機の垂直加速度を決定することができる航空機の慣性基準装置と、コンピューターシステムと、を備える。コンピューターシステムは、GPS装置及び航空機の1つ以上の装置に動作可能に接続された1つ以上のプロセッサと、プロセッサに動作可能に接続されたデータベースと、1つ以上のプロセッサ及びデータベースに動作可能に接続されたメモリと、を含み、メモリが、航空機の対気速度を計算するための方法を実行するための1つ以上のプロセッサによる実行のためのプログラムコードを含むデータを記憶する。本方法は、航空機のGPS装置から、現在の時間フレームの航空機のGPS高度と、航空機の1つ以上の慣性基準装置から、現在の時間フレームの航空機の垂直加速度と、を取得するステップを含む。現在の時間フレームより前の時間フレームの航空機の幾何学的高度が保存され、次の時間フレームのために使用される。GPS高度と幾何学的高度との間の差が決定され、この差が、航空機の幾何学的高度の変化率を計算するために、垂直加速度と共に使用される。幾何学的高度の変化率から圧力高度の変化率が計算され、圧力高度の変化率は、現在の時間フレームの圧力高度を計算するために使用される。圧力高度は、現在の時間フレームの静圧を計算するために使用され、静圧は、航空機の対気速度を決定するために使用される。
別の例では、航空機が開示される。本航空機は、航空機のGPS高度を決定することができるGPS装置と、航空機の垂直加速度を決定することができる慣性基準装置と、コンピューターシステムと、を備える。コンピューターシステムは、GPS装置及び航空機の1つ以上の装置に動作可能に接続された1つ以上のプロセッサと、プロセッサに動作可能に接続されたデータベースと、1つ以上のプロセッサ及びデータベースに動作可能に接続されたメモリと、を含み、メモリが、航空機の対気速度を計算するための方法を実行するための1つ以上のプロセッサによる実行のためのプログラムコードを含むデータを記憶する。本方法は、航空機のGPS装置から、現在の時間フレームの航空機のGPS高度と、航空機の1つ以上の慣性基準装置から、現在の時間フレームの航空機の垂直加速度と、を取得するステップを含む。現在の時間フレームより前の時間フレームの航空機の幾何学的高度が保存され、次の時間フレームのために使用される。GPS高度と幾何学的高度との間の差が決定され、この差が、航空機の幾何学的高度の変化率を計算するために、垂直加速度と共に使用される。幾何学的高度の変化率から圧力高度の変化率が計算され、圧力高度の変化率は、現在の時間フレームの圧力高度を計算するために使用される。圧力高度は、現在の時間フレームの静圧を計算するために使用され、静圧は、航空機の対気速度を決定するために使用される。
本開示の方法及びシステムの他の目的及び利点は、以下の説明、添付の図面及び添付の特許請求の範囲から明らかになるはずである。
航空機の対気速度を決定するための本開示のシステムを備える航空機の例示的な概略ブロック図である。 本開示の方法の一例の例示的なプロセスフロー図である。 本開示の方法のさらなる例のプロセスフロー図である。 本開示の方法のさらなる例のプロセスフロー図である。 図2〜図4の方法を実行することができるコンピューターシステムの例示的な概略ブロック図である。
図1は、以下に説明するような、航空機の対気速度を決定するためのシステムを備える航空機10の例示的な概略ブロック図である。航空機10は、固定翼航空機、回転翼航空機、プロペラ機、ジェット機、民間航空機、軍用航空機、若しくは別のタイプの航空機などの任意の航空機、又は図1の例に示す固定翼の民間航空機などの異なるタイプの航空機の組み合わせであり得る任意の航空機とすることができる。航空機10は、航空機のGPS高度を決定することができるGPS装置20と、航空機の垂直加速度を決定するための計測値を取得することができる慣性基準装置21と、を備え、以下に説明するように、電波高度計、圧力又は気圧高度計、外部温度センサ、外部全圧センサ、及び航空機の飛行に関連する他のデータを取得又は計測するための他の装置などの他の装置22を備えることもできる。GPS装置20は、航空機10のどこにでも適宜配置することができ、図1に示すように配置する必要もなく、単一のGPS装置に限定される必要もない。同様に、慣性基準装置21及び他の装置22は、航空機10のどこにでも適宜配置することができ、図1に示すように配置する必要もなく、いかなる特定の数の他の装置又は特定の数の慣性基準装置にも限定される必要もない。
航空機10はまた、さらに以下で説明され図3に示されるように、コンピューターシステム200を備える。コンピューターシステムは、GPSデータ及び高度計測値又は圧力計測値又は他の計測値などの他のデータを取得するために、GPS装置20、慣性基準装置21、及び他の装置22に動作可能に接続される。以下でさらに説明するように、電子制御システム200は、航空機の対気速度を決定するために、以下に説明され図2〜図4に示される方法100を実行するためのコンピュータープログラムコードを含む。
図2は、図1の例示的な航空機10などの航空機の対気速度を決定するための方法100を示す例示的なプロセスフロー図である。方法100は、一般に、ブロック110において、航空機のGPS装置20から、現在の時間フレームの航空機のGPS高度を取得するステップから開始する。一般に、航空機のGPSで決定された位置は、地球の周りに配置された4つ(又はそれ以上)のGPS衛星からのデータを送信及び受信し、データから3次元空間における航空機の位置を導出する、GPS装置によって決定され得る。GPS高度は、データによって提供された位置から導出、計算、又は直接決定され得る。航空機10のGPS装置20は、飛行中に連続的に又は長時間にわたってGPS衛星と動作可能に接続されるため、航空機のGPSで決定された位置は、毎秒、半秒毎、又は必要に応じて他の間隔などの所定の時間間隔で飛行中に繰り返し又は連続的に決定され得る。
図2のプロセスを続けると、ブロック120において、現在の時間フレームの航空機の垂直加速度が、航空機10の慣性基準装置21から決定される。航空機の垂直加速度は、一般に、航空機の高度における重力加速度、航空機の1つ以上の荷重倍数、航空機のピッチ及び/又はロールなどの関数であり得る。
プロセス100のブロック130において、コンピューターシステム200において計算され、保存された、以前の時間フレームの幾何学的高度が取得される。以前の時間フレームは、GPS高度及び垂直加速度が計測される現在の時間フレームより前に発生する時間フレームである。以下でさらに詳細に図3を参照して説明するように、以前の時間フレームの幾何学的高度は、以前の時間フレームで計測されたGPS高度と、以前の時間フレームの航空機の垂直加速度と、から計算される。以下に詳述するように、以前の時間フレームの幾何学的高度を計算するために、以前の時間フレームの航空機のGPS高度及び鉛直加速度は、以前の時間フレームに先行する、さらに以前の時間フレームから決定された幾何学的高度と組み合わされ、次に、現在の時間フレームの幾何学的高度を計算するために、現在の時間フレームについて取得されたGPS高度及び垂直加速度が、使用され、以前の時間フレームからの幾何学的高度と組み合わされ、現在の時間フレームのこの幾何学的高度が、新たなGPS高度及び垂直加速度が計測される次の時間フレームの幾何学的高度になる。このように、任意の1つの時間フレームについて計算された幾何学的高度は、後続の時間フレームの新しい幾何学的高度を計算するために、次の時間フレームの更新されたGPS高度及び垂直加速度の計測値と共に、後続の時間フレームにおいて使用される。
プロセス100のブロック140において、現在の時間フレームのGPS高度hGPSと、以前の時間フレームの幾何学的高度
Figure 2019120677
と、の間の差が計算される。差は、一般に次のように表すことができる。
Figure 2019120677
ブロック150において、現在の時間フレームの垂直加速度
Figure 2019120677
を使用し、かつ現在の時間フレームのGPS高度hGPSと以前の時間フレームの幾何学的高度
Figure 2019120677
との間の差を使用して、現在の時間フレームの幾何学的高度の変化率
Figure 2019120677
が計算される。幾何学的高度の変化率は、一般に、航空機の垂直加速度
Figure 2019120677
を、式(1)におけるGPS高度と幾何学的距離との間の差の補正関数f1と共に積分することによって、以前の時間フレームの幾何学的高度の変化率
Figure 2019120677
から計算することができる。
Figure 2019120677
Δtは以前の時間フレームから現在の時間フレームまでの時間間隔である。また、ブロック150において、現在の時間フレームの幾何学的高度hZは、一般に、式(2)における幾何学的高度の変化率を、式(1)におけるGPS高度と幾何学的高度との間の差の補正関数f2と共に積分することによって、以前の時間フレームの幾何学的高度
Figure 2019120677
から計算することができる。
Figure 2019120677
例では、プロセス100は、航空機の電波高度計から、航空機の電波ベースの高度を取得するステップをさらに含むことができる。航空機の電波ベースの高度が所定の閾値高度未満である場合、航空機の垂直加速度を使用せずに、GPS高度と幾何学的高度との間の差を使用して、航空機の幾何学的高度の変化率が計算される。つまり、上記の式(3)は以下のように修正される。
Figure 2019120677
f3は、式(1)におけるGPS高度と幾何学的高度との間の差の補正関数である。所定の閾値高度未満の電波ベースの高度で式(4)を使用することは、このような低い電波ベースの高度においては、航空機が地上にあり、航空機の1つ以上の慣性基準装置21が、地上の着陸装置の力による構造振動に起因して、航空機の垂直加速度を確実に決定することができないため、望ましい場合がある。離陸動作の場合、飛行機が滑走路上に静止している時点でプロセスが開始され得る。航空機が着陸装置の力からの構造振動が存在しない閾値高度を過ぎると、上記のように幾何学的高度及び幾何学的高度の変化率を決定するために、航空機の垂直加速度を式(3)のように使用することができる。反対に、本明細書に記載されたプロセスが、航空機の着陸進入中に航空機の対気速度を決定するために使用される場合、幾何学的高度及び幾何学的高度の変化率を決定するために、航空機が所定の電波ベースの高度未満になるまで、式(3)を使用でき、航空機が所定の電波ベースの高度未満になった時点で、残りの着陸動作では式(4)を使用できる。着陸進入動作では、プロセスは、多くの航空機が地面効果のない静圧を得る約800フィート(約244メートル)の電波ベースの高度に航空機が到達した時点で開始され得る。ただし、航空機の仕様及び要件に応じて、他の開始電波ベース高度を選択することもできる。
プロセス100は、ブロック160において、幾何学的高度の変化率を使用して、圧力高度の変化率を計算するステップを続ける。圧力高度の変化率は、標準日(standard day)温度TStandardDayと外気温度TAmbientとの間の比と組み合わせた幾何学的高度の変化率の関数として表すことができる。
Figure 2019120677
標準日温度TStandardDayは、それ自体が圧力高度の関数であり、国際標準大気(International Standard Atmosphere、ISA)の標準式を使用して圧力高度から計算できる。外気温度は、以下でさらに説明され図4に示されるように計算され得る。
プロセス100は、ブロック170において、圧力高度の変化率を使用して、現在の時間フレームの圧力高度を計算するステップを続ける。以下にさらに説明するように、現在の時間フレームの圧力高度hPは、次のように計算され得る。
Figure 2019120677
ここで、
Figure 2019120677
は、以前の時間フレームについて計算された圧力高度である。
プロセス100のブロック180において、現在の時間フレームの静圧を計算するために、現在の時間フレームの圧力高度が使用される。以下にさらに説明するように、静圧は、圧力高度に基づいて次のように計算される。
Figure 2019120677
ここで、p0はISA標準日条件における海面の静圧である。
最後に、プロセス100のブロック190において、航空機の対気速度が計算される。ノット単位の航空機の計算された対気速度Vcasは、次のように、式(7)で計算された静圧を使用して決定でき、計測された全圧pT及びISA標準日条件での海面の静圧p0にも依存する。
Figure 2019120677
全圧は、航空機に取り付けられた外部ピトープローブなどの航空機の圧力センサから計測することができる。
次に図3を参照すると、例において、図2のブロック130のように、以前の時間フレームの幾何学的高度を取得するステップは、以前の時間フレームのGPS高度及び垂直加速度と、さらに以前の時間フレームの幾何学的高度と、を取得するステップを含み得る。本明細書における言及を容易にするために、「以前の時間フレーム」を「第1の以前の時間フレーム」と呼び、第1の以前の時間フレームに先行する「さらに以前の時間フレーム」を「第2の以前の時間フレーム」と呼ぶ。よって、ブロック131において、第1の以前の時間フレームの航空機のGPS高度が取得され、ブロック132において、第1の以前の時間フレームの垂直加速度が取得される。ブロック133において、第2の以前の時間フレームの航空機の幾何学的高度も取得される。ブロック134において、第1の以前の時間フレームのGPS高度と第2の以前の時間フレームの幾何学的高度との間の差が決定され、ブロック135において、この差が、幾何学的高度の変化率を取得するために、積分によって第2の垂直加速度と組み合わされる。ブロック136において、幾何学的高度の変化率は、第1の以前の時間フレームの幾何学的高度を計算するために、第2の以前の時間フレーム(さらに以前の時間フレーム)の幾何学的高度と組み合わされる。つまり、上記の式(2)及び(3)は、現在のGPS高度、現在の垂直加速度、及び以前に計算された幾何学的高度に基づいて、現在の幾何学的高度hZを決定するために、任意の特定の時間フレームで使用される。その結果、任意の特定の現在の時間フレームにおける現在の幾何学的高度は、次いで、更新されたGPS高度及び更新された垂直加速度に基づいて、更新された幾何学的高度を計算するときに、以前の時間フレームの幾何学的高度となる。航空機の幾何学的高度、ひいては航空機の幾何学的高度の変化率は、現在の時間フレームの計測値及び以前の時間フレームの計算値に基づいて、各現在の時間フレームについて連続的に更新及び計算することができる。
図4を参照すると、圧力高度の変化率を計算するステップ160は、標準日温度を取得するステップ161と、外気温度を計算するステップ162と、を含むことができる。次いで、本プロセスは、標準日温度と外気温度との間の比を決定するステップ166と、標準日温度と外気温度との間の比を、幾何学的高度の変化率と組み合わせて、圧力高度の変化率を決定するステップ168と、を含むことができる。式(5)で上述したように、圧力高度の変化率は、次のように表すことができる。
Figure 2019120677
標準日温度は、圧力高度の関数であり、国際標準大気(International Standard Atmosphere、ISA)の標準式を使用して圧力高度から計算できる。外気温度は、図4に示すように、航空機の外部温度センサから、現在の時間フレームの総気温を取得するステップ163と、現在の時間フレームの航空機のマッハ数を取得するステップ164と、総気温とマッハ数とを組み合わせて、外気温度を計算するステップ165と、によって、決定され得る。外気温度は、総外部温度TT及びマッハ数Mの関数として、次のように表すことができる。
Figure 2019120677
次いで、マッハ数は、次の式(10)から計算することができる。
Figure 2019120677
式(10)において、pSは、以前の時間フレームについて、上記の式(7)を用いて計算された静圧であり、つまり、外気温度を決定するために、現在の時間フレームの現在のマッハ数Mは、以前の時間フレームの静圧の計算から導き出される。図4に示すように、現在のマッハ数は、現在の外気温度を決定するために使用され、現在の外気温度は、現在の時間フレームの圧力高度の変化率
Figure 2019120677
を計算するために使用され、次いで、現在の時間フレームの圧力高度及び現在の時間フレームの静圧を計算するために、圧力高度の変化率が使用される。次いで、現在の時間フレームの静圧は、更新されたマッハ数を再計算するとき、以前の時間フレームの静圧となり、これは、外気温度の計算などを更新するために使用される。
再び図4を参照すると、現在の時間フレームの圧力高度は、圧力高度の変化率から計算される170。圧力高度は、以前の時間フレームの圧力高度を取得するステップ172と、以前の時間フレームの圧力高度を、圧力高度の変化率と組み合わせて、現在の時間フレームの圧力高度を決定するステップ174と、によって計算される。現在の時間フレームの圧力高度hPは、次のように計算され得る。
Figure 2019120677
ここで、
Figure 2019120677
は、以前の時間フレームについて計算された圧力高度である。以前の時間フレームの圧力高度の変化率は、以前の時間フレームについて、上記の式(5)に従って計算される。
再び図4を参照すると、現在の時間フレームの静圧は、現在の時間フレームの圧力高度から次のように計算される180。
Figure 2019120677
ここで、p0はISA標準日条件における海面の静圧である。以前の時間フレームの静圧は、以前の時間フレームについて決定された圧力高度を使用して、上記の同じ式(7)を使用して決定される。このように、任意の1つの現在の時間フレームについて決定された静圧は、上述のように、後続の時間フレームの更新されたマッハ数を決定するために使用される。
方法100は、高度データ、圧力データ、及び温度データが飛行中に常に流動し得るため、後述するように、電子制御システム200によって、航空機10の飛行中に繰り返して連続的に「オンザフライ」で実行されてもよい。方法100は、外部孔は地面近傍又は地上での動作中に汚染される場合があることから、航空機の地面近傍及び地上での動作中に、対気速度を直接計測するために外部孔に依拠することなく、航空機の対気速度を正確に決定することを可能にする。
ここで図5を参照すると、上記の図2〜図4に記載の方法100は、例示的なコンピューターシステム200などの1つ以上の電子制御システム上で実現され得る。コンピューターシステム200は、プロセッサ230と、メモリ210と、データベース245を備える大容量記憶装置240と、1つ以上の入出力(I/O)インターフェース250と、を備え、ヒューマンマシンインターフェース(Human Machine Interface、HMI)220を備えてもよい。コンピューターシステム200は、入出力インターフェース250を介して、図1に示すように、航空機10のGPS装置20及び他の装置21に動作可能に接続される。プロセッサ230は、マイクロプロセッサ、マイクロコントローラ、デジタルシグナルプロセッサ、マイクロコンピューター、中央処理装置、フィールドプログラマブルゲートアレイ、プログラマブルロジックデバイス、ステートマシン、ロジック回路、アナログ回路、デジタル回路、又はメモリ210に記憶されている動作命令に基づいて信号(アナログ又はデジタル)を操作する任意の他の装置から選択される1つ以上の装置を含む。メモリ210は、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、揮発性メモリ、不揮発性メモリ、スタティックランダムアクセスメモリ(SRAM)、ダイナミックランダムアクセスメモリ(DRAM)、フラッシュメモリ、キャッシュメモリ、又は情報を記憶することができる任意の他の装置を含むが、限定されるものではない、単一のメモリ装置又は複数のメモリ装置を含む。大容量記憶装置240は、ハードドライブ、光学ドライブ、テープドライブ、揮発性若しくは不揮発性のソリッドステートドライブ、又は情報を記憶することができる任意の他の装置などのデータ記憶装置を含む。プロセッサ230は、メモリ210に存在するオペレーティングシステム211の制御下で動作する。オペレーティングシステム211は、メモリ210に存在するアプリケーション212などの1つ以上のコンピューターソフトウェアアプリケーションとして実現されるコンピュータープログラムコードがプロセッサ230によって実行される命令を有するように、処理リソースを管理する。別の例では、プロセッサ230は、アプリケーション212を直接実行し、この場合、オペレーティングシステム211は省略され得る。1つ以上のデータ構造213もメモリ210に存在してもよく、データを記憶又は操作するためにプロセッサ230、オペレーティングシステム211、又はアプリケーション212によって使用されてもよい。
入出力インターフェース250は、レーダ高度計、気圧高度計若しくは圧力高度計、温度センサなど、航空機10のGPS装置20及び他の装置21などの他の装置及びシステムにプロセッサ230を動作可能に接続するマンマシンインターフェースを提供する。それにより、上述のような方法100を実行するためにプロセッサ230によって実行されるためのプログラムコードを含むデータを含むアプリケーション212は、本発明の例を含む様々な形状、機能、アプリケーション、プロセス、又はモジュールを提供するために、入出力インターフェース250を介して通信することによって、航空機10のセンサ20、主アクチュエータ30、別のアクチュエータ40、及び他のシステムと連携して動作する。アプリケーション212は、例えば、主アクチュエータ30及び別のアクチュエータ40によって実行される、又はコンピューターシステム200の外部の他のシステム若しくはネットワーク構成要素によって提供される機能又は信号に依拠する、プログラムコードを有する。実際、ほぼ無数のハードウェア及びソフトウェア構成が可能であることから、当業者であれば、本発明の例が、複数のコンピューター又は他の外部リソース間で分散される、又はコンピューターシステム200の外部に設けられたコンピューティングリソース(ハードウェア及びソフトウェア)によって提供される、コンピューターシステム200の外部にあるアプリケーションを含み得ることを理解するはずである。
HMI 220が含まれる場合、HMI 220は、ユーザがコンピューターシステム200と直接対話できるように、既知の方法でコンピューターシステム200のプロセッサ230に動作可能に接続される。HMI 220は、ビデオ又は英数字ディスプレイ、タッチスクリーン、スピーカ、並びにユーザにデータを提供することができる任意の他の適切な音声及び視覚インジケータを備えることができる。HMI 220はまた、コマンド又はユーザからの入力を受け、入力された入力をプロセッサ230に送信することができる、英数字キーボード、ポインティングデバイス、キーパッド、押しボタン、制御ノブ、マイクロホンなどの入力装置及び制御部を含むことができる。
データベース245は、大容量記憶装置240上に存在し、本明細書で説明される様々なシステム及びモジュールによって使用されるデータを収集及び整理するために使用され得る。データベース245は、データと、データを記憶及び整理する支援データ構造と、を含むことができる。特に、データベース245は、関係データベース、階層データベース、ネットワークデータベース、又はそれらの組み合わせを含むがこれらに限定されない任意のデータベース編成又は構造で構成されてもよい。プロセッサ230上で命令として実行するコンピューターソフトウェアアプリケーションの形態のデータベース管理システムは、クエリに応答してデータベース245のレコードに記憶された情報又はデータにアクセスするために使用されてもよく、クエリは、オペレーティングシステム211、他のアプリケーション212、又は1つ以上のモジュールによって、動的に決定及び実行されてもよい。
さらに、本開示は、以下の条項による例を含む。
条項1.航空機(10)の対気速度を決定する方法(100)であって、本方法は、
航空機のGPS装置(20)から、現在の時間フレームの航空機のGPS高度を取得するステップ(110)と、
航空機の慣性基準装置(21)から、現在の時間フレームの航空機の垂直加速度を取得するステップ(120)と、
以前の時間フレームの航空機の幾何学的高度を取得するステップ(130)であって、以前の時間フレームは現在の時間フレームより前に発生する、ステップ(130)と、
GPS高度と幾何学的高度との間の差を決定するステップ(140)と、
垂直加速度と、GPS高度と幾何学的高度との間の差と、を使用して、航空機の幾何学的高度の変化率を計算するステップ(150)と、
幾何学的高度の変化率を使用して、圧力高度の変化率を計算するステップ(160)と、
圧力高度の変化率から、現在の時間フレームの圧力高度を計算するステップ(170)と、
圧力高度を使用して、現在の時間フレームの静圧を計算するステップ(180)と、
静圧を使用して、航空機の対気速度を計算するステップ(190)と、
を含む、方法(100)。
条項2.GPS高度は第1のGPS高度であり、垂直加速度は第1の垂直加速度であり、航空機の幾何学的高度は第1の幾何学的高度であり、幾何学的高度の変化率は第1の幾何学的高度の変化率であり、以前の時間フレームは第1の以前の時間フレームであり、第1の以前の時間フレームの航空機の第1の幾何学的高度を取得するステップが、
航空機のGPS装置から、第1の以前の時間フレームの航空機の第2のGPS高度を取得するステップ(131)と、
航空機の慣性基準装置から、第1の以前の時間フレームの航空機の第2の垂直加速度を取得するステップ(132)と、
第2の以前の時間フレームの航空機の第2の幾何学的高度を取得するステップ(133)であって、第2の以前の時間フレームは第1の以前の時間フレームより前に発生する、ステップ(133)と、
第2のGPS高度と第2の幾何学的高度との間の差を決定するステップ(134)と、
積分によって、第2の垂直加速度を、第2のGPS高度と第2の幾何学的高度との間の差と組み合わせて、第2の幾何学的高度の変化率を取得するステップ(135)と、
第2の幾何学的高度、第2の幾何学的高度の変化率、及びGPS高度と幾何学的高度との間の差を使用して、航空機の第1の幾何学的高度を計算するステップ(136)と、
を含む、条項1に記載の方法。
条項3.航空機の電波高度計(22)から、航空機の電波ベースの高度を取得するステップと、
電波ベースの高度が所定の閾値高度未満である場合、航空機の垂直加速度を使用せずに、GPS高度と幾何学的高度との間の差を使用して、航空機の幾何学的高度の変化率を計算するステップと、
をさらに含む、条項1又は2に記載の方法。
条項4.圧力高度の変化率を計算するステップは、
標準日温度を取得するステップ(161)と、
外気温度を計算するステップ(162)と、
標準日温度と外気温度との間の比を決定するステップ(166)と、
標準日温度と外気温度との間の比を、幾何学的高度の変化率と組み合わせて、圧力高度の変化率を決定するステップ(168)と、
を含む、条項1又は2に記載の方法。
条項5.外気温度を計算するステップは、
航空機の外部温度センサから、現在の時間フレームの総気温を取得するステップ(163)と、
現在の時間フレームの航空機のマッハ数を計算するステップ(164)と、
総気温とマッハ数とを組み合わせて、外気温度を計算するステップ(165)と、
を含む、条項4に記載の方法。
条項6.現在の時間フレームの圧力高度を計算するステップは、
以前の時間フレームの航空機の圧力高度を取得するステップ(172)と、
以前の時間フレームの航空機の圧力高度を、圧力高度の変化率と組み合わせて、現在の時間フレームの圧力高度を決定するステップ(174)と、
を含む、条項1又は2に記載の方法。
条項7.現在の時間フレームの静圧を計算するステップは、
現在の時間フレームの圧力高度を使用して、静圧を計算するステップ
を含む、条項6に記載の方法。
条項8.航空機の対気速度を計算するステップは、
航空機の全圧センサから、全圧値を取得するステップと、
全圧値と現在の時間フレームの静圧とを組み合わせて、航空機の対気速度を計算するステップと、
を含む、条項7に記載の方法。
条項9.航空機(10)の対気速度を決定するためのシステムであって、本システムは、
航空機のGPS高度を決定することができる航空機のGPS装置(20)と、
航空機の垂直加速度を決定することができる航空機の慣性基準装置(21)と、
航空機のコンピューターシステム(200)と、を備え、コンピューターシステムが、GPS装置、慣性基準装置、及び航空機の1つ以上の他の装置(22)に動作可能に接続された1つ以上のプロセッサ(230)と、1つ以上のプロセッサに動作可能に接続されたデータベース(245)と、1つ以上のプロセッサ及びデータベースに動作可能に接続されたメモリ(210)と、を含み、メモリは、航空機の対気速度を計算するための方法(100)を実行するための1つ以上のプロセッサによる実行のためのプログラムコード(212)を含むデータを記憶し、方法は、
GPS装置から、現在の時間フレームの航空機のGPS高度を取得するステップ(110)と、
慣性基準装置から、現在の時間フレームの航空機の垂直加速度を取得するステップ(120)と、
以前の時間フレームの航空機の幾何学的高度を取得するステップ(130)であって、以前の時間フレームは現在の時間フレームより前に発生する、ステップ(130)と、
GPS高度と幾何学的高度との間の差を決定するステップ(140)と、
垂直加速度と、GPS高度と幾何学的高度との間の差と、を使用して、航空機の幾何学的高度の変化率を計算するステップ(150)と、
幾何学的高度の変化率を使用して、圧力高度の変化率を計算するステップ(160)と、
圧力高度の変化率から、現在の時間フレームの圧力高度を計算するステップ(170)と、
圧力高度を使用して、現在の時間フレームの静圧を計算するステップ(180)と、
静圧を使用して、航空機の対気速度を計算するステップ(190)と、
を含む、コンピューターシステム(200)と、
を備える、システム。
条項10.GPS高度は第1のGPS高度であり、垂直加速度は第1の垂直加速度であり、航空機の幾何学的高度は第1の幾何学的高度であり、幾何学的高度の変化率は第1の幾何学的高度の変化率であり、以前の時間フレームは第1の以前の時間フレームであり、第1の以前の時間フレームの航空機の第1の幾何学的高度を取得するステップが、
航空機のGPS装置から、第1の以前の時間フレームの航空機の第2のGPS高度を取得するステップ(131)と、
航空機の慣性基準装置から、第1の以前の時間フレームの航空機の第2の垂直加速度を取得するステップ(132)と、
第2の以前の時間フレームの航空機の第2の幾何学的高度を取得するステップ(133)であって、第2の以前の時間フレームは第1の以前の時間フレームより前に発生する、ステップ(133)と、
第2のGPS高度と第2の幾何学的高度との間の差を決定するステップ(134)と、
積分によって、第2の垂直加速度を、第2のGPS高度と第2の幾何学的高度との間の差と組み合わせて、第2の幾何学的高度の変化率を取得するステップ(135)と、
第2の幾何学的高度、第2の幾何学的高度の変化率、及びGPS高度と幾何学的高度との間の差を使用して、航空機の第1の幾何学的高度を計算するステップ(136)と、
を含む、条項9に記載のシステム。
条項11.航空機の電波高度計(22)をさらに備え、方法が、
電波高度計から、航空機の電波ベースの高度を取得するステップと、
電波ベースの高度が所定の閾値高度未満である場合、航空機の垂直加速度を使用せずに、GPS高度と幾何学的高度との間の差を使用して、航空機の幾何学的高度の変化率を計算するステップと、
をさらに含む、条項9又は10に記載のシステム。
条項12.圧力高度の変化率を計算するステップは、
標準日温度を取得するステップ(161)と、
外気温度を計算するステップ(162)と、
標準日温度と外気温度との間の比を決定するステップ(166)と、
標準日温度と外気温度との間の比を、幾何学的高度の変化率と組み合わせて、圧力高度の変化率を決定するステップ(168)と、
を含む、条項9又は10に記載のシステム。
条項13.航空機の外部温度センサをさらに備え、外気温度を計算するステップは、
外部温度センサから、現在の時間フレームの総気温を取得するステップ(163)と、
現在の時間フレームの航空機のマッハ数を計算するステップ(164)と、
総気温とマッハ数とを組み合わせて、外気温度を計算するステップ(165)と、
を含む、条項12に記載のシステム。
条項14.現在の時間フレームの圧力高度を計算するステップは、
以前の時間フレームの航空機の圧力高度を取得するステップ(172)と、
以前の時間フレームの航空機の圧力高度を、圧力高度の変化率と組み合わせて、現在の時間フレームの圧力高度を決定するステップ(174)と、
を含む、条項9又は10に記載のシステム。
条項15.現在の時間フレームの静圧を計算するステップは、
現在の時間フレームの圧力高度を使用して、静圧を計算するステップ
を含む、条項14に記載のシステム。
条項16.航空機の全圧センサをさらに備え、航空機の対気速度を計算するステップは、
全圧センサから、全圧値を取得するステップと、
全圧値と現在の時間フレームの静圧とを組み合わせて、航空機の対気速度を計算するステップと、
を含む、条項15に記載のシステム。
条項17.航空機(10)であって、
航空機のGPS高度を決定することができるGPS装置(20)と、
航空機の垂直加速度を決定することができる慣性基準装置(21)と、
航空機のコンピューターシステム(200)と、を備え、コンピューターシステムが、GPS装置、慣性基準装置、及び航空機の1つ以上の他の装置(22)に動作可能に接続された1つ以上のプロセッサ(230)と、1つ以上のプロセッサに動作可能に接続されたデータベース(245)と、1つ以上のプロセッサ及びデータベースに動作可能に接続されたメモリ(210)と、を含み、メモリは、航空機の対気速度を計算するための方法(100)を実行するための1つ以上のプロセッサによる実行のためのプログラムコード(212)を含むデータを記憶し、方法は、
GPS装置から、現在の時間フレームの航空機のGPS高度を取得するステップ(110)と、
慣性基準装置から、現在の時間フレームの航空機の垂直加速度を取得するステップ(120)と、
以前の時間フレームの航空機の幾何学的高度を取得するステップ(130)であって、以前の時間フレームは現在の時間フレームより前に発生する、ステップ(130)と、
GPS高度と幾何学的高度との間の差を決定するステップ(140)と、
垂直加速度と、GPS高度と幾何学的高度との間の差と、を使用して、航空機の幾何学的高度の変化率を計算するステップ(150)と、
幾何学的高度の変化率を使用して、圧力高度の変化率を計算するステップ(160)と、
圧力高度の変化率から、現在の時間フレームの圧力高度を計算するステップ(170)と、
圧力高度を使用して、現在の時間フレームの静圧を計算するステップ(180)と、
静圧を使用して、航空機の対気速度を計算するステップ(190)と、
を含む、コンピューターシステム(200)と、
を備える、航空機(10)。
条項18.GPS高度は第1のGPS高度であり、垂直加速度は第1の垂直加速度であり、航空機の幾何学的高度は第1の幾何学的高度であり、幾何学的高度の変化率は第1の幾何学的高度の変化率であり、以前の時間フレームは第1の以前の時間フレームであり、第1の以前の時間フレームの航空機の第1の幾何学的高度を取得するステップが、
航空機のGPS装置から、第1の以前の時間フレームの航空機の第2のGPS高度を取得するステップ(131)と、
航空機の慣性基準装置から、第1の以前の時間フレームの航空機の第2の垂直加速度を取得するステップ(132)と、
第2の以前の時間フレームの航空機の第2の幾何学的高度を取得するステップ(133)であって、第2の以前の時間フレームは第1の以前の時間フレームより前に発生する、ステップ(133)と、
第2のGPS高度と第2の幾何学的高度との間の差を決定するステップ(134)と、
積分によって、第2の垂直加速度を、第2のGPS高度と第2の幾何学的高度との間の差と組み合わせて、第2の幾何学的高度の変化率を取得するステップ(135)と、
第2の幾何学的高度、第2の幾何学的高度の変化率、及びGPS高度と幾何学的高度との間の差を使用して、航空機の第1の幾何学的高度を計算するステップ(136)と、
を含む、条項17に記載の航空機。
条項19.現在の時間フレームの圧力高度を計算するステップ及び現在の時間フレームの静圧を計算するステップは、
以前の時間フレームの航空機の圧力高度を取得するステップ(172)と、
以前の時間フレームの航空機の圧力高度を、圧力高度の変化率と組み合わせて、現在の時間フレームの圧力高度を決定するステップ(174)と、
現在の時間フレームの圧力高度を使用して、静圧を計算するステップと、
を含む、条項17又は18に記載の航空機。
条項20.航空機の全圧センサをさらに備え、航空機の対気速度を計算するステップは、
全圧センサから、全圧値を取得するステップと、
全圧値と現在の時間フレームの静圧とを組み合わせて、航空機の対気速度を計算するステップと、
を含む、条項19に記載の航空機。
本明細書に記載された装置及び方法の形態は本発明の好ましい例を構成するが、本発明は装置及び方法のこれらの正確な形態に限定されるものではなく、本発明の範囲から逸脱することなく変更を行うことができることを理解されたい。
10 航空機
20 GPS装置、センサ
21 慣性基準装置
22 他の装置、電波高度計
30 主アクチュエータ
40 別のアクチュエータ
100 方法、プロセス
200 電子制御システム、コンピューターシステム
210 メモリ
211 オペレーティングシステム
212 アプリケーション、プログラムコード
213 データ構造
220 ヒューマンマシンインターフェース
230 プロセッサ
240 大容量記憶装置
245 データベース
250 入出力インターフェース

Claims (15)

  1. 航空機(10)の対気速度を決定する方法(100)であって、前記方法は、
    前記航空機のGPS装置(20)から、現在の時間フレームの前記航空機のGPS高度を取得するステップ(110)と、
    前記航空機の慣性基準装置(21)から、前記現在の時間フレームの前記航空機の垂直加速度を取得するステップ(120)と、
    以前の時間フレームの前記航空機の幾何学的高度を取得するステップ(130)であって、前記以前の時間フレームは前記現在の時間フレームより前に発生する、ステップ(130)と、
    前記GPS高度と前記幾何学的高度との間の差を決定するステップ(140)と、
    前記垂直加速度と、前記GPS高度と前記幾何学的高度との間の前記差と、を使用して、前記航空機の幾何学的高度の変化率を計算するステップ(150)と、
    前記幾何学的高度の変化率を使用して、圧力高度の変化率を計算するステップ(160)と、
    前記圧力高度の変化率から、前記現在の時間フレームの圧力高度を計算するステップ(170)と、
    前記圧力高度を使用して、前記現在の時間フレームの静圧を計算するステップ(180)と、
    前記静圧を使用して、前記航空機の前記対気速度を計算するステップ(190)と、
    を含む、方法(100)。
  2. 前記GPS高度は第1のGPS高度であり、前記垂直加速度は第1の垂直加速度であり、前記航空機の前記幾何学的高度は第1の幾何学的高度であり、前記幾何学的高度の変化率は第1の幾何学的高度の変化率であり、前記以前の時間フレームは第1の以前の時間フレームであり、前記第1の以前の時間フレームの前記航空機の前記第1の幾何学的高度を取得するステップが、
    前記航空機の前記GPS装置から、前記第1の以前の時間フレームの前記航空機の第2のGPS高度を取得するステップ(131)と、
    前記航空機の前記慣性基準装置から、前記第1の以前の時間フレームの前記航空機の第2の垂直加速度を取得するステップ(132)と、
    第2の以前の時間フレームの前記航空機の第2の幾何学的高度を取得するステップ(133)であって、前記第2の以前の時間フレームは前記第1の以前の時間フレームより前に発生する、ステップ(133)と、
    前記第2のGPS高度と前記第2の幾何学的高度との間の差を決定するステップ(134)と、
    積分によって、前記第2の垂直加速度を、前記第2のGPS高度と前記第2の幾何学的高度との間の前記差と組み合わせて、第2の幾何学的高度の変化率を取得するステップ(135)と、
    前記第2の幾何学的高度、前記第2の幾何学的高度の変化率、及び前記GPS高度と前記幾何学的高度との間の前記差を使用して、前記航空機の前記第1の幾何学的高度を計算するステップ(136)と、
    を含む、請求項1に記載の方法。
  3. 前記航空機の電波高度計(22)から、前記航空機の電波ベースの高度を取得するステップと、
    前記電波ベースの高度が所定の閾値高度未満である場合、前記航空機の前記垂直加速度を使用せずに、前記GPS高度と前記幾何学的高度との間の前記差を使用して、前記航空機の前記幾何学的高度の変化率を計算するステップと、
    をさらに含む、請求項1又は2に記載の方法。
  4. 前記圧力高度の変化率を計算するステップは、
    標準日温度を取得するステップ(161)と、
    外気温度を計算するステップ(162)と、
    前記標準日温度と前記外気温度との間の比を決定するステップ(166)と、
    前記標準日温度と前記外気温度との間の前記比を、前記幾何学的高度の変化率と組み合わせて、前記圧力高度の変化率を決定するステップ(168)と、
    を含む、請求項1から3のいずれか一項に記載の方法。
  5. 前記外気温度を計算するステップは、
    前記航空機の外部温度センサから、前記現在の時間フレームの総気温を取得するステップ(163)と、
    前記現在の時間フレームの前記航空機のマッハ数を計算するステップ(164)と、
    前記総気温と前記マッハ数とを組み合わせて、前記外気温度を計算するステップ(165)と、
    を含む、請求項4に記載の方法。
  6. 前記現在の時間フレームの前記圧力高度を計算するステップは、
    前記以前の時間フレームの前記航空機の圧力高度を取得するステップ(172)と、
    前記以前の時間フレームの前記航空機の前記圧力高度を、前記圧力高度の変化率と組み合わせて、前記現在の時間フレームの前記圧力高度を決定するステップ(174)と、
    を含む、請求項1から5のいずれか一項に記載の方法。
  7. 前記現在の時間フレームの前記静圧を計算するステップは、
    前記現在の時間フレームの前記圧力高度を使用して、前記静圧を計算するステップ
    を含み、
    前記航空機の前記対気速度を計算するステップは、
    前記航空機の全圧センサから、全圧値を取得するステップと、
    前記全圧値と前記現在の時間フレームの前記静圧とを組み合わせて、前記航空機の前記対気速度を計算するステップと、
    を含む、請求項6に記載の方法。
  8. 航空機(10)の対気速度を決定するためのシステムであって、前記システムは、
    前記航空機のGPS高度を決定することができる前記航空機のGPS装置(20)と、
    前記航空機の垂直加速度を決定することができる前記航空機の慣性基準装置(21)と、
    前記航空機のコンピューターシステム(200)と、を備え、前記コンピューターシステムが、前記GPS装置、前記慣性基準装置、及び前記航空機の1つ以上の他の装置(22)に動作可能に接続された1つ以上のプロセッサ(230)と、前記1つ以上のプロセッサに動作可能に接続されたデータベース(245)と、前記1つ以上のプロセッサ及び前記データベースに動作可能に接続されたメモリ(210)と、を含み、前記メモリは、前記航空機の前記対気速度を計算するための方法(100)を実行するための前記1つ以上のプロセッサによる実行のためのプログラムコード(212)を含むデータを記憶し、前記方法は、
    前記GPS装置から、現在の時間フレームの前記航空機の前記GPS高度を取得するステップ(110)と、
    前記慣性基準装置から、前記現在の時間フレームの前記航空機の前記垂直加速度を取得するステップ(120)と、
    以前の時間フレームの前記航空機の幾何学的高度を取得するステップ(130)であって、前記以前の時間フレームは前記現在の時間フレームより前に発生する、ステップ(130)と、
    前記GPS高度と前記幾何学的高度との間の差を決定するステップ(140)と、
    前記垂直加速度と、前記GPS高度と前記幾何学的高度との間の前記差と、を使用して、前記航空機の幾何学的高度の変化率を計算するステップ(150)と、
    前記幾何学的高度の変化率を使用して、圧力高度の変化率を計算するステップ(160)と、
    前記圧力高度の変化率から、前記現在の時間フレームの圧力高度を計算するステップ(170)と、
    前記圧力高度を使用して、前記現在の時間フレームの静圧を計算するステップ(180)と、
    前記静圧を使用して、前記航空機の前記対気速度を計算するステップ(190)と、
    を含む、システム。
  9. 前記GPS高度は第1のGPS高度であり、前記垂直加速度は第1の垂直加速度であり、前記航空機の前記幾何学的高度は第1の幾何学的高度であり、前記幾何学的高度の変化率は第1の幾何学的高度の変化率であり、前記以前の時間フレームは第1の以前の時間フレームであり、前記第1の以前の時間フレームの前記航空機の前記第1の幾何学的高度を取得するステップが、
    前記航空機の前記GPS装置から、前記第1の以前の時間フレームの前記航空機の第2のGPS高度を取得するステップ(131)と、
    前記航空機の前記慣性基準装置から、前記第1の以前の時間フレームの前記航空機の第2の垂直加速度を取得するステップ(132)と、
    第2の以前の時間フレームの前記航空機の第2の幾何学的高度を取得するステップ(133)であって、前記第2の以前の時間フレームは前記第1の以前の時間フレームより前に発生する、ステップ(133)と、
    前記第2のGPS高度と前記第2の幾何学的高度との間の差を決定するステップ(134)と、
    積分によって、前記第2の垂直加速度を、前記第2のGPS高度と前記第2の幾何学的高度との間の前記差と組み合わせて、第2の幾何学的高度の変化率を取得するステップ(135)と、
    前記第2の幾何学的高度、前記第2の幾何学的高度の変化率、及び前記GPS高度と前記幾何学的高度との間の前記差を使用して、前記航空機の前記第1の幾何学的高度を計算するステップ(136)と、
    を含む、請求項8に記載のシステム。
  10. 前記圧力高度の変化率を計算するステップは、
    標準日温度を取得するステップ(161)と、
    外気温度を計算するステップ(162)と、
    前記標準日温度と前記外気温度との間の比を決定するステップ(166)と、
    前記標準日温度と前記外気温度との間の前記比を、前記幾何学的高度の変化率と組み合わせて、前記圧力高度の変化率を決定するステップ(168)と、
    を含む、請求項8又は9に記載のシステム。
  11. 前記航空機の外部温度センサをさらに備え、前記外気温度を計算するステップは、
    前記外部温度センサから、前記現在の時間フレームの総気温を取得するステップ(163)と、
    前記現在の時間フレームの前記航空機のマッハ数を計算するステップ(164)と、
    前記総気温と前記マッハ数とを組み合わせて、前記外気温度を計算するステップ(165)と、
    を含む、請求項10に記載のシステム。
  12. 前記現在の時間フレームの前記圧力高度を計算するステップは、
    前記以前の時間フレームの前記航空機の圧力高度を取得するステップ(172)と、
    前記以前の時間フレームの前記航空機の前記圧力高度を、前記圧力高度の変化率と組み合わせて、前記現在の時間フレームの前記圧力高度を決定するステップ(174)と、
    を含み、
    前記現在の時間フレームの前記静圧を計算するステップは、
    前記現在の時間フレームの前記圧力高度を使用して、前記静圧を計算するステップ
    を含む、請求項8から11のいずれか一項に記載のシステム。
  13. 航空機(10)であって、
    前記航空機のGPS高度を決定することができるGPS装置(20)と、
    前記航空機の垂直加速度を決定することができる慣性基準装置(21)と、
    前記航空機のコンピューターシステム(200)と、を備え、前記コンピューターシステムが、前記GPS装置、前記慣性基準装置、及び前記航空機の1つ以上の他の装置(22)に動作可能に接続された1つ以上のプロセッサ(230)と、前記1つ以上のプロセッサに動作可能に接続されたデータベース(245)と、前記1つ以上のプロセッサ及び前記データベースに動作可能に接続されたメモリ(210)と、を含み、前記メモリは、前記航空機の対気速度を計算するための方法(100)を実行するための前記1つ以上のプロセッサによる実行のためのプログラムコード(212)を含むデータを記憶し、前記方法は、
    前記GPS装置から、現在の時間フレームの前記航空機の前記GPS高度を取得するステップ(110)と、
    前記慣性基準装置から、前記現在の時間フレームの前記航空機の前記垂直加速度を取得するステップ(120)と、
    以前の時間フレームの前記航空機の幾何学的高度を取得するステップ(130)であって、前記以前の時間フレームは前記現在の時間フレームより前に発生する、ステップ(130)と、
    前記GPS高度と前記幾何学的高度との間の差を決定するステップ(140)と、
    前記垂直加速度と、前記GPS高度と前記幾何学的高度との間の前記差と、を使用して、前記航空機の幾何学的高度の変化率を計算するステップ(150)と、
    前記幾何学的高度の変化率を使用して、圧力高度の変化率を計算するステップ(160)と、
    前記圧力高度の変化率から、前記現在の時間フレームの圧力高度を計算するステップ(170)と、
    前記圧力高度を使用して、前記現在の時間フレームの静圧を計算するステップ(180)と、
    前記静圧を使用して、前記航空機の前記対気速度を計算するステップ(190)と、
    を含む、航空機(10)。
  14. 前記GPS高度は第1のGPS高度であり、前記垂直加速度は第1の垂直加速度であり、前記航空機の前記幾何学的高度は第1の幾何学的高度であり、前記幾何学的高度の変化率は第1の幾何学的高度の変化率であり、前記以前の時間フレームは第1の以前の時間フレームであり、前記第1の以前の時間フレームの前記航空機の前記第1の幾何学的高度を取得するステップが、
    前記航空機の前記GPS装置から、前記第1の以前の時間フレームの前記航空機の第2のGPS高度を取得するステップ(131)と、
    前記航空機の前記慣性基準装置から、前記第1の以前の時間フレームの前記航空機の第2の垂直加速度を取得するステップ(132)と、
    第2の以前の時間フレームの前記航空機の第2の幾何学的高度を取得するステップ(133)であって、前記第2の以前の時間フレームは前記第1の以前の時間フレームより前に発生する、ステップ(133)と、
    前記第2のGPS高度と前記第2の幾何学的高度との間の差を決定するステップ(134)と、
    積分によって、前記第2の垂直加速度を、前記第2のGPS高度と前記第2の幾何学的高度との間の前記差と組み合わせて、第2の幾何学的高度の変化率を取得するステップ(135)と、
    前記第2の幾何学的高度、前記第2の幾何学的高度の変化率、及び前記GPS高度と前記幾何学的高度との間の前記差を使用して、前記航空機の前記第1の幾何学的高度を計算するステップ(136)と、
    を含む、請求項13に記載の航空機。
  15. 前記現在の時間フレームの前記圧力高度を計算するステップ及び前記現在の時間フレームの前記静圧を計算するステップは、
    前記以前の時間フレームの前記航空機の圧力高度を取得するステップ(172)と、
    前記以前の時間フレームの前記航空機の前記圧力高度を、前記圧力高度の変化率と組み合わせて、前記現在の時間フレームの前記圧力高度を決定するステップ(174)と、
    前記現在の時間フレームの前記圧力高度を使用して、前記静圧を計算するステップと、
    を含み、
    前記航空機の全圧センサをさらに備え、前記航空機の前記対気速度を計算するステップは、
    前記全圧センサから、全圧値を取得するステップと、
    前記全圧値と前記現在の時間フレームの前記静圧とを組み合わせて、前記航空機の前記対気速度を計算するステップと、
    を含む、請求項13又は14に記載の航空機。
JP2018222177A 2018-01-05 2018-11-28 航空機の対気速度を決定するための方法及びシステム Active JP7150578B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/862,703 2018-01-05
US15/862,703 US10822109B2 (en) 2018-01-05 2018-01-05 Methods and systems for determining airspeed of an aircraft

Publications (2)

Publication Number Publication Date
JP2019120677A true JP2019120677A (ja) 2019-07-22
JP7150578B2 JP7150578B2 (ja) 2022-10-11

Family

ID=64456878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222177A Active JP7150578B2 (ja) 2018-01-05 2018-11-28 航空機の対気速度を決定するための方法及びシステム

Country Status (7)

Country Link
US (1) US10822109B2 (ja)
EP (1) EP3508815B1 (ja)
JP (1) JP7150578B2 (ja)
CN (1) CN110007109B (ja)
BR (1) BR102019000138A2 (ja)
CA (1) CA3027837C (ja)
RU (1) RU2018141125A (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462178B1 (en) * 2017-09-22 2021-05-26 Rosemount Aerospace Inc. Low profile air data architecture
US12006048B2 (en) 2018-05-31 2024-06-11 Joby Aero, Inc. Electric power system architecture and fault tolerant VTOL aircraft using same
EP3802322A4 (en) 2018-05-31 2022-02-23 Joby Aero, Inc. POWER SYSTEM ARCHITECTURE AND FAULT TOLERANT VTOL AIRPLANE WITH IT
US10710741B2 (en) * 2018-07-02 2020-07-14 Joby Aero, Inc. System and method for airspeed determination
EP3853736A4 (en) 2018-09-17 2022-11-16 Joby Aero, Inc. AIRCRAFT CONTROL SYSTEM
EP3891067B1 (en) 2018-12-07 2024-01-17 Joby Aero, Inc. Aircraft control system and method
WO2020118310A1 (en) 2018-12-07 2020-06-11 Joby Aero, Inc. Rotary airfoil and design method therefor
WO2020132332A1 (en) 2018-12-19 2020-06-25 Joby Aero, Inc. Vehicle navigation system
US11230384B2 (en) 2019-04-23 2022-01-25 Joby Aero, Inc. Vehicle cabin thermal management system and method
JP2022530619A (ja) 2019-04-23 2022-06-30 ジョビー エアロ,インコーポレイテッド バッテリ熱管理システムおよび方法
JP2022530463A (ja) 2019-04-25 2022-06-29 ジョビー エアロ インク 垂直離着陸航空機
US11560235B2 (en) * 2021-02-09 2023-01-24 Joby Aero, Inc. Aircraft propulsion unit
CN113465576B (zh) * 2021-09-06 2021-11-19 中国商用飞机有限责任公司 基于飞行器的gnss高度来算出气压高度的方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804614B1 (en) * 2002-12-03 2004-10-12 Rockwell Collins Synthetic pressure altitude determining system and method
WO2006048674A1 (en) * 2004-11-05 2006-05-11 Qinetiq Limited Airspace separation control and collision avoidance
JP2006214993A (ja) * 2005-02-07 2006-08-17 Mitsubishi Electric Corp 移動体用航法装置
JP2015175847A (ja) * 2014-03-13 2015-10-05 ザ・ボーイング・カンパニーTheBoeing Company 航空機の対気速度算出システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349347A (en) 1993-03-29 1994-09-20 Alliedsignal Inc. Method and apparatus for correcting dynamically induced errors in static pressure, airspeed and airspeed rate
JP2952397B2 (ja) 1994-08-23 1999-09-27 科学技術庁航空宇宙技術研究所長 対気飛行速度ベクトル計測装置を用いた対気能動制御航空機
FR2784457B1 (fr) 1998-10-13 2001-01-05 Sextant Avionique Instruments combines de secours pour aeronef
WO2001025819A1 (en) * 1999-10-05 2001-04-12 Honeywell International Inc. Apparatus and method of checking radio altitude reasonableness
US6668640B1 (en) 2002-08-12 2003-12-30 Rosemount Aerospace Inc. Dual-channel electronic multi-function probes and methods for realizing dissimilar and independent air data outputs
US6757624B1 (en) 2002-12-03 2004-06-29 Rockwell Collins Synthetic pressure altitude determining system and method of integrity monitoring from a pressure sensor
US7299113B2 (en) 2004-01-15 2007-11-20 The Boeing Company System and method for determining aircraft tapeline altitude
US7599766B2 (en) * 2004-09-17 2009-10-06 Universal Avionics Systems Corporation Method for providing terrain alerts and display utilizing temperature compensated and GPS altitude data
FR2891368B1 (fr) 2005-09-27 2007-11-30 Airbus France Sas Systeme de surveillance de parametres anemobaroclinometriques pour aeronefs
US7389164B1 (en) 2007-01-22 2008-06-17 Honeywell International, Inc. Systems and methods for automatic detection of QFE operations
US8761970B2 (en) 2008-10-21 2014-06-24 The Boeing Company Alternative method to determine the air mass state of an aircraft and to validate and augment the primary method
FR2941314B1 (fr) 2009-01-20 2011-03-04 Airbus France Procede de commande dun aeronef mettant en oeuvre un systeme de vote.
US9285387B2 (en) 2009-12-14 2016-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration In-flight pitot-static calibration
FR2959316B1 (fr) 2010-04-21 2012-05-18 Airbus Operations Sas Procede et dispositif d'estimation automatique d'une vitesse air d'un avion
US8527233B2 (en) * 2010-09-27 2013-09-03 The Boeing Company Airspeed sensing system for an aircraft
FR2988835B1 (fr) 2012-03-28 2015-01-30 Dassault Aviat Procede de determination d'un etat de credibilite de mesures de capteurs d'un aeronef et systeme correspondant
US9096330B2 (en) * 2013-08-02 2015-08-04 Honeywell International Inc. System and method for computing MACH number and true airspeed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804614B1 (en) * 2002-12-03 2004-10-12 Rockwell Collins Synthetic pressure altitude determining system and method
WO2006048674A1 (en) * 2004-11-05 2006-05-11 Qinetiq Limited Airspace separation control and collision avoidance
JP2006214993A (ja) * 2005-02-07 2006-08-17 Mitsubishi Electric Corp 移動体用航法装置
JP2015175847A (ja) * 2014-03-13 2015-10-05 ザ・ボーイング・カンパニーTheBoeing Company 航空機の対気速度算出システム

Also Published As

Publication number Publication date
CA3027837C (en) 2024-01-16
JP7150578B2 (ja) 2022-10-11
RU2018141125A3 (ja) 2022-04-21
CN110007109A (zh) 2019-07-12
CA3027837A1 (en) 2019-07-05
CN110007109B (zh) 2022-07-15
EP3508815A1 (en) 2019-07-10
US10822109B2 (en) 2020-11-03
RU2018141125A (ru) 2020-05-22
US20190210740A1 (en) 2019-07-11
EP3508815B1 (en) 2021-09-01
BR102019000138A2 (pt) 2019-07-16

Similar Documents

Publication Publication Date Title
JP7150578B2 (ja) 航空機の対気速度を決定するための方法及びシステム
RU2755843C2 (ru) Система и способ оценки воздушной скорости летательного аппарата на основании модели накопления данных о погоде.
CN109018421B (zh) 基于阻力模型估计飞行器空速的系统
JP5565578B2 (ja) 気象変動予測情報提供システム及び気象変動予測情報提供方法
Scott et al. The meteorological measurement system on the NASA ER-2 aircraft
CN114967736A (zh) 风速测算方法、风速估算器及无人机
CN110046473A (zh) 一种飞行器大气参数解算方法、装置及计算机设备
JPH10332728A (ja) 四角錐台型5孔プローブを用いた広速度域飛行速度ベクトル計測システム
CN108450007A (zh) 使用廉价惯性传感器的冗余阵列的高性能惯性测量
JP2010214979A (ja) 計算機及び着陸経路計算プログラム及び記録媒体
CN116992700A (zh) 一种物流无人机导航精度确定的方法及设备
Xing et al. Offline calibration for MEMS gyroscope G-sensitivity error coefficients based on the newton iteration and least square methods
US11821733B2 (en) Terrain referenced navigation system with generic terrain sensors for correcting an inertial navigation solution
McLaren Velocity estimate following air data system failure
Meissner Jr A flight instrumentation system for acquisition of atmospheric turbulence data
Erzberger Application of Kalman filtering to error correction of inertial navigators
Yong et al. Federated filter based multi-sensor fault-tolerant altitude determination system for UAV
Collinson Air data and air data systems
Han et al. A Novel Method of Parallel Computing Based North-Finding of the Satcom-On-The-Move System and Its Simulation
Gracey Survey of altitude-measuring methods for the vertical separation of aircraft
Le et al. Real-time tuning unscented Kalman filter for a redundant attitude estimator in microsatellites
Fedotov et al. Determining Permissible Levels of Frequency Characteristics of Measuring Channels in a Strapdown Inertial Navigation System
CN115535257A (zh) 一种无人机降落伞控制方法、装置、电子设备及存储介质
CN116858223A (zh) 一种基于惯性导航的定位方法及装置
Laurie-Lean Frequency response of an aircraft as determined from transient flight tests using the fourier transformation method of analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R150 Certificate of patent or registration of utility model

Ref document number: 7150578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150