JP2019107040A - 生体の対象部位の水分量を評価する方法 - Google Patents

生体の対象部位の水分量を評価する方法 Download PDF

Info

Publication number
JP2019107040A
JP2019107040A JP2016086209A JP2016086209A JP2019107040A JP 2019107040 A JP2019107040 A JP 2019107040A JP 2016086209 A JP2016086209 A JP 2016086209A JP 2016086209 A JP2016086209 A JP 2016086209A JP 2019107040 A JP2019107040 A JP 2019107040A
Authority
JP
Japan
Prior art keywords
electrodes
swelling
resistance
calf
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016086209A
Other languages
English (en)
Inventor
松彦 西澤
Matsuhiko Nishizawa
松彦 西澤
邦明 長峯
Kuniaki Nagamine
邦明 長峯
久保田 淳
Atsushi Kubota
淳 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2016086209A priority Critical patent/JP2019107040A/ja
Priority to PCT/JP2017/016874 priority patent/WO2017183737A1/ja
Publication of JP2019107040A publication Critical patent/JP2019107040A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

【課題】本発明は、直流法を用いた通電により、生体の対象部位の水分量を簡便に評価して、むくみ(浮腫)についてのデータを簡便に収集する方法を提供することを目的とする【解決手段】生体の対象部位の水分量を評価する方法であり、対象部位において、複数の電極を間隔を空けて配置し、電極間に直流で通電することを特徴とする、方法。【選択図】図1

Description

本発明は、生体の対象部位の水分量を評価して、むくみ(浮腫)についてのデータを取得する方法に関する。
むくみ(浮腫)とは、毛細血管内腔から周囲の皮下組織に間質液が過剰に貯留した状態である。健常者においては、例えば、日常生活において重力の影響で下肢に痛みを伴うむくみが生じ、むくみがQOL(Quality Of Life:生活の質)を下げる原因となる場合がある。また、心不全等の循環器疾患の患者においては、疾患により全身性及び局所性のむくみが誘発されることがあり、むくみは症状の指標として扱われることもある。
現状のむくみの診断法の主なものは、見た目の観察や、皮膚を指で圧迫した時の圧痕の確認等の非定量的手法である。体の局所におけるむくみの程度を定量的に評価できるデバイスの開発は、健常者のQOL向上のみならず、循環器疾患の診断や治療効果のモニタリング等への応用が期待できる。
体重の約70%が電解質を含む水で構成された生体の内部の性質の定量的評価には、生体へ通電して行われる電気的手法が有効である。例えば、皮膚に電極対を接触して交流電流を通電したときのインピーダンス値からむくみを評価する手法が提案されている(特許文献1〜5参照)。また、通電とは異なる手法として、皮膚表層へ電磁波パルスを印加し、得られる反射波から誘電率を求めて皮膚表層の水による誘電緩和を測定し、それにより皮膚表層の水分濃度を求めてむくみの指標とする手法が提案されている(特許文献6参照)。
特開2001−187035号公報 特開2001−198098号公報 特開2002−282232号公報 特開2005−253840号公報 特開2001−187036号公報 特開平10−137193号公報
しかしながら、特許文献1〜5に記載の方法では、細胞内液と細胞外液とを含む全身に通電する交流法を用いているため、むくみに直接的に影響する細胞間質の水分(細胞外液)の含有量を正確に定量することはできていない。また、特許文献6に記載の方法でも、細胞外液への通電はなされておらず、むくみについての良好なデータを得ることはできていない。
そこで、本発明は、直流法を用いて細胞間質にある細胞外液に通電することによって、生体の対象部位の水分量を簡便に評価して、むくみ(浮腫)についてのデータを簡便に収集する方法を提供することを目的とする。
発明者らは、皮下組織等におけるむくみによる影響が、これらよりも生体の外表面に近い位置にある表皮においてまでも、その水分量の増加という形で表れること見出し、本発明に想到した。
本発明の要旨は以下の通りである。
本発明の方法は、生体の対象部位の水分量を評価する方法であり、前記対象部位において、複数の電極を間隔を空けて配置し、前記電極間に直流で通電することを特徴とする。
また、本発明の方法では、前記複数の電極を、表皮を構成する層のうち角層よりも生体内側に位置する層に、配置することが好ましい。
更に、本発明の方法では、前記電極間に直流のみで通電することが好ましい。
更に、本発明の方法では、前記通電により前記電極間の抵抗を算出し、前記抵抗に基づいて前記対象部位の水分量を評価することが好ましい。
更に、本発明の方法では、前記電極の数を2つとすることが好ましい。
更に、本発明の方法では、前記電極間に流す直流電流の電流値を0.5mA/cm2以下とすることが好ましい。
本発明によれば、通電により、生体の対象部位の水分量を簡便に評価して、むくみ(浮腫)についてのデータを簡便に収集する方法を提供することができる。
本発明の実施形態の生体の対象部位の水分量を評価する方法の概略を示す図である。(a)は、二端子法を用いた場合を示す図であり、(b)は、四端子法を用いた場合を示す図である。 本発明の実施形態の方法における電極の配置について示す図である。(a)は、本発明の第一実施形態の方法における電極の配置について示す図であり、(b)は、本発明の第二実施形態の方法における電極の配置について示す図であり、(c)は、本発明の第三実施形態の方法における電極の配置について示す図である。 実施例のポリ乳酸マイクロニードルアレイを用いたヒト皮膚における二端子法によるむくみ計測に関する図である。(a)は、ポリ乳酸マイクロニードルアレイの写真を斜視図で示す図であり、(b)は、被験者のふくらはぎに定めた電極設置場所の位置関係を示す図であり、(c)は、ポリ乳酸マイクロニードルアレイを電極設置場所において皮膚内に刺入したときの様子を撮影した写真を示す図であり、(d)は、ポリ乳酸マイクロニードルアレイを用いたヒト皮膚における二端子法によるむくみ計測の結果を示す図である。 ヒアルロン酸マイクロニードルを用いたむくみ計測の予備実験に関する図である。(a)は、ヒアルロン酸マイクロニードルを用いたむくみ計測の予備実験の結果を示す図であり、(b)は、ヒアルロン酸マイクロニードルの断面図、及び、刺入前、刺入20分後、刺入60分後におけるヒアルロン酸マイクロニードルの様子を撮影した写真を示す図である。 ヒアルロン酸マイクロニードルを用いたふくらはぎ及び前腕における二端子法によるむくみ計測の結果を示す図である。 セロハンテープにより角層を除去する処理を繰り返したときの抵抗測定に関する図である。(a)は、セロハンテープにより角層を除去する処理を繰り返したときの抵抗測定の結果を示す図であり、(b)は、セロハンテープにより角層を除去する処理を20回繰り返した後に脛及びふくらはぎに電極を配置したときの様子の写真を示す図である。 角層を除去した脛及びふくらはぎにおける二端子法によるむくみ計測に関する図である。(a)は、角層を除去した脛における二端子法によるむくみ計測の結果を示す図であり、(b)は、角層を除去したふくらはぎにおける二端子法によるむくみ計測の結果を示す図である。 ふくらはぎにおける四端子法によるむくみ計測の結果を示す図である。
以下、図面を参照して、本発明の生体の対象部位の水分量を評価する方法の実施形態について詳細に例示説明する。
本発明の実施形態の生体の対象部位の水分量を評価する方法(以下、「本実施形態の方法」ともいう。)は、対象部位において、複数の電極を間隔を空けて配置し、電極間に直流で通電することを特徴とする。
より具体的には、本実施形態の方法では、電極間での直流での通電により電極間の抵抗を算出し、算出された抵抗に基づいて対象部位の水分量を評価する。そして、評価した水分量を対象部位のむくみについてのデータとして収集する。
本実施形態では、電極の数は、複数である限り特に限定されず、二端子法を採用して2つとしてもよく(図1(a)参照)、四端子法を採用して4つとしてもよい(図1(b)参照)が、S/N比を高める観点から、2つとすることが好ましい。
図1に、本発明の実施形態の生体の対象部位の水分量を評価する方法の概略を示す。図1(a)に、二端子法を用いた場合を示し、図1(b)に、四端子法を用いた場合を示す。
図1中、黒色四角形は電極を示し(以下同様)、矢印は電流が流れる経路を示す。
本実施形態では、電極の配置について、生体の対象部位に電流を流すことができる限り、特に制限はない。
より具体的には、本実施形態では、電極を表皮の表面に配置してよく、電極を、表皮を構成する層のうち角層よりも生体内側に位置する層に、配置することが好ましい。
表皮は、角層と、角層よりも生体内側に下記の順で位置する、顆粒層と、有棘層と、基底層とから構成されているところ、本実施形態では、より具体的には、顆粒層、有棘層、基底層から選択される少なくとも一つに配置されることが好ましく、表皮よりも生体内側に位置する真皮には到達しないことが好ましい。
本実施形態の方法において電極間に直流で通電するとは、電極間に直流で定電流を流すことも、電極間に直流で定電圧を印加することも指す。すなわち、本実施形態では、電極を定電流源及び電圧計に接続して、電極間の電圧を測定してもよく、電極を定電圧源及び電流計に接続して、電極間の電流を測定してもよい(図1参照)。
そして、本実施形態では、交流を用いることなく、電極間に直流のみで通電しても、生体の対象部位の水分量を評価することができる。
以下、対象部位に直流の定電流を流す形態を例として、本実施形態の方法の作用効果について記載する。
一般に、皮膚等の生体の表面に配置した電極間に通電すると、電流は、表皮、真皮を通過して、水分が豊富に存在する皮下組織を流れる(図1参照)。
このため、測定される電極間での電圧や電極間に流れる電流は、二端子法を用いた場合には必然的に、四端子法を用いた場合にも電極間の距離によっては、表皮、真皮、皮下組織の抵抗を反映したものとなり得る。
ここで、真皮の抵抗(数十〜数百Ω)や角層以外の表皮部分の抵抗(数kΩ)は、皮下組織の抵抗と比較して大きく、特に、表皮の最外層をなす角層の抵抗(数百kΩ〜1MΩ)は、皮下組織の抵抗と比較してはるかに大きいものとなっている。
一方で、今回、発明者らは、皮下組織等におけるむくみによる影響が、これらよりも生体の外表面に近い位置においてまでも、その水分量の増加という形で表れることを見出した。
そして、かかる知見により、むくみによる影響が及ぶ限りにおいて本来的な電気抵抗が最大限大きい層を電流の経路に含めることによって、むくみによる水分量の増加を簡便に検出する可能性が見出された。
本実施形態の方法によれば、電極間での直流での通電により算出される抵抗を、皮下組織等におけるむくみにより水分量が増加する真皮や表皮等の抵抗を反映するものとすることができる。
そして、前述の通り、真皮や表皮等の抵抗は本来的に比較的大きいものであるため、皮下組織等におけるむくみに起因する真皮や表皮等での水分量の増加が、比較的大きな抵抗の変化となって表れることとなる。
そのため、本実施形態の方法によれば、生体の対象部位の水分量を簡便に評価して、生体の対象部位のむくみ(浮腫)についてのデータを簡便に収集することが可能となる。
ここで、本発明の好適な実施形態では、電極を、表皮を構成する層のうち角層よりも生体内側に位置する層に、配置し、電極間に直流で通電する。かかる好適な実施形態によれば、前述の通り、むくみによる影響が及ぶ傾向が高く、且つ、本来的な電気抵抗が十分に大きい層を電流の経路に含めることが可能となる。そのため、好適な実施形態によれば、生体の対象部位の水分量をより簡便に評価して、生体の対象部位のむくみ(浮腫)についてのデータをより簡便に収集することが可能となる。
本実施形態の方法において、電極を角層よりも生体内側に位置する層に配置する態様には、電極の一部を直接的に当該層に到達させる態様、電極と当該層からの滲出液とを接触させる態様、電極を前処理として角層を除去することによって露出させた顆粒層等に配置する態様を含めてよい。
また、本実施形態では、炎症やかぶれ等を防ぐ観点から、電極の配置に際して、生体部位と電極との間に、生体親和性を備えるイオン伝導性の部材(例えば、ゲル等)を配置してもよい。
図2に、本発明の実施形態の方法における電極の配置について示す。図2中、黒色四角形は電極を示し、白色四角形は粘着ゲルを示す(以下同様)。
図2(a)に、本発明の第一実施形態の方法における電極の配置について示す。図2(a)中、白色三角形は穴を示す。
第一実施形態の方法では、図2(a)に示すように、表皮の外表面から表皮に至るまでの微小な穴を、例えば、マイクロニードルを用いて空けて、この微小な穴の上に粘着ゲルと電極とを配置する。
この態様では、微小な穴に表皮の各層から滲出液が流れ込み、滲出液で満たされた領域がイオン伝導性を備えるようになり、電極−粘着ゲル−滲出液で満たされた領域−表皮という電流が流れる経路が形成される。
ここで、表皮の外表面から表皮に至るまでの穴を空ける手法としては、例えば、刺入深さが表皮内に留まり得る、高さ200μm以下のマイクロニードルを、表皮の外表面に押し当てる手法が挙げられる。かかる手法は、穿刺等の外科的処置に該当しないものである。
図2(b)に、本発明の第二実施形態の方法における電極の配置について示す。図2(b)中、斜線を付した三角形はマイクロニードルを示す。
第二実施形態の方法では、図2(b)に示すように、表皮の外表面から表皮に至るまでマイクロニードルを刺入し、かかるマイクロニードル上に粘着ゲルと電極とを配置する。
この態様では、電極−粘着ゲル−マイクロニードル−表皮という電流が流れる経路が形成される。
このとき、マイクロニードルは、電気伝導性を備えることが肝要であり、例えば、電子伝導性を備える材料からなるものとしてもよく、刺入後に表皮の各層からの滲出液に溶解して、イオン伝導性を備える領域を形成するものとしもよい。
図2(c)に、本発明の第三実施形態の方法における電極の配置について示す。
第三実施形態の方法では、図2(c)に示すように、表皮の一部において、表皮の外表面をなす角層を除去して、表皮を露出させ、露出させた角層よりも生体内側に位置する層上に粘着ゲルと電極とを配置する。
この態様では、電極−粘着ゲル−表皮(角層よりも生体内側に位置する層のみ)という電流が流れる経路が形成される。
ここで、角層を除去する手法としては、粘着テープを貼り付けた後に剥がすという操作を繰り返す手法、クレンザーやクレンジング剤等を用いて皮膚の表面を研磨する手法等が挙げられる。これらの手法は、外科的処置を施すことなく行うことが可能である。
本実施形態の方法で電極間に流す直流電流の電流値としては、測定感度を高める観点から、大きいほど好ましく、具体的には、0.001mA/cm2以上であることが好ましく、より好ましくは0.05mA/cm2以上であり、安全性の観点から、20mA/cm2以下とすることが好ましく、より好ましくは2mA/cm2以下であり、特に好ましくは0.5mA/cm2以下である。
本実施形態の方法は、ある程度の期間内に複数回行い、複数回での測定結果を比較することが好ましい。例えば、本実施形態の方法を、薬の投与の前後、生活習慣の変更の前後等に行ってよい。
以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
A.材料
A−1.試薬
・Ag/AgCl電極(電極サイズ:1cm×1.5cm、NCS電極 NM−31、日本光電株式会社製)
・ポリ乳酸(XYZプリンティング、3Dプリンタ用フィラメント):フィラメントを5mm長に切断してペレットとしてから使用した。
・ヒアルロン酸マイクロニードル(ナビジョンHAフィルパッチ、株式会社資生堂製)
・セロハンテープ(ニチバン株式会社製)
A−2.装置
・電気化学アナライザ(ALS760C、BAS社製):定電流源、電圧計、交流インピーダンス測定用
・ソースメータ(2400型、Keithley社製):定電流源、電圧計
B.水分量の評価
ヒトの皮膚は、外表面側から順に、表皮(厚さ200μm)、真皮(厚さ1〜3mm)、皮下組織で、構成されており、更に、表皮は、その最外層に角層(厚さ20μm)を有している。ここで、間質液の貯留が生じるのは、主として真皮及び皮下組織である。経皮的に直流電流を通電する場合、抵抗の高い表皮の影響で、表皮よりも生体内側にある細胞間質の微小な抵抗変化が測定困難となる可能性がある。そこでまず、ヒト皮膚の水分含有量の計測を行った。
B−1.ポリ乳酸マイクロニードルアレイを用いたヒト皮膚における二端子法によるむくみ計測
表皮の最外層をなす角層(数百kΩ〜1MΩの抵抗)は、角層以外の表皮(数kΩの抵抗)や皮下組織と比較して抵抗が非常に大きく、特に二端子法による計測の場合にはむくみ計測の障害ともなり得る。そこで、この実施例では、角層を貫く、低侵襲性のマイクロニードルを刺入することで、角層の抵抗を取り除くことを試みた。
B−2−1.ポリ乳酸マイクロニードルアレイの作製
切削加工機(モディアシステムズ社製)を用いてマイクロニードル(MN)を形作る円錐形状部分を複数彫り込んだテフロン(登録商標)製の鋳型(メス型)を作製した。この鋳型の表面にポリ乳酸のペレットを置き、真空乾燥機中で220℃に加熱することで溶解させ、ポリ乳酸溶液をメス型鋳型に流し込んだ。真空乾燥器において30hPaの減圧下でメス型鋳型の脱気を3回繰り返した後、鋳型を真空乾燥器から取り出した。その後、ポリ乳酸を1kgのステンレス板でプレスしながら冷却固化し、テフロン(登録商標)製モールドからポリ乳酸マイクロニードルアレイ(MNA)(縦5mm×横5mm)を取り出した(図3(a)参照)。
MNAの寸法は下記の通りとした。
・MNの底面の円の直径:1mm
・MNの高さ:1.6mm
・MNAに立設されたMNの個数:25個(縦方向に5個、横方向に5個)
・MNの中心間距離:1mm
図3(a)に、ポリ乳酸マイクロニードルアレイの写真を斜視図で示す。
B−2−2.ヒト皮膚における二端子法によるむくみ計測
被験者として、36歳、男性(性別)の健常者を採用した。
そして、被験者の足のふくらはぎに電極設置場所を3箇所定めた(図3(b)参照)。1箇所目(図3(b)中、Aで示す。)をふくらはぎ中央部分とし、2箇所目(図3(b)中、Bで示す。)をこの1箇所目から10cm間隔を空けた箇所とした。また、3箇所目(図3(b)中、Cで示す。)を、上記1箇所目から上記1箇所目と上記2箇所目とを結ぶ線に対して垂直な方向に1cm間隔を空けた箇所とした。
図3(b)に、被験者のふくらはぎに定めた電極設置場所の位置関係を示す。
続いて、ポリ乳酸マイクロニードルアレイを、1箇所目A〜3箇所目Cの電極設置場所において、約2〜3秒間押し当てることで、MNの先端部分を皮膚内に刺入した(図3(c)参照)。
図3(c)に、ポリ乳酸マイクロニードルアレイを電極設置場所において皮膚内に刺入したときの様子を撮影した写真を示す。
ポリ乳酸マイクロニードルアレイを皮膚から取り外し、これにより、皮膚の外表面を構成する表皮の角層を貫く穴を形成した。
まず、正常時における、ふくらはぎ周囲長、直流抵抗、交流インピーダンス(比較用)を計測した。
直流抵抗計測時には、被験者の足のふくらはぎの1箇所目Aと2箇所目BとにAg/AgCl電極(電極サイズ:1cm×1.5cm)を貼り付けた。そして、1箇所目Aと2箇所目Bとの間に直流電流(0.5、1、5、10、20μA)を通電しながら、同じ電極で電極間の電位差を計測した。そして、各電流値を用いた場合の抵抗の平均値を算出してプロットに用いた。
交流インピーダンス計測時には、更に3箇所目CにもAg/AgCl電極を貼り付け、このとき、1箇所目A、2箇所目B、3箇所目Cを、それぞれ、作用極用、参照極用、対極用とした。そして、5mVの交流電圧(1kHz)を印加しながら、作用極−参照極間のインピーダンスを計測した。
ここで、被験者を椅子に座らせ続け、これにより意図的に被験者のふくらはぎにむくみが生じるよう誘導した。
そして、着席時から任意の時間において、前述の、ふくらはぎ周囲長、直流抵抗、交流インピーダンスの測定を行った。
図3(d)に、ポリ乳酸マイクロニードルアレイを用いたヒト皮膚における二端子法によるむくみ計測の結果を示す。
図3(d)に示すように、ふくらはぎの周囲長は、椅子に座るのを開始した時点から1時間後に0.9cm増加し、その後1時間では変化が見られなかった。直流抵抗は、ふくらはぎの周囲長の増加とは対照的に、椅子に座るのを開始した時点から1時間後に25kΩ減少し、その後1時間では変化が見られなかった。一方、比較用に測定した交流インピーダンスは、1kHzにおけるインピーダンスで、ふくらはぎの周囲長の増加が生じても、ほとんど変化しなかった。
以上より、ポリ乳酸マイクロニードルアレイを用いたヒト皮膚における二端子法によるむくみ計測が可能であることが示された。
また、むくみ計測に二端子法を採用した場合、直流抵抗の変化がkΩオーダーに高まることが発見された。これは、真皮以下のむくみにより、抵抗の高い皮膚の表皮等の水分含有量も増加したことが原因と考えられる。
B−2.ヒアルロン酸マイクロニードルを用いたふくらはぎ及び前腕における二端子法によるむくみ計測
より低侵襲性の計測を実現するため、体内溶解性の無痛ヒアルロン酸(HA)マイクロニードルを用いた。マイクロニードルアレイは、底面の円の直径:200μm、頂面の円の直径:20〜25μm、高さ:200μm、アレイに立設されたMNの中心間距離:0.5mmの寸法、より具体的には、図4(b)に示す寸法を備えるものである。このマイクロニードルは、角層を貫いて表皮の途中まで刺入されるため、感覚神経が存在する真皮に到達せず、無痛である。
以下では、ヒアルロン酸マイクロニードルのパッチを、1cm×1.5cm(MNの数:327本)にカットして使用した。
B−2−1.ヒアルロン酸マイクロニードルを用いたむくみ計測の予備実験(体内溶解性試験)
前述のふくらはぎの電極設置場所のうち1箇所目Aと2箇所目Bとに、カットしたパッチを貼り付け、指で約2〜3秒間押し当てることで、MNを皮膚内に刺入した。
ここで、直流抵抗を計測するため、1箇所目Aと2箇所目BとにAg/AgCl電極を貼り付けた。
そして、1箇所目Aと2箇所目Bとの間に1.0Vの定電位を印加しながら、同じ電極で電極間の直流電流を経時的に計測した。
また、刺入前、刺入20分後、刺入60分後に、ヒアルロン酸マイクロニードルを皮膚から取り外し、その表面を顕微鏡で観察した。
図4(a)に、ヒアルロン酸マイクロニードルを用いたむくみ計測の予備実験の結果を示す。
図4(a)に示すように、ふくらはぎで計測した直流抵抗は、刺入直後(刺入0分後)から刺入数分後までの間に減少し続け、10分後に最小値を示した後、再び徐々に増加していくことが確認された。
図4(b)に、ヒアルロン酸マイクロニードルの断面図、及び、刺入前、刺入20分後、刺入60分後におけるヒアルロン酸マイクロニードルの様子を撮影した写真を示す。
図4(b)に示すように、刺入20分後には、MNは体内の水分によりほとんど溶解しており、刺入60分後には、針の形状も確認できないほど溶解していることがわかった。
これらの結果から、ヒアルロン酸マイクロニードルは、皮膚への刺入時に角層に穴を形成し、そして、その時点から溶解しながら角層にイオン電導性の穴が形成されて、抵抗が減少し、その後、時間の経過に伴ってMNの溶解が進むにつれて、穴が徐々に塞がっていき、抵抗が増加したと考えられる。
以上より、以後の実験では、最も抵抗が小さかった刺入20分後に直流抵抗を計測することにした。
B−2−2.ふくらはぎ及び前腕における二端子法によるむくみ計測
被験者として前述の者を採用した。
被験者の足のふくらはぎに前述の通り電極設置場所を3箇所定めた。また、被験者の前腕部にも同様に電極設置場所を定めた(図示せず)。
まず、正常時における、ふくらはぎ周囲長、直流抵抗を計測した。
次いで、ヒアルロン酸マイクロニードルを、電極設置場所の1箇所目Aと2箇所目Bとにおいて、約2〜3秒間押し当てることで、皮膚内に刺入した。
刺入20分後に、ふくらはぎ及び前腕の両方において、それぞれ、1箇所目Aと2箇所目BとにAg/AgCl電極を貼り付けた。そして、1箇所目Aと2箇所目Bとの間に直流電流(10、20、50、100、200μA)を通電しながら、同じ電極で電極間の電位差を計測した。そして、各電流値を用いた場合の抵抗の平均値を算出してプロットに用いた。
ここで、被験者を椅子に座らせ続け、これにより意図的に被験者のふくらはぎにむくみが生じるよう誘導した。なお、今回は、椅子に座るのを開始した時点から2時間後に、被験者に、複数回、数分間歩行をさせた。
そして、着席時から任意の時間において、前述の、ふくらはぎ周囲長、直流抵抗の測定を行った。
図5に、ヒアルロン酸マイクロニードルを用いたふくらはぎ及び前腕における二端子法によるむくみ計測の結果を示す。
図5(a)に示すように、椅子に座るのを開始した時点から2時間後までに、下腿部では、むくみの進行に伴って抵抗値が減少した一方で、むくみを生じない前腕では、抵抗が変化しなかった。
椅子に座るのを開始した時点から2時間後から4時間後までにおいては、2時間後の時点での複数回、数分間の歩行によりむくみが解消されたことによると考えられる、ふくらはぎ周囲長の減少と抵抗の増加とが確認された。
図5(b)に示すように、前腕においてはむくみに伴う抵抗の変化や腕周囲長の変化は見られなかった。
以上より、ヒアルロン酸マイクロニードルを用いたふくらはぎ及び前腕における二端子法によるむくみ計測が可能であることが示された。
また、本試験の場合、直流抵抗の変化量がkΩオーダー(測定される電圧はVオーダー)に高まることが見出され、直流・四端子法を用いたむくみ計測(後述)時に観測された数10Ωオーダーの抵抗の変化に対して、ここでのシグナルはおよそ200倍増幅されていることが確認された。
B−3.角質を除去した脛及びふくらはぎにおける二端子法によるむくみ計測
被験者として前述の者を採用した。
被験者の足の脛の一部とふくらはぎの一部とをそれぞれ剃毛処理した。
剃毛処理された部分にセロハンテープを貼り付けて、その後剥がすことで、角層を除去する処理を行った。
上記のセロハンテープによる処理を20回行い、所定回の操作後における直流抵抗を二端子法で計測することで、角層の除去の程度を確認した。
被験者の足の脛の一部とふくらはぎの一部とに前述の通り電極設置場所を3箇所定めた。
ここで、直流抵抗を計測するため、1箇所目Aと2箇所目BとにAg/AgCl電極を貼り付けた。この場合、電極間の距離を5cmに設定した(図6(b)参照)。
そして、1箇所目Aと2箇所目Bとの間に直流電流(0、50、100μA)を通電しながら、同じ電極で電極間の電位差を計測した。そして、各電流値を用いた場合の抵抗の平均値を算出してプロットに用いた。
図6(a)に、セロハンテープにより角層を除去する処理を繰り返したときの抵抗測定の結果を示す。
図6(a)に示すように、テープの処理を20回行ったとき、脛及びふくらはぎの両方において抵抗が10kΩ程度にまで減少した。テープの処理1回当たりに角層が1層剥がれること、角層は約20層の死細胞層からなることから考えると、20回の処理で角層をほぼ全て除去することができ、電極が表皮に配置されることとなったと言える。
以上より、以後の実験では、テープの処理を20回行ってから電極を配置して、前述の通り、直流抵抗を計測することにした。
図6(b)に、セロハンテープにより角層を除去する処理を20回繰り返した後に脛及びふくらはぎに電極を配置したときの様子の写真を示す。
まず、正常時における、脛周囲長及びふくらはぎ周囲長、それぞれの部位の直流抵抗を計測した。
ここで、被験者を椅子に座らせ続け、これにより意図的に被験者のふくらはぎにむくみが生じるよう誘導した。
そして、着席時から任意の時間において、前述の、ふくらはぎ周囲長、直流抵抗の測定を行った。
図7(a)に、角層を除去した脛における二端子法によるむくみ計測の結果を示す。
図7(b)に、角層を除去したふくらはぎにおける二端子法によるむくみ計測の結果を示す。
図7(a)及び図7(b)に示すように、椅子に座るのを開始した時点から3時間後までに、脛周囲長及びふくらはぎ周囲長の増加に伴って、抵抗は、脛で1.5kΩ、ふくらはぎで1.4kΩ減少した。
これにより、表皮に電極を直接接触させてむくみ計測を行った場合でも、直流抵抗としてkΩオーダーの増幅された変化として捉えられることがわかった。
B−4.ふくらはぎにおける四端子法によるむくみ計測
被験者として前述の者を採用した。
被験者の足のふくらはぎの外表面(角層の外表面)に二組で合計4つのAg/AgCl電極を貼り付けた。一組を、定電流源に接続しつつ皮膚の表面に貼り付け、もう一組を、電圧計に接続しつつ、かかる一組を同一直線上で挟むように貼り付けた。4つの電極間の間隔はいずれも6cmに設定した(図示せず)。
まず、正常時における、ふくらはぎ周囲長、直流抵抗を計測した。
外側に位置する一組の電極で直流電流(10、20、50、100、200μA)を通電しながら、内側に位置するもう一組の電極でこれら電極間の電位差を計測した。そして、電流の値とそのときの電位差の値とから抵抗を算出した。各電流値を用いた場合の抵抗の平均値を算出してプロットに用いた。
ここで、被験者を椅子に座らせ続け、これにより意図的に被験者のふくらはぎにむくみが生じるよう誘導した。
そして、着席時から任意の時間において、前述の、ふくらはぎ周囲長、直流抵抗の測定を行った。
図8に、ふくらはぎにおける四端子法によるむくみ計測の結果を示す。
図8に示すように、椅子に座るのを開始した時点から4時間後までに、ふくらはぎ周囲長は増加し、これに伴って、抵抗は約20Ω減少した。本測定3回の再現性は良好であった。
以上より、ふくらはぎにおける四端子法によるむくみ計測が可能であることが示された。
しかし一方で、20Ωの抵抗の変化は、計測電圧で換算すると1〜2mVの変化に相当するものであるため、高感度な電圧計が必要となることもわかった。
本発明は、通電によりむくみ(浮腫)についてのデータを簡便に収集する方法を提供することができる。
本発明は、むくみに関して定量的なデータを得ることが可能な診断デバイスの開発に大きく貢献する可能性がある。

Claims (6)

  1. 生体の対象部位の水分量を評価する方法であり、
    前記対象部位において、複数の電極を間隔を空けて配置し、前記電極間に直流で通電することを特徴とする、方法。
  2. 前記複数の電極を、表皮を構成する層のうち角層よりも生体内側に位置する層に、配置する、請求項1に記載の方法。
  3. 前記電極間に直流のみで通電する、請求項1又は2に記載の方法。
  4. 前記通電により前記電極間の抵抗を算出し、前記抵抗に基づいて前記対象部位の水分量を評価する、請求項1〜3のいずれか一項に記載の方法。
  5. 前記電極の数を2つとする、請求項1〜4のいずれか一項に記載の方法。
  6. 前記電極間に流す直流電流の電流値を0.5mA/cm2以下とする、請求項1〜5のいずれか一項に記載の方法。
JP2016086209A 2016-04-22 2016-04-22 生体の対象部位の水分量を評価する方法 Pending JP2019107040A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016086209A JP2019107040A (ja) 2016-04-22 2016-04-22 生体の対象部位の水分量を評価する方法
PCT/JP2017/016874 WO2017183737A1 (ja) 2016-04-22 2017-04-21 生体の対象部位の水分量を評価する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086209A JP2019107040A (ja) 2016-04-22 2016-04-22 生体の対象部位の水分量を評価する方法

Publications (1)

Publication Number Publication Date
JP2019107040A true JP2019107040A (ja) 2019-07-04

Family

ID=60116088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086209A Pending JP2019107040A (ja) 2016-04-22 2016-04-22 生体の対象部位の水分量を評価する方法

Country Status (2)

Country Link
JP (1) JP2019107040A (ja)
WO (1) WO2017183737A1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268738A (ja) * 1989-04-11 1990-11-02 Kanebo Ltd 皮膚測定装置
JP2001187035A (ja) * 1999-12-28 2001-07-10 Tanita Corp 患部回復度判定装置
JP4840952B2 (ja) * 2000-09-19 2011-12-21 株式会社フィジオン 生体電気インピーダンス計測方法及び計測装置、並びに該計測装置を用いた健康指針管理アドバイス装置
WO2003090620A1 (fr) * 2002-04-23 2003-11-06 Ami-Ca Co., Ltd. Instrument destine a mesurer une valeur electrique caracteristique d'un organisme et systeme destine a diagnostiquer les fonctions des intestins
CA2444211C (en) * 2002-10-11 2013-11-19 Dermal Therapy (Barbados) Inc. Determination of biological conditions using impedance measurements
JP2005058730A (ja) * 2003-07-31 2005-03-10 Amica:Kk 生体情報の表示装置及び表示プログラム並びに測定装置及び測定プログラム並びに診断装置及び診断プログラム
JP4418419B2 (ja) * 2005-09-30 2010-02-17 有限会社アミカ 皮膚状態評価装置及び皮膚状態評価プログラム並びに同プログラムを記憶したコンピュータ読み取り可能な記憶媒体
US8738124B2 (en) * 2007-12-11 2014-05-27 Epi-Sci, Llc Electrical bioimpedance analysis as a biomarker of breast density and/or breast cancer risk
JP5107696B2 (ja) * 2007-12-27 2012-12-26 花王株式会社 皮膚性状測定用多機能プローブ
JP2011254990A (ja) * 2010-06-09 2011-12-22 Kracie Seiyaku Kk 漢方医学的体質分類方法

Also Published As

Publication number Publication date
WO2017183737A1 (ja) 2017-10-26

Similar Documents

Publication Publication Date Title
US10206604B2 (en) Arrangement for facilitating wound healing, a method for measuring wound healing and a wound dressing
McAdams et al. Factors affecting electrode-gel-skin interface impedance in electrical impedance tomography
US20180008165A1 (en) Electrode sensor kit, electrode assembly, and topical preparation for establishing electrical contact with skin, use thereof, and method of electro-impedance tomography (eit) imaging using these
EP1718200B1 (en) Apparatus for measuring blood glucose using sub-dermal body tissue impedance measurements
TWI482612B (zh) 用於多電極阻抗量測之開關探針
US20050171523A1 (en) Irreversible electroporation to control bleeding
JP2011516128A (ja) 体液中の物質の濃度の非侵襲性決定のための方法及び装置
McAdams Biomedical electrodes for biopotential monitoring and electrostimulation
Patel et al. Kilohertz electrical stimulation nerve conduction block: effects of electrode surface area
Tronstad et al. Electrical measurement of sweat activity
Zheng et al. Reverse iontophoresis with the development of flexible electronics: A review
CN110507867A (zh) 反馈式智能注射器
Bowden et al. Mapping the motor point in the human tibialis anterior muscle
Kekonenab et al. A quantitative method for monitoring wound healing
Eggins Skin contact electrodes for medical applications
JP2021516093A (ja) 応答モニタリング
WO2017183737A1 (ja) 生体の対象部位の水分量を評価する方法
KR20230147620A (ko) 임피던스의 경피 측정을 위한 방법들 및 장치(methodsand apparatus for transdermal measurement of impedance)
KR101150380B1 (ko) 생체전기를 이용한 외과수술용 니들장치
Patriciu et al. Detecting skin burns induced by surface electrodes
Rigby et al. The time course of dexamethasone delivery using iontophoresis through human skin, measured via microdialysis
Benchakroun et al. Design of a Tetrapolar Probe for Electrical Characterization of the Left Atrial Appendage From 0.1 Hz to 100 kHz
Bolfe et al. Electrical impedance behavior of biological tissues during transcutaneous electrical stimulation
Govyadinov et al. Direct current conditioning to reduce the electrical impedance of the electrode to skin contact in physiological recording and stimulation
Tung Design and Development of Microneedle Pads for Automated External Defibrillators (AEDs)