JP2019099913A - Film deposition device, film deposition method and production method of organic el display device - Google Patents

Film deposition device, film deposition method and production method of organic el display device Download PDF

Info

Publication number
JP2019099913A
JP2019099913A JP2018200156A JP2018200156A JP2019099913A JP 2019099913 A JP2019099913 A JP 2019099913A JP 2018200156 A JP2018200156 A JP 2018200156A JP 2018200156 A JP2018200156 A JP 2018200156A JP 2019099913 A JP2019099913 A JP 2019099913A
Authority
JP
Japan
Prior art keywords
voltage
substrate
electrostatic chuck
film
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018200156A
Other languages
Japanese (ja)
Other versions
JP6954880B2 (en
Inventor
石井 博
Hiroshi Ishii
石井  博
一史 柏倉
Kazufumi Kashiwakura
一史 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Publication of JP2019099913A publication Critical patent/JP2019099913A/en
Priority to JP2021161810A priority Critical patent/JP7138757B2/en
Application granted granted Critical
Publication of JP6954880B2 publication Critical patent/JP6954880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide a film deposition device which reduces time taken for separating a substrate absorbed to an electrostatic chuck.SOLUTION: The film deposition device for depositing a film on a substrate through a mask includes a substrate holding unit including support part for supporting a peripheral part of the substrate, and an electrostatic chuck for absorbing the substrate, and the electrostatic chuck includes a power supply part 33 for generating voltage, an electrode part 31 to which the voltage is applied, and a voltage control part 32 for controlling the voltage applied on the electrode part 31. The voltage control part 32 controls that a first voltage as the first voltage is applied on the electrode part 31, when the substrate is absorbed to the electrostatic chuck, and the second voltage lower than the first voltage as the voltage is applied on the electrode part 31, after the substrate is absorbed to the electrostatic chuck and before starting the vapor deposition process.SELECTED DRAWING: Figure 3

Description

本発明は成膜装置に関するもので、特に、成膜装置において静電チャックに電圧を印加して基板を吸着した後、基板を静電チャックから容易に脱着するための電圧制御に関するものである。   The present invention relates to a film forming apparatus, and more particularly, to voltage control for easily desorbing a substrate from an electrostatic chuck after applying a voltage to the electrostatic chuck in the film forming apparatus and adsorbing the substrate.

最近、フラットパネル表示装置として有機EL表示装置が脚光を浴びている。有機EL表示装置は自発光ディスプレイであり、応答速度、視野角、薄型化などの特性が液晶パネルディスプレイより優れており、モニタ、テレビ、スマートフォンに代表される各種携帯端末などで既存の液晶パネルディスプレイを速いスピードで代替している。また、自動車用ディスプレイ等にも、その応用分野を広げている。   Recently, an organic EL display device has been in the limelight as a flat panel display device. The organic EL display device is a self-luminous display, and its characteristics such as response speed, viewing angle and thinning are superior to those of liquid crystal panel displays, and existing liquid crystal panel displays such as monitors, televisions and various portable terminals represented by smartphones. Are being replaced at a high speed. In addition, the field of application is being expanded to displays for automobiles and the like.

有機EL表示装置の素子は2つの向かい合う電極(カソード電極、アノード電極)の間に発光を起こす有機物層が形成された基本構造を持つ。有機EL表示装置素子の有機物層及び電極層は、成膜装置の真空チャンバーの下部に設けられた蒸着源を加熱することで蒸発された蒸着材料を画素パターンが形成されたマスクを通じて真空チャンバー上部に置かれた基板(の下面)に蒸着させることで形成される。   The element of the organic EL display device has a basic structure in which an organic substance layer which emits light is formed between two opposing electrodes (a cathode electrode and an anode electrode). The organic material layer and the electrode layer of the organic EL display element are formed on the upper part of the vacuum chamber through the mask on which the pixel pattern is formed by evaporating the evaporation material evaporated by heating the evaporation source provided under the vacuum chamber of the film forming apparatus. It is formed by vapor deposition on (the lower surface of) the substrate placed.

このような上向蒸着方式の成膜装置の真空チャンバー内において基板は基板ホルダによって保持されるが、基板(の下面)に形成された有機物層/電極層に損傷を与えないように基板の下面の周縁を基板ホルダの支持部によって支持する。この場合、基板のサイズが大きくなるにつれて、基板ホルダの支持部によって支持されない基板の中央部が、基板の自重によって撓み、蒸着精度を落とす要因となっている。   The substrate is held by the substrate holder in the vacuum chamber of the film deposition apparatus of the upward deposition type, but the lower surface of the substrate is provided so as not to damage the organic layer / electrode layer formed on (the lower surface of) the substrate. The periphery of the substrate is supported by the support of the substrate holder. In this case, as the size of the substrate increases, the central portion of the substrate which is not supported by the support portion of the substrate holder is bent by its own weight, which causes the deposition accuracy to be lowered.

基板の自重による撓みを低減するための方法として静電チャックを使う技術が検討されている。すなわち、基板の上部に静電チャックを設け、基板ホルダの支持部によって支持された基板の上面を静電チャックに吸着させて、基板の中央部が静電チャックの静電引力によって引っ張られるようにすることで、基板の撓みを低減することができる。   As a method for reducing the deflection of the substrate due to its own weight, a technique using an electrostatic chuck has been considered. That is, an electrostatic chuck is provided on the upper side of the substrate, and the upper surface of the substrate supported by the support portion of the substrate holder is attracted to the electrostatic chuck so that the central portion of the substrate is pulled by the electrostatic attractive force of the electrostatic chuck. By doing this, the deflection of the substrate can be reduced.

しかし、静電チャックと基板間の静電引力によって基板を静電チャックに吸着した後、静電チャックから基板を分離する際に、基板吸着時に加えた電圧により誘導された電荷が放電するまでに時間がかかり、基板を静電チャックから分離するのに時間がかかる問題がある。静電チャックからの基板分離に時間がかかると、工程全体的に時間(Tact)が増加し、生産性が低下する問題がある。   However, after the substrate is attracted to the electrostatic chuck by the electrostatic attraction between the electrostatic chuck and the substrate, when the substrate is separated from the electrostatic chuck, the charge induced by the voltage applied at the time of substrate adsorption is discharged There is a problem that it takes time and it takes time to separate the substrate from the electrostatic chuck. If it takes time to separate the substrate from the electrostatic chuck, there is a problem that time (Tact) increases in the whole process and productivity is lowered.

本発明は、静電チャックに吸着された基板を分離するのにかかる時間を減らすための静電チャックの電圧制御方法を提供することを主な目的にする。   An object of the present invention is to provide a voltage control method of an electrostatic chuck for reducing the time taken to separate a substrate attracted to the electrostatic chuck.

本発明の一態様による成膜装置は、マスクを介して基板に成膜を行うための成膜装置であって、基板の周縁部を支持するための支持部を含む基板保持ユニット、及び前記支持部の上方に設けられ、基板を吸着するための静電チャックを含み、前記静電チャックは、電圧を発生させる電源部、前記電圧が印加される電極部、及び前記電極部に印加される前記電圧を制御するための電圧制御部を含み、前記電圧制御部は、基板を前記静電チャックに吸着させる時に、前記電圧として第1電圧が前記電極部に印加されるように制御し、基板
が前記静電チャックに吸着された後、蒸着工程が開始される前に、前記電圧として前記第1電圧よりも低い第2電圧が前記電極部に印加されるように制御することを特徴とする。
A film forming apparatus according to an aspect of the present invention is a film forming apparatus for forming a film on a substrate through a mask, the substrate holding unit including a support portion for supporting a peripheral portion of the substrate, and the support The electrostatic chuck is provided above the unit and includes an electrostatic chuck for chucking the substrate, the electrostatic chuck includes a power supply unit that generates a voltage, an electrode unit to which the voltage is applied, and the electrode unit that is applied to the electrode unit. A voltage control unit for controlling a voltage, wherein the voltage control unit controls a first voltage as the voltage to be applied to the electrode unit when the substrate is attracted to the electrostatic chuck; A second voltage lower than the first voltage is controlled to be applied to the electrode portion as the voltage after being attracted to the electrostatic chuck and before a deposition process is started.

本発明の一態様による成膜方法は、マスクを介して基板に成膜を行う成膜方法であって、基板を成膜装置の真空チャンバー内に搬入する段階、搬入された基板を基板保持ユニットの支持部上に載置する段階、前記支持部上の基板を静電チャックに吸着させる段階、前記静電チャックに吸着された基板をマスクに対して位置調整するアライメント段階、位置調整された基板をマスク上に載置する段階、マグネットによってマスクとマスク上の基板を密着させる段階、蒸着源から蒸発された蒸着材料をマスクを介して基板上に成膜する段階、蒸着材料が成膜された基板を成膜装置の真空チャンバーから搬出する段階を含み、基板を静電チャックに吸着させる前記段階は、前記静電チャックに静電引力を発生させるための第1電圧を印加する段階を含み、基板上に蒸着材料を成膜する前記段階の開始前に、前記静電チャックに印加される電圧を前記第1電圧から前記第1電圧よりも低い第2電圧に下げることを特徴とする。   A film forming method according to an aspect of the present invention is a film forming method for forming a film on a substrate through a mask, wherein the substrate is carried into a vacuum chamber of a film forming apparatus, and the carried-in substrate is a substrate holding unit Placing the substrate on the support on an electrostatic chuck, aligning the substrate attracted to the electrostatic chuck with respect to a mask, aligning the substrate Is placed on the mask, the mask is brought into close contact with the substrate on the mask, the deposition material evaporated from the deposition source is deposited on the substrate through the mask, the deposition material is deposited The step of carrying the substrate out of the vacuum chamber of the film forming apparatus, wherein the step of causing the substrate to be attracted to the electrostatic chuck comprises the step of applying a first voltage to the electrostatic chuck to generate electrostatic attraction. Before the start of the step of depositing a deposition material on a substrate, the voltage applied to the electrostatic chuck is lowered from the first voltage to a second voltage lower than the first voltage. .

本発明によると、基板を静電チャックに吸着させた後、基板を静電チャックから分離する前に(特に、成膜工程の開始前に)、静電チャックに加える電圧を、基板を静電チャックに吸着させるために印加した電圧(吸着開始電圧)よりも低い電圧(吸着維持電圧)に下げることで、基板を静電チャックから分離するのにかかる時間を短縮することができる。これにより、工程時間を短縮し、全体的な生産性を向上させることができる。   According to the present invention, after the substrate is attracted to the electrostatic chuck, the voltage applied to the electrostatic chuck is electrostatically applied to the electrostatic chuck before the substrate is separated from the electrostatic chuck (in particular, before the start of the film forming process). By lowering the voltage (adsorption maintenance voltage) lower than the voltage (adsorption start voltage) applied to cause the chuck to adsorb, the time taken to separate the substrate from the electrostatic chuck can be shortened. This can reduce the process time and improve the overall productivity.

図1は有機EL表示装置の製造ラインの一部の模式図である。FIG. 1 is a schematic view of a part of a manufacturing line of an organic EL display device. 図2は本発明の成膜装置の模式図である。FIG. 2 is a schematic view of a film forming apparatus of the present invention. 図3は本発明の静電チャックのブロック図である。FIG. 3 is a block diagram of the electrostatic chuck of the present invention. 図4は本発明の静電チャックと基板保持ユニットの模式図である。FIG. 4 is a schematic view of the electrostatic chuck and the substrate holding unit of the present invention. 図5は本発明の静電チャックへの電圧制御方法を説明するための図である。FIG. 5 is a diagram for explaining a voltage control method for the electrostatic chuck of the present invention. 図6は本発明の成膜方法を説明するための図である。FIG. 6 is a view for explaining the film forming method of the present invention. 図7は有機EL表示装置の構造を表す模式図である。FIG. 7 is a schematic view showing the structure of the organic EL display device.

以下、図面を参照しつつ本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲はそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings. However, the following embodiments and examples merely illustrate preferred configurations of the present invention, and the scope of the present invention is not limited to those configurations. In the following description, the hardware configuration and software configuration of the device, the process flow, the manufacturing conditions, the dimensions, the materials, the shape, etc. limit the scope of the present invention to only those unless otherwise specified. It is not for the purpose.

本発明は、基板の表面に真空蒸着によってパターンの薄膜(材料層)を形成する装置に望ましく適用することができる。基板の材料としては、硝子、高分子材料のフィルム、金属などの任意の材料を選択することができ、また、蒸着材料としても、有機材料、金属性材料(金属、金属酸化物など)などの任意の材料を選択することができる。本発明の技術は、具体的には、有機電子デバイス(例えば、有機EL表示装置、薄膜太陽電池)、光学部材などの製造装置に適用可能である。その中でも、有機EL表示装置の製造装置においては、蒸着材料を蒸発させてマスクを介して基板に蒸着させることで有機EL表示素子を形成しており、本発明の望ましい適用例の一つである。   The present invention can be desirably applied to an apparatus for forming a thin film (material layer) of a pattern on a surface of a substrate by vacuum evaporation. As a material of the substrate, any material such as glass, film of polymer material, metal and the like can be selected, and as a vapor deposition material, organic material, metallic material (metal, metal oxide, etc.), etc. Any material can be selected. Specifically, the technology of the present invention is applicable to manufacturing apparatuses such as organic electronic devices (for example, organic EL display devices, thin film solar cells), optical members and the like. Among them, in a manufacturing apparatus of an organic EL display device, an organic EL display element is formed by evaporating a deposition material and depositing it on a substrate through a mask, which is one of the preferable applications of the present invention. .

<電子デバイス製造ライン>
図1は、電子デバイスの製造ラインの構成の一部を模式的に示す上視図である。図1の製造ラインは、例えば、スマートフォン用の有機EL表示装置の表示パネルの製造に用い
られる。スマートフォン用の表示パネルの場合、例えば約1800mm×約1500mmのサイズの基板に有機ELの成膜を行った後、該基板を切出して複数の小サイズのパネルが作製される。
<Electronic Device Production Line>
FIG. 1 is a top view schematically showing a part of a configuration of a manufacturing line of an electronic device. The manufacturing line of FIG. 1 is used, for example, for manufacturing a display panel of an organic EL display device for a smartphone. In the case of a display panel for a smartphone, for example, after forming a film of an organic EL on a substrate having a size of about 1800 mm × about 1500 mm, the substrate is cut out to produce a plurality of small size panels.

電子デバイスの製造ラインは、一般に、図1に示すように、複数の成膜室11、12と、搬送室13とを有する。搬送室13内には、基板10を保持し搬送する搬送ロボット14が設けられている。搬送ロボット14は、例えば、多関節アームに、基板を保持するロボットハンドが取り付けられた構造をもつロボットであり、各成膜室への基板10の搬入/搬出を行う。   Generally, as shown in FIG. 1, a production line of an electronic device has a plurality of film forming chambers 11 and 12 and a transfer chamber 13. In the transfer chamber 13, a transfer robot 14 for holding and transferring the substrate 10 is provided. The transport robot 14 is, for example, a robot having a structure in which a robot hand holding a substrate is attached to an articulated arm, and carries in / out the substrate 10 to / from each film forming chamber.

各成膜室11、12にはそれぞれ成膜装置(蒸着装置とも呼ぶ)が設けられている。搬送ロボット14との基板10の受け渡し、基板10とマスクの相対位置の調整(アライメント)、マスク上への基板10の固定、成膜(蒸着)などの一連の成膜プロセスは、成膜装置によって自動で行われる。   A film forming apparatus (also referred to as a vapor deposition apparatus) is provided in each of the film forming chambers 11 and 12. A series of film forming processes such as delivery of the substrate 10 with the transport robot 14, adjustment (alignment) of the relative position between the substrate 10 and the mask, fixing of the substrate 10 on the mask, film formation (deposition) It is done automatically.

以下、成膜室の成膜装置の構成について説明する。
<成膜装置>
図2は成膜装置2の構成を概略的に示す断面図である。以下の説明においては、鉛直方向をZ方向とするXYZ直交座標系を使う。成膜時に基板が水平面(XY平面)と平行に固定された場合、基板の短辺に平行な方向をX方向、長辺に平行な方向をY方向とする。またZ軸周りの回転角をθで表示する。
Hereinafter, the configuration of the film forming apparatus in the film forming chamber will be described.
<Deposition apparatus>
FIG. 2 is a cross-sectional view schematically showing the configuration of the film forming apparatus 2. In the following description, an XYZ orthogonal coordinate system in which the vertical direction is the Z direction is used. When the substrate is fixed parallel to the horizontal plane (XY plane) at the time of film formation, the direction parallel to the short side of the substrate is taken as the X direction, and the direction parallel to the long side is taken as the Y direction. Also, the rotation angle around the Z axis is indicated by θ.

成膜装置2は成膜工程が成り立つ空間を定義する真空チャンバー20を具備する。真空チャンバー20の内部は真空雰囲気、或いは、窒素ガスなどの不活性ガス雰囲気で維持される。   The film forming apparatus 2 includes a vacuum chamber 20 which defines a space in which a film forming process is established. The inside of the vacuum chamber 20 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas.

成膜装置2の真空チャンバー20内の上部には、基板を保持する基板保持ユニット21、マスクを保持するマスク台22、基板を静電引力によって吸着させる静電チャック23、金属製のマスクに磁力を印加するためのマグネット24などが設けられ、成膜装置の真空チャンバー20内の下部には、蒸着材料が収納される蒸着源25などが設けられる。   A substrate holding unit 21 for holding a substrate, a mask base 22 for holding a mask, an electrostatic chuck 23 for adsorbing the substrate by electrostatic attraction, and a metal mask are provided on the upper portion in the vacuum chamber 20 of the film forming apparatus 2. A magnet 24 or the like for applying a voltage is provided, and a vapor deposition source 25 or the like in which a vapor deposition material is accommodated is provided under the vacuum chamber 20 of the film forming apparatus.

基板保持ユニット21は搬送室13の搬送ロボット14から基板10を受け取り、保持及び搬送する。基板保持ユニット21は基板ホルダとも呼ぶ。基板保持ユニット21は基板の下面の周縁部を支持する支持部211,212を含む。   The substrate holding unit 21 receives the substrate 10 from the transfer robot 14 in the transfer chamber 13, and holds and transfers the substrate 10. The substrate holding unit 21 is also referred to as a substrate holder. The substrate holding unit 21 includes supporting portions 211 and 212 for supporting the peripheral portion of the lower surface of the substrate.

支持部211、212は、基板の対向する二辺(例えば、長辺)のうち一方を支持するように配置される複数の第1支持部材211、及び対向する二辺のうち他方を支持するように配置される複数の第2支持部材212を含む。   The support portions 211 and 212 support a plurality of first support members 211 arranged to support one of two opposing sides (for example, long sides) of the substrate and the other of the two opposing sides. And a plurality of second support members 212 disposed at the

各支持部材は、基板の下面の周縁部を支持する基板支持面部213と、基板支持面部213を弾性的に支持する弾性体部214を含む。基板支持面部213上には、基板の損傷を防止するためにフッ素コーティングされたパッド(不図示)が設けられる。支持部材の弾性体部214は、コイルばね、板ばね、シリコーンゴムなどの弾性体を含み、基板を静電チャックに吸着させる際に静電チャックからの加圧力によって弾性変位することで基板が静電チャックと支持部材の間で破損することを防止する。   Each support member includes a substrate support surface portion 213 that supports the peripheral portion of the lower surface of the substrate, and an elastic body portion 214 that elastically supports the substrate support surface portion 213. A fluorine-coated pad (not shown) is provided on the substrate support surface 213 to prevent damage to the substrate. The elastic body portion 214 of the support member includes an elastic body such as a coil spring, a plate spring, silicone rubber, etc., and when the substrate is adsorbed to the electrostatic chuck, the substrate is made static by being elastically displaced by pressure from the electrostatic chuck. It prevents damage between the electric chuck and the support member.

第1支持部材211の基板支持面部213は、基板を静電チャックに全体的に平らに付着するために、第2支持部材212の基板支持面部213よりも高さが高く設置されることができる。また、第1支持部材211の弾性体部214の弾性係数を第2支持部材212の弾性体部214の弾性係数よりも大きくしたり、弾性体部214の長さを長くしたり
することによって、第1支持部材211が基板を支持する支持力を第2支持部材212が基板を支持する支持力よりも大きくすることができる。
The substrate support surface portion 213 of the first support member 211 may be installed at a height higher than the substrate support surface portion 213 of the second support member 212 in order to attach the substrate to the electrostatic chuck as a whole. . Further, by making the elastic coefficient of the elastic body portion 214 of the first support member 211 larger than the elastic coefficient of the elastic body portion 214 of the second support member 212 or making the length of the elastic body portion 214 longer, The support force with which the first support member 211 supports the substrate can be made larger than the support force with which the second support member 212 supports the substrate.

基板保持ユニット21の下にはフレーム状のマスク台22が設置され、マスク台には基板10上に形成される薄膜パターンに対応する開口パターンを有するマスク221が置かれる。特に、スマートフォン用の有機EL素子を製造するのに使われるマスクは微細な開口パターンが形成された金属製のマスクであり、FMM(Fine Metal Mask)とも呼ぶ。   A frame-like mask table 22 is placed under the substrate holding unit 21, and a mask 221 having an opening pattern corresponding to a thin film pattern formed on the substrate 10 is placed on the mask table. In particular, a mask used to manufacture an organic EL element for a smartphone is a metal mask on which a minute opening pattern is formed, and is also called FMM (Fine Metal Mask).

基板保持ユニット21の支持部211、212の上方には、基板を静電引力によって吸着し固定させるための静電チャック23が設けられる。静電チャックは誘電体(例えば、セラミック材質)マトリックス内に金属電極などの電気回路が埋設された構造を有する。金属電極にプラス(+)及びマイナス(−)の電圧が印加されると、誘電体マトリックスを通じて基板に金属電極と反対極性の分極電荷が誘導され、これら間の静電引力によって基板が静電チャック23に吸着固定されることができる。静電チャック23は一つのプレートで形成されることもでき、複数のサブプレートを持つように形成されることもできる。また、一つのプレートで形成される場合にもその内部の電気回路を複数含んで、一つのプレート内で位置によって静電引力を異なるように制御することができる。   Above the support portions 211 and 212 of the substrate holding unit 21, an electrostatic chuck 23 for adsorbing and fixing the substrate by electrostatic attraction is provided. The electrostatic chuck has a structure in which an electric circuit such as a metal electrode is embedded in a dielectric (for example, ceramic material) matrix. When positive (+) and negative (-) voltages are applied to the metal electrode, polarization charges of the opposite polarity to the metal electrode are induced in the substrate through the dielectric matrix, and electrostatic attraction between them causes the substrate to be electrostatic chucked. It can be fixed to 23 by adsorption. The electrostatic chuck 23 can be formed of one plate or can be formed to have a plurality of subplates. In addition, even in the case of being formed by one plate, a plurality of electric circuits therein can be included, and electrostatic attraction can be controlled differently depending on the position in one plate.

本発明では後述のように、静電チャック23が基板を吸着している間に静電チャックにずっと同じ電圧を印加し維持するのではなく、吸着開始以降は、吸着開始の時に印加された電圧よりも低い電圧を印加し、基板分離の時にかかる時間を短縮する。   In the present invention, as described later, the same voltage is not applied and maintained all the time to the electrostatic chuck while the electrostatic chuck 23 adsorbs the substrate, but after the start of adsorption, the voltage applied at the start of adsorption A lower voltage is applied to reduce the time taken for substrate separation.

静電チャック23の上部には、金属製のマスク221に磁力を印加してマスクの撓みを防止し、マスク221と基板10を密着させるためのマグネット24が設けられる。マグネット24は永久磁石または電磁石からなることができ、複数のモジュールに区画されることができる。   A magnet 24 is provided on the top of the electrostatic chuck 23 to apply a magnetic force to the metal mask 221 to prevent the mask from bending and to bring the mask 221 and the substrate 10 into close contact. The magnet 24 may be a permanent magnet or an electromagnet, and may be divided into a plurality of modules.

図2には図示しなかったが、静電チャック23とマグネット24の間には基板を冷却するための冷却板が設けられる。冷却板はマグネット24と一体に形成されることもできる。   Although not shown in FIG. 2, a cooling plate for cooling the substrate is provided between the electrostatic chuck 23 and the magnet 24. The cooling plate can also be integrally formed with the magnet 24.

蒸着源25は、基板に成膜される蒸着材料が収納されるるつぼ(不図示)、るつぼを加熱するためのヒータ(不図示)、蒸着源からの蒸発レートが一定になるまで蒸着材料が基板に飛散することを阻むシャッタ(不図示)などを含む。蒸着源25は、点(point)蒸着源、線形(linear)蒸着源、リボルバ蒸着源などの用途によって多様な構成を持つことができる。
図2に図示しなかったが、成膜装置2は基板に蒸着された膜の厚さを測定するための膜厚モニタ(不図示)及び膜厚算出ユニット(不図示)を含む。
The deposition source 25 is a crucible (not shown) in which the deposition material to be deposited on the substrate is stored, a heater (not shown) for heating the crucible, the deposition material is a substrate until the evaporation rate from the deposition source becomes constant. Shutter (not shown) etc. which prevent scattering. The deposition source 25 may have various configurations depending on applications such as a point deposition source, a linear deposition source, and a revolver deposition source.
Although not shown in FIG. 2, the film forming apparatus 2 includes a film thickness monitor (not shown) and a film thickness calculation unit (not shown) for measuring the thickness of the film deposited on the substrate.

成膜装置2の真空チャンバー20の外部上面には、基板保持ユニット21、静電チャック23、マグネット24などを鉛直方向(Z方向)に移動させるための駆動機構、及び基板とマスクのアライメントのために水平面に平行に(X方向、Y方向、θ方向に)静電チャック23や基板保持ユニット21などを移動させるための駆動機構などが設けられる。また、マスクと基板のアライメントのために真空チャンバー20の天井に設けられた窓を通じて基板及びマスクに形成されたアライメントマークを撮影するアライメント用カメラ(不図示)も設けられる。   A driving mechanism for moving the substrate holding unit 21, the electrostatic chuck 23, the magnet 24 and the like in the vertical direction (Z direction) on the outer upper surface of the vacuum chamber 20 of the film forming apparatus 2, and for alignment of the substrate and the mask A drive mechanism or the like for moving the electrostatic chuck 23, the substrate holding unit 21 and the like in parallel to the horizontal plane (in the X direction, the Y direction, and the θ direction) is provided. In addition, an alignment camera (not shown) is also provided which captures an alignment mark formed on the substrate and the mask through a window provided on the ceiling of the vacuum chamber 20 for alignment between the mask and the substrate.

成膜装置は制御部26を具備する。制御部26は基板10の搬送及びアライメント、蒸着源の制御、成膜の制御などの機能を有する。制御部26は、例えば、プロセッサ、メモ
リ、ストレージ、I/Oなどを持つコンピュータによって構成可能である。この場合、制
御部26の機能はメモリまたはストレージに格納されたプログラムをプロセッサが実行することにより実現される。コンピュータとしては汎用のパーソナルコンピュータを使用しても、組込み型のコンピュータまたはPLC(programmable logic controller)を使用してもよい。または、制御部26の機能の一部または全部をASICやFPGAのような回路で構成してもよい。また、成膜装置ごとに制御部26が設置されていてもよいし、一つの制御部26が複数の成膜装置を制御するものとしてもよい。
The film forming apparatus includes a control unit 26. The control unit 26 has functions such as transport and alignment of the substrate 10, control of a deposition source, and control of film formation. The control unit 26 can be configured by, for example, a computer having a processor, a memory, a storage, an I / O, and the like. In this case, the function of the control unit 26 is realized by the processor executing a program stored in the memory or the storage. As a computer, a general purpose personal computer may be used, or an embedded computer or programmable logic controller (PLC) may be used. Alternatively, some or all of the functions of the control unit 26 may be configured by a circuit such as an ASIC or an FPGA. Moreover, the control part 26 may be installed for every film-forming apparatus, and one control part 26 is good also as what controls several film-forming apparatuses.

成膜装置内で行われる成膜プロセスでは、まず、搬送室13の搬送ロボット14によって基板が真空チャンバー20内に搬入されて基板保持ユニット21に置かれる。続いて、基板10とマスク221との相対的位置の測定及び調整を行うアライメント工程が行われる。アライメント工程が完了すれば、基板保持ユニット21が駆動機構によって降りて基板10をマスク221上に置き、その後マグネット24が降りて基板10とマスク221を密着させる。このようなアライメント工程、基板をマスク上に置くための下降工程、マグネットによる基板とマスクの密着工程などにおいて、基板は基板保持ユニット21の支持部211,212と静電チャック23によって固定される。
この状態で、蒸着源25のシャッタが開かれて、蒸着源25のるつぼから蒸発された蒸着材料がマスクの微細パターン開口を通して基板に蒸着される。
In the film forming process performed in the film forming apparatus, first, the substrate is carried into the vacuum chamber 20 and placed on the substrate holding unit 21 by the transfer robot 14 of the transfer chamber 13. Subsequently, an alignment step of measuring and adjusting the relative position of the substrate 10 and the mask 221 is performed. When the alignment process is completed, the substrate holding unit 21 is lowered by the driving mechanism to place the substrate 10 on the mask 221, and then the magnet 24 is lowered to bring the substrate 10 and the mask 221 into close contact. The substrate is fixed by the support portions 211 and 212 of the substrate holding unit 21 and the electrostatic chuck 23 in such an alignment process, a descending process for placing the substrate on the mask, and a process of adhering the substrate and the mask by magnets.
In this state, the shutter of the deposition source 25 is opened, and the deposition material evaporated from the crucible of the deposition source 25 is deposited on the substrate through the fine pattern opening of the mask.

基板に蒸着された蒸着材料の膜厚が所定の厚さに到逹すれば、蒸着源25のシャッタを閉じ、その後、搬送ロボット14が基板を真空チャンバー20から搬送室13に搬出する。   When the film thickness of the deposition material deposited on the substrate reaches a predetermined thickness, the shutter of the deposition source 25 is closed, and then the transfer robot 14 unloads the substrate from the vacuum chamber 20 to the transfer chamber 13.

<静電チャックの電圧制御>
以下、図3〜図5を参照して本発明の静電チャック23の構成、基板の吸着及び脱着工程において静電チャックに印加される電圧の制御について説明する。
<Voltage control of electrostatic chuck>
The configuration of the electrostatic chuck 23 according to the present invention and the control of the voltage applied to the electrostatic chuck in the substrate adsorption and desorption processes will be described below with reference to FIGS. 3 to 5.

本発明の静電チャック23は、図3に示すように、誘電体部30、電極部31、電圧制御部32、電源部33を含む。電源部33は、静電チャック23の電極部31にプラス(+)電圧及びマイナス(−)電圧を印加する。電圧制御部32は、成膜装置2の成膜工程の進行に応じて、電源部33から電極部31に加えられる電圧の大きさなどを制御する。電圧制御部32は成膜装置2の制御部26に統合され、成膜装置2の制御部26によって、静電チャック23の電圧制御が行われてもよい。   As shown in FIG. 3, the electrostatic chuck 23 of the present invention includes a dielectric portion 30, an electrode portion 31, a voltage control portion 32, and a power source portion 33. The power supply unit 33 applies a positive (+) voltage and a negative (−) voltage to the electrode unit 31 of the electrostatic chuck 23. The voltage control unit 32 controls, for example, the magnitude of the voltage applied from the power supply unit 33 to the electrode unit 31 according to the progress of the film forming process of the film forming apparatus 2. The voltage control unit 32 may be integrated with the control unit 26 of the film forming apparatus 2, and the voltage control of the electrostatic chuck 23 may be performed by the control unit 26 of the film forming apparatus 2.

電極部31は、複数のサブ電極部を含むことができる。例えば、本発明の電極部31は、図4(a)に示すように、第1サブ電極部311及び第2サブ電極部312に分けて設置されることができる。第1サブ電極部311及び第2サブ電極部312は、静電チャック23の短辺中央を基準に対向する二つの長辺側に設置されることができる。例えば、図4(b)に示すように、第1サブ電極部311は、基板保持ユニット21の第1支持部材211側に対応するように設けられ、第2サブ電極部312は、基板保持ユニット21の第2支持部材212側に対応するように設けられる。   The electrode unit 31 can include a plurality of sub electrode units. For example, as shown in FIG. 4A, the electrode unit 31 of the present invention can be separately installed in the first sub electrode unit 311 and the second sub electrode unit 312. The first sub electrode unit 311 and the second sub electrode unit 312 may be disposed on two long sides facing each other with reference to the center of the short side of the electrostatic chuck 23. For example, as shown in FIG. 4B, the first sub electrode portion 311 is provided to correspond to the first support member 211 side of the substrate holding unit 21, and the second sub electrode portion 312 is a substrate holding unit. 21 is provided to correspond to the second support member 212 side.

以下、図5を参照して静電チャック23に基板10を吸着させる工程における電圧制御について説明する。
成膜装置2の真空チャンバー20内に基板が搬入され、基板保持ユニット21の支持部211、212に載置される(図5(a)参照)。
Hereinafter, voltage control in the step of adsorbing the substrate 10 to the electrostatic chuck 23 will be described with reference to FIG.
The substrate is carried into the vacuum chamber 20 of the film forming apparatus 2 and placed on the support portions 211 and 212 of the substrate holding unit 21 (see FIG. 5A).

続いて、静電チャック23が降下し、基板保持ユニット21の支持部211、212上に載置された基板に近接するように移動する。静電チャック23が基板10に十分近接ま
たは接触すると、図5(b)に示すように、静電チャック23の電源部33によって電極部31に第1電圧(V1)が印加される。第1電圧(V1)は基板10を静電チャック23に確実に吸着させるために十分な大きさの電圧に設定される。静電チャック23に第1電圧(V1)が印加される時点をt1とする。
Subsequently, the electrostatic chuck 23 descends and moves so as to approach the substrate placed on the support portions 211 and 212 of the substrate holding unit 21. When the electrostatic chuck 23 approaches or contacts the substrate 10 sufficiently, as shown in FIG. 5B, the power source 33 of the electrostatic chuck 23 applies a first voltage (V1) to the electrode 31. The first voltage (V1) is set to a voltage of a sufficient magnitude to ensure that the substrate 10 is attracted to the electrostatic chuck 23. The time when the first voltage (V1) is applied to the electrostatic chuck 23 is t1.

静電チャック23の電極部31に加えられた第1電圧(V1)によって基板の上面には、第1電圧(V1)の大きさに比例する反対極性の分極電荷が誘導される。この基板に誘導された分極電荷と静電チャック23の電極部31との間の静電引力によって、基板は静電チャックに平らに吸着される。本実施形態においては、静電チャック23が基板10に近接或いは接触した状態で第1電圧(V1)を印加すると説明したが、静電チャック23が基板10に向かって下降を始める前に、或いは、下降の途中に第1電圧(V1)を印加してもいい。   The first voltage (V1) applied to the electrode portion 31 of the electrostatic chuck 23 induces polarization charges of the opposite polarity proportional to the magnitude of the first voltage (V1) on the upper surface of the substrate. The substrate is flatly attracted to the electrostatic chuck by the electrostatic attraction between the polarization charge induced on the substrate and the electrode portion 31 of the electrostatic chuck 23. In the present embodiment, it has been described that the first voltage (V1) is applied while the electrostatic chuck 23 approaches or contacts the substrate 10, but before the electrostatic chuck 23 starts to descend toward the substrate 10, or The first voltage (V1) may be applied during the descent.

その後の所定の時点(t=t2)で、静電チャック23の電圧制御部32は、静電チャック23の電極部31に印加される電圧を、第1電圧(V1)から第1電圧よりも小さい第2電圧(V2)に下げる。第2電圧(V2)は、一旦静電チャック23に吸着された基板10を静電チャック23に吸着された状態に維持するための吸着維持電圧であり、基板10を静電チャック23に吸着させる時の第1電圧(V1)よりも低い電圧である。静電チャック23に印加される電圧が第2電圧(V2)まで低くなると、これに対応して基板10に誘導される分極電荷量も図5(c)に示すように、第1電圧(V1)が加えられた場合に比べて減少するが、基板10が一旦第1電圧(V1)によって静電チャック23に吸着された以後は、第1電圧(V1)よりも低い第2電圧(V2)を印加しても基板の吸着状態を維持することができる。   At a predetermined time thereafter (t = t2), the voltage control unit 32 of the electrostatic chuck 23 causes the voltage applied to the electrode unit 31 of the electrostatic chuck 23 to be higher than the first voltage from the first voltage (V1). Reduce to a small second voltage (V2). The second voltage (V2) is an adsorption maintaining voltage for maintaining the substrate 10 once adsorbed by the electrostatic chuck 23 in a state of being adsorbed by the electrostatic chuck 23, and causes the substrate 10 to be adsorbed by the electrostatic chuck 23. Voltage lower than the first voltage (V1). When the voltage applied to the electrostatic chuck 23 decreases to the second voltage (V2), the amount of polarization charge induced on the substrate 10 corresponding to this is also shown in FIG. 5C, the first voltage (V1). ), But after the substrate 10 is once attracted to the electrostatic chuck 23 by the first voltage (V1), the second voltage (V2) is lower than the first voltage (V1). Can be maintained even if the substrate is applied.

第2電圧(V2)は第1電圧(V1)の大きさを考慮して決めるのが好ましく、基板を脱着させるのにかかる時間を考慮し、ゼロ(0)電圧または逆極性の電圧にすることもできる。つまり、第1電圧(V1)が十分に大きければ、第2電圧をゼロ電圧または逆極性の電圧にしても基板に誘導された分極電荷が放電するのに時間がかかるため、当該時間の間に静電チャック23に基板10を吸着させた状態を維持することができる。   The second voltage (V2) is preferably determined in consideration of the magnitude of the first voltage (V1), and in consideration of the time taken to desorb the substrate, the voltage should be zero (0) or a reverse voltage. You can also. That is, if the first voltage (V1) is sufficiently large, it takes time for the polarization charge induced in the substrate to be discharged even if the second voltage is a zero voltage or a voltage of the reverse polarity. A state in which the substrate 10 is adsorbed to the electrostatic chuck 23 can be maintained.

静電チャック23に印加される電圧を第1電圧(V1)から第2電圧(V2)に下げる時期は、基板への蒸着開始時点の以前であることが望ましい。これは静電チャック23から基板10を分離することができる程度に基板と静電チャックとの間の静電引力が低くなるのにかかる時間を確保するためである。つまり、静電チャック23から基板10を分離しようとする時、静電チャック23の電極部31に加えられる電圧をゼロ(0)にしても、直ちに静電チャック23と基板10との間の静電引力が消えるのではなく、静電チャック23と基板10との界面に誘導された電荷が消えるのに相当な時間(場合によっては、数分程度)がかかる。特に、静電チャック23に基板10を吸着させる際は、通常、その吸着を確実にするために、静電チャック23に基板を吸着させるのに必要な最小静電引力(Fth)よりも十分大きい静電引力が作用するように第1電圧を設定するが(図5(f)参照)、このような第1電圧から基板の分離が可能な状態になるまでは相当な時間がかかる。   It is desirable that the time to reduce the voltage applied to the electrostatic chuck 23 from the first voltage (V1) to the second voltage (V2) is before the start of deposition on the substrate. This is to ensure the time taken for the electrostatic attraction between the substrate and the electrostatic chuck to be low enough to separate the substrate 10 from the electrostatic chuck 23. That is, when the substrate 10 is to be separated from the electrostatic chuck 23, even if the voltage applied to the electrode portion 31 of the electrostatic chuck 23 is zero (0), the static potential between the electrostatic chuck 23 and the substrate 10 is immediately reduced. It takes a considerable time (in some cases, several minutes) for the charge induced at the interface between the electrostatic chuck 23 and the substrate 10 to disappear, rather than the elimination of the attractive force. In particular, when the substrate 10 is attracted to the electrostatic chuck 23, usually, in order to ensure the adsorption, the electrostatic chuck 23 is sufficiently larger than the minimum electrostatic attractive force (Fth) required to adsorb the substrate. Although the first voltage is set so that electrostatic attraction acts (see FIG. 5 (f)), it takes a considerable amount of time until the substrate can be separated from such a first voltage.

本発明では、このような静電チャック23からの基板10の分離・脱着にかかる時間により全体的な工程時間(Tact)が増加してしまうことを防止するために、蒸着工程の開始前に静電チャック23に印加される電圧を第2電圧に下げる。   In the present invention, in order to prevent an increase in the overall process time (Tact) due to the time taken to separate and desorb the substrate 10 from the electrostatic chuck 23 as described above, it is necessary to The voltage applied to the electric chuck 23 is lowered to the second voltage.

特に、基板と静電チャック23間の静電引力の大きさが第1電圧による静電引力から、基板と静電チャック23間の吸着を維持するための最小限の静電引力(Fth)に減少する時間と、第2電圧による静電引力から基板と静電チャックを分離できる程度に静電引力
が減少する時間とのバランスを考慮し(図5(e)及び図5(f)参照)、安定的に基板の吸着状態を維持しながらも、基板脱着にかかる時間を十分確保することができる時点で、静電チャック23の電圧を第2電圧に下げることが好ましい。
静電チャック23に印加する電圧を第2電圧(V2)に下げる具体的な時点については、図6を参照し、後述する。
In particular, the magnitude of the electrostatic attraction between the substrate and the electrostatic chuck 23 is from the electrostatic attraction due to the first voltage to the minimum electrostatic attraction (Fth) for maintaining the adsorption between the substrate and the electrostatic chuck 23 In consideration of the balance between the time to decrease and the time to reduce the electrostatic attraction to such an extent that the substrate and the electrostatic chuck can be separated from the electrostatic attraction due to the second voltage (see FIGS. 5 (e) and 5 (f)) It is preferable to lower the voltage of the electrostatic chuck 23 to the second voltage at a time when the time taken to desorb the substrate can be sufficiently secured while stably maintaining the adsorption state of the substrate.
The specific time to reduce the voltage applied to the electrostatic chuck 23 to the second voltage (V2) will be described later with reference to FIG.

本発明の他の実施形態では、静電チャック23の電極部31を第1サブ電極部311と第2サブ電極部312を含むように形成し、各サブ電極部に加える電圧を第1電圧から第2電圧に下げる時点を互いに異なるようにするか、第2電圧の大きさを互いに異なるようにする。   In another embodiment of the present invention, the electrode portion 31 of the electrostatic chuck 23 is formed to include the first sub electrode portion 311 and the second sub electrode portion 312, and a voltage applied to each sub electrode portion is generated from the first voltage. The timings of lowering to the second voltage may be different from one another, or the magnitudes of the second voltages may be different from one another.

例えば、図4(b)及び図4(c)に示すように、基板支持面の高い第1支持部材211によって基板が支持される側に形成された第1サブ電極部311に印加する電圧を第1電圧から第2電圧に下げた後、第2サブ電極部312に印加される電圧を第1電圧から第2電圧に下げる。第1支持部材211によって支持される基板の周縁部は静電チャック23に先に吸着されるので、誘導される分極電荷量が第2支持部材212によって支持される基板の周縁部側よりも多く、これにより基板分離にかかる時間(分極電荷の放電にかかる時間)もより長くなる。相対的に基板分離にかかる時間が長い、第1支持部材211によって支持される基板周縁部側が吸着された第1サブ電極部311の電圧を、先に第2電圧に下げて、基板分離にかかる時間を充分に確保することができる。   For example, as shown in FIGS. 4B and 4C, the voltage applied to the first sub electrode portion 311 formed on the side where the substrate is supported by the high first support member 211 of the substrate support surface is After reducing the voltage from the first voltage to the second voltage, the voltage applied to the second sub electrode portion 312 is reduced from the first voltage to the second voltage. Since the peripheral portion of the substrate supported by the first support member 211 is first attracted to the electrostatic chuck 23, the induced polarization charge amount is larger than the peripheral portion side of the substrate supported by the second support member 212. Thus, the time taken to separate the substrates (the time taken to discharge the polarization charge) is also longer. The voltage of the first sub-electrode portion 311 adsorbed by the substrate peripheral portion side supported by the first support member 211, which takes a relatively long time to separate the substrates, is first lowered to the second voltage to apply to the substrate separation A sufficient time can be secured.

第1支持部材211によって支持される基板周縁部側の電荷放電時間を減らすために、第1サブ電極部311に印加する第2電圧を第2サブ電極部312に印加する第2電圧よりも低くすることもできる。つまり、相対的に多くの分極電荷が誘導された第1サブ電極部311側に印加する第2電圧をより低くすることで、第2サブ電極部312側よりもより多くの誘導電荷をあらかじめ放電させ、第2サブ電極部312側の基板上に誘導された分極電荷の放電時間とのバランスを取ることで、最終的に基板脱着に必要な時間のバランスを合わせることができる。   The second voltage applied to the first sub-electrode portion 311 is lower than the second voltage applied to the second sub-electrode portion 312 in order to reduce the charge discharge time on the substrate peripheral portion side supported by the first support member 211 You can also That is, by lowering the second voltage applied to the side of the first sub-electrode portion 311 where relatively more polarization charges are induced, more induced charges are discharged in advance than the side of the second sub-electrode portion 312. By balancing the discharge time of the polarization charge induced on the substrate on the side of the second sub electrode portion 312, it is possible to finally balance the time required for substrate desorption.

第1サブ電極部311及び第2サブ電極部312に印加する電圧を第1電圧から第2電圧に下げる時点及び第2電圧の大きさは、両サブ電極部に当接した基板上に誘導される電荷を放電させるのに必要な時間のバランスを考慮し、多様な組み合わせを選択することができる。   When the voltage applied to the first sub electrode portion 311 and the second sub electrode portion 312 is lowered from the first voltage to the second voltage and the magnitude of the second voltage is induced on the substrate in contact with both the sub electrode portions The various combinations can be selected in consideration of the balance of time required to discharge the charge.

<成膜プロセス>
以下、本発明の静電チャック電圧制御を採用した成膜方法について図6を参照して説明する。
<Film formation process>
Hereinafter, a film forming method adopting the electrostatic chuck voltage control of the present invention will be described with reference to FIG.

真空チャンバー20内のマスク台22にマスク221が置かれた状態で、搬送室13の搬送ロボット14によって成膜装置2の真空チャンバー20内に基板が搬入される(図6(a))。   While the mask 221 is placed on the mask table 22 in the vacuum chamber 20, the substrate is carried into the vacuum chamber 20 of the film forming apparatus 2 by the transfer robot 14 of the transfer chamber 13 (FIG. 6A).

真空チャンバー20内に進入した搬送ロボット14のハンドが降下し、基板10を基板保持ユニット21の支持部211、212上に載置する(図6(b))。   The hand of the transfer robot 14 which has entered the vacuum chamber 20 is lowered, and the substrate 10 is mounted on the support portions 211 and 212 of the substrate holding unit 21 (FIG. 6B).

続いて、静電チャック23が基板10に向かって降下し、基板10に十分近接或いは接触した後に、静電チャック23に第1電圧(V1)を印加し、基板10を吸着させる(図
6(c))。
Subsequently, after the electrostatic chuck 23 descends toward the substrate 10 and approaches or contacts the substrate 10 sufficiently, a first voltage (V1) is applied to the electrostatic chuck 23 to adsorb the substrate 10 (FIG. 6 (FIG. c)).

本発明の一実施形態においては、基板を静電チャック23から脱着させるのに必要な時
間を最大限に確保するため、基板の静電チャック23への吸着が完了した直後に静電チャック23に加えられる電圧を第1電圧(V2)から第2電圧(V2)に下げる。基板の吸着が完了した直後に静電チャック23に加えられる電圧を第2電圧(V2)に下げても、第1電圧(V1)によって基板に誘導された分極電荷が放電されるまでに時間がかかるため、以降の工程で静電チャック23による基板への吸着力を維持することができる。
In one embodiment of the present invention, to ensure that the time required to desorb the substrate from the electrostatic chuck 23 is maximized, immediately after the adsorption of the substrate onto the electrostatic chuck 23 is completed, the electrostatic chuck 23 is used. The applied voltage is lowered from the first voltage (V2) to the second voltage (V2). Even if the voltage applied to the electrostatic chuck 23 is lowered to the second voltage (V2) immediately after the adsorption of the substrate is completed, it takes time until the polarization charge induced on the substrate by the first voltage (V1) is discharged. Because of this, it is possible to maintain the adsorption power to the substrate by the electrostatic chuck 23 in the subsequent steps.

静電チャック23に基板10が吸着された状態で、基板のマスクに対する相対的な位置ずれを計測するため、基板(10)をマスク(221)に向かって下降させる(図6(d))。本発明の他の実施形態においては、静電チャック23に吸着された基板の下降の過程で基板が静電チャック23から脱落することを確実に防止するため、基板の下降の過程が完了した後(つまり、後述するアライメント工程が開始される前)に、静電チャック23に加える電圧を第2電圧(V2)に下げる。   In a state where the substrate 10 is adsorbed to the electrostatic chuck 23, the substrate (10) is lowered toward the mask (221) to measure the relative positional deviation of the substrate relative to the mask (FIG. 6 (d)). In another embodiment of the present invention, after the process of lowering the substrate is completed in order to reliably prevent the substrate from falling off the electrostatic chuck 23 in the process of lowering the substrate adsorbed by the electrostatic chuck 23 The voltage applied to the electrostatic chuck 23 is lowered to the second voltage (V2) (ie, before the alignment process described later is started).

基板10が計測位置まで下降すると、アライメント用カメラで基板(10)とマスク(221)に形成されたアライメントマークを撮影して、基板とマスクの相対的な位置ずれを計測する(図6(e)参照)。本発明の他の実施形態では、基板とマスクの相対的位置の計測工程の精度をより確保するため、アライメントのための計測工程が完了した後(アライメント工程中)に、静電チャック23に加えられる電圧を第2電圧に下げる。つまり、静電チャック23に基板を第1電圧(V1)によって強く吸着させた状態(基板をより平らに維持した状態)での基板とマスクのアライメントマークを撮影することにより、基板とマスク間の距離を確保することができ、アライメントマークのより鮮明な撮影イメージを得られるようになる。   When the substrate 10 is lowered to the measurement position, the alignment camera captures an alignment mark formed on the substrate (10) and the mask (221) to measure the relative positional deviation between the substrate and the mask (FIG. 6 (e )reference). In another embodiment of the present invention, the electrostatic chuck 23 is added after the measurement process for alignment is completed (during the alignment process) in order to further ensure the accuracy of the measurement process of the relative position between the substrate and the mask. Voltage to a second voltage. That is, by photographing the alignment mark between the substrate and the mask in a state where the substrate is strongly attracted to the electrostatic chuck 23 by the first voltage (V1) (a state where the substrate is kept flat), the space between the substrate and the mask A distance can be secured, and a clearer photographed image of the alignment mark can be obtained.

計測の結果、基板のマスクに対する相対的位置ずれが閾値を超えることが判明した場合、静電チャック23に吸着された状態の基板10を水平方向(XYθ方向)に移動させて、基板をマスクに対して、位置調整(アライメント)する(図6(f)参照)。本発明の他の実施形態においては、このような位置調整の工程が完了した後に、静電チャック23に加えられる電圧を第2電圧(V2)に下げる。これによって、アライメント工程全体(相対的な位置計測や位置調整)にわたって精度をより高めることができる。   As a result of measurement, when it is found that the relative positional deviation of the substrate with respect to the mask exceeds the threshold, the substrate 10 in a state of being adsorbed by the electrostatic chuck 23 is moved in the horizontal direction (XYθ direction) to use the substrate as a mask. On the other hand, position adjustment (alignment) is performed (see FIG. 6F). In another embodiment of the present invention, the voltage applied to the electrostatic chuck 23 is lowered to the second voltage (V2) after such a position adjustment process is completed. This can further increase the accuracy over the entire alignment process (relative position measurement and position adjustment).

アライメント工程後、静電チャック23に吸着された基板10をマスク221上に載置し、マグネット24を降下させて、基板とマスクを密着させる(図6(g))。本発明の
他の実施形態においては、基板10をマスク221上に載置した状態で、静電チャック23に印加される電圧を第2電圧(V2)に下げる。これによって、基板の撓みの程度をマスクの撓みの程度に合わせることができるようになり、以降の工程での基板とマスク間の密着性が向上する。本発明の他の実施形態によると、マグネット24によって基板とマスクを密着させる工程以降に、静電チャック23に加えられる電圧を第2電圧(V2)に下げる。これによって、基板とマスクのマグネットによる密着時までに基板をより平らに維持することができ、基板とマスクの密着度をさらに向上させることができる。
続いて、蒸着源25のシャッタを開け、蒸着材料をマスクを介して基板10に蒸着させる(図6(h))。
After the alignment process, the substrate 10 attracted to the electrostatic chuck 23 is placed on the mask 221, the magnet 24 is lowered, and the substrate and the mask are brought into close contact (FIG. 6 (g)). In another embodiment of the present invention, with the substrate 10 placed on the mask 221, the voltage applied to the electrostatic chuck 23 is lowered to the second voltage (V2). By this, the degree of bending of the substrate can be matched to the degree of bending of the mask, and the adhesion between the substrate and the mask in the subsequent steps is improved. According to another embodiment of the present invention, the voltage applied to the electrostatic chuck 23 is lowered to the second voltage (V2) after the step of bringing the substrate and the mask into close contact by the magnet 24. By this, the substrate can be maintained flat by the time of adhesion by the magnet of the substrate and the mask, and the adhesion between the substrate and the mask can be further improved.
Subsequently, the shutter of the vapor deposition source 25 is opened, and the vapor deposition material is vapor deposited on the substrate 10 through the mask (FIG. 6 (h)).

基板10上に所望の厚さの膜が蒸着完了した後、蒸着源25のシャッタを閉じる、その後、マグネット24が上昇し、静電チャックと基板保持ユニットによって基板が上昇する(図6(i))。   After the film of the desired thickness is deposited on the substrate 10, the shutter of the deposition source 25 is closed, and then the magnet 24 is lifted, and the substrate is lifted by the electrostatic chuck and the substrate holding unit (FIG. 6 (i)) ).

続いて、搬送ロボットのハンドが成膜装置の真空チャンバー内に進入し、静電チャック23にゼロ(0)または逆極性の電圧が印加され(t=t3)、静電チャック23が基板から分離されて上昇する(図6(j))。その後、蒸着が完了した基板を搬出する。   Subsequently, the hand of the transfer robot enters the vacuum chamber of the film forming apparatus, and a voltage of zero (0) or reverse polarity is applied to the electrostatic chuck 23 (t = t3), and the electrostatic chuck 23 separates from the substrate To rise (Fig. 6 (j)). Thereafter, the substrate on which the deposition has been completed is unloaded.

尚、本発明はこれに限定されず、例えば、図6(h)の時点で基板を、静電チャック23から分離してマスク221に沿う状態にし、この状態で、蒸着源25のシャッタを開けて蒸着材料をマスクを介して基板10に蒸着させてもよい。前述したとおり、本発明においては、静電チャック23に印加される電圧を第1電圧から第2電圧に下げる時点を蒸着工程の開始前にし、必要に応じて、静電チャック23への基板の吸着工程完了後、アライメント工程の開始前(基板の下降工程完了後)、アライメント工程の途中(計測工程完了後)、アライメント工程完了後、基板のマスク上への載置工程完了後、またはマグネットによる基板とマスクの密着工程完了後にすることができる。   The present invention is not limited to this, and for example, the substrate is separated from the electrostatic chuck 23 at the time of FIG. 6 (h) to be in a state along the mask 221, and in this state, the shutter of the vapor deposition source 25 is opened. The deposition material may be deposited on the substrate 10 through a mask. As described above, in the present invention, the time when the voltage applied to the electrostatic chuck 23 is lowered from the first voltage to the second voltage is before the start of the deposition process, and the substrate to the electrostatic chuck 23 is After completion of the adsorption process, before the start of the alignment process (after completion of the substrate descent process), during the alignment process (after completion of the measurement process), after completion of the alignment process, after completion of the process of placing the substrate on the mask It can be done after completion of the step of bonding the substrate and the mask.

<電子デバイスの製造方法>
次に、本実施形態の成膜装置を用いた電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。
まず、製造する有機EL表示装置について説明する。図7(a)は有機EL表示装置60の全体図、図7(b)は1画素の断面構造を表している。
<Method of Manufacturing Electronic Device>
Next, an example of a method of manufacturing an electronic device using the film forming apparatus of the present embodiment will be described. Hereinafter, the configuration and manufacturing method of the organic EL display device will be illustrated as an example of the electronic device.
First, an organic EL display device to be manufactured will be described. FIG. 7 (a) is an overall view of the organic EL display device 60, and FIG. 7 (b) shows a cross-sectional structure of one pixel.

図7(a)に示すように、有機EL表示装置60の表示領域61には、発光素子を複数備える画素62がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域61において所望の色の表示を可能とする最小単位を指している。本実施例にかかる有機EL表示装置の場合、互いに異なる発光を示す第1発光素子62R、第2発光素子62G、第3発光素子62Bの組合せにより画素62が構成されている。画素62は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。   As shown in FIG. 7A, in the display area 61 of the organic EL display device 60, a plurality of pixels 62 including a plurality of light emitting elements are arranged in a matrix. Although details will be described later, each of the light emitting elements has a structure including an organic layer sandwiched between a pair of electrodes. The term “pixel” as used herein refers to the minimum unit capable of displaying a desired color in the display area 61. In the case of the organic EL display device according to the present example, the pixel 62 is configured by a combination of the first light emitting element 62R, the second light emitting element 62G, and the third light emitting element 62B that emit light different from each other. The pixel 62 is often composed of a combination of a red light emitting element, a green light emitting element and a blue light emitting element, but may be a combination of a yellow light emitting element, a cyan light emitting element and a white light emitting element It is not limited.

図7(b)は、図7(a)のA−B線における部分断面模式図である。画素62は、基板63上に、第1電極(陽極)64と、正孔輸送層65と、発光層66R、66G、66Bのいずれかと、電子輸送層67と、第2電極(陰極)68と、を備える有機EL素子を有している。これらのうち、正孔輸送層65、発光層66R、66G、66B、電子輸送層67が有機層に当たる。また、本実施形態では、発光層66Rは赤色を発する有機EL層、発光層66Gは緑色を発する有機EL層、発光層66Bは青色を発する有機EL層である。発光層66R、66G、66Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、第1電極64は、発光素子ごとに分離して形成されている。正孔輸送層65と電子輸送層67と第2電極68は、複数の発光素子62R、62G、62Bと共通で形成されていてもよいし、発光素子毎に形成されていてもよい。なお、第1電極64と第2電極68とが異物によってショートするのを防ぐために、第1電極64間に絶縁層69が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層70が設けられている。   FIG.7 (b) is a fragmentary-section schematic diagram in the AB line of FIG. 7 (a). The pixel 62 includes a first electrode (anode) 64, a hole transport layer 65, one of light emitting layers 66R, 66G, and 66B, an electron transport layer 67, and a second electrode (cathode) 68 on a substrate 63. , And an organic EL element comprising Among these, the hole transport layer 65, the light emitting layers 66R, 66G, 66B, and the electron transport layer 67 correspond to the organic layer. Further, in the present embodiment, the light emitting layer 66R is an organic EL layer that emits red, the light emitting layer 66G is an organic EL layer that emits green, and the light emitting layer 66B is an organic EL layer that emits blue. The light emitting layers 66R, 66G, 66B are formed in patterns corresponding to light emitting elements (sometimes described as organic EL elements) that emit red, green and blue, respectively. In addition, the first electrode 64 is formed separately for each light emitting element. The hole transport layer 65, the electron transport layer 67, and the second electrode 68 may be formed in common with the plurality of light emitting elements 62R, 62G, and 62B, or may be formed for each light emitting element. An insulating layer 69 is provided between the first electrodes 64 in order to prevent the first electrodes 64 and the second electrodes 68 from being short-circuited by foreign matter. Furthermore, since the organic EL layer is degraded by moisture and oxygen, a protective layer 70 is provided to protect the organic EL element from moisture and oxygen.

図7(b)では正孔輸送層65や電子輸送層67が一つの層で示されているが、有機EL表示素子の構造によって、正孔ブロック層や電子ブロック層を含む複数の層で形成されてもよい。また、第1電極64と正孔輸送層65との間には第1電極64から正孔輸送層65への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成することもできる。同様に、第2電極68と電子輸送層67の間にも電子注入層を形成することができる。   Although the hole transport layer 65 and the electron transport layer 67 are shown in one layer in FIG. 7B, they are formed of a plurality of layers including the hole block layer and the electron block layer depending on the structure of the organic EL display element. It may be done. In addition, the positive electrode has an energy band structure which can facilitate the injection of holes from the first electrode 64 to the hole transport layer 65 between the first electrode 64 and the hole transport layer 65. A hole injection layer can also be formed. Similarly, an electron injection layer can be formed between the second electrode 68 and the electron transport layer 67 as well.

次に、有機EL表示装置の製造方法の例について具体的に説明する。
まず、有機EL表示装置を駆動するための回路(不図示)および第1電極64が形成された基板63を準備する。
第1電極64が形成された基板63の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、第1電極64が形成された部分に開口が形成されるようにパターニングし絶縁層69を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。
Next, an example of a method of manufacturing an organic EL display device will be specifically described.
First, a circuit 63 (not shown) for driving the organic EL display device and the substrate 63 on which the first electrode 64 is formed are prepared.
An acrylic resin is formed by spin coating on the substrate 63 on which the first electrode 64 is formed, and the acrylic resin is patterned by lithography so that an opening is formed in the portion where the first electrode 64 is formed. Form 69 The opening corresponds to a light emitting region in which the light emitting element actually emits light.

絶縁層69がパターニングされた基板63を第1の有機材料成膜装置に搬入し、基板保持ユニット及び静電チャックにて基板を保持し、正孔輸送層65を、表示領域の第1電極64の上に共通する層として成膜する。正孔輸送層65は真空蒸着により成膜される。実際には正孔輸送層65は表示領域61よりも大きなサイズに形成されるため、高精細なマスクは不要である。   The substrate 63 on which the insulating layer 69 is patterned is carried into the first organic material film forming apparatus, the substrate is held by the substrate holding unit and the electrostatic chuck, and the hole transport layer 65 is used as the first electrode 64 in the display area. As a common layer on top of the The hole transport layer 65 is deposited by vacuum evaporation. In practice, the hole transport layer 65 is formed to have a size larger than that of the display area 61, so a high definition mask is not necessary.

次に、正孔輸送層65までが形成された基板63を第2の有機材料成膜装置に搬入し、基板保持ユニット及び静電チャックにて保持する。基板とマスクとのアライメントを行い、基板をマスクの上に載置し、基板63の赤色を発する素子を配置する部分に、赤色を発する発光層66Rを成膜する。
発光層66Rの成膜と同様に、第3の有機材料成膜装置により緑色を発する発光層66Gを成膜し、さらに第4の有機材料成膜装置により青色を発する発光層66Bを成膜する。発光層66R、66G、66Bの成膜が完了した後、第5の成膜装置により表示領域61の全体に電子輸送層67を成膜する。電子輸送層67は、3色の発光層66R、66G、66Bに共通の層として形成される。
電子輸送層67まで形成された基板を金属性蒸着材料成膜装置に移動させて第2電極68を成膜する。
Next, the substrate 63 having the hole transport layer 65 formed thereon is carried into the second organic material film forming apparatus, and is held by the substrate holding unit and the electrostatic chuck. Alignment between the substrate and the mask is performed, the substrate is placed on the mask, and the light emitting layer 66R emitting red is formed on the portion of the substrate 63 where the element emitting red is disposed.
Similar to the film formation of the light emitting layer 66R, the light emitting layer 66G emitting green is formed by the third organic material film forming apparatus, and the light emitting layer 66B emitting blue is formed by the fourth organic material film forming apparatus. . After film formation of the light emitting layers 66R, 66G, and 66B is completed, the electron transport layer 67 is formed on the entire display region 61 by the fifth film forming apparatus. The electron transport layer 67 is formed as a layer common to the three color light emitting layers 66R, 66G, and 66B.
The substrate formed up to the electron transport layer 67 is moved to a metallic vapor deposition material deposition apparatus to deposit a second electrode 68.

本発明によると、有機EL表示素子の製造のため多様な有機材料及び金属性材料を基板上に蒸着するにあたって、基板を静電チャック23に吸着させた後、所定の時点で静電チャック23に印加する電圧をあらかじめ下げておくことによって、基板を静電チャック23から分離するのにかかる時間を短縮し、工程時間を減らすことができる。
その後プラズマCVD装置に移動して保護層70を成膜して、有機EL表示装置60が完成する。
According to the present invention, in vapor-depositing various organic materials and metallic materials on a substrate for manufacturing an organic EL display element, the electrostatic chuck 23 is attracted to the electrostatic chuck 23 at a predetermined time after the substrate is absorbed by the electrostatic chuck 23. By lowering the voltage to be applied in advance, it is possible to shorten the time taken to separate the substrate from the electrostatic chuck 23 and to reduce the process time.
Thereafter, it moves to a plasma CVD apparatus to form a protective layer 70, and the organic EL display device 60 is completed.

絶縁層69がパターニングされた基板63を成膜装置に搬入してから保護層70の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気または不活性ガス雰囲気の下で行われる。
上記実施例は本発明の一例を示すことで、本発明は上記実施例の構成に限定されないし、その技術思想の範囲内で適切に変形してもよい。
After the substrate 63 on which the insulating layer 69 is patterned is carried into a film forming apparatus and the film is exposed to an atmosphere containing moisture or oxygen until the film formation of the protective layer 70 is completed, the light emitting layer made of the organic EL material It may be degraded by moisture or oxygen. Therefore, in the present embodiment, the loading and unloading of the substrate between the film forming apparatuses is performed under a vacuum atmosphere or an inert gas atmosphere.
The above embodiment is an example of the present invention, and the present invention is not limited to the configuration of the above embodiment, but may be appropriately modified within the scope of the technical idea thereof.

21:基板保持ユニット
22:マスク台
23:静電チャック
24:マグネット
30:誘電体部
31:電極部
32:電圧制御部
33:電源部
211:第1支持部材
212:第2支持部材
311:第1サブ電極部
312:第2サブ電極部
21: substrate holding unit 22: mask base 23: electrostatic chuck 24: magnet 30: dielectric portion 31: electrode portion 32: voltage control portion 33: power source portion 211: first support member 212: second support member 311: second 1 sub electrode portion 312: second sub electrode portion

Claims (17)

マスクを介して基板に成膜を行うための成膜装置であって、
基板の周縁部を支持するための支持部を含む基板保持ユニット、及び
前記支持部の上方に設けられ、基板を吸着するための静電チャックを含み、
前記静電チャックは、電圧を発生させる電源部、前記電圧が印加される電極部、及び前記電極部に印加される前記電圧を制御するための電圧制御部を含み、
前記電圧制御部は、基板を前記静電チャックに吸着させる時に、前記電圧として第1電圧が前記電極部に印加されるように制御し、基板が前記静電チャックに吸着された後、蒸着工程が開始される前に、前記電圧として前記第1電圧よりも低い第2電圧が前記電極部に印加されるように制御する成膜装置。
A film forming apparatus for forming a film on a substrate through a mask,
A substrate holding unit including a support portion for supporting a peripheral portion of the substrate; and an electrostatic chuck provided above the support portion and for adsorbing the substrate,
The electrostatic chuck includes a power supply unit that generates a voltage, an electrode unit to which the voltage is applied, and a voltage control unit that controls the voltage applied to the electrode unit.
The voltage control unit controls the first voltage as the voltage to be applied to the electrode unit when adsorbing the substrate to the electrostatic chuck, and after the substrate is attracted to the electrostatic chuck, a deposition process is performed. The film-forming apparatus which controls so that the 2nd voltage lower than the said 1st voltage as said voltage is applied to the said electrode part, is started.
前記電圧制御部は、前記静電チャックに前記第1電圧が印加された後、マスクと基板間の位置調整のためのアライメント工程途中に、前記第2電圧が前記電極部に印加されるように制御する請求項1に記載の成膜装置。   The voltage control unit may be configured to apply the second voltage to the electrode unit during an alignment process for adjusting the position between the mask and the substrate after the first voltage is applied to the electrostatic chuck. The film-forming apparatus of Claim 1 which controls. 前記電圧制御部は、前記静電チャックに前記第1電圧が印加された後、マスクと基板間の位置調整のためのアライメント工程が開始される前に、前記第2電圧が前記電極部に印加されるように制御する請求項1に記載の成膜装置。   The voltage control unit applies the second voltage to the electrode unit after the first voltage is applied to the electrostatic chuck and before an alignment process for adjusting the position between the mask and the substrate is started. The film forming apparatus according to claim 1, which is controlled to be controlled. 前記電圧制御部は、前記電極部に前記第2電圧が印加された後、所定の時点でゼロ(0)電圧または逆極性の電圧が前記電極部に印加されるように制御する請求項1〜請求項3のいずれか1項に記載の成膜装置。   The voltage control unit controls the zero voltage or the reverse polarity voltage to be applied to the electrode unit at a predetermined time after the second voltage is applied to the electrode unit. The film-forming apparatus of any one of Claim 3. 前記第2電圧は、ゼロ(0)電圧または逆極性の電圧である請求項1〜請求項4のいずれか1項に記載の成膜装置。   The film forming apparatus according to any one of claims 1 to 4, wherein the second voltage is a zero (0) voltage or a voltage of reverse polarity. 前記電極部は複数のサブ電極部を含み、前記電圧制御部は、前記複数のサブ電極部それぞれに印加される前記第2電圧の大きさをお互いに異なるように制御する請求項1〜請求項5のいずれか1項に記載の成膜装置。   The electrode unit includes a plurality of sub electrode units, and the voltage control unit controls the magnitudes of the second voltages applied to the plurality of sub electrode units to be different from each other. The film-forming apparatus of any one of 5. 前記支持部は、前記基板の対向する二辺のうち一方側の周縁部を支持するように配置される第1支持部材、及び、前記基板の前記対向する二辺のうち他方側の周縁部を支持するように配置される第2支持部材を含み、前記第1支持部材の基板支持面は前記第2支持部材の基板支持面よりも高さが高く、
前記複数のサブ電極部のうち前記第1支持部材に対応する位置に設けられたサブ電極部に印加される第2電圧が、前記第2支持部材に対応する位置に設けられたサブ電極部に印加される第2電圧よりも低い請求項6に記載の成膜装置。
The support portion is a first support member disposed to support a peripheral edge on one side of two opposing sides of the substrate, and a peripheral edge on the other side of the opposing two sides of the substrate. A second support member arranged to support, wherein the substrate support surface of the first support member is higher in height than the substrate support surface of the second support member,
A second voltage applied to a sub electrode portion provided at a position corresponding to the first support member among the plurality of sub electrode portions is provided at a sub electrode portion provided at a position corresponding to the second support member. The film forming apparatus according to claim 6, wherein the film forming apparatus is lower than the applied second voltage.
前記電極部は複数のサブ電極部を含み、前記電圧制御部は前記複数のサブ電極部それぞれに前記第2電圧が印加される時点をお互いに異なるように制御する請求項1〜請求項7のいずれか1項に記載の成膜装置。   8. The device according to claim 1, wherein the electrode unit includes a plurality of sub-electrode units, and the voltage control unit controls different points in time when the second voltage is applied to each of the plurality of sub-electrode units. The film-forming apparatus of any one. 前記支持部は、前記基板の対向する二辺のうち一方側の周縁部を支持するように配置される第1支持部材、及び、前記基板の前記対向する二辺のうち他方側の周縁部を支持するように配置される第2支持部材を含み、前記第1支持部材の基板支持面は前記第2支持部材の基板支持面よりも高さが高く、
前記複数のサブ電極部のうち前記第1支持部材に対応する位置に設けられたサブ電極部に前記第2電圧が印加される時点が、前記第2支持部材に対応する位置に設けられたサブ電極部に前記第2電圧が印加される時点よりも早い請求項8に記載の成膜装置。
The support portion is a first support member disposed to support a peripheral edge on one side of two opposing sides of the substrate, and a peripheral edge on the other side of the opposing two sides of the substrate. A second support member arranged to support, wherein the substrate support surface of the first support member is higher in height than the substrate support surface of the second support member,
Of the plurality of sub electrode portions, the sub electrode portion provided at the position corresponding to the first support member The point at which the second voltage is applied is provided at the position corresponding to the second support member The film forming apparatus according to claim 8, which is earlier than the time when the second voltage is applied to the electrode unit.
マスクを介して基板に成膜を行う成膜方法であって、
基板を成膜装置の真空チャンバー内に搬入する段階、
搬入された基板を基板保持ユニットの支持部上に載置する段階、
前記支持部上の基板を静電チャックに吸着させる段階、
前記静電チャックに吸着された基板をマスクに対して位置調整するアライメント段階、
位置調整された基板をマスク上に載置する段階、
マグネットによってマスクとマスク上の基板を密着させる段階、
蒸着源から蒸発された蒸着材料をマスクを介して基板上に成膜する段階、
蒸着材料が成膜された基板を成膜装置の真空チャンバーから搬出する段階を含み、
基板を静電チャックに吸着させる前記段階は、前記静電チャックに静電引力を発生させるための第1電圧を印加する段階を含み、
基板上に蒸着材料を成膜する前記段階の開始前に、前記静電チャックに印加される電圧を前記第1電圧から前記第1電圧よりも低い第2電圧に下げる成膜方法。
A film forming method for forming a film on a substrate through a mask,
Loading the substrate into the vacuum chamber of the film forming apparatus;
Placing the loaded substrate on the support of the substrate holding unit;
Adsorbing the substrate on the support to an electrostatic chuck;
An alignment step of adjusting the position of the substrate attracted to the electrostatic chuck with respect to a mask;
Placing the aligned substrate on the mask;
Contacting the mask and the substrate on the mask with a magnet,
Forming a deposition material evaporated from a deposition source on a substrate through a mask;
Carrying out the substrate on which the deposition material has been deposited from the vacuum chamber of the deposition apparatus;
The step of attracting the substrate to the electrostatic chuck includes applying a first voltage to the electrostatic chuck to generate an electrostatic attraction.
The film-forming method which reduces the voltage applied to the said electrostatic chuck from the said 1st voltage to the 2nd voltage lower than the said 1st voltage before the start of the said process of forming the vapor deposition material into a film on a board | substrate.
前記アライメント段階の進行途中に、前記静電チャックに印加される電圧を前記第2電圧に下げる請求項10に記載の成膜方法。   The film forming method according to claim 10, wherein the voltage applied to the electrostatic chuck is lowered to the second voltage during the progress of the alignment step. 前記アライメント段階の開始前に、前記静電チャックに印加される電圧を前記第2電圧に下げる請求項10に記載の成膜方法。   The film forming method according to claim 10, wherein the voltage applied to the electrostatic chuck is lowered to the second voltage before the start of the alignment step. 前記静電チャックに前記第2電圧が印加された後、前記基板を搬出する段階の完了前に、前記静電チャックにゼロ(0)電圧または逆極性の電圧を印加する請求項10〜請求項12のいずれか1項に記載の成膜方法。   After the second voltage is applied to the electrostatic chuck, a zero (0) voltage or a reverse polarity voltage is applied to the electrostatic chuck before the completion of the step of unloading the substrate. The film-forming method of any one of 12. 前記第2電圧はゼロ(0)電圧または逆極性の電圧である請求項10〜請求項13のいずれか1項に記載の成膜方法。   The film forming method according to any one of claims 10 to 13, wherein the second voltage is a zero (0) voltage or a voltage of reverse polarity. 前記静電チャックに含まれる複数のサブ電極部それぞれに印加される第2電圧の大きさをお互いに異なるようにする請求項10〜請求項14のいずれか1項に記載の成膜方法。   The film forming method according to any one of claims 10 to 14, wherein magnitudes of second voltages applied to the plurality of sub electrode portions included in the electrostatic chuck are made different from each other. 前記静電チャックに含まれる複数のサブ電極部それぞれに第2電圧が印加される時点をお互いに異なるようにする請求項10〜請求項15のいずれか1項に記載の成膜方法。   The film forming method according to any one of claims 10 to 15, wherein a point in time when the second voltage is applied to each of the plurality of sub electrode parts included in the electrostatic chuck is made different from each other. 有機EL表示装置の製造方法であって、
請求項10〜請求項16のいずれか1項に記載の成膜方法を使って有機EL表示装置を製造する製造方法。
A method of manufacturing an organic EL display device
The manufacturing method which manufactures an organic electroluminescence display using the film-forming method of any one of Claims 10-16.
JP2018200156A 2017-11-29 2018-10-24 Film forming device, film forming method, and manufacturing method of organic EL display device Active JP6954880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021161810A JP7138757B2 (en) 2017-11-29 2021-09-30 Film forming apparatus and method for manufacturing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0162002 2017-11-29
KR1020170162002A KR102008581B1 (en) 2017-11-29 2017-11-29 Film forming apparatus, film forming method and manufacturing method of organic el display apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021161810A Division JP7138757B2 (en) 2017-11-29 2021-09-30 Film forming apparatus and method for manufacturing electronic device

Publications (2)

Publication Number Publication Date
JP2019099913A true JP2019099913A (en) 2019-06-24
JP6954880B2 JP6954880B2 (en) 2021-10-27

Family

ID=66850140

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018200156A Active JP6954880B2 (en) 2017-11-29 2018-10-24 Film forming device, film forming method, and manufacturing method of organic EL display device
JP2021161810A Active JP7138757B2 (en) 2017-11-29 2021-09-30 Film forming apparatus and method for manufacturing electronic device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021161810A Active JP7138757B2 (en) 2017-11-29 2021-09-30 Film forming apparatus and method for manufacturing electronic device

Country Status (3)

Country Link
JP (2) JP6954880B2 (en)
KR (1) KR102008581B1 (en)
CN (2) CN109837507B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458437A (en) * 2019-09-07 2021-03-09 佳能特机株式会社 Adsorption apparatus, film forming apparatus, adsorption method, film forming method, and method for manufacturing electronic device
CN113005398A (en) * 2019-12-20 2021-06-22 佳能特机株式会社 Film forming apparatus, film forming method, and method for manufacturing electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210081700A (en) * 2019-12-24 2021-07-02 캐논 톡키 가부시키가이샤 Film forming apparatus and electronic device manufacturing method using the same
WO2024014528A1 (en) * 2022-07-15 2024-01-18 大日本印刷株式会社 Method for manufacturing electronic device, conductive film, first laminate, and second laminate
JP2024035289A (en) * 2022-09-02 2024-03-14 キヤノントッキ株式会社 Film deposition apparatus, drive method of film deposition apparatus and film deposition method
JP2024066091A (en) * 2022-11-01 2024-05-15 キヤノントッキ株式会社 Film forming apparatus, film forming apparatus driving method, and film forming method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270539A (en) * 1997-03-24 1998-10-09 Mitsubishi Electric Corp Usage electrostatic chuck
JP2008235900A (en) * 2007-03-19 2008-10-02 Nikon Corp Supporting device, exposure device, exposure method, and device manufacturing method
JP2010141352A (en) * 2010-02-26 2010-06-24 Ulvac Japan Ltd Vacuum processing method
JP2014065959A (en) * 2012-09-27 2014-04-17 Hitachi High-Technologies Corp Vapor deposition apparatus, and installation method for vapor deposition apparatus
JP2016195155A (en) * 2015-03-31 2016-11-17 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484883B2 (en) * 1997-05-23 2010-06-16 株式会社アルバック Method for treating adsorbed material
JP4226101B2 (en) * 1998-05-12 2009-02-18 株式会社アルバック Substrate removal method from electrostatic chuck plate surface
JP4884811B2 (en) * 2006-03-20 2012-02-29 三菱重工業株式会社 Glass substrate electrostatic adsorption device and adsorption / desorption method thereof
JP2009054746A (en) * 2007-08-27 2009-03-12 Nikon Corp Electrostatic chuck, and electrostatic chucking method
US20090109595A1 (en) * 2007-10-31 2009-04-30 Sokudo Co., Ltd. Method and system for performing electrostatic chuck clamping in track lithography tools
JP4897030B2 (en) * 2009-11-09 2012-03-14 東京エレクトロン株式会社 Transport arm cleaning method and substrate processing apparatus
JP2014075372A (en) * 2010-12-27 2014-04-24 Canon Anelva Corp Electrostatic attraction device
CN106256925B (en) * 2015-06-18 2020-10-02 佳能特机株式会社 Vacuum evaporation apparatus, method for manufacturing evaporated film, and method for manufacturing organic electronic device
KR102490641B1 (en) * 2015-11-25 2023-01-20 삼성디스플레이 주식회사 Deposition device and depositing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270539A (en) * 1997-03-24 1998-10-09 Mitsubishi Electric Corp Usage electrostatic chuck
JP2008235900A (en) * 2007-03-19 2008-10-02 Nikon Corp Supporting device, exposure device, exposure method, and device manufacturing method
JP2010141352A (en) * 2010-02-26 2010-06-24 Ulvac Japan Ltd Vacuum processing method
JP2014065959A (en) * 2012-09-27 2014-04-17 Hitachi High-Technologies Corp Vapor deposition apparatus, and installation method for vapor deposition apparatus
JP2016195155A (en) * 2015-03-31 2016-11-17 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458437A (en) * 2019-09-07 2021-03-09 佳能特机株式会社 Adsorption apparatus, film forming apparatus, adsorption method, film forming method, and method for manufacturing electronic device
CN113005398A (en) * 2019-12-20 2021-06-22 佳能特机株式会社 Film forming apparatus, film forming method, and method for manufacturing electronic device
CN113005398B (en) * 2019-12-20 2023-04-07 佳能特机株式会社 Film forming apparatus, film forming method, and method for manufacturing electronic device

Also Published As

Publication number Publication date
JP7138757B2 (en) 2022-09-16
CN109837507A (en) 2019-06-04
JP2022008796A (en) 2022-01-14
CN109837507B (en) 2022-06-03
KR102008581B1 (en) 2019-08-07
JP6954880B2 (en) 2021-10-27
KR20190063133A (en) 2019-06-07
CN114959567A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
JP7010800B2 (en) Film forming device, film forming method, and manufacturing method of organic EL display device
JP6990643B2 (en) Electrostatic chuck, film forming equipment, film forming method, and manufacturing method of electronic devices
JP6954880B2 (en) Film forming device, film forming method, and manufacturing method of organic EL display device
JP6703078B2 (en) Film forming apparatus and method for manufacturing organic EL display device using the same
JP2019099910A (en) Film deposition apparatus, film deposition method, and production method of electronic device
CN109837505B (en) Film forming apparatus, film forming method, and method for manufacturing organic EL display device
JP7278541B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
JP7120545B2 (en) Film forming apparatus, film forming method, and method for manufacturing organic EL display device using the same
CN109972084B (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
JP2020122223A (en) Film forming apparatus, film forming method, and manufacturing method of organic el display device using the same
JP6686100B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
CN109957775B (en) Electrostatic chuck, film forming apparatus, method for holding and separating substrate, and film forming method
JP7127765B2 (en) Electrostatic chuck, film forming apparatus, substrate adsorption method, film forming method, and electronic device manufacturing method
KR102050688B1 (en) Mask attaching device, film-forming apparatus, film-forming method, and method for manufacturing electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6954880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150