JP2019096619A - 光源装置およびこれを備えた測距センサ - Google Patents

光源装置およびこれを備えた測距センサ Download PDF

Info

Publication number
JP2019096619A
JP2019096619A JP2019010948A JP2019010948A JP2019096619A JP 2019096619 A JP2019096619 A JP 2019096619A JP 2019010948 A JP2019010948 A JP 2019010948A JP 2019010948 A JP2019010948 A JP 2019010948A JP 2019096619 A JP2019096619 A JP 2019096619A
Authority
JP
Japan
Prior art keywords
light source
lens
light
fluorescence
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019010948A
Other languages
English (en)
Inventor
藤原 直樹
Naoki Fujiwara
直樹 藤原
木村 和哉
Kazuya Kimura
和哉 木村
雅之 早川
Masayuki Hayakawa
雅之 早川
正行 荒川
Masayuki Arakawa
正行 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2019010948A priority Critical patent/JP2019096619A/ja
Publication of JP2019096619A publication Critical patent/JP2019096619A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】従来よりも高輝度な光源を得ることが可能な光源装置およびこれを備えた測距センサを提供する。【解決手段】光源装置10は、レーザ光を照射する光源部11と、集光レンズ12と、透光性蛍光体13と、を備えている。集光レンズ12は、光源部11から照射されたレーザ光を集光する。透光性蛍光体13は、集光レンズ12によって集光されたレーザ光の集光点が内部に設けられており、レーザ光が透過する部分において蛍光を発する。【選択図】図2

Description

本発明は、光源装置およびこれを備えた測距センサに関する。
近年、青色レーザ光を出射する光源部と、青色レーザ光が照射されて励起され蛍光を発
する蛍光体とを組み合わせた光源装置が用いられている。
例えば、特許文献1には、光源装置の小型化および高輝度化を図るために、複数の半導
体レーザから出射され集光レンズによって集光されたレーザ光によって励起されそれぞれ
異なる波長の蛍光光を発する複数の蛍光体を用いて、各半導体レーザの発光点と各蛍光体
とが集光レンズを介して互いに共役関係になるように構成された光源装置が開示されてい
る。
特開2013−120735号公報 特許第5649202号公報 特開2007−148418号公報
しかしながら、上記従来の光源装置では、以下に示すような問題点を有している。
すなわち、上記公報に開示された光源装置では、蛍光体が樹脂等のバインダに混ぜ込ん
で形成されているため、半導体レーザから出射されたレーザ光が蛍光体に照射された際に
、蛍光体の内部においてレーザ光が散乱してしまう。よって、蛍光体において発せられた
蛍光を効率よく取り出すことができず、充分に高輝度な光源を得ることは難しい。
また、上記特許文献2には、樹脂等のバインダを用いない単結晶の蛍光体を用いた光源
装置について記載されている。しかし、単結晶の蛍光体にレーザ光を照射しただけでは、
充分に高輝度化された光源を得ることは難しい。
本発明の課題は、従来よりも高輝度な光源を得ることが可能な光源装置およびこれを備
えた測距センサを提供することにある。
第1の発明に係る光源装置は、レーザ光を照射する光源部と、集光レンズと、透光性蛍
光体と、を備えている。集光レンズは、光源部から照射されたレーザ光を集光する。透光
性蛍光体は、集光レンズによって集光されたレーザ光の集光点が内部に設けられ、レーザ
光が透過する部分において蛍光を発する。
ここでは、光源部から照射され集光レンズによって集光されたレーザ光を、透光性蛍光
体の内部に集光点が位置するように照射して、透光性蛍光体においてレーザ光に励起され
た蛍光を用いて光源としている。
ここで、上記光源部としては、例えば、青色レーザ光を照射するLD(Laser Diode)
等を用いることができる。また、光源部から照射されるレーザ光は、平行光に限定される
ものではなく、若干広がりを有する光であってもよい。
上記集光レンズとしては、透光性蛍光体に対してレーザ光を集光できる機能を有するも
のであればよく、その形状は問わない。
上記透光性蛍光体は、例えば、多面体や球等のブロック状の蛍光体であって、単結晶蛍
光体、透光性セラミック蛍光体等を含む。そして、透光性とは、レーザ光が照射されて蛍
光体内部においてレーザ光の散乱がほとんどない特性(散乱がない特性も含む)であって
、蛍光体の内部において集光スポットが形成される程度の散乱特性を意味している。また
、透光性とは、蛍光体の内部において発生した蛍光の散乱がほとんどない特性(散乱がな
い特性を含む)を意味している。
これにより、透光性蛍光体における集光レンズによって集光されたレーザ光が照射され
た内部には、レーザ光によって励起された蛍光を発光させる蛍光光源部がレーザ光の伝播
方向に沿って形成されるとともに、透光性蛍光体の特性によって、レーザ光をほとんど散
乱させることなく内部に取り込むことができる。
この結果、透光性蛍光体に形成される蛍光光源部において発光した蛍光を効率よく取り
出すことができるため、従来よりも高輝度な光源を得ることができる。
第2の発明に係る光源装置は、第1の発明に係る光源装置であって、透光性蛍光体は、
集光レンズによって集光されたレーザ光の集光点が内部に設けられ、レーザ光は、透光性
蛍光体の表面に入射するときのビーム径、および透光性蛍光体の表面から出射するときの
ビーム径のいずれよりも小さいビーム径で集光点を透過して、レーザ光が透過する部分で
蛍光を発する。
ここでは、透光性蛍光体において、レーザ光が、透光性蛍光体に入射するレーザ光およ
び透光性蛍光体から出射されるレーザ光のそれぞれのビーム径よりも小さいビーム径で集
光点を通過し、レーザ光の透過部分において蛍光を発生させる。
これにより、透光性蛍光体の内部にレーザ光を集光して、体積あたりのエネルギー密度
を高くすることで、従来よりも高輝度な光源を得ることができる。
第3の発明に係る光源装置は、第1または第2の発明に係る光源装置であって、集光点
は、透光性蛍光体の表面から500μm以内の範囲に設けられる。
ここでは、透光性蛍光体の表面から500μm以内の範囲にレーザ光を集光させる。
これにより、透光性蛍光体には、レーザ光が集光された部分に、励起されて蛍光を発光
する蛍光光源部が形成される。そして、透光性蛍光体の表面から内部500μmの位置に
かけてレーザ光がほとんど散乱することなく照射されるため、効率よく発光した蛍光を所
望の方向から取り出すことができる。
第4の発明に係る光源装置は、第1または第2の発明に係る光源装置であって、集光点
は、透光性蛍光体の表面から160μm以内の範囲に設けられる。
ここでは、より好ましい範囲として、透光性蛍光体の表面から160μm以内の範囲に
レーザ光を集光させる。
これにより、透光性蛍光体には、レーザ光が集光された部分に、励起されて蛍光を発光
する蛍光光源部が形成される。そして、透光性蛍光体の表面から内部160μmの位置に
かけてレーザ光がほとんど散乱することなく照射されるため、効率よく発光した蛍光を所
望の方向から取り出すことができる。
第5の発明に係る光源装置は、第1から第4の発明のいずれか1つに係る光源装置であ
って、透光性蛍光体は、単結晶蛍光体である。
ここでは、透光性蛍光体として、単結晶蛍光体を用いている。
これにより、従来の樹脂等のバインドを含む蛍光体と比較して、集光レンズによって集
光されたレーザ光が内部でほとんど散乱することなく伝播していくため、効率よく蛍光を
発光させることができる。よって、従来よりも高輝度な光源を得ることができる。
第6の発明に係る光源装置は、第1から第4の発明のいずれか1つに係る光源装置であ
って、透光性蛍光体は、球、楕円体または多面体の形状を有している。
ここでは、透光性蛍光体として、球、楕円体あるいは多面体の蛍光体を用いている。
これにより、球等の透光性蛍光体におけるレーザ光が集光された部分には、レーザ光に
よって励起されて蛍光を発光する蛍光光源部をレーザ伝播方向に沿って形成することがで
きる。そして、透光性蛍光体の表面から内部にかけてレーザ光がほとんど散乱することな
く照射されるため、効率よく発光した蛍光を所望の方向から取り出すことができる。
第7の発明に係る光源装置は、第1から第6の発明のいずれか1つに係る光源装置であ
って、少なくとも透光性蛍光体において発せられた蛍光を集光する取込み用レンズをさら
に備えている。
ここでは、透光性蛍光体の内部におけるレーザ光が照射された部分(蛍光光源部)にお
いて発光した蛍光を取り出す取込み用レンズを設けている。
これにより、透光性蛍光体において発光した蛍光は、透光性蛍光体における取込み用レ
ンズの方向から外部へ取り出される。
よって、従来よりも高輝度な光源を得ることができる。
第8の発明に係る光源装置は、第7の発明に係る光源装置であって、取込み用レンズに
おいて集光された蛍光が第1端面に照射されるとともに、第1端面とは反対側の第2端面
から蛍光を出射するファイバを、さらに備えている。
ここでは、透光性蛍光体の内部において発光した蛍光を取り出す取込み用レンズの下流
側に、取込み用レンズから入射した蛍光を入射側(第1端面)とは反対側(第2端面)か
ら出射するファイバを配置している。
これにより、ファイバの第1端面から蛍光を取り込んで、第2端面から高輝度な光を出
射することができる。
第9の発明に係る光源装置は、第8の発明に係る光源装置であって、取込み用レンズお
よびファイバを含む蛍光取込み系は、単一の透光性蛍光体に対して複数設けられている。
ここでは、単一の透光性蛍光体に対して、複数の蛍光取込み系(取込み用レンズおよび
ファイバ)を配置している。
これにより、透光性蛍光体において発光した高輝度な蛍光を、複数の蛍光取込み系に取
り込ませて、それぞれを高輝度な光源として用いることができる。
第10の発明に係る光源装置は、第7または第8の発明のいずれか1つに係る光源装置
であって、取込み用レンズは、光源部から照射され集光レンズによって集光されたレーザ
伝播の中心軸に対してレンズの中心軸が同軸になるように配置されている。
ここでは、透光性蛍光体の内部におけるレーザ光のレーザ伝播の中心軸に対して、レン
ズの中心軸を合わせるように、取込み用レンズが配置されている。
これにより、透光性蛍光体の内部に形成される蛍光発光部分(蛍光光源部)の中心軸に
取込み用レンズの中心軸が合わせ込まれて配置されるため、透光性蛍光体において発光し
た蛍光を効率よく取り出すことができる。よって、従来よりも高輝度な光源を得ることが
できる。
また、透光性蛍光体の内部に形成される蛍光発光部分(蛍光光源部)の中心軸に取込み
用レンズの中心軸が合わせ込まれて配置されるため、光源部の下流側に配置される光学系
(集光レンズ、取込み用レンズ)を直線上に配置することができる。よって、光軸調整を
容易に行うことができるとともに、光学系を小型化することができる。
第11の発明に係る光源装置は、第8または第9の発明に係る光源装置であって、取込
み用レンズは、集光レンズのレンズ中心軸に対して、レンズ中心軸が斜めに配置されてい
る。
ここでは、集光レンズのレンズ中心軸に対して、取込み用レンズの中心軸が斜め(非同
軸)になるように配置している。
これにより、透光性蛍光体に照射されたレーザ光のうち、透光性蛍光体において吸収さ
れることなく透過してきたレーザ光が取込み用レンズに入射してくることを防止すること
ができる。
よって、光源装置から出射される光に含まれるレーザ光のエネルギーを低減することが
できるため、レーザ製品の安全基準を確保した高輝度な光源を得ることができる。
第12の発明に係る光源装置は、第8の発明に係る光源装置であって、取込み用レンズ
およびファイバを含む複数の蛍光取込み系は、取込み用レンズが透光性蛍光体を中心とす
る1つの球面上に位置するように配置されている。
ここでは、単一の透光性蛍光体に対して、複数の蛍光取込み系(取込み用レンズおよび
ファイバ)が、透光性蛍光体を中心とする共通の球面上に配置されている。
これにより、透光性蛍光体において発光した高輝度な蛍光を、透光性蛍光体から等距離
に配置された複数の蛍光取込み系に取り込ませて、それぞれを高輝度な光源として用いる
ことができる。
第13の発明に係る光源装置は、第1から第12発明のいずれか1つに係る光源装置で
あって、光源部および集光レンズを含むレーザ集光系は、単一の透光性蛍光体に対して複
数設けられている。
ここでは、単一の透光性蛍光体に対して、複数のレーザ集光系(光源部および集光レン
ズ)を配置している。
これにより、透光性蛍光体に対して複数箇所からレーザ光を照射して励起させた高輝度
な蛍光を光源として用いることができる。
第14の発明に係る光源装置は、第13の発明に係る光源装置であって、複数のレーザ
集光系は、集光レンズが透光性蛍光体を中心とする1つの球面上に位置するように配置さ
れている。
ここでは、単一の透光性蛍光体に対して、複数のレーザ集光系(光源部および集光レン
ズ)が、透光性蛍光体を中心とする共通の球面上に配置されている。
これにより、透光性蛍光体に対して、透光性蛍光体から等距離に配置された複数のレー
ザ集光系からレーザ光を照射して高輝度な蛍光を取り出し、光源として用いることができ
る。
第15の発明に係る光源装置は、第1から第14の発明のいずれか1つに係る光源装置
であって、透光性蛍光体は、レーザ光を透過させ蛍光を反射させる第1面と、レーザ光を
反射させ蛍光を透過させる第2面と、を有している。
ここでは、透光性蛍光体に、レーザ光を透過させ蛍光を反射させる面(第1面)と、レ
ーザ光を反射させ蛍光を透過させる面(第2面)とを設けている。
ここで、上記第1面および第2面は、それぞれ、例えば、透光性蛍光体に蒸着やスパッ
タ等によって成膜されたレーザ透過/蛍光反射膜、レーザ反射/蛍光透過膜等を用いるこ
とができる。
これにより、透光性蛍光体におけるレーザ光が入射してくる部分に第1面を配置するこ
とで、第1面では、透光性蛍光体に対して照射されたレーザ光を透過させるとともに、レ
ーザ光によって励起された蛍光を出射側へ反射することができる。
そして、レーザ光によって励起された蛍光が出射される部分に第2面を配置することで
、透光性蛍光体に対して照射されたレーザ光のうち透光性蛍光体に吸収されずに透過して
きたレーザ光を反射して透光性蛍光体の内部へ戻すとともに、レーザ光によって励起され
た蛍光を透過して出射することができる。
第16の発明に係る光源装置は、第1から第15の発明のいずれか1つに係る光源装置
であって、透光性蛍光体の入射面側に配置されており、光源部から照射されたレーザ光を
透過させるとともに、透光性蛍光体において発せられた蛍光のうち入射面側に発せられた
蛍光を透光性蛍光体の方へ反射する凹面鏡をさらに備えている。
ここでは、透光性蛍光体の入射面側、つまり集光レンズと透光性蛍光体との間に、レー
ザ光を透過させて蛍光を反射する凹面鏡が配置されている。
ここで、上記凹面鏡には、ダイクロイックミラーを用いることができる。
これにより、集光レンズによって集光されるレーザ光を透過させて透光性蛍光体へ照射
させるとともに、透光性蛍光体において発光した蛍光のうち透光性蛍光体の入射面側へ放
射された蛍光を凹面鏡によって、蛍光の発光位置の方向へ反射することができる。
この結果、凹面鏡によって、透光性蛍光体において発光した蛍光を効率よく取り出すこ
とができるため、さらに高輝度化した光源を得ることができる。
第17の発明に係る光源装置は、第1から第15の発明のいずれか1つに係る光源装置
であって、透光性蛍光体の出射面側に配置されており、光源部から照射されて透光性蛍光
体を通過したレーザ光を反射するとともに、透光性蛍光体において発せられた蛍光のうち
出射面側に発せられた蛍光を透過させる凹面鏡をさらに備えている。
ここでは、透光性蛍光体の出射面側に、レーザ光を反射して蛍光を透過させる凹面鏡が
配置されている。
ここで、上記凹面鏡には、ダイクロイックミラー、あるいはレーザ光を通過させる開口
を有する穴あきミラー等を用いることができる。
これにより、透光性蛍光体において発光した蛍光を透過させるとともに、集光レンズに
よって集光され透光性蛍光体を透過してきたレーザ光を凹面鏡によって、蛍光の発光位置
の方向へ反射することができる。
この結果、凹面鏡によって、透光性蛍光体を透過してきたレーザ光を再び透光性蛍光体
の方へ反射することで、効率よく蛍光を取り出すことができるため、さらに高輝度化した
光源を得ることができる。
第18の発明に係る光源装置は、第16または第17の発明に係る光源装置であって、
凹面鏡は、ダイクロイックミラー、あるいは開口部を有する穴あきミラーである。
ここでは、凹面鏡として、ダイクロイックミラーあるいは開口部を有する穴あきミラー
を用いている。
これにより、透光性蛍光体におけるレーザ光の入射面側に設けられた凹面鏡では、レー
ザ光を透過させるとともに、透光性蛍光体において発光し入射面側へ放射された蛍光を透
光性蛍光体における発光位置の方向へ反射することができる。
あるいは、透光性蛍光体における出射面側に設けられた凹面鏡では、透光性蛍光体にお
いて発光した蛍光を透過させるとともに、透光性蛍光体を透過してきたレーザ光を透光性
蛍光体における発光位置の方向へ反射することができる。
この結果、さらに高輝度化した光源を得ることができる。
第19の発明に係る光源装置は、第1の発明に係る光源装置であって、透光性蛍光体は
、球状の形状を有している。
ここでは、透光性蛍光体として、球状の蛍光体を用いている。
これにより、球状の透光性蛍光体におけるレーザ光が集光された部分には、レーザ光に
よって励起されて蛍光を発光する蛍光光源部をレーザ伝播方向に沿って形成することがで
きる。そして、透光性蛍光体の表面から内部にかけてレーザ光がほとんど散乱することな
く照射されるため、効率よく発光した蛍光を所望の方向から取り出すことができる。
第20の発明に係る光源装置は、第19の発明に係る光源装置であって、透光性蛍光体
は、光源部から照射され集光レンズによって集光されたレーザ光を取り込む第1開口部と
、レーザ光によって透光性蛍光体において発せられる蛍光を取り出す第2開口部と、を有
している。
ここでは、球状の透光性蛍光体に第1・第2開口部を設け、集光レンズによって集光さ
れたレーザ光を第1開口部から取り込むとともに、透光性蛍光体において励起された蛍光
を第2開口部から取り出す。
これにより、レーザ光を取り込む第1開口部と蛍光を取り出す第2開口部とを有する透
光性蛍光体を用いて、高輝度な光を取り出すことができる。
第21の発明に係る光源装置は、第19または第20の発明に係る光源装置であって、
光源部と集光レンズとを含むレーザ集光系は、球状の透光性蛍光体の中心部分にレーザ光
を集光させるように配置されている。
ここでは、球状の透光性蛍光体における中心部分にレーザ光を集光させる。
これにより、球状の透光性蛍光体の中心部分に、蛍光を発する蛍光光源部を形成し、蛍
光光源部から全方位に向けて蛍光を出射することができる。
第22の発明に係る光源装置は、第19から第21の発明のいずれか1つに係る光源装
置であって、光源部および集光レンズを含むレーザ集光系が、透光性蛍光体を中心とする
1つの球面上に複数配置されている。
ここでは、単一の球状の透光性蛍光体に対して、複数のレーザ集光系(光源部および集
光レンズ)を、透光性蛍光体を中心とする共通の球面上に配置している。
これにより、球状の透光性蛍光体に対して、透光性蛍光体から等距離に配置された複数
のレーザ集光系からレーザ光を照射して高輝度な蛍光を取り出し、光源として用いること
ができる。
第23の発明に係る光源装置は、第19から第22の発明のいずれか1つに係る光源装
置であって、透光性蛍光体において発せられた蛍光を集光する取込み用レンズと、取込み
用レンズにおいて集光された蛍光が第1端面に照射されるとともに第1端面とは反対側の
第2端面から蛍光を出射するファイバと、をさらに備えている。
ここでは、透光性蛍光体の下流側に、透光性蛍光体の内部におけるレーザ光が照射され
た部分(蛍光光源部)において発光した蛍光を取り出す取込み用レンズと、取込み用レン
ズから入射した蛍光を入射側(第1端面)とは反対側(第2端面)から出射するファイバ
とを配置している。
これにより、透光性蛍光体において発光した蛍光は、透光性蛍光体における取込み用レ
ンズの方向から外部へ取り出される。そして、取込み用レンズによって集光された蛍光を
ファイバの第1端面から取り込んで、第2端面から高輝度な光を出射することができる。
第24の発明に係る光源装置は、第23の発明に係る光源装置であって、取込み用レン
ズおよびファイバを含む蛍光取込み系が、透光性蛍光体を中心とする1つの球面上に複数
配置されている。
ここでは、単一の球状の透光性蛍光体に対して、複数の蛍光取込み系(取込み用レンズ
およびファイバ)を、透光性蛍光体を中心とする共通の球面上に配置している。
これにより、球状の透光性蛍光体において発光した高輝度な蛍光を、透光性蛍光体から
等距離に配置された複数の蛍光取込み系に取り込ませて、それぞれを高輝度な光源として
用いることができる。
第25の発明に係る光源装置は、第23または第24の発明に係る光源装置であって、
取込み用レンズは、レンズの中心軸が、光源部からから照射され集光レンズによって集光
されたレーザ光の光軸と同軸になるように配置されている。
ここでは、透光性蛍光体の内部におけるレーザ光のレーザ伝播の中心軸に対して、レン
ズの中心軸を合わせるように、蛍光取込み系に含まれる取込み用レンズが配置されている
これにより、球状の透光性蛍光体の内部に形成される蛍光発光部分(蛍光光源部)の中
心軸に取込み用レンズの中心軸が合わせ込まれて配置されるため、透光性蛍光体において
発光した蛍光を効率よく取り出すことができる。よって、従来よりも高輝度な光源を得る
ことができる。
また、球状の透光性蛍光体の内部に形成される蛍光発光部分(蛍光光源部)の中心軸に
取込み用レンズの中心軸が合わせ込まれて配置されるため、光源部の下流側に配置される
光学系(集光レンズ、取込み用レンズ等)を直線上に配置することができる。よって、光
軸調整を容易に行うことができるとともに、光学系を小型化することができる。
第26の発明に係る光源装置は、第23または第24の発明に係る光源装置であって、
取込み用レンズは、集光レンズのレンズ中心軸に対して、レンズ中心軸が斜めに配置され
ている。
ここでは、集光レンズのレンズ中心軸に対して、取込み用レンズの中心軸が斜め(非同
軸)になるように配置している。
これにより、透光性蛍光体に照射されたレーザ光のうち、透光性蛍光体において吸収さ
れることなく透過してきたレーザ光が取込み用レンズに入射してくることを防止すること
ができる。
よって、取込み用レンズには、透光性蛍光体においてレーザ光によって励起された蛍光
のみが取り込まれるため、従来よりも高輝度な光源を得ることができる。
第27の発明に係る光源装置は、レーザ光を照射する光源部と、集光レンズと、透光性
蛍光体と、反射膜と、第1開口部と、第2開口部と、を備えている。集光レンズは、光源
部から照射されたレーザ光を集光する。透光性蛍光体は、レーザ光が透過する部分におい
て蛍光を発する。反射膜は、透光性蛍光体の表面の少なくとも一部に設けられ、レーザ光
または蛍光を反射する。第1開口部は、反射膜におけるレーザ光の入射側の一部に形成さ
れており、レーザ光を入射させる。第2開口部は、反射膜における蛍光の出射側の一部に
形成されており、蛍光を出射させる。
ここでは、光源部から照射され集光レンズによって集光されたレーザ光を、透光性蛍光
体に照射して、透光性蛍光体においてレーザ光に励起された蛍光を用いて光源とするとと
もに、透光性蛍光体の表面の少なくとも一部に反射膜が設けられている。そして、透光性
蛍光体に第1・第2開口部を設け、集光レンズによって集光されたレーザ光を第1開口部
から取り込むとともに、透光性蛍光体において励起された蛍光を第2開口部から取り出す
これにより、第1開口部を介してレーザ光を透光性蛍光体の内部へ取り込むとともに、
透光性蛍光体に取り込んだレーザ光、または透光性蛍光体におけるレーザ光の通過部分か
ら発せられた蛍光を所望の方向へ反射し、第2開口部を介して蛍光を取り出すことができ
る。
この結果、透光性蛍光体に形成される蛍光光源部において発光した蛍光を効率よく取り
出すことができるため、従来よりも高輝度な光源を得ることができる。
第28の発明に係る測距センサは、第1から第27の発明のいずれか1つに係る光源装
置と、光源装置から照射された光の反射光を受光する受光部と、受光部において受光した
光の量に基づいて対象物までの距離を測定する測定部と、を備えている。
ここでは、上述した光源装置を用いて、測距センサを構成している。
これにより、従来よりも高輝度化された光源を用いることができるため、測定距離を延
長することができる、応答速度を向上させることができる等の効果を得ることができる。
第29の発明に係る測距センサは、第28の発明に係る測距センサであって、光源装置
が出力する複数の波長を含む光が通過する色収差焦点レンズを、さらに有している。受光
部は、色収差焦点レンズを介して対象物に照射された複数の波長を含む光の反射光を受光
する。測定部は、受光部における受光量が最大となる反射光の波長に基づいて、対象物ま
での距離を測定する。
ここでは、色収差焦点レンズを用いて複数の波長を含む光を波長ごと(色ごと)に分離
して、各波長の光のピークを検出することで、対象物までの距離を測定する共焦点式の測
距センサを構成している。
これにより、上述したように、従来よりも高輝度化された光を照射する光源装置を用い
て測距センサを構成しているため、高性能な共焦点式の測距センサを得ることができる。
本発明に係る光源装置によれば、従来よりも高輝度な光源を得ることができる。
本発明の一実施形態に係る光源装置を搭載した共焦点計測装置の構成を示す模式図。 図1の共焦点計測装置に搭載された光源装置の構成を示す模式図。 図2の光源装置の要部を拡大した模式図。 図3の透光性蛍光体の内部に形成される蛍光光源部の形状を示す模式図。 本発明の実施形態2に係る光源装置の構成を示す模式図。 図5の光源装置の要部を拡大した模式図。 図5の光源装置に含まれる凹面鏡(ダイクロイックミラー)の波長特性を示すグラフ。 本発明の実施形態3に係る光源装置の構成を示す模式図。 図8の光源装置の要部を拡大した模式図。 図8の光源装置に含まれる凹面鏡(ダイクロイックミラー)の波長特性を示すグラフ。 本発明の実施形態4に係る光源装置の構成を示す模式図。 (a)は、図11の光源装置に含まれる透光性蛍光体における光の屈折を示す模式図。(b)は、比較例として図2の光源装置に含まれる透光性蛍光体における光の屈折を示す模式図。 本発明の実施形態5に係る光源装置の構成を示す模式図。 図13の光源装置に含まれる透光性蛍光体の内部に形成される集光点の位置を示した模式図。 本発明の実施形態6に係る光源装置の構成を示す模式図。 図15の光源装置に含まれる透光性蛍光体の内部に形成される集光点の位置を示した模式図。 本発明の実施形態7に係る光源装置の構成を示す模式図。 本発明の実施形態8に係る光源装置の構成を示す模式図。 本発明の実施形態9に係る光源装置の構成を示す模式図。 本発明の実施形態10に係る光源装置の構成を示す模式図。 図20の光源装置に含まれる透光性蛍光体の構成を示す拡大図。 本発明の実施形態11に係る光源装置の構成を示す模式図。 図22の光源装置に含まれる透光性蛍光体の構成を示す模式図。 本発明の実施形態12に係る光源装置の構成を示す模式図。 本発明の実施形態13に係る光源装置の構成を示す模式図。 本発明の実施形態14に係る光源装置の構成を示す模式図。 本発明の実施形態15に係る光源装置の構成を示す模式図。 本発明の実施形態16に係る光源装置の構成を示す模式図。 本発明の実施形態17に係る光源装置の構成を示す模式図。 本発明の実施形態18に係る光源装置の構成を示す模式図。 図3の透光性蛍光体の内部に形成される集光点の蛍光体表面からの距離と蛍光体内部における放射輝度との関係を、透光性蛍光体の吸収係数ごとに示したグラフ。 図31のグラフの根拠となる数式を説明するための図。
(実施形態1)
本発明の一実施形態に係る光源装置10およびこれを備えた共焦点計測装置(測距セン
サ)50について、図1〜図4、図31および図32を用いて説明すれば以下の通りであ
る。
(共焦点計測装置50)
本実施形態に係る光源装置10を搭載した共焦点計測装置50は、図1に示すように、
共焦点光学系を利用して計測対象物Tの変位を計測する計測装置である。共焦点計測装置
50で計測する計測対象物Tには、例えば、液晶表示パネルのセルギャップなどがある。
共焦点計測装置50は、図1に示すように、共焦点の光学系を有するヘッド部51、光
ファイバ52を介して光学的に接続されたコントローラ部53、コントローラ部53から
出力される信号を表示するモニタ54を備えている。
ヘッド部51は、筒状の筐体部内に、回折レンズ(色収差焦点レンズ)51aと、回折
レンズ51aより計測対象物T側に配置された対物レンズ51bと、光ファイバ52と回
折レンズ51aとの間に設けられた集光レンズ51cと、を有している。
回折レンズ51aは、後述する複数の波長の光を出射する光源(例えば、白色光源)か
ら出射する光に、光軸方向に沿って色収差を生じさせる。回折レンズ51aは、レンズの
表面に、例えば、キノフォーム形状あるいはバイナリ形状(ステップ形状、階段形状)な
どの微細な起伏形状が周期的に形成されている。なお、回折レンズ51aの形状は、上記
構成に限定されるものではない。
対物レンズ51bは、回折レンズ51aにおいて色収差を生じさせた光を計測対象物T
に集光する。
集光レンズ51cは、光ファイバ52の開口数と回折レンズ51aの開口数とを一致さ
せるために、光ファイバ52と回折レンズ51aとの間に設けられている。
これは、光源から出射される光は、光ファイバ52を介してヘッド部51に導かれてお
り、光ファイバ52から出射する光を回折レンズ51aで有効に利用するには、光ファイ
バ52の開口数(NA:numerical aperture)と回折レンズ51aの開口数とを一致さ
せる必要があるためである。
光ファイバ52は、ヘッド部51からコントローラ部53までの光路であるとともに、
ピンホールとしても機能している。つまり、対物レンズ51bで集光した光のうち、計測
対象物Tで合焦する光は、光ファイバ52の開口部で合焦する。このため、光ファイバ5
2は、計測対象物Tで合焦しない波長の光を遮光し、計測対象物Tで合焦する光を通過さ
せるピンホールとして機能する。
共焦点計測装置50は、ヘッド部51からコントローラ部53までの光路に光ファイバ
52を用いない構成であってもよいが、当該光路に光ファイバ52を用いることで、ヘッ
ド部51をコントローラ部53に対してフレキシブルに移動することが可能になる。また
、共焦点計測装置50は、ヘッド部51からコントローラ部53までの光路に光ファイバ
52を用いない構成の場合、ピンホールを備える必要があるが、光ファイバ52を用いる
構成の場合、共焦点計測装置50は、ピンホールを備える必要がない。
コントローラ部53は、光源としての光源装置10、分岐光ファイバ56、分光器57
、撮像素子(受光部)58、制御回路部(測定部)59を内部に搭載している。なお、光
源装置10の詳細な構成については、後段にて詳述する。
分岐光ファイバ56は、ヘッド部51からコントローラ部53までの光路を形成する光
ファイバ52との接続側に一本の光ファイバ55aを、その反対側に2本の光ファイバ1
5,55を有している。なお、光ファイバ15は、後述する光源装置10の一部を構成し
ている。光ファイバ55bは、分光器57に接続されており、分光器57によって集光さ
れた光が端面から取り込まれる。
このため、分岐光ファイバ56は、光源装置10から出射された光を光ファイバ52に
導いてヘッド部51から計測対象物Tに対して照射する。さらに、分岐光ファイバ56は
、光ファイバ52およびヘッド部51を介して、計測対象物Tの表面において反射した光
を分光器57に導く。
分光器57は、ヘッド部51を介して戻ってきた反射光を反射する凹面ミラー57aと
、凹面ミラー57aで反射した光が入射する回折格子57bと、回折格子57bから出射
された光を集光する集光レンズ57cとを有している。なお、分光器57は、ヘッド部5
1を介して戻ってくる反射光を波長ごとに分けることができれば、ツェルニターナ型、リ
トロー型などのいずれの構成であってもよい。
撮像素子58は、分光器57から出射された光の強度を測定するラインCMOS(Comp
lementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)である。こ
こで、共焦点計測装置50では、分光器57および撮像素子58によって、ヘッド部51
を介して戻ってきた反射光の強度を波長ごとに測定する測定部を構成する。
なお、測定部は、ヘッド部51から戻る光の強度を波長ごとに測定することができれば
、CCDなどの撮像素子58の単体で構成されていてもよい。また、撮像素子58は、2
次元のCMOSや2次元のCCDであってもよい。
制御回路部59は、光源装置10や撮像素子58などの動作を制御する。また、図示し
ていないが、制御回路部59は、光源装置10や撮像素子58などの動作を調整するため
の信号を入力する入力インターフェース、撮像素子58の信号を出力する出力インターフ
ェースなどを有している。
モニタ54は、撮像素子58が出力した信号を表示する。例えば、モニタ54は、ヘッ
ド部51から戻る光のスペクトル波形を描画し、計測対象物の変位を表示する。
本実施形態の共焦点計測装置50では、以下の光源装置10を搭載していることにより
、高輝度な光源を得ることができる。
これにより、計測装置として、測定距離を延長することができる、応答性を向上させる
ことができる等の効果を得ることができる。
なお、光源装置10の構成については、以下で詳しく説明する。
(光源装置10)
本実施形態の光源装置10は、上述した共焦点計測装置50の光源として搭載されてお
り、図2に示すように、光源部11と、集光レンズ12と、透光性蛍光体13と、取込み
用レンズ14と、光ファイバ15と、を備えている。
光源部11は、例えば、ピーク波長が450nm程度のレーザ光を出射する半導体レー
ザであって、透光性蛍光体13において蛍光を発光させるための励起光として、集光レン
ズ12の方向にレーザ光を照射する。
集光レンズ12は、入射面および出射面がともに凸状のレンズであって、光源部から照
射されたレーザ光を、透光性蛍光体13の内部に集光する。詳細には、集光レンズ12は
、透光性蛍光体13の入射面13aから500μm以内の距離にレーザ光を集光する。
なお、集光レンズ12によって集光されたレーザ光の集光点Xの位置(入射側表面から
の深度)については、後段にて詳述する。
透光性蛍光体13は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であって
、図2に示すように、板状の形状を有している。また、透光性蛍光体13は、レーザ伝播
方向に垂直な面に沿ってそれぞれ配置された入射面13aと出射面13bとを有している
。そして、透光性蛍光体13は、光源部11から照射され集光レンズ12によって集光さ
れたレーザ光が照射された部分において、図2に示すように、全方位に向かって。480
〜750nmの範囲の波長を持つ蛍光を発光する。
そして、透光性蛍光体13には、図3に示すように、レーザ光が照射された部分に、レ
ーザ光の伝播方向に沿って長い略筒状の蛍光光源部20が形成される。
蛍光光源部20は、レーザ光が透光性蛍光体13の内部を通過した部分に形成され、図
3および図4に示すように、レーザ伝播方向に長い略筒状の形状を有している。
そして、蛍光光源部20は、各部において全方位に向かって蛍光を発光することから、
透光性蛍光体13の内部に形成された光源とみなすことができる。具体的には、蛍光光源
部20は、図4に示すように、レーザ光の伝播方向に沿った長手方向における中央部分に
断面の円の半径が小さくなる径小部を有しており、両端に向かって断面の円の半径が大き
くなる略円筒状の形状を有している。
すなわち、蛍光光源部20は、レーザ光の集光点Xが径小部断面20bに位置するよう
に形成される。そして、蛍光光源部20は、レーザ光の拡散に合わせて、入射側断面20
aおよび出射側断面20cの断面積が、径小部断面20bよりも大きくなるように形成さ
れる。
例えば、蛍光光源部20は、レーザ光の入射側の端面(入射側断面20a)、略筒状の
中央部分の径小部(径小部断面20b)、レーザ光の出射側の端面(出射側断面20c)
において、それぞれ全方位に向かって蛍光を発する。
よって、蛍光光源部20において発光する蛍光のうち、取込み用レンズ14によって光
ファイバ15の端面(第1面)に集光される蛍光の光量は、取込み用レンズ14のレンズ
中心軸A2方向に延びた光ファイバ15の被写界深度内に存在する蛍光光源部20が放出
する蛍光のうち、取込み用レンズ14によって取り込まれる光量となる。
なお、被写界深度とは、被写体側(物面側)において、レンズを用いてピントを合わせ
た位置の前後で実用上ピントが合っているとみなせる範囲を意味している。また、焦点深
度とは、被写界深度をフィルム側(像面側)に置き換えたものである。つまり、被写界深
度の中にあるものは、全てピントが合っているように写すことができる。
また、被写界深度のうち、ピントを合わせた位置の後側を後方被写界深度、ピントを合
わせた位置の前側を前方被写界深度と呼ぶ。
取込み用レンズ14は、集光レンズ12と同様に、入射面および出射面がともに凸状の
レンズであって、透光性蛍光体13においてレーザ光が伝播する方向における下流側に配
置されている。そして、取込み用レンズ14は、透光性蛍光体13の内部(蛍光光源部2
0)において発光した蛍光を、光ファイバ15の端面に集光する。
また、取込み用レンズ14は、図3に示すように、レンズ中心軸A2が透光性蛍光体1
3の内部におけるレーザ光が伝播する中心軸A1と同軸(一直線上)になるように、配置
されている。このように、レーザ伝播の中心軸A1と取込み用レンズ14のレンズ中心軸
A2とが同軸になるように配置することで、蛍光光源部20において発光した蛍光を、効
率よく第1面15aから光ファイバ15内へ入射させることができる。
光ファイバ15は、上述した共焦点計測装置50の分岐光ファイバ56を構成する1本
の光ファイバであって、共焦点計測装置50のヘッド部51から照射される光の光路を内
部に形成する。
また、光ファイバ15は、図3に示すように、取込み用レンズ14によって集光された
蛍光が入射される端面(第1面15a)と、その反対側の出射側の端面(第2面15b)
とを有している。
これにより、光ファイバ15は、第1面15aから入射してきた光を、第2面15bか
ら出射することができる。
本実施形態の光源装置10では、以上のような構成により、図2に示すように、光源部
11から照射された励起用のレーザ光を、集光レンズ12によって透光性蛍光体13の内
部に集光する。そして、図3に示すように、透光性蛍光体13の内部におけるレーザ光の
集光部分において発生した蛍光を、取込み用レンズ14によって光ファイバ15の第1面
15aに集光する。
ここで、本実施形態の光源装置10では、上述したように、集光レンズ12によって集
光されたレーザ光を、単結晶の蛍光体(透光性蛍光体13)の内部に照射している。
このとき、レーザ光は、単結晶の蛍光体(透光性蛍光体13)に入射すると、蛍光体内
でほとんど光が拡散されることなく、蛍光を励起しながら蛍光体内部を透過する。
すなわち、本実施形態の光源装置10では、内部に入射してきたレーザ光をほとんど散
乱させることがない単結晶蛍光体(透光性蛍光体)を用いている。このため、従来の樹脂
等のバインダを用いて固められた蛍光体と比較して、内部に入射してきたレーザ光によっ
て発光した蛍光を効率よく取り出すことができるため、従来よりも高輝度な光源を得るこ
とができる。
<集光点Xの位置(深度)について>
本実施形態では、集光レンズ12によって透光性蛍光体13の内部に形成されるレーザ
光の集光点Xは、透光性蛍光体13の入射側の表面から500μm以内、より好ましくは
、160μm以内に形成される。
ここで、最大光量となる集光点Xは、光源部11と集光レンズ12とから決定されるレ
ーザNAと、透光性蛍光体13のレーザが入射される表面からの距離と、透光性蛍光体1
3の吸収係数とによって決まる。
図31に、透光性蛍光体13の内部に形成される集光点Xの蛍光体表面からの距離(深
度)と蛍光体内部における放射輝度との関係を、透光性蛍光体13の吸収係数ごとに示し
たグラフを示す。
なお、図31に示すグラフでは、焦点位置半径(ビームウェストビーム半径)を20μ
m、レーザNA(Numerical Aperture)を0.06とした場合の集光点Xの蛍光体表面か
らの距離と蛍光体内部における放射輝度との関係を示している。
具体的には、図31に示すグラフは、透光性蛍光体13の吸収係数20,40,80,
160ごとに、集光点Xの深度(蛍光体表面からの距離)に対する蛍光体内放射輝度の変
化を示している。
また、図31に示すグラフでは、蛍光体表面から集光点Xまでの距離が0μm、つまり
表面に集光点Xがあるときに、蛍光体内の放射輝度を1.00(W/sr/m)とした
ときの相対的な放射輝度を、吸収係数ごとにプロットしている。そして、1.00(W/
sr/m)よりも大きい放射輝度になる集光点Xの深度を数値範囲として規定する。
例えば、透光性蛍光体13の吸収係数が20の場合には、図31のグラフに示すように
、蛍光体表面から集光点Xの距離(深度)が0〜500μmの範囲が、1.00(W/s
r/m)よりも大きい放射輝度となる。一方、蛍光体表面から集光点Xの距離(深度)
が500μmを超えると、1.00(W/sr/m)よりも小さい輝度となってしまう
。よって、透光性蛍光体13の吸収係数が20の場合には、500μm以内であれば高輝
度な光源を得ることができる。
次に、透光性蛍光体13の吸収係数が40の場合には、図31のグラフに示すように、
蛍光体表面から集光点Xの距離(深度)が0〜300μmの範囲が、1.00(W/sr
/m)よりも大きい放射輝度となる。一方、蛍光体表面から集光点Xの距離(深度)が
300μmを超えると、1.00(W/sr/m)よりも小さい輝度となってしまう。
よって、透光性蛍光体13の吸収係数が40の場合には、300μm以内であれば高輝度
な光源を得ることができる。
次に、透光性蛍光体13の吸収係数が80の場合には、図31のグラフに示すように、
蛍光体表面から集光点Xの距離(深度)が0〜160μmの範囲が、1.00(W/sr
/m)よりも大きい放射輝度となる。一方、蛍光体表面から集光点Xの距離(深度)が
160μmを超えると、1.00(W/sr/m)よりも小さい輝度となってしまう。
よって、透光性蛍光体13の吸収係数が80の場合には、160μm以内であれば高輝度
光源を得ることができる。
次に、透光性蛍光体13の吸収係数が160の場合には、図31のグラフに示すように
、蛍光体表面から集光点Xの距離(深度)が0〜80μmの範囲が、1.00(W/sr
/m)よりも大きい放射輝度となる。一方、蛍光体表面から集光点Xの距離(深度)が
80μmを超えると、1.00(W/sr/m)よりも小さい輝度となってしまう。よ
って、透光性蛍光体13の吸収係数が160の場合には、80μm以内であれば高輝度な
光源を得ることができる。
以上のように、高輝度化された光源を得るためには、蛍光体表面から集光点Xの距離(
深度)は、500μm以下であることが好ましい。
また、より好ましい範囲として、吸収係数が80の場合には、高輝度化された光源を得
るためには、高輝度化される蛍光体表面から集光点Xの距離(深度)は、160μm以下
であることが好ましい。
なお、図31に示すグラフは、以下の数1の式によって導かれる。
Figure 2019096619
すなわち、数1の式は、図32に示すように、単位面積あたりの放射輝度L(x)を、
変換効率A、透光性蛍光体13の吸収係数α、LDパワーILD、断面積S(x’−x)
、透光性蛍光体13の厚みt、表面から透光性蛍光体13内の集光点Xまでの距離x、表
面から計測位置までの距離x’、集光位置におけるレーザ半径rBWを用いて表した関係
式である。
なお、上記数1の式において、断面積S(x’−x)は、以下の数2の関係式によって
表される。
Figure 2019096619
ここで、断面積は、集光位置からレーザNA(0.06)で広がっていくものとして近
似した。また、集光位置においては、有限な面積SBWを持ち、その半径はrBWとする
。光学系において回折限界以上小さく絞ることができないため、有効な面積を変数とした
なお、透光性蛍光体13の吸収係数αは、以下の数3の関係式を用いて表される。
すなわち、透光性蛍光体13に入射する前の光の強度をIとしたとき、入射後の光の
強度Iは、ランベルト・ベールの法則から、吸収係数αを用いて以下の式で表される。
Figure 2019096619
ここで、xは、媒質の距離である。
高輝度化された光源が得られるIの範囲は、0.2≦I≦1である。
(実施形態2)
本発明の実施形態2に係る光源装置について、図5から図7を用いて説明すれば以下の
通りである。
本実施形態に係る光源装置110は、図5に示すように、透光性蛍光体113と取込み
用レンズ14の間に凹面鏡116を設けた点において、上記実施形態1とは異なっている

なお、光源装置110のその他の構成については、上記実施形態1の光源装置10と同
様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する。
本実施形態の光源装置110は、図5に示すように、光源部11と、集光レンズ12と
、透光性蛍光体113と、凹面鏡116と、取込み用レンズ14と、光ファイバ15とを
備えている。
透光性蛍光体113は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であっ
て、板状の形状を有している。
凹面鏡116は、透光性蛍光体113と取込み用レンズ14との間に配置されており、
透光性蛍光体113側の入射面に凹状の反射面を有している。そして、凹面鏡116は、
透光性蛍光体113において励起された蛍光を透過させるとともに、透光性蛍光体113
を透過してきたレーザ光を反射する特性を有している。
これにより、透光性蛍光体113の内部に形成される蛍光光源部120から全方位に向
けて放出された蛍光のうち、取込み用レンズ14側へ放出された蛍光を、凹面鏡116に
よって遮ることなく、取込み用レンズ14において取り込むことができる。
さらに、図6に示すように、透光性蛍光体113において吸収されることなく透過して
きたレーザ光を、凹面鏡116によって反射して透光性蛍光体113側へ戻すことができ
る。
この結果、透光性蛍光体113では、上記実施形態1において照射されたレーザ光より
も多くの励起光を取り込んで蛍光を励起されることができるため、従来よりもさらに高輝
度化した光源を得ることができる。
また、透光性蛍光体113を、上記実施形態1の透光性蛍光体13よりも薄くすること
により、透光性蛍光体13を透過した後に凹面鏡116で反射して再度透光性蛍光体13
に照射するレーザ光を多くすることができ、さらに高輝度化した光源を得ることができる

さらに、凹面鏡116は、図6に示すように、蛍光光源部120の中心軸A1に対して
、凹状の曲面の中心が来るように配置されている。
これにより、反射したレーザ光を蛍光が発光した部分(蛍光光源部120)の位置へ再
び集光させることができる。
この結果、透光性蛍光体113では、上記実施形態1において照射されたレーザ光より
も多くの励起光を取り込んで蛍光を励起されることができるため、従来よりもさらに高輝
度化した光源を得ることができる。
また、凹面鏡116は、集光レンズ12によって透光性蛍光体113内に集光されたレ
ーザ光の集光点Xを中心とする球面あるいは非球面の形状を有していることがより好まし
い。
これにより、反射したレーザ光を蛍光が発光した部分(蛍光光源部120)へ再び集光
させることができる。
この結果、取込み用レンズ14では、上記実施形態1において取り込まれた蛍光よりも
多くの蛍光を取り込んで光ファイバ15の第1面15aへ集光することができるため、さ
らに効果的に高輝度化した光源を得ることができる。
なお、凹面鏡116としては、ダイクロイックミラー、あるいは、メニスカスレンズの
凹面にレーザ光を反射する反射膜を蒸着させたレンズ、蛍光を通過させる部分に開口を有
し凹状の面においてレーザ光を反射させる穴あきミラー等を用いることができる。
例えば、凹面鏡116としてダイクロイックミラーを用いた場合には、図7に示すよう
に、約480nm以下の波長の光(レーザ光)を反射させるとともに、約480nmより
大きい波長の光(蛍光)を透過させることで、蛍光を透過させつつレーザ光を反射させる
ことができる。
(実施形態3)
本発明の実施形態3に係る光源装置について、図8から図10を用いて説明すれば以下
の通りである。
本実施形態に係る光源装置210は、図8に示すように、集光レンズ12と透光性蛍光
体13との間に凹面鏡216を設けた点において、上記実施形態1とは異なっている。
なお、光源装置210のその他の構成については、上記実施形態1の光源装置10と同
様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する。
本実施形態の光源装置210は、図8に示すように、光源部11と、集光レンズ12と
、凹面鏡216と、透光性蛍光体13と、取込み用レンズ14と、光ファイバ15とを備
えている。
凹面鏡216は、集光レンズ12と透光性蛍光体13との間に配置されており、透光性
蛍光体13側の面に凹状の反射面を有している。そして、凹面鏡216は、集光レンズ1
2によって集光されたレーザ光を透過させるとともに、透光性蛍光体13の内部において
発光した蛍光を反射する特性を有している。
これにより、光源部11から照射され集光レンズ12によって集光されたレーザ光を、
凹面鏡216によって遮ることなく、透光性蛍光体13へと照射することができる。さら
に、図9に示すように、透光性蛍光体13の内部に形成される蛍光光源部220から全方
位に向けて放出された蛍光のうち、集光レンズ12側に放出された蛍光を凹面鏡216に
よって反射して透光性蛍光体13側へ戻すことができる。
この結果、取込み用レンズ14では、上記実施形態1において取り込まれた蛍光よりも
多くの蛍光を取り込んで光ファイバ15の第1面15aへ集光することができるため、従
来よりもさらに高輝度化した光源を得ることができる。
さらに、凹面鏡216は、蛍光光源部220の中心軸A1に対して、凹状の曲面の中心
が来るように配置されている。
これにより、反射した蛍光を蛍光が発光した部分(蛍光光源部220)の位置へ集光さ
せることができる。
この結果、取込み用レンズ14では、上記実施形態1において取り込まれた蛍光よりも
多くの蛍光を取り込んで光ファイバ15の第1面15aへ集光することができるため、さ
らに効果的に高輝度化した光源を得ることができる。
また、凹面鏡216は、集光レンズ12によって透光性蛍光体13内に集光されたレー
ザ光の集光点Xを中心とする球面あるいは非球面の形状を有していることがより好ましい

これにより、反射した蛍光を蛍光が発光した部分(蛍光光源部220)へ集光させるこ
とができる。
この結果、取込み用レンズ14では、上記実施形態1において取り込まれた蛍光よりも
多くの蛍光を取り込んで光ファイバ15の第1面15aへ集光することができるため、さ
らに効果的に高輝度化した光源を得ることができる。
なお、凹面鏡216としては、ダイクロイックミラー、あるいは、メニスカスレンズの
凹面に蛍光を反射する反射膜を蒸着させたレンズ、レーザ光を通過させる部分に開口を有
し凹状の面において蛍光を反射させる穴あきミラー等を用いることができる。
例えば、凹面鏡216としてダイクロイックミラーを用いた場合には、図10に示すよ
うに、約480nm以下の波長の光(レーザ光)を透過させるとともに、約480nmよ
り大きい波長の光(蛍光)を反射させることで、レーザ光を透過させつつ蛍光を反射させ
ることができる。
(実施形態4)
本発明の実施形態4に係る光源装置について、図11から図12(b)を用いて説明す
れば以下の通りである。
本実施形態に係る光源装置310は、図11に示すように、板状の透光性蛍光体13の
代わりに、球の透光性蛍光体313を設けた点において、上記実施形態1とは異なってい
る。
なお、光源装置310のその他の構成については、上記実施形態1の光源装置10と同
様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する。
本実施形態の光源装置310は、図11に示すように、光源部11と、集光レンズ12
と、透光性蛍光体313と、取込み用レンズ14と、光ファイバ15とを備えている。
透光性蛍光体313は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であっ
て、球形状を有している。そして、透光性蛍光体313は、集光レンズ12によって集光
されたレーザ光の集光点Xがその中心に設けられることで、集光点Xを中心として全方位
に向かって蛍光を発する。
また、球の透光性蛍光体313では、図12(a)に示すように、内部で発光した蛍光
が、透光性蛍光体313と空気との界面(出射部313a)でほとんど屈折することなく
取込み用レンズ14へと取り込まれる。
一方、上記実施形態1等で説明した板状の透光性蛍光体13では、図12(b)に示す
ように、内部で発光した蛍光が、透光性蛍光体13と空気との界面(出射部13ba)に
おいて屈折して広角に広がりながら取込み用レンズ14へと取り込まれる。
よって、板状の透光性蛍光体13の代わりに球の透光性蛍光体313を用いることで、
透光性蛍光体313の内部で発光した蛍光をほとんど屈折させることなく、取込み用レン
ズ14へ導くことができる。
この結果、取込み用レンズ14における蛍光の結合効率が向上するため、光ファイバ1
5の第1面15aに対してさらに高輝度な光を集光させることができる。
また、本実施形態では、球の透光性蛍光体313の中心に集光点Xが形成されるように
レーザ光を照射・集光している。
これにより、球の中心である集光点Xを中心にして全方位に向かって発光した蛍光は、
どこから取り出しても集光点Xから同じ距離で空気中へ放出される。
この結果、球の透光性蛍光体313から取り出した蛍光を、どの方向からも略同じ輝度
で取り出すことができる。
(実施形態5)
本発明の実施形態5に係る光源装置410について、図13および図14を用いて説明
すれば以下の通りである。
本実施形態に係る光源装置410は、図13に示すように、直方体(多面体)形状を有
する透光性蛍光体413に対して、互いに直交する2方向からレーザ光を照射するために
、光源部11および集光レンズ12を含むレーザ集光系411a,411bを2つ設けた
点において、上記実施形態1とは異なっている。
なお、光源装置410のその他の構成については、上記実施形態1の光源装置10と同
様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する。
本実施形態の光源装置410は、図13に示すように、光源部11および集光レンズ1
2を含むレーザ集光系411aと、光源部11および集光レンズ12を含むレーザ集光系
411bと、透光性蛍光体413と、取込み用レンズ14と、光ファイバ15とを備えて
いる。
レーザ集光系411aは、集光レンズ12のレンズ中心軸が、蛍光を取り込む取込み用
レンズ14のレンズ中心軸と同軸になるように配置されている。
すなわち、レーザ集光系411aから照射されたレーザ光は、集光レンズ12を介して
透光性蛍光体413に集光され、集光点Xを中心とする部分において蛍光を発光させる。
そして、透光性蛍光体413において発光した蛍光は、レーザ集光系411aと一直線上
に配置された取込み用レンズ14によって集光され、光ファイバ15の第1面15aに照
射される。
レーザ集光系411bは、集光レンズ12のレンズ中心軸が、蛍光を取り込む取込み用
レンズ14のレンズ中心軸と略直交する(交差する)方向に沿って配置されている。
すなわち、レーザ集光系411bから照射されたレーザ光は、集光レンズ12を介して
透光性蛍光体413に集光され、集光点Xを中心とする部分において蛍光を発光させる。
このとき、レーザ集光系411bの集光レンズ12によって集光されたレーザ光は、レ
ーザ集光系411aの集光レンズ12によって集光されたレーザ光と同じ集光点Xになる
ように照射される。
そして、透光性蛍光体413において発光した蛍光は、全方位に向かって照射されるた
め、レーザ集光系411bと直交する方向に沿って配置された取込み用レンズ14によっ
て集光され、光ファイバ15の第1面15aに照射される。
また、レーザ集光系411a,411bは、図13に示すように、透光性蛍光体413
の内部に形成される集光点Xを中心とする円周上に配置されている。
これにより、透光性蛍光体413は、同じ距離に配置された複数のレーザ集光系411
a,411bからレーザ光を照射される。
透光性蛍光体413は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であっ
て、図13および図14に示すように、直方体(6面体)形状を有しており、入射面41
3aと、出射面413bと、入射面413cとを有している。
入射面413aは、取込み用レンズ14が配置された出射面413bに対向する面であ
って、レーザ集光系411aから照射されるレーザ光が入射する。
出射面413bは、取込み用レンズ14が配置された側の面であって、レーザ集光系4
11a,411bから照射されたレーザ光によって励起されて全方位に向かって発光する
蛍光のうち、取込み用レンズ14側に発光した蛍光が出射される。
入射面413cは、入射面413aおよび出射面413bに対して垂直な面であって、
レーザ集光系411bから照射されたレーザ光が入射する。
本実施形態の光源装置410では、図13に示すように、2つのレーザ集光系411a
,411bから照射されたレーザ光が、透光性蛍光体413の内部に形成される共通の集
光点Xに集光される。
これにより、レーザ集光系が1つしかない構成と比較して、集光点Xにおけるレーザ光
の光量が略2倍になるため、励起される蛍光も略2倍となって、さらに高輝度化した光源
を得ることができる。
また、本実施形態では、図14に示すように、透光性蛍光体413の内部において、2
つのレーザ集光系411a,411bによって照射されるレーザ光の集光点Xは、入射面
413aからの距離d1と入射面413cからの距離d2とが略同じになるように形成さ
れる。
このように、2つのレーザ集光系411a,411bによって照射されるレーザ光の集
光点Xがそれぞれの入射面413a,413cからの距離d1,d2が略同じ距離になる
ように配置されていることで、集光点Xにおける蛍光の輝度をさらに向上されることがで
きる。
なお、本実施形態では、レーザ集光系が2つ設けられた構成について説明したが、本発
明はこれに限定されるものではなく、直方体の透光性蛍光体の周囲にレーザ集光系が3つ
以上設けられた構成であってもよい。
(実施形態6)
本発明の実施形態6に係る光源装置510について、図15および図16を用いて説明
すれば以下の通りである。
本実施形態に係る光源装置510は、図15に示すように、直方体(多面体)形状を有
する透光性蛍光体513に対して、互いに直交する2方向から蛍光を取り込むように、蛍
光取込み系514a,514bを2つ設けた点において、上記実施形態1とは異なってい
る。
なお、光源装置510のその他の構成については、上記実施形態1の光源装置10と同
様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する。
本実施形態の光源装置510は、図15に示すように、光源部11と、集光レンズ12
と、透光性蛍光体513と、取込み用レンズ14および光ファイバ15を含む蛍光取込み
系514a、取込み用レンズ14および光ファイバ15を含む蛍光取込み系514bとを
備えている。
蛍光取込み系514aは、取込み用レンズ14のレンズ中心軸が、レーザ光を集光する
集光レンズ12のレンズ中心軸と同軸になるように配置されている。
すなわち、蛍光取込み系514aでは、単一の光源部11から照射され集光レンズ12
によって集光されたレーザ光によって透光性蛍光体513を励起させて発生する蛍光が、
集光レンズ12と一直線上に配置された取込み用レンズ14によって集光され、光ファイ
バ15の第1面15aに照射される。
蛍光取込み系514bは、取込み用レンズ14のレンズ中心軸が、集光レンズ12のレ
ンズ中心軸と、蛍光取込み系514aの取込み用レンズ14のレンズ中心軸とに対して、
略直交する(交差する)方向に沿って配置されている。
すなわち、光源部11から照射されたレーザ光は、集光レンズ12を介して透光性蛍光
体513に集光され、集光点Xを中心とする部分において蛍光を発光させる。
このとき、透光性蛍光体513の内部において発生する蛍光は、全方位に向かって放出
される。このうち、蛍光取込み系514a,514bが配置された方向へは、レーザ光の
集光点Xから略同じ距離に配置された出射面513b,513cからそれぞれ蛍光が出射
される。
そして、出射面513b,513cから出射される蛍光は、蛍光取込み系514a,5
14bのそれぞれにおいて、取込み用レンズ14によって集光され、光ファイバ15の第
1面15aに照射される。
また、蛍光取込み系514a,514bは、図15に示すように、透光性蛍光体513
の内部に形成される集光点Xを中心とする円周上に配置されている。
これにより、透光性蛍光体513は、同じ距離に配置された複数の蛍光取込み系514
a,514bに対して蛍光を照射する。
透光性蛍光体513は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であっ
て、図15および図16に示すように、直方体(6面体)形状を有しており、入射面51
3aと、出射面513bと、出射面513cとを有している。
入射面513aは、取込み用レンズ14が配置された出射面513bに対向する面であ
って、光源部11から集光レンズ12を介して照射されるレーザ光が入射する。
出射面513bは、蛍光取込み系514aの取込み用レンズ14が配置された側の面で
あって、光源部11から照射されたレーザ光によって励起されて全方位に向かって発光す
る蛍光のうち、蛍光取込み系514a側に発光した蛍光が出射される。
出射面513cは、入射面513aおよび出射面513bに対して垂直な面であって、
光源部11から照射されたレーザ光によって励起されて全方位に向かって発光する蛍光の
うち、蛍光取込み系514b側に発光した蛍光が出射される。
本実施形態の光源装置510では、図15に示すように、光源部11から照射され集光
レンズ12によって集光されたレーザ光の集光点Xの周囲において発生した蛍光を、蛍光
取込み系514a,514bが配置された2方向から取り出して光源としている。
これにより、単一の光源部11から2つの蛍光取込み系514a,514bによって蛍
光を取り出すことができるため、ファイバ光源を複数設けることができる。
また、本実施形態では、図16に示すように、透光性蛍光体513の内部において、単
一の光源部11によって照射されるレーザ光の集光点Xは、出射面513bからの距離d
3と出射面513cからの距離d2とが略同じになるように形成される。
このように、2つの蛍光取込み系514a,514bによって取り出される蛍光が、集
光点Xから略同じ距離にある出射面513b,513cからそれぞれ出射されるように配
置されていることで、略同じ明るさのファイバ光源を2つ得ることができる。
なお、本実施形態では、蛍光取込み系が2つ設けられた構成について説明したが、本発
明はこれに限定されるものではなく、直方体の透光性蛍光体の周囲に蛍光取込み系が3つ
以上設けられた構成であってもよい。
(実施形態7)
本発明の実施形態7に係る光源装置610について、図17を用いて説明すれば以下の
通りである。
本実施形態に係る光源装置610は、図17に示すように、直方体の透光性蛍光体の代
わりに、球の透光性蛍光体613を設けた点において、上記実施形態5とは異なっている
なお、光源装置610のその他の構成については、上記実施形態1の光源装置10と同
様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する。
本実施形態の光源装置610は、図17に示すように、光源部11および集光レンズ1
2を含むレーザ集光系611aと、光源部11および集光レンズ12を含むレーザ集光系
611bと、透光性蛍光体613と、取込み用レンズ14と、光ファイバ15とを備えて
いる。
レーザ集光系611aは、集光レンズ12のレンズ中心軸が、蛍光を取り込む取込み用
レンズ14のレンズ中心軸と同軸になるように配置されている。
すなわち、レーザ集光系611aから照射されたレーザ光は、集光レンズ12を介して
球の透光性蛍光体613の中心に集光され、集光点Xを中心とする部分において蛍光を発
光させる。そして、透光性蛍光体613において発光した蛍光は、レーザ集光系611a
と一直線上に配置された取込み用レンズ14によって集光され、光ファイバ15の第1面
15aに照射される。
レーザ集光系611bは、集光レンズ12のレンズ中心軸が、蛍光を取り込む取込み用
レンズ14のレンズ中心軸と略直交する(交差する)方向に沿って配置されている。
すなわち、レーザ集光系611bから照射されたレーザ光は、集光レンズ12を介して
球の透光性蛍光体613の中心に集光され、集光点Xを中心とする部分において蛍光を発
光させる。
このとき、レーザ集光系611bの集光レンズ12によって集光されたレーザ光は、レ
ーザ集光系611aの集光レンズ12によって集光されたレーザ光と同じく、球の透光性
蛍光体613の中心位置(集光点X)になるように照射される。
そして、透光性蛍光体613において発光した蛍光は、全方位に向かって照射されるた
め、レーザ集光系611bと直交する方向に沿って配置された取込み用レンズ14によっ
て集光され、光ファイバ15の第1面15aに照射される。
また、レーザ集光系611a,611bは、図17に示すように、透光性蛍光体613
の内部に形成される集光点Xを中心とする球面上に配置されている。
これにより、透光性蛍光体613は、同じ距離に配置された複数のレーザ集光系611
a,611bからレーザ光を照射される。
透光性蛍光体613は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であっ
て、球の形状を有しており、その球の中心にレーザ光の集光点Xが形成される。
本実施形態の光源装置610では、図17に示すように、2つのレーザ集光系611a
,611bから照射されたレーザ光が、球の透光性蛍光体613の中心に形成される共通
の集光点Xに集光される。
これにより、レーザ集光系が1つしかない構成と比較して、集光点Xにおけるレーザ光
の光量が略2倍になるため、励起される蛍光も略2倍となって、さらに高輝度化した光源
を得ることができる。
また、本実施形態では、球の透光性蛍光体613を用いているため、透光性蛍光体61
3の内部において、2つのレーザ集光系611a,611bによって照射されるレーザ光
の集光点Xは、どの入射面からも距離が略同じになる。
このように、2つのレーザ集光系611a,611bによって照射されるレーザ光の集
光点Xがそれぞれの入射面からの距離が略同じ距離になるように配置されていることで、
集光点Xにおける蛍光の輝度をさらに向上されることができる。
なお、本実施形態では、レーザ集光系が2つ設けられた構成について説明したが、本発
明はこれに限定されるものではなく、球の透光性蛍光体の周囲にレーザ集光系が3つ以上
設けられた構成であってもよい。
さらに、本実施形態では、球の透光性蛍光体613の中心に集光点Xが形成されるよう
にレーザ光を照射・集光している。
これにより、球の中心である集光点Xを中心にして全方位に向かって発光した蛍光は、
どこから取り出しても集光点Xから同じ距離で空気中へ放出される。
この結果、球の透光性蛍光体613から取り出した蛍光を、どの方向からも略同じ輝度
で取り出すことができる。
(実施形態8)
本発明の実施形態8に係る光源装置710について、図18を用いて説明すれば以下の
通りである。
本実施形態に係る光源装置710は、図18に示すように、直方体の透光性蛍光体の代
わりに、球の透光性蛍光体713を設けた点において、上記実施形態6とは異なっている

なお、光源装置710のその他の構成については、上記実施形態1の光源装置10と同
様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する。
本実施形態の光源装置710は、図18に示すように、光源部11と、集光レンズ12
と、透光性蛍光体713と、取込み用レンズ14および光ファイバ15を含む蛍光取込み
系714a、取込み用レンズ14および光ファイバ15を含む蛍光取込み系714bとを
備えている。
透光性蛍光体713は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であっ
て、球形状を有している。
蛍光取込み系714a,714bは、図18に示すように、球の透光性蛍光体713を
中心とする球面上に配置されている。
これにより、透光性蛍光体713は、同じ距離に配置された複数の蛍光取込み系714
a,714bに対して蛍光を照射する。
蛍光取込み系714aは、取込み用レンズ14のレンズ中心軸が、レーザ光を集光する
集光レンズ12のレンズ中心軸と同軸になるように配置されている。
すなわち、蛍光取込み系714aでは、単一の光源部11から照射され集光レンズ12
によって集光されたレーザ光によって透光性蛍光体713を励起させて発生する蛍光が、
集光レンズ12と一直線上に配置された取込み用レンズ14によって集光され、光ファイ
バ15の第1面15aに照射される。
蛍光取込み系714bは、取込み用レンズ14のレンズ中心軸が、集光レンズ12のレ
ンズ中心軸と、蛍光取込み系714aの取込み用レンズ14のレンズ中心軸とに対して、
略直交する(交差する)方向に沿って配置されている。
すなわち、光源部11から照射されたレーザ光は、集光レンズ12を介して球の透光性
蛍光体713に集光され、球の中心(集光点X)において蛍光を発光させる。
このとき、球の透光性蛍光体713の内部において発生する蛍光は、全方位に向かって
放出される。このうち、蛍光取込み系714a,714bが配置された方向へは、レーザ
光の集光点Xから略同じ距離に配置された球の出射面からそれぞれ蛍光が出射される。
そして、透光性蛍光体713から出射される蛍光は、蛍光取込み系714a,714b
のそれぞれにおいて、取込み用レンズ14によって集光され、光ファイバ15の第1面1
5aに照射される。
本実施形態の光源装置710では、図18に示すように、光源部11から照射され集光
レンズ12によって集光されたレーザ光の集光点Xにおいて発生した蛍光を、蛍光取込み
系714a,714bが配置された2方向から取り出してファイバ光源としている。
これにより、単一の光源部11から2つの蛍光取込み系714a,714bによって蛍
光を取り出すことができるため、同等の輝度の光を照射するファイバ光源を複数設けるこ
とができる。
また、本実施形態では、球の透光性蛍光体713の内部において、単一の光源部11に
よって照射されるレーザ光の集光点Xは、球の中心に形成される。
これにより、2つの蛍光取込み系714a,714bによって取り出される蛍光が、集
光点Xから略同じ距離にある出射面からそれぞれ出射されるように配置されていることで
、略同じ明るさのファイバ光源を2つ得ることができる。
なお、本実施形態では、蛍光取込み系が2つ設けられた構成について説明したが、本発
明はこれに限定されるものではなく、球の透光性蛍光体の周囲に蛍光取込み系が3つ以上
設けられた構成であってもよい。
(実施形態9)
本発明の実施形態9に係る光源装置810について、図19を用いて説明すれば以下の
通りである。
本実施形態に係る光源装置810は、図19に示すように、レーザ集光系811a,8
11bと、蛍光取込み系814a,814bとをそれぞれ2つずつ設けた点において、上
記実施形態7,8とは異なっている。
なお、光源装置810のその他の構成については、上記実施形態1の光源装置10と同
様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する。
本実施形態の光源装置810は、図19に示すように、光源部11および集光レンズ1
2を含むレーザ集光系811aと、光源部11および集光レンズ12を含むレーザ集光系
811bと、球の透光性蛍光体813と、取込み用レンズ14および光ファイバ15を含
む蛍光取込み系814aと、取込み用レンズ14および光ファイバ15を含む蛍光取込み
系814bとを備えている。
レーザ集光系811a,811bは、図19に示すように、球の透光性蛍光体813を
中心とする球面上に配置されている。
これにより、透光性蛍光体813は、同じ距離に配置された複数のレーザ集光系811
a,811bからレーザ光を照射される。
レーザ集光系811aは、集光レンズ12のレンズ中心軸が、蛍光取込み系814aの
取込み用レンズ14のレンズ中心軸と同軸になるように配置されている。
すなわち、レーザ集光系811aから照射されたレーザ光は、集光レンズ12を介して
球の透光性蛍光体813の中心に集光され、集光点Xを中心とする部分において蛍光を発
光させる。そして、透光性蛍光体813において発光した蛍光は、蛍光取込み系814a
,814bのそれぞれの取込み用レンズ14によって集光され、光ファイバ15の第1面
15aに照射される。
レーザ集光系811bは、集光レンズ12のレンズ中心軸が、蛍光取込み系814a,
814bの取込み用レンズ14のレンズ中心軸と交差する方向に沿って配置されている。
すなわち、レーザ集光系811bから照射されたレーザ光は、集光レンズ12を介して
球の透光性蛍光体813の中心に集光され、集光点Xを中心とする部分において蛍光を発
光させる。
このとき、レーザ集光系811bの集光レンズ12によって集光されたレーザ光は、レ
ーザ集光系811aの集光レンズ12によって集光されたレーザ光と同じく、球の透光性
蛍光体813の中心位置(集光点X)になるように照射される。
透光性蛍光体813は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であっ
て、球形状を有している。
そして、透光性蛍光体813において発光した蛍光は、全方位に向かって照射されるた
め、レーザ集光系811bと交差する方向に沿って配置された2つの蛍光取込み系814
a,814bのそれぞれの取込み用レンズ14によって集光され、光ファイバ15の第1
面15aに照射される。
蛍光取込み系814a,814bは、図19に示すように、球の透光性蛍光体813を
中心とする球面上に配置されている。
これにより、透光性蛍光体813は、同じ距離に配置された複数の蛍光取込み系814
a,814bに対して蛍光を照射する。
蛍光取込み系814aは、取込み用レンズ14のレンズ中心軸が、レーザ集光系811
aの集光レンズ12のレンズ中心軸と同軸になるように配置されている。
すなわち、蛍光取込み系814aでは、2つの光源部11から照射され集光レンズ12
によって集光されたレーザ光によって透光性蛍光体813を励起させて発生する蛍光が、
取込み用レンズ14によって集光され、光ファイバ15の第1面15aに照射される。
蛍光取込み系814bは、取込み用レンズ14のレンズ中心軸が、レーザ集光系811
a,811bのそれぞれの集光レンズ12のレンズ中心軸と、蛍光取込み系814aの取
込み用レンズ14のレンズ中心軸とに対して、交差する方向に沿って配置されている。
すなわち、2つの光源部11から照射されたレーザ光は、集光レンズ12を介して球の
透光性蛍光体813に集光され、球の中心(集光点X)において蛍光を発光させる。
このとき、球の透光性蛍光体813の内部において発生する蛍光は、全方位に向かって
放出される。このうち、蛍光取込み系814a,814bが配置された方向へは、レーザ
光の集光点Xから略同じ距離に配置された球の出射面からそれぞれ蛍光が出射される。
そして、透光性蛍光体813から出射される蛍光は、蛍光取込み系814a,814b
のそれぞれにおいて、取込み用レンズ14によって集光され、光ファイバ15の第1面1
5aに照射される。
本実施形態の光源装置810では、図19に示すように、複数のレーザ集光系811a
,811bと、複数の蛍光取込み系814a,814bとを、球の透光性蛍光体813の
周囲に配置している。
これにより、複数の光源部11から照射されたレーザ光を球の透光性蛍光体813の中
心に集光させることで、単一の光源部11を含む構成と比較して、約2倍の輝度の蛍光を
取り出すことができる。
また、複数の光ファイバ15を含む蛍光取込み系814a,814bを、球の透光性蛍
光体813の周囲に配置したことで、球の中心において発生した蛍光を、どの方向からも
略同じ輝度で複数取り出すことができる。
(実施形態10)
本発明の実施形態10に係る光源装置910について、図20および図21を用いて説
明すれば以下の通りである。
本実施形態に係る光源装置910は、図20に示すように、球の内部に、レーザ透過/
蛍光反射膜(第1面)913a、レーザ反射/蛍光透過膜(第2面)913bを含む透光
性蛍光体913を設けた点において、上記実施形態1とは異なっている。
なお、光源装置910のその他の構成については、上記実施形態1の光源装置10と同
様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する。
本実施形態の光源装置910は、図20に示すように、光源部11と、集光レンズ12
と、透光性蛍光体913と、取込み用レンズ14と、光ファイバ15とを備えている。
透光性蛍光体913は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であっ
て、球形状を有している。そして、透光性蛍光体913は、図21に示すように、その内
部に、レーザ透過/蛍光反射膜913a、レーザ反射/蛍光透過膜913bをそれぞれ有
している。また、球の透光性蛍光体913では、光源部11から照射されたレーザ光が集
光レンズ12によって球の中心に集光される(集光点X)。
レーザ透過/蛍光反射膜913aは、光源部11から照射され集光レンズ12によって
集光されたレーザ光を透過させるとともに、透光性蛍光体913内において発生した蛍光
を反射する。そして、レーザ透過/蛍光反射膜913aは、図21に示すように、レーザ
光の入射面側に設けられている。
レーザ反射/蛍光透過膜913bは、光源部11から照射され集光レンズ12によって
集光されたレーザ光を反射させるとともに、透光性蛍光体913内において発生した蛍光
を透過させる。そして、レーザ反射/蛍光透過膜913bは、図21に示すように、蛍光
の出射面側に設けられている。
ここで、レーザ透過/蛍光反射膜913aおよびレーザ反射/蛍光透過膜913bは、
それぞれ蒸着やスパッタ等の方法によって、透光性蛍光体913に成膜することができる

これにより、透光性蛍光体913がレーザ透過/蛍光反射膜913aを有しているため
、光源部11から照射されて集光レンズ12によって集光されたレーザ光については透光
性蛍光体913の内部に入射させることができる。そして、球の透光性蛍光体913の中
心(集光点X)に集光されたレーザ光によって励起されて全方位に放出される蛍光につい
ては、レーザ光の入射側においては蛍光を出射する側に反射することができる。
一方、透光性蛍光体913がレーザ反射/蛍光透過膜913bを有しているため、光源
部11から照射されて集光レンズ12によって集光されたレーザ光のうち透光性蛍光体9
13において吸収されずに透過してきたレーザ光については、再び透光性蛍光体913の
中心(集光点X)に向かって反射させることができる。そして、球の透光性蛍光体913
の中心(集光点X)に集光されたレーザ光によって励起されて全方位に放出される蛍光に
ついては、取込み用レンズ14が配置された出射側から外部へ透過させることができる。
なお、図21では、レーザ透過/蛍光反射膜913aとレーザ反射/蛍光透過膜913
bとが、略同じ面積で設けられている例を挙げて説明した。しかし、本発明はこれに限定
されるものではなく、互いに異なる面積で設けられていてもよい。
また、図21に示すように、レーザ透過/蛍光反射膜913aとレーザ反射/蛍光透過
膜913bとが透光性蛍光体913の外周を取り囲むように配置されている必要はなく、
少なくとも、レーザ光の入射部分と蛍光の出射部分とにそれぞれの膜が設けられていれば
よい。
(実施形態11)
本発明の実施形態11に係る光源装置1010について、図22から図23を用いて説
明すれば以下の通りである。
本実施形態に係る光源装置1010は、図22に示すように、蛍光を取り出す取込み用
レンズ14のレンズ中心軸に対して、交差する方向に複数のレーザ集光系1011a,1
011b,1011cを配置するとともに、表面が1層のミラーコーティングされた球の
透光性蛍光体1013を用いた点において、上記実施形態9等とは異なっている。
なお、光源装置1010のその他の構成については、上記実施形態1の光源装置10と
同様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する

本実施形態の光源装置1010は、図22に示すように、光源部11および集光レンズ
12を含むレーザ集光系1011aと、光源部11および集光レンズ12を含むレーザ集
光系1011bと、光源部11および集光レンズ12を含むレーザ集光系1011cと、
透光性蛍光体1013と、取込み用レンズ14と、光ファイバ15とを備えている。
レーザ集光系1011a,1011b,1011cは、図22に示すように、球の透光
性蛍光体1013を中心とする球面上に配置されている。
これにより、透光性蛍光体1013は、同じ距離に配置された複数のレーザ集光系10
11a,1011b,1011cからレーザ光を照射される。
また、レーザ集光系1011a,1011b,1011cは、それぞれが、蛍光を取り
出す取込み用レンズ14の中心軸に対して交差する方向に沿って配置されている。そして
、レーザ集光系1011a,1011b,1011cは、それぞれの光源部11から照射
されたレーザ光を集光レンズ12によって集光し、球の透光性蛍光体1013の中心(集
光点X)にレーザ光を集光させる。
透光性蛍光体1013は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であ
って、球形状を有している。そして、透光性蛍光体1013は、図23に示すように、レ
ーザ透過/蛍光反射ミラー1013aと、レーザ反射/蛍光透過ミラー1013bと、を
有している。
レーザ透過/蛍光反射ミラー1013aは、レーザ集光系1011a,1011b,1
011cに含まれる各光源部11から照射され各集光レンズ12によって集光されたレー
ザ光を透過させるとともに、レーザ光によって球の透光性蛍光体1013の中心(集光点
X)において発光した蛍光を反射する性質を有している。
レーザ反射/蛍光透過ミラー1013bは、レーザ集光系1011a,1011b,1
011cに含まれる各光源部11から照射され各集光レンズ12によって集光されたレー
ザ光のうち透光性蛍光体1013内において吸収されることなく透過してきたレーザ光を
反射して、再び集光点Xに導く性質を有している。
本実施形態の光源装置1010では、以上のように、球の透光性蛍光体1013に、波
長選択性のミラー(レーザ透過/蛍光反射ミラー1013a、レーザ反射/蛍光透過ミラ
ー1013b)を設けている。
これにより、透光性蛍光体1013内に入射され吸収されずに透過してきたレーザ光を
集光点Xに向かって反射することで、さらに集光点Xにおける蛍光の励起が促されて、よ
り高輝度な光源とすることができる。
また、透光性蛍光体1013におけるレーザ光の取込み口および蛍光の取り出し口には
、それぞれレーザ透過/蛍光反射ミラー1013a、レーザ反射/蛍光透過ミラー101
3bが配置されている。
これにより、取込み窓および取出し窓等の開口を設けることなく、レーザ光の取込みお
よび蛍光の取り出しを遮ることを防止することができる。
さらに、本実施形態では、図22に示すように、球の透光性蛍光体1013を中心とし
て、取込み用レンズ14と同軸にならない位置に、それぞれのレーザ集光系1011a,
1011b,1011cを配置している。
これにより、複数のレーザ集光系1011a,1011b,1011cから照射された
レーザ光を球の透光性蛍光体1013の中心(集光点X)に集光させ、かつその反射光も
集光点Xに反射させることで、さらに高輝度化させた光源を得ることができる。
なお、図23では、レーザ透過/蛍光反射ミラー1013aおよびレーザ反射/蛍光透
過ミラー1013bが、略同じ面積で設けられている例を挙げて説明した。しかし、本発
明はこれに限定されるものではなく、互いに異なる面積で設けられていてもよい。
また、図23に示すように、レーザ透過/蛍光反射ミラー1013aおよびレーザ反射
/蛍光透過ミラー1013bと、が透光性蛍光体1013の外周を取り囲むように配置さ
れている必要はなく、少なくとも、レーザ光の入射部分と蛍光の出射部分とにそれぞれの
膜が設けられていればよい。
(実施形態12)
本発明の実施形態12に係る光源装置1110について、図24を用いて説明すれば以
下の通りである。
本実施形態に係る光源装置1110は、図24に示すように、球の透光性蛍光体111
3に形成された取込み窓(第1開口部)1113aから集光されたレーザ光が入射される
とともに、集光レンズ12のレンズ中心軸と略直交(交差)する方向に沿って配置された
取込み用レンズ14が対向配置された取出し窓(第2開口部)1113bから蛍光を取り
出す点において、上記実施形態10等とは異なっている。
なお、光源装置1110のその他の構成については、上記実施形態1の光源装置10と
同様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する

本実施形態の光源装置1110は、図24に示すように、光源部11と、集光レンズ1
2と、透光性蛍光体1113と、取込み用レンズ14と、光ファイバ15とを備えている
光源部11および集光レンズ12は、蛍光を取り出す取込み用レンズ14とは同軸にな
らない位置であって、取込み用レンズ14の中心軸に交差する方向に沿って配置されてい
る。
透光性蛍光体1113は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であ
って、球形状を有している。そして、透光性蛍光体1113は、集光レンズ12に対向す
る位置に形成された取込み窓1113aと、取込み用レンズ14に対向する位置に形成さ
れた取出し窓1113bと、反射膜1113cとを有している。
取込み窓1113aは、球の透光性蛍光体1113におけるレーザ光の取込み位置に形
成された開口であって、集光レンズ12によって集光されたレーザ光を集光点Xへと導く

取出し窓1113bは、蛍光を取込み用レンズ14および光ファイバ15の方へ取り出
すために形成された開口であって、集光点Xにおいて発光した蛍光を取り出す。
反射膜1113cは、取込み窓1113aを介して入射してきたレーザ光のうち、透光
性蛍光体1113内において吸収されることなく透過してきたレーザ光を、集光点Xに向
かって反射する。さらに、反射膜1113cは、集光点Xにおいて発光して全方位に放出
された蛍光のうち、取出し窓1113bとは異なる方向に放出された蛍光を、取出し窓
1113bの方へ反射する。
これにより、レーザ集光系(光源部11および集光レンズ12)と蛍光取込み系(取込
み用レンズ14および光ファイバ15)とが同軸にならないように配置したことで、レー
ザ光の反射光、蛍光の反射光をそれぞれ利用して、さらに高輝度な光源を得ることができ
る。
なお、本実施形態では、レーザ集光系(光源部11および集光レンズ12)と蛍光取込
み系(取込み用レンズ14および光ファイバ15)とがそれぞれ1つずつ設けられた構成
について説明した。しかし、本発明はこれに限定されるものではない。
例えば、球の透光性蛍光体の周囲に、レーザ集光系(光源部11および集光レンズ12
)と蛍光取込み系(取込み用レンズ14および光ファイバ15)とがそれぞれ複数設けら
れた構成であってもよい。
(実施形態13)
本発明の実施形態13に係る光源装置1210について、図25を用いて説明すれば以
下の通りである。
本実施形態に係る光源装置1210は、図25に示すように、球の透光性蛍光体121
3の周囲に、レーザ集光系(光源部11および集光レンズ12)を3つ設けた点において
、上記実施形態12とは異なっている。
なお、光源装置1210のその他の構成については、上記実施形態1の光源装置10と
同様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する
本実施形態の光源装置1210は、図25に示すように、光源部11および集光レンズ
12を含むレーザ集光系1211aと、光源部11および集光レンズ12を含むレーザ集
光系1211bと、光源部11および集光レンズ12を含むレーザ集光系1211cと、
透光性蛍光体1213と、取込み用レンズ14と、光ファイバ15とを備えている。
レーザ集光系1211a〜1211cは、図25に示すように、球の透光性蛍光体12
13を中心とする球面上に配置されている。
これにより、透光性蛍光体1213は、同じ距離に配置された複数のレーザ集光系12
11a,1211b,1211cからレーザ光を照射される。
また、レーザ集光系1211a,1211b,1211cは、それぞれ透光性蛍光体1
213に形成された取込み窓(第1開口部)1213a,1213b,1213cを介し
てレーザ光を透光性蛍光体1213の中心(集光点X)へと集光する。
透光性蛍光体1213は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であ
って、球形状を有している。そして、透光性蛍光体1213は、レーザ集光系1211a
〜1211cの各集光レンズ12に対向する位置に形成された取込み窓1213a〜12
13cと、取込み用レンズ14に対向する位置に形成された取出し窓(第2開口部)12
13dと、反射膜1213eとを有している。
取込み窓1213a〜1213cは、球の透光性蛍光体1213におけるレーザ光の取
込み位置に形成された開口であって、集光レンズ12によって集光されたレーザ光を集光
点Xへと導く。
取出し窓1213dは、蛍光を取込み用レンズ14および光ファイバ15の方へ取り出
すために形成された開口であって、集光点Xにおいて発光した蛍光を取り出す。
反射膜1213eは、取込み窓1213a〜1213cを介して入射してきたレーザ光
のうち、透光性蛍光体1213内において吸収されることなく透過してきたレーザ光を、
集光点Xに向かって反射する。さらに、反射膜1213eは、集光点Xにおいて発光して
全方位に放出された蛍光のうち、取出し窓1213dに対向する方向に放出された蛍光を
、取出し窓1213dの方へ反射する。
これにより、レーザ集光系(光源部11および集光レンズ12)と蛍光取込み系(取込
み用レンズ14および光ファイバ15)とが同軸にならないように配置したことで、レー
ザ光の反射光、蛍光の反射光をそれぞれ利用して、さらに高輝度な光源を得ることができ
る。
(実施形態14)
本発明の実施形態14に係る光源装置1310について、図26を用いて説明すれば以
下の通りである。
本実施形態に係る光源装置1310は、図26に示すように、球の透光性蛍光体121
3の周囲に、レーザ集光系(光源部11および集光レンズ12)を6つ設けた点において
、上記実施形態12,13とは異なっている。
なお、光源装置1310のその他の構成については、上記実施形態1の光源装置10と
同様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する
本実施形態の光源装置1310は、図26に示すように、光源部11および集光レンズ
12を含むレーザ集光系1311aと、光源部11および集光レンズ12を含むレーザ集
光系1311bと、光源部11および集光レンズ12を含むレーザ集光系1311cと、
光源部11および集光レンズ12を含むレーザ集光系1311dと、光源部11および集
光レンズ12を含むレーザ集光系1311eと、光源部11および集光レンズ12を含む
レーザ集光系1311fと、透光性蛍光体1313と、取込み用レンズ14と、光ファイ
バ15とを備えている。
レーザ集光系1311a〜1311fは、図26に示すように、球の透光性蛍光体13
13を中心とする球面上に配置されている。
これにより、透光性蛍光体1313は、同じ距離に配置された複数のレーザ集光系13
11a〜1311fからレーザ光を照射される。
また、レーザ集光系1311a〜1311fは、それぞれ透光性蛍光体1313に形成
された取込み窓(第1開口部)1313a,1313b,1313c,1313d,13
13e,1313fを介してレーザ光を透光性蛍光体1313の中心(集光点X)へと集
光する。
透光性蛍光体1313は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であ
って、球形状を有している。そして、透光性蛍光体1313は、レーザ集光系1311a
〜1311fの各集光レンズ12に対向する位置に形成された取込み窓1313a〜13
13fと、取込み用レンズ14に対向する位置に形成された取出し窓(第1開口部)13
13gと、反射膜1313hとを有している。
取込み窓1313a〜1313fは、球の透光性蛍光体1313におけるレーザ光の取
込み位置に形成された開口であって、集光レンズ12によって集光されたレーザ光を集光
点Xへと導く。
取出し窓1313gは、蛍光を取込み用レンズ14および光ファイバ15の方へ取り出
すために形成された開口であって、集光点Xにおいて発光した蛍光を取り出す。
反射膜1313hは、取込み窓1313a〜1313fを介して入射してきたレーザ光
によって、集光点Xにおいて発光して全方位に放出された蛍光のうち、取出し窓1313
gに対向する方向に放出された蛍光を、取出し窓1313gの方へ反射する。
これにより、レーザ集光系(光源部11および集光レンズ12)と蛍光取込み系(取込
み用レンズ14および光ファイバ15)とが同軸にならないように配置したことで、蛍光
の反射光を利用して、さらに高輝度な光源を得ることができる。
(実施形態15)
本発明の実施形態15に係る光源装置1410について、図27を用いて説明すれば以
下の通りである。
本実施形態に係る光源装置1410は、図27に示すように、球の透光性蛍光体141
3を中心として、単一のレーザ集光系(光源部11および集光レンズ12)に対して同軸
ではない位置に、複数の蛍光取込み系1414a,1414bを配置した点において、上
記実施形態12とは異なっている。
なお、光源装置1410のその他の構成については、上記実施形態1の光源装置10と
同様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する

本実施形態の光源装置1410は、図27に示すように、光源部11と、集光レンズ1
2と、透光性蛍光体1413と、取込み用レンズ14および光ファイバ15を含む蛍光取
込み系1414aと、取込み用レンズ14および光ファイバ15を含む蛍光取込み系14
14bとを備えている。
レーザ集光系(光源部11および集光レンズ12)は、透光性蛍光体1413に形成さ
れた取込み窓(第1開口部)1413aを介してレーザ光を透光性蛍光体1413の中心
(集光点X)へと集光する。
蛍光取込み系1414a,1414bは、球の透光性蛍光体1413を中心とする球面
上におけるレーザ集光系とは同軸にならない位置にそれぞれ配置されている。そして、蛍
光取込み系1414a,1414bは、透光性蛍光体1413に形成された取出し窓(第
2開口部)1413b,1413cを介して、透光性蛍光体1413の中心(集光点X)
において発光した蛍光を取り出して、取込み用レンズ14によって光ファイバ15の第1
面15aに集光させる。
透光性蛍光体1413は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であ
って、球形状を有している。そして、透光性蛍光体1013は、取込み窓1413aと、
取出し窓1413b,1413cと、反射膜1413dとを有している。
取込み窓1413aは、球の透光性蛍光体1413におけるレーザ光の取込み位置に形
成された開口であって、集光レンズ12によって集光されたレーザ光を集光点Xへと導く
取出し窓1413b,1413cは、蛍光を取込み用レンズ14および光ファイバ15
の方へ取り出すために形成された開口であって、集光点Xにおいて発光した蛍光を取り出
す。
反射膜1413dは、取込み窓1413aを介して入射してきたレーザ光によって、集
光点Xにおいて発光して全方位に放出された蛍光のうち、取出し窓1413b,1413
cとは異なる方向に放出された蛍光を、取出し窓1413b,1413cの方へ反射する
これにより、レーザ集光系(光源部11および集光レンズ12)と蛍光取込み系(取込
み用レンズ14および光ファイバ15)とが同軸にならないように配置したことで、レー
ザ光の反射光と蛍光の反射光とをそれぞれ利用して、さらに高輝度な光源を得ることがで
きる。
(実施形態16)
本発明の実施形態16に係る光源装置1510について、図28を用いて説明すれば以
下の通りである。
本実施形態に係る光源装置1510は、図28に示すように、立方体(多面体)形状を
有する透光性蛍光体1513の外部に、レーザ光を反射させる凹面鏡1516aと、蛍光
を反射させる凹面鏡1516bとを設けた点において、上記実施形態12とは異なってい
る。
なお、光源装置1510のその他の構成については、上記実施形態1の光源装置10と
同様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する
本実施形態の光源装置1510は、図28に示すように、光源部11と、集光レンズ1
2と、透光性蛍光体1513と、取込み用レンズ14と、光ファイバ15と、凹面鏡[1
516a,1516bとを備えている。
透光性蛍光体1513は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であ
って、立方体形状を有している。そして、透光性蛍光体1513は、入射面1513aか
らレーザ光が入射されるとともに、入射面1513aに交差する出射面1513bから蛍
光が取り出される。
凹面鏡1516aは、透光性蛍光体1513の入射面1513aに対向する面に対向配
置されている。そして、凹面鏡1516aは、透光性蛍光体1513の入射面1513a
に対向する面から透過してきたレーザ光を、集光点Xに向かって反射する。
凹面鏡1516bは、透光性蛍光体1513の出射面1513bに対向する面に対向配
置されている。そして、凹面鏡1516bは、透光性蛍光体1513の集光点Xにおいて
発光して全方位に放出される蛍光のうち、出射面1513bに対向する面から透過してき
た蛍光を、集光点Xに向かって反射する。
本実施形態の光源装置1510では、以上のように、立方体形状の透光性蛍光体151
3の外側に、レーザ光を反射させる凹面鏡1516aと、蛍光を反射させる凹面鏡151
6bとをそれぞれ設けている。
これにより、レーザ光あるいは蛍光を反射する機能を有する部材を透光性蛍光体の内部
に設けることなく、さらに高輝度な光源を得ることができるという上記各実施形態と同様
の効果を奏することができる。
なお、本実施形態の構成において、レーザ集光系を複数設ける場合には、図28に示す
集光レンズ12のレンズ中心軸と取込み用レンズ14のレンズ中心軸とを含む平面に対し
て垂直な方向(紙面に垂直な方向)からレーザ光を照射するレーザ集光系を設けてもよい
(実施形態17)
本発明の実施形態17に係る光源装置1610について、図29用いて説明すれば以下
の通りである。
本実施形態に係る光源装置1610は、図29に示すように、立方体(多面体)形状を
有する透光性蛍光体1613の外部に、互いに対向する位置に設けられた2つのレーザ集
光系1611a,1611bを配置するとともに、蛍光取込み系(取込み用レンズ14)
に対向する位置に蛍光を反射させる凹面鏡1616を設けた点において、上記実施形態1
6とは異なっている。
なお、光源装置1610のその他の構成については、上記実施形態1の光源装置10と
同様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する

本実施形態の光源装置1610は、図29に示すように、光源部11および集光レンズ
12を含むレーザ集光系1611aと、光源部11および集光レンズ12を含むレーザ集
光系1611bと、透光性蛍光体1613と、取込み用レンズ14と、光ファイバ15と
、凹面鏡1616とを備えている。
レーザ集光系1611a,1611bは、図29に示すように、立方体形状の透光性蛍
光体1613の内部に形成される集光点Xを中心とする円周上に配置されている。
これにより、透光性蛍光体1613は、同じ距離に配置された複数のレーザ集光系16
11a,1611bからレーザ光を照射される。
透光性蛍光体1613は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であ
って、立方体形状を有している。そして、透光性蛍光体1613は、互いに対向する入射
面1613a,1613bからレーザ光が入射されるとともに、入射面1613a,16
13bに交差する出射面1613cから蛍光が取り出される。
凹面鏡1616は、透光性蛍光体1613の出射面1613cに対向する面に対向配置
されている。そして、凹面鏡1616は、透光性蛍光体1613の集光点Xにおいて発光
して全方位に放出される蛍光のうち、出射面1613cに対向する面から透過してきた蛍
光を、集光点Xに向かって反射する。
本実施形態の光源装置1610では、以上のように、立方体形状の透光性蛍光体161
3の外側に、互いに対向する位置に設けられた2つのレーザ集光系1611a,1611
bを配置するとともに、蛍光を反射させる凹面鏡1616を設けている。
これにより、蛍光を反射する機能を有する部材を透光性蛍光体の内部に設けることなく
、さらに高輝度な光源を得ることができるという上記各実施形態と同様の効果を奏するこ
とができる。
(実施形態18)
本発明の実施形態18に係る光源装置1710について、図30を用いて説明すれば以
下の通りである。
本実施形態に係る光源装置1710は、図30に示すように、直方体形状(板状)を有
する透光性蛍光体1713の入射面1713aに対して、複数方向からレーザ光を照射し
て共通の集光点Xに集光させる点において、上記実施形態1とは異なっている。
なお、光源装置1710のその他の構成については、上記実施形態1の光源装置10と
同様であることから、ここでは同じ符号を付し、その構成について詳細な説明は省略する
本実施形態の光源装置1710は、図30に示すように、光源部11および集光レンズ
12を含むレーザ集光系1711aと、光源部11および集光レンズ12を含むレーザ集
光系1711bと、透光性蛍光体1713と、取込み用レンズ14と、光ファイバ15と
を備えている。
レーザ集光系1711aおよびレーザ集光系1711bは、図30に示すように、直方
体形状の透光性蛍光体1713の内部に形成される集光点Xを中心とする円周上に配置さ
れている。
これにより、透光性蛍光体1713は、同じ距離に配置された複数のレーザ集光系17
11a,1711bからレーザ光を照射される。
また、レーザ集光系1711a,1711bは、ともに、透光性蛍光体1713の入射
面1713aに対してレーザ光を照射する。そして、レーザ集光系1711aおよびレー
ザ集光系1711bは、それぞれが蛍光を取り込む側の取込み用レンズ14のレンズ中心
軸に対して集光レンズ12のレンズ中心軸が斜めになるように、配置されている。
透光性蛍光体1713は、例えば、CeイオンをドープしたYAGの単結晶蛍光体であ
って、直方体(板状)の形状を有している。そして、透光性蛍光体1713は、2つのレ
ーザ集光系1711a,1711bから入射面1713aに入射してきたレーザ光が共通
の集光点Xにおいて集光される。そして、2つのレーザ集光系1711a,1711bか
ら照射されたレーザ光によって励起された蛍光が、出射面1713bから取り出され、取
込み用レンズ14によって光ファイバ15の第1面15aに集光される。
本実施形態の光源装置1710では、以上のように、直方体(板状)の透光性蛍光体1
713の単一の入射面1713aに対して、複数個所からレーザ光を照射した場合におい
て、透光性蛍光体1713の内部の共通の集光点Xに集光させる。
これにより、透光性蛍光体1713の集光点Xでは、レーザ集光系が1つしかない構成
と比較して、集光されるレーザ光の光量が略2倍になるため、励起される蛍光も略2倍と
なって、さらに高輝度化した光源を得ることができる。
[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるも
のではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施形態では、板状あるいは球の透光性蛍光体を用いた例を挙げて説明した。しか
し、本発明はこれに限定されるものではない。
例えば、楕円体、あるいは多角形等、他の形状を有する透光性蛍光体を用いてもよい。
(B)
上記実施形態では、球、板、多面体の透光性蛍光体と、単数・複数のレーザ集光系、単
数・複数の蛍光取込み系とを組み合わせて各実施形態の内容を説明した。しかし、本発明
はこれに限定されるものではない。
例えば、上記実施形態において説明した組み合わせに限定されるものではなく、上記実
施形態以外の組み合わせによって実現される構成であってもよい。
(C)
上記実施形態では、共焦点計測装置(測距センサ)50の光源装置10に対して本発明
を適用した例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、本発明の光源装置が搭載される測距センサとしては、共焦点計測装置等の測距
センサに限らず、他の測距センサを用いてもよい。
また、光源装置としては、ヘッドライト、内視鏡の光源装置としても、本発明の適用が
可能である。
本発明の光源装置は、従来よりも高輝度な光源を得ることができるという効果を奏する
ことから、各種光源装置として広く適用可能である。
10 光源装置
11 光源部
12 集光レンズ
13 透光性蛍光体
13a 入射面
13b 出射面
13ba 出射部
14 取込み用レンズ
15 光ファイバ
15a 第1面
15b 第2面
20 蛍光光源部
20a 入射側断面
20b 径小部断面
20c 出射側断面
50 共焦点計測装置(測距センサ)
51 ヘッド部
51a 回折レンズ(色収差焦点レンズ)
51b 対物レンズ
51c 集光レンズ
52 光ファイバ
53 コントローラ部
54 モニタ
55a,55b 光ファイバ
56 分岐光ファイバ
57 分光器
57a 凹面ミラー
57b 回折格子
57c 集光レンズ
58 撮像素子(受光部)
59 制御回路部(測定部)
110 光源装置
113 透光性蛍光体
113a 入射面
113b 出射面
116 凹面鏡
120 蛍光光源部
210 光源装置
216 凹面鏡
220 蛍光光源部
310 光源装置
313 透光性蛍光体
313a 出射部
410 光源装置
411a,411b レーザ集光系
413 透光性蛍光体
413a 入射面
413b 出射面
413c 入射面
510 光源装置
513 透光性蛍光体
513a 入射面
513b,513c 出射面
514a,514b 蛍光取込み系
610 光源装置
611a,611b レーザ集光系
613 透光性蛍光体
710 光源装置
713 透光性蛍光体
714a,714b 蛍光取込み系
810 光源装置
811a,811b レーザ集光系
813 透光性蛍光体
814a,814b 蛍光取込み系
910 光源装置
913 透光性蛍光体
913a レーザ透過/蛍光反射膜(第1面)
913b レーザ反射/蛍光透過膜(第2面)
1010 光源装置
1011a,1011b,1011c レーザ集光系
1013 透光性蛍光体
1013a レーザ透過/蛍光反射ミラー
1013b レーザ反射/蛍光透過ミラー
1110 光源装置
1113 透光性蛍光体
1113a 取込み窓(第1開口部)
1113b 取出し窓(第2開口部)
1113c 反射膜
1210 光源装置
1211a〜1211c レーザ集光系
1213 透光性蛍光体
1213a〜1213c 取込み窓(第1開口部)
1213d 取出し窓(第2開口部)
1213e 反射膜
1310 光源装置
1311a〜1311f レーザ集光系
1313 透光性蛍光体
1313a〜1313f 取込み窓(第1開口部)
1313g 取出し窓(第2開口部)
1313h 反射膜
1410 光源装置
1413 透光性蛍光体
1413a 取込み窓(第1開口部)
1413b,1413c 取出し窓(第2開口部)
1413d 反射膜
1414a,1414b 蛍光取込み系
1510 光源装置
1513 透光性蛍光体
1513a 入射面
1513b 出射面
1516a,1516b 凹面鏡
1610 光源装置
1611a,1611b レーザ集光系
1613 透光性蛍光体
1613a,1613b 入射面
1613c 出射面
1616 凹面鏡
1710 光源装置
1711a,1711b レーザ集光系
1713 透光性蛍光体
1713a 入射面
1713b 出射面
A1 中心軸
A2 レンズ中心軸
d1,d2,d3 距離
T 計測対象物
X 集光点

Claims (29)

  1. レーザ光を照射する光源部と、
    前記光源部から照射された前記レーザ光を集光する集光レンズと、
    前記集光レンズによって集光された前記レーザ光の集光点が内部に設けられ、前記レー
    ザ光が透過する部分において蛍光を発する透光性蛍光体と、
    を備えている光源装置。
  2. 前記透光性蛍光体は、前記集光レンズによって集光された前記レーザ光の集光点が内部
    に設けられ、前記レーザ光は、前記透光性蛍光体の表面に入射するときのビーム径、およ
    び前記透光性蛍光体の表面から出射するときのビーム径のいずれよりも小さいビーム径で
    集光点を透過して、前記レーザ光が透過する部分で蛍光を発する、
    請求項1に記載の光源装置。
  3. 前記集光点は、前記透光性蛍光体の表面から500μm以内の範囲に設けられる、
    請求項1または2に記載の光源装置。
  4. 前記集光点は、前記透光性蛍光体の表面から160μm以内の範囲に設けられる、
    請求項1または2に記載の光源装置。
  5. 前記透光性蛍光体は、単結晶蛍光体である、
    請求項1から4のいずれか1項に記載の光源装置。
  6. 前記透光性蛍光体は、球、楕円体または多面体の形状を有している、
    請求項1から5のいずれか1項に記載の光源装置。
  7. 少なくとも前記透光性蛍光体において発せられた前記蛍光を集光する取込み用レンズを
    、さらに備えている、
    請求項1から6のいずれか1項に記載の光源装置。
  8. 前記取込み用レンズにおいて集光された前記蛍光が第1端面に照射されるとともに、前
    記第1端面とは反対側の第2端面から前記蛍光を出射するファイバを、さらに備えている

    請求項7に記載の光源装置。
  9. 前記取込み用レンズおよび前記ファイバを含む蛍光取込み系は、単一の前記透光性蛍光
    体に対して複数設けられている、
    請求項8に記載の光源装置。
  10. 前記取込み用レンズは、前記光源部から照射され前記集光レンズによって集光された前
    記レーザ光のレーザ伝播の中心軸に対して、レンズの中心軸が同軸になるように配置され
    ている、
    請求項7または8に記載の光源装置。
  11. 前記取込み用レンズは、前記集光レンズのレンズ中心軸に対して、レンズ中心軸が斜め
    に配置されている、
    請求項8または9に記載の光源装置。
  12. 前記取込み用レンズおよび前記ファイバを含む複数の蛍光取込み系は、前記取込み用レ
    ンズが前記透光性蛍光体を中心とする1つの球面上に位置するように配置されている、
    請求項8に記載の光源装置。
  13. 前記光源部および前記集光レンズを含むレーザ集光系は、単一の前記透光性蛍光体に対
    して複数設けられている、
    請求項1から12のいずれか1項に記載の光源装置。
  14. 前記複数のレーザ集光系は、前記集光レンズが前記透光性蛍光体を中心とする1つの球
    面上に位置するように配置されている、
    請求項13に記載の光源装置。
  15. 前記透光性蛍光体は、前記レーザ光を透過させ前記蛍光を反射させる第1面と、前記レ
    ーザ光を反射させ前記蛍光を透過させる第2面と、を有している、
    請求項1から14のいずれか1項に記載の光源装置。
  16. 前記透光性蛍光体の入射面側に配置されており、前記光源部から照射された前記レーザ
    光を透過させるとともに、前記透光性蛍光体において発せられた前記蛍光のうち前記入射
    面側に発せられた前記蛍光を前記透光性蛍光体の方へ反射する凹面鏡をさらに備えている

    請求項1から15のいずれか1項に記載の光源装置。
  17. 前記透光性蛍光体の出射面側に配置されており、前記光源部から照射されて前記透光性
    蛍光体を通過した前記レーザ光を反射するとともに、前記透光性蛍光体において発せられ
    た前記蛍光のうち前記出射面側に発せられた前記蛍光を透過させる凹面鏡をさらに備えて
    いる、
    請求項1から15のいずれか1項に記載の光源装置。
  18. 前記凹面鏡は、ダイクロイックミラー、あるいは開口部を有する穴あきミラーである、
    請求項16または17に記載の光源装置。
  19. 前記透光性蛍光体は、球状の形状を有している、
    請求項1に記載の光源装置。
  20. 前記透光性蛍光体は、前記光源部から照射され前記集光レンズによって集光された前記
    レーザ光を取り込む第1開口部と、前記レーザ光によって前記透光性蛍光体において発せ
    られる前記蛍光を取り出す第2開口部と、を有している、
    請求項19に記載の光源装置。
  21. 前記光源部と前記集光レンズとを含むレーザ集光系は、球状の前記透光性蛍光体の中心
    部分に前記レーザ光を集光させるように配置されている、
    請求項19または20に記載の光源装置。
  22. 前記光源部および前記集光レンズを含むレーザ集光系が、前記透光性蛍光体を中心とす
    る1つの球面上に複数配置されている、
    請求項19から21のいずれか1項に記載の光源装置。
  23. 前記透光性蛍光体において発せられた前記蛍光を集光する取込み用レンズと、
    前記取込み用レンズにおいて集光された前記蛍光が第1端面に照射されるとともに、前
    記第1端面とは反対側の第2端面から前記蛍光を出射するファイバと、
    をさらに備えている、
    請求項19から22のいずれか1項に記載の光源装置。
  24. 前記取込み用レンズおよび前記ファイバを含む蛍光取込み系が、前記透光性蛍光体を中
    心とする1つの球面上に複数配置されている、
    請求項23に記載の光源装置。
  25. 前記取込み用レンズは、レンズの中心軸が、前記光源部からから照射され前記集光レン
    ズによって集光された前記レーザ光の光軸と同軸になるように配置されている、
    請求項23または24に記載の光源装置。
  26. 前記取込み用レンズは、前記集光レンズのレンズ中心軸に対して、レンズ中心軸が斜め
    に配置されている、
    請求項23または24に記載の光源装置。
  27. レーザ光を照射する光源部と、
    前記光源部から照射された前記レーザ光を集光する集光レンズと、
    前記集光レンズによって集光された前記レーザ光が透過する部分において蛍光を発する
    透光性蛍光体と、
    前記透光性蛍光体の表面の少なくとも一部に設けられ、前記レーザ光または前記蛍光を
    反射する反射膜と、
    前記反射膜における前記レーザ光の入射側の一部に形成されており、前記レーザ光を入
    射させる第1開口部と、
    前記反射膜における前記蛍光の出射側の一部に形成されており、前記蛍光を出射させる
    第2開口部と、
    を備えている光源装置。
  28. 請求項1から27のいずれか1項に記載の光源装置と、
    前記光源装置から照射された光の反射光を受光する受光部と、
    前記受光部において受光した光の量に基づいて対象物までの距離を測定する測定部と、
    を備えている測距センサ。
  29. 前記光源装置が出力する複数の波長を含む光が通過する色収差焦点レンズを、さらに有
    しており、
    前記受光部は、前記色収差焦点レンズを介して前記対象物に照射された前記複数の波長
    を含む光の反射光を受光するとともに、
    前記測定部は、前記受光部における受光量が最大となる前記反射光の波長に基づいて、
    前記対象物までの距離を測定する、
    請求項28に記載の測距センサ。
JP2019010948A 2019-01-25 2019-01-25 光源装置およびこれを備えた測距センサ Withdrawn JP2019096619A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019010948A JP2019096619A (ja) 2019-01-25 2019-01-25 光源装置およびこれを備えた測距センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019010948A JP2019096619A (ja) 2019-01-25 2019-01-25 光源装置およびこれを備えた測距センサ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017114290A Division JP6693908B2 (ja) 2017-06-09 2017-06-09 光源装置およびこれを備えた測距センサ

Publications (1)

Publication Number Publication Date
JP2019096619A true JP2019096619A (ja) 2019-06-20

Family

ID=66971953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019010948A Withdrawn JP2019096619A (ja) 2019-01-25 2019-01-25 光源装置およびこれを備えた測距センサ

Country Status (1)

Country Link
JP (1) JP2019096619A (ja)

Similar Documents

Publication Publication Date Title
JP4689190B2 (ja) 内視鏡装置および内視鏡用アダプタ
US7852553B2 (en) Microscope illumination apparatus
US7812944B1 (en) Array for optical evaluation of an object array
US6987259B2 (en) Imaging system with an integrated source and detector array
JP6693908B2 (ja) 光源装置およびこれを備えた測距センサ
JP2007072339A (ja) 集光光学系
CN112212791A (zh) 彩色共焦测量装置
JP6696597B2 (ja) 光源装置およびこれを備えた測距センサ
US8157428B2 (en) Multiple source reticle illumination
JP4426026B2 (ja) マルチ光源ユニットおよびそれを用いた光学システム
JP2019096619A (ja) 光源装置およびこれを備えた測距センサ
JP4454980B2 (ja) 顕微鏡の撮像光学系およびそれを用いた顕微鏡
JP6888638B2 (ja) 光源装置およびこれを備えた測距センサ
JP6753477B2 (ja) 光源装置およびこれを備えた測距センサ
TWI698625B (zh) 光源裝置以及具備該裝置的測距感測器
JP6756826B2 (ja) 光学ビーム整形ユニット、距離測定装置およびレーザ照明器
CN220206851U (zh) 一种光谱仪
CN218181202U (zh) 一种显微成像系统
JP2010091763A (ja) ビーム光投受光装置
KR100778388B1 (ko) 거울을 이용한 광선 분리 방법 및 이를 이용한 광학 장치
JP2005283879A (ja) 落射蛍光照明装置、及びこれを備えた顕微鏡
CN115508994A (zh) 一种显微成像系统
CN116907643A (zh) 光谱仪
JP2019096618A5 (ja)
JP2010250182A (ja) 輪帯光源装置、顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200521