JP2019091595A - 円形加速器および粒子線照射装置 - Google Patents

円形加速器および粒子線照射装置 Download PDF

Info

Publication number
JP2019091595A
JP2019091595A JP2017219028A JP2017219028A JP2019091595A JP 2019091595 A JP2019091595 A JP 2019091595A JP 2017219028 A JP2017219028 A JP 2017219028A JP 2017219028 A JP2017219028 A JP 2017219028A JP 2019091595 A JP2019091595 A JP 2019091595A
Authority
JP
Japan
Prior art keywords
circular accelerator
electrode
rotating
accelerating
accelerating cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017219028A
Other languages
English (en)
Inventor
隆光 羽江
Takamitsu Hanee
隆光 羽江
一義 齋藤
Kazuyoshi Saito
一義 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017219028A priority Critical patent/JP2019091595A/ja
Publication of JP2019091595A publication Critical patent/JP2019091595A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

【課題】高周波加速電圧を回転コンデンサによって周波数変調する際に、電力効率を高く保つことが可能な円形加速器および粒子線照射装置を提供する。【解決手段】円形加速器は、粒子を加速するための加速空胴10と、加速空胴10に高周波電力を供給するための静電容量結合式の入力カプラ20と、加速空胴10の共振周波数を変調するための回転コンデンサ30と、を備え、回転コンデンサ30のうち回転側電極32は、絶縁支持体25を介して浮遊電位電極24が接続されており、入力カプラ20の先端と浮遊電位電極24との距離が、回転側電極32の回転に伴い変化する。【選択図】図3

Description

本発明は、円形加速器および粒子線照射装置に関する。
可変エネルギーを有する荷電粒子を生成する粒子加速器を提供することを目的として、特許文献1には、粒子源からの粒子を加速するためのキャビティに高周波(RF)電圧を提供するための電圧源と、可変電流を受け取り、少なくとも4テスラであり粒子をキャビティ内で軌道に沿って運動させる磁場を発生させるコイルと、加速された粒子を受け取り、受け取られた粒子をキャビティから出力する引き出しチャネルと、を含み、キャビティから出力された粒子は、コイルに印加された可変電流に少なくとも基づいて可変であるエネルギーを有するシンクロサイクロトロンに関する技術が記載されている。
特開2015−002176号公報
粒子線照射装置は、照射するイオンビームを生成するための加速器を備えている。加速器には、主に、イオン源から出射されたイオン(例えば、陽イオンまたは炭素等の陽子より質量の重い重粒子イオン)を直線上に並べた沢山の電極によって高エネルギーまで加速する線形加速器直線と、イオン源から出射されたイオンを磁石の中で周回させ、元の電極に戻ってくるたびに同じ電極で何度も加速する円形加速器とがある。
上述のような加速器のうち、円形加速器の内部を周回するビームは、高周波加速電圧が生じる加速間隙を通過する度にエネルギーを得る。このとき、高周波加速電圧の周波数を時間的に一定とする方式と変調する方式の2方式がある。
周波数を変調する方式では、加速空胴の共振周波数を時間的に変える必要があり、このために、回転コンデンサ等を用いて加速空胴の静電容量を時間的に変化させる方法が用いられている。
一方で、共振周波数が変化すると、加速空胴に高周波電力を供給する入力カプラの結合係数が変化するため、電力整合条件が崩れて反射電力が多くなるという問題がある。この問題に対処するため、例えば、上述した特許文献1の方法が提案されている。
上述した特許文献1では、同軸管構造となっている入力カプラの内導体が、加速空胴内の内導体に直結され電気的に短絡されている。このような構造とすることで、Q値が低下して入力カプラの周波数特性を広帯域化できるため、周波数が変化しても同調条件を保つことができる。
しかしながら、上述した特許文献1の構成では、加速空胴のQ値が低下するため、シャントインピーダンスが低下してしまい、加速空胴により多くの高周波電力を供給する必要が生じるため、電力効率が悪くなる、との問題がある。
本発明は上述の点に鑑みなされたもので、その目的は、高周波加速電圧を回転コンデンサによって周波数変調する際に、電力効率を高く保つことが可能な円形加速器および粒子線照射装置を提供することにある。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、回転コンデンサを用いて高周波加速電圧を周波数変調する円形加速器であって、イオンを加速するための加速空胴と、前記加速空胴に高周波電力を供給するための静電容量結合式の入力カプラと、前記加速空胴の共振周波数を変調するための前記回転コンデンサと、を備え、前記回転コンデンサのうち回転側電極は、絶縁体を介して浮遊電位電極が接続されており、前記入力カプラの先端と前記浮遊電位電極との距離が、前記回転側電極の回転に伴い変化することを特徴とする。
本発明によれば、高周波加速電圧を回転コンデンサによって周波数変調する際に、電力効率を高く保つことができる。
本発明の実施例の円形加速器の外観である。 本発明の実施例の円形加速器の断面構造である。 本発明の実施例の加速空胴の断面構成である。 図3のA−A’線上における断面図である。 本発明の実施例の加速空胴の断面構成の他の一例である。 本発明の実施例の粒子線治療装置の全体構成を示す図である。
本発明の円形加速器および粒子線照射装置の実施例を、図1乃至図6を用いて説明する。尚、下記はあくまでも実施例に過ぎず、発明の内容を下記具体的態様に限定する趣旨ではない。発明自体は、下記実施例以外にも種々の形態に変形させることが可能である。
本実施例の円形加速器39は、一定磁場中を時間的に周波数変調した高周波加速電圧によってイオンを加速するタイプの加速器である。円形加速器39の外観を図1に、断面構成を図2に示す。
図1に示すように、円形加速器39は、上下に分割可能な主電磁石40によってその外殻が形成され、ビーム加速領域となる内部は真空引きされている。円形加速器39の外周部側には、入力カプラ20と、回転コンデンサ30とが設けられている。円形加速器39は、この回転コンデンサ30を用いて、高周波加速電圧を周波数変調する。
主電磁石40の上部にはイオン源53が設置されており、低エネルギー輸送系54を通してイオン入射位置52からビームが円形加速器39内部に入射される。イオン源53としては、マイクロ波イオン源などを適用できる。なお、イオン源は、主電磁石40内部の真空引きされたビーム加速領域内部に配置しても良く、その場合はPIG型イオン源などを適用できる。
主電磁石40は、図2に示すように、主磁極(図示省略)、リターンヨーク41、コイル42からなる。主電磁石40には貫通孔が複数あり、そのうち加速されたビームを取り出すビーム用貫通孔46、内部のコイル導体を外部に引き出すためのコイル用貫通孔48、真空引き用貫通孔49、高周波加速空胴のための高周波系用貫通孔50が上下の接続面上に設けられている。
円形加速器39の内部には、円環状のコイル42がリターンヨーク41の内壁に沿って設置されている。コイル42に電流を流すことによって、主電磁石40の内部に所定の分布で磁場を励起する。コイル42は、常伝導コイルでもよいが、コイル周囲にクライオスタットを設置して超伝導コイルとしてもよい。コイル42の内側には図示を省略した主磁極が設置されており、主磁極表面に設置されるトリムコイル51と共にビーム周回や取出しに適する磁場分布を形成する。
本実施例では、図2に示すようなビーム軌道をコイル用貫通孔48側に偏心させた場合のトリムコイル配置を示しているが、一般的なシンクロサイクロトロンのように同心円軌道に沿うように同心円状に配置することができる。
イオン入射位置52から内部に入射されたビームは、高周波加速電圧が励起される加速間隙11を通過する度に加速される。加速間隙11は、ディー電極12とそれに対向するダミーディー電極13との間に形成される。図2に示したディー電極12の形状は、ハーモニクス数1の場合のものであり、ビームの軌道形状に応じて形成される。
取出し用セプタム電磁石47は、所定のエネルギーまで加速されたイオンビームを高エネルギー輸送系である回転ガントリ60のビーム取出し経路上の定められた設計軌道に乗せるのに必要な偏向をビームに対して与えるための電磁石である。
次に、イオンを加速するための加速空胴10の構造を図3および図4を用いて詳述する。図3は図1に示す加速空胴10の中心断面構造を示している。図4は図3中A−A’矢視断面図である。
図3に示すような加速空胴10は、図1に示す高周波系用貫通孔50に配置されており、ダミーディー電極13、内導体14とそれに連なるディー電極12、内導体14を外包する外導体15からなる。加速空胴10は、ビーム軌道面に対して入力カプラ20などの突起部が配置される部分を除き、上下対称な構造となっている。
同軸管構造の入力カプラ20は、加速空胴10に高周波電力を供給するための機器であり、加速空胴の内導体14に対して静電容量結合式により接続されている。本実施例の加速空胴10では、入力カプラ20を通して外部より内導体14に対して高周波電力が供給され、ディー電極12とダミーディー電極13との間の加速間隙11にビームを加速するため、高周波加速電圧が発生する。ビームを加速するためには、加速間隙11を通過する際の高周波加速電圧の周波数と位相が適切な値である必要があり、そのために高周波加速電圧の周波数をフィードバック制御する。なお、ビーム加速中の高周波バケットサイズを制御する目的で、高周波加速電圧の振幅もフィードバック制御することも可能である。
回転コンデンサ30は、加速空胴10の共振周波数を変調するための機器であり、内導体14に連なる固定側電極31、外導体15に隣り合う回転体35とその回転体35の固定側電極31側に形成された回転側電極32、モータ33、およびシャフト34からなる。
回転体35は、軸受け(図示省略)に支持されたシャフト34を介してモータ33に接続される。シャフト34は金属あるいは絶縁体にて構成することができる。回転体35は、導電体材からなり、図4に示すように、円形断面を有する。内導体14および外導体15は、ディー電極12との接合部付近では矩形断面だが、テーパー部16を経て固定側電極31付近で円形断面に滑らかに移行する。
回転体35は、加速空胴10の外導体15に対して物理的には接続していないものの、電気的に接続する形状・配置となっている。すなわち、回転体35に接続された回転側電極32と外導体15とは静電結合している。
なお、回転体35と静止している外導体15の境界面における高周波抵抗を小さくするため、静電容量が大きくなるように例えば境界面において回転体35と外導体15が対向する部分の導体面積を増加させてもよい。
図3に示すように、回転体35には回転側電極32が固定されている。固定側電極31および回転側電極32は、図4に示すように扇型断面となっており、回転体35の回転に伴い固定側電極31と回転側電極32の対向部面積が変わるために静電容量が変化し、加速空胴10の共振周波数を変えることができる。このとき、回転側電極32あるいは固定側電極31の先端形状を変化させることで、ビーム加速に適した共振周波数の変調パターンに制御することができる。回転側電極32と固定側電極31の枚数は任意であり、図4の例に限るものではない。
回転側電極32には、絶縁支持体(絶縁体)25を介して浮遊電位電極24が接続される。絶縁支持体25の材質は、回転体35の回転による遠心力に耐えるために、十分な強度を持つセラミックやエンジニアリングプラスチックとすることが望ましい。絶縁支持体25は、誘電率および誘電体損失が小さな材質であることが望ましい。
浮遊電位電極24は絶縁支持体25によって回転側電極32に固定されているため、図4に示すように、回転側電極32と一体となって回転する。浮遊電位電極24の回転に伴い、入力カプラ内導体23の先端と浮遊電位電極24との間の距離が変化するように浮遊電位電極24の外径側形状が定められている。このような外径側形状であることで、入力カプラ20の先端と浮遊電位電極24との間に可変容量26が形成される。また、浮遊電位電極24と内導体14との間には、静電容量27が形成される。
この可変容量26と静電容量27との直列接続が、入力カプラ内導体23と内導体14との静電結合を構成する。
なお、図4の例では、入力カプラ内導体23と浮遊電位電極24との間の距離が回転に伴い不連続に変化するものとしたが、連続的に滑らかに変化するように浮遊電位電極24の外径側形状を定めることができ、回転体35の回転に伴って浮遊電位電極24と入力カプラ内導体23との距離が変化する形状であればその外径側形状は特定されない。
浮遊電位電極24の内径側形状は、図4に示すように円形状として、同じく円形状の内導体14との間の静電容量27が時間的に一定となるように形成する。しかし、浮遊電位電極24の内径側形状はこれに限られず、浮遊電位電極24と内導体14との間の距離が変化するように形成して可変容量とすることができる。あるいは、浮遊電位電極24と内導体14との間に金属製ベアリングを挿入して、浮遊電位電極24と内導体14両者の電気的な導通を取る構成とすることができる。
また、図3に示すような回転側電極32が加速空胴10の外導体15に静電結合され、加速空胴10の内導体14に回転コンデンサ30の固定側電極31が接続される形態に限られず、図5に示すように、回転側電極32Aが加速空胴10Aの内導体14Aに静電結合され、加速空胴10Aの外導体15Aに回転コンデンサ30Aの固定側電極31Aが接続される形態とすることができる。
図5に示すように、回転コンデンサ30Aは、図3に示す回転コンデンサ30と同様に、加速空胴10Aの共振周波数を変調するための機器であり、加速空胴10Aの外導体15Aに連なる固定側電極31A、加速空胴10Aの内導体14Aに対して節電結合された回転体35Aとこの回転体35Aに固定された回転側電極32A、モータ33A、およびシャフト34Aからなる。
回転体35Aは、軸受け(図示省略)に支持されたシャフト34Aを介してモータ33Aに接続される。シャフト34Aは絶縁体にて構成する。回転体35Aは、加速空胴10Aの内導体14Aに対して電気的に接続するようにその形状や材質が構成,選択され、またそれらの間の距離が充分に近くなるよう配置されている。
固定側電極31A、回転側電極32Aは、固定側電極31や回転側電極32Aと同じ扇型断面である。
回転側電極32Aには、絶縁支持体25Aを介して浮遊電位電極24Aが接続される。浮遊電位電極24Aは回転側電極32Aと一体となって回転する。浮遊電位電極24Aの回転に伴い、入力カプラ内導体23Aの先端と浮遊電位電極24Aとの間の距離が変化するように浮遊電位電極24Aの外径側形状が定められている。このような外径側形状であることで、入力カプラ20Aの先端と浮遊電位電極24Aとの間に可変容量が形成され、浮遊電位電極24Aと内導体14Aとの間には、静電容量が形成される。この可変容量と、静電容量との直列接続が、入力カプラ内導体23Aと内導体14Aとの静電結合を構成する。
上述のような本実施例の加速空胴10,10Aを備えた円形加速器39は、粒子線治療などに用いる粒子線照射装置に好適に適用することができる。適用した場合の粒子線照射装置の全体構成について図6を用いて説明する。
図6において、粒子線照射装置は、円形加速器39と、円形加速器39によって加速されたイオンビームを標的に対して照射するための回転ガントリ60、照射装置61、治療台63、およびそれらを制御する制御装置62からなる。
円形加速器39のビーム用貫通孔46から出射されたイオンビームは、回転ガントリ60により照射装置61まで輸送される。輸送されたイオンビームは照射装置61で患部形状に合致するように整形され、治療台63に横になった患者64の患部標的に対して所定量照射される。
なお、図6では、回転ガントリ60を備えた場合について説明したが、回転ガントリ60を設けずに、固定されたビーム輸送系によって照射装置61にイオンビームを輸送することができる。また、照射装置61は複数設けてもよい。更には、ビーム輸送系を設けずに円形加速器39から直接照射装置61にビームを輸送してもよい。
次に、本実施例の効果について説明する。
上述した本実施例の粒子線照射装置は、回転コンデンサ30を用いて高周波加速電圧を周波数変調する円形加速器39と、円形加速器39によって加速された粒子を標的に対して照射する照射装置61と、を備えている。このうち、円形加速器39は、イオンを加速するための加速空胴10,10Aと、加速空胴10,10Aに高周波電力を供給するための静電容量結合式の入力カプラ20,20Aと、加速空胴10,10Aの共振周波数を変調するための回転コンデンサ30,30Aと、を備え、回転コンデンサ30,30Aのうち回転側電極32,32Aは、絶縁支持体25,25Aを介して浮遊電位電極24,24Aが接続されており、入力カプラ20,20Aの先端と浮遊電位電極24,24Aとの距離が、回転側電極32,32Aの回転に伴い変化するものである。
以上のような構成により、回転コンデンサ30,30Aの回転によって加速空胴10,10Aの共振周波数が変化しても、入力カプラ20,20Aの先端と浮遊電位電極24,24Aとの間の距離を制御することで入力カプラ20,20Aの先端と浮遊電位電極24,24Aとの間に形成される可変容量26によって結合条件を時間的に変えることができる。この可変容量26によって入力カプラ20,20Aの結合係数の変化を抑制でき、電力整合条件を保つことができる。このとき、加速空胴10,10AのQ値の低下分は、浮遊電位電極24,24Aと絶縁支持体25,25Aに起因する分のみでわずかであるため、電力効率の悪化を防ぎ、効率を従来に比べて高く保つことができる。このように、周波数変調時に必要な高周波電力が増大せずに済むため、高周波電源の小型・低コスト化を達成することができる。
また、回転側電極32が加速空胴10の外導体15に静電結合され、加速空胴10の内導体14に回転コンデンサ30の固定側電極31が接続されているため、回転側電極32や固定側電極31の形状の調整によって容易に加速空胴10の共振周波数を変調することができる構造とすることができる。
更に、回転側電極32Aが加速空胴10の内導体14Aに静電結合され、加速空胴10Aの外導体15Aに回転コンデンサ30Aの固定側電極31Aが接続されていることによっても、回転側電極32Aや固定側電極31Aの形状の調整によって容易に加速空胴10Aの共振周波数を変調することができる構造とすることができる。
また、ビームの加速軌道が偏心軌道であることにより、周回するビームの軌道が集約領域で集約されていることから、集約していない軌道に比べて少ない局所磁場でビーム取出し経路まで偏向させることができ、所定エネルギーまで加速されたイオンビームの高効率での取出しが非常に容易となる。
更に、絶縁支持体25,25Aは、セラミックあるいはエンジニアリングプラスチックにより構成されることで、回転体35,35Aの回転による遠心力が加わっても確実に浮遊電位電極24,24Aを保持することができ、可変容量26をより安定して形成することができることから、電力整合条件をより安定して保つことができる。
10,10A…加速空胴
11…加速間隙
12…ディー電極
13…ダミーディー電極
14,14A…内導体
15,15A…外導体
16…テーパー部
20,20A…入力カプラ
23,23A…入力カプラ内導体
24,24A…浮遊電位電極
25,25A…絶縁支持体
30,30A…回転コンデンサ
31,31A…固定側電極
32,32A…回転側電極
33,33A…モータ
34,34A…シャフト
35,35A…回転体
39…円形加速器
40…主電磁石
41…リターンヨーク
42…コイル
46…ビーム用貫通孔
47…取出し用セプタム電磁石
48…コイル用貫通孔
49…真空引き用貫通孔
50…高周波系用貫通孔
51…トリムコイル
52…イオン入射位置
53…イオン源
54…低エネルギー輸送系
60…回転ガントリ
61…照射装置
62…制御装置
63…治療台
64…患者

Claims (7)

  1. 回転コンデンサを用いて高周波加速電圧を周波数変調する円形加速器であって、
    イオンを加速するための加速空胴と、
    前記加速空胴に高周波電力を供給するための静電容量結合式の入力カプラと、
    前記加速空胴の共振周波数を変調するための前記回転コンデンサと、を備え、
    前記回転コンデンサのうち回転側電極は、絶縁体を介して浮遊電位電極が接続されており、
    前記入力カプラの先端と前記浮遊電位電極との距離が、前記回転側電極の回転に伴い変化する
    ことを特徴とする円形加速器。
  2. 請求項1に記載の円形加速器において、
    前記回転側電極が前記加速空胴の外導体に静電結合され、
    前記加速空胴の内導体に前記回転コンデンサの固定側電極が接続される
    ことを特徴とする円形加速器。
  3. 請求項1に記載の円形加速器において、
    前記回転側電極が前記加速空胴の内導体に静電結合され、
    前記加速空胴の外導体に前記回転コンデンサの固定側電極が接続される
    ことを特徴とする円形加速器。
  4. 請求項2に記載の円形加速器において、
    ビームの加速軌道が偏心軌道である
    ことを特徴とする円形加速器。
  5. 請求項3に記載の円形加速器において、
    ビームの加速軌道が偏心軌道である
    ことを特徴とする円形加速器。
  6. 請求項1に記載の円形加速器において、
    前記絶縁体は、セラミックあるいはエンジニアリングプラスチックにより構成される
    ことを特徴とする円形加速器。
  7. 請求項1に記載の円形加速器と、
    前記円形加速器によって加速されたイオンビームを標的に対して照射する照射装置と、を備えた
    ことを特徴とする粒子線照射装置。
JP2017219028A 2017-11-14 2017-11-14 円形加速器および粒子線照射装置 Pending JP2019091595A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017219028A JP2019091595A (ja) 2017-11-14 2017-11-14 円形加速器および粒子線照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219028A JP2019091595A (ja) 2017-11-14 2017-11-14 円形加速器および粒子線照射装置

Publications (1)

Publication Number Publication Date
JP2019091595A true JP2019091595A (ja) 2019-06-13

Family

ID=66837435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219028A Pending JP2019091595A (ja) 2017-11-14 2017-11-14 円形加速器および粒子線照射装置

Country Status (1)

Country Link
JP (1) JP2019091595A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018658A1 (ja) * 2022-07-21 2024-01-25 株式会社日立製作所 回転コンデンサ、円形加速器、および粒子線治療システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018658A1 (ja) * 2022-07-21 2024-01-25 株式会社日立製作所 回転コンデンサ、円形加速器、および粒子線治療システム

Similar Documents

Publication Publication Date Title
US11849533B2 (en) Circular accelerator, particle therapy system with circular accelerator, and method of operating circular accelerator
WO2020049755A1 (ja) 加速器、およびそれを備えた粒子線治療システム
EP3606294B1 (en) Circular accelerator
JP2015065102A (ja) 円形加速器
WO2019097721A1 (ja) 粒子線治療システムおよび加速器、ならびに加速器の運転方法
US8525449B2 (en) Charged particle beam extraction method using pulse voltage
JP2020202015A (ja) 加速器、粒子線治療システムおよびイオン取り出し方法
JP2019091595A (ja) 円形加速器および粒子線照射装置
CN113382529A (zh) 一种超导离子环形同步加速器
US20210393986A1 (en) Ion source, circular accelerator using same, and particle beam therapy system
JP6899754B2 (ja) 円形加速器および粒子線治療システム
WO2018096648A1 (ja) 加速器および粒子線照射装置
JP2022026175A (ja) 加速器および粒子線治療装置
Smirnov et al. CYCLOTRON SYSTEM С-250
JP2015133241A (ja) 円形加速器、円形加速システム及び粒子加速方法
JP2021108759A (ja) 粒子線治療システム、イオンビームの生成方法、および、制御プログラム
JP7465042B2 (ja) 円形加速器、および、粒子線治療システム
JP2021035467A (ja) 円形加速器および粒子線治療システム、円形加速器の運転方法
WO2024004238A1 (ja) 加速器及び粒子線治療装置
WO2023112383A1 (ja) 加速器、粒子線治療システム及び制御方法
WO2023162640A1 (ja) 加速器および加速器を備える粒子線治療システム
WO2019020160A1 (en) CYCLOTRON COMPACT WITH CLOVER-SHAPED ELECTRODES
WO2022130680A1 (ja) 加速器および粒子線治療装置
JP2024092822A (ja) 加速器及び粒子線治療システム
JP6663618B2 (ja) 加速器および粒子線照射装置