JP2019085947A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2019085947A
JP2019085947A JP2017215924A JP2017215924A JP2019085947A JP 2019085947 A JP2019085947 A JP 2019085947A JP 2017215924 A JP2017215924 A JP 2017215924A JP 2017215924 A JP2017215924 A JP 2017215924A JP 2019085947 A JP2019085947 A JP 2019085947A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
combustion engine
internal combustion
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017215924A
Other languages
Japanese (ja)
Other versions
JP6881247B2 (en
Inventor
啓一 明城
Keiichi Myojo
啓一 明城
勇喜 野瀬
Yuki Nose
勇喜 野瀬
美紗子 伴
Misako Ban
美紗子 伴
英二 生田
Eiji Ikuta
英二 生田
良行 正源寺
Yoshiyuki Shogenji
良行 正源寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017215924A priority Critical patent/JP6881247B2/en
Publication of JP2019085947A publication Critical patent/JP2019085947A/en
Application granted granted Critical
Publication of JP6881247B2 publication Critical patent/JP6881247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

To provide a control device of an internal combustion engine capable of minimizing degradation of drivability while protecting parts of an internal combustion engine and suppressing degradation of exhaust components.SOLUTION: A CPU 32 executes dither control to apply one of cylinders #1-#4 as a rich combustion cylinder richer than a theoretical air-fuel ratio, and apply the remaining cylinders as lean combustion cylinders leaner than the theoretical air-fuel ratio under a condition that temperature rise of a three-way catalyst 24 is requested. The CPU 32 limits an absolute value of difference between an air-fuel ratio of the rich combustion cylinder and an air-fuel ratio of the lean combustion cylinder to protect components of an internal combustion engine 10, when occurrence of abnormality not less than a prescribed value in control of controlled variable of the internal combustion engine 10, is determined while executing the dither control. Further the CPU 32 limits the absolute value within a range to keep exhaust components within an allowable range when rotational fluctuation is increased although the abnormality of not less than a prescribed value is not confirmed.SELECTED DRAWING: Figure 1

Description

本発明は、複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とする内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine that controls an internal combustion engine including an exhaust gas purification device that purifies exhaust gas discharged from a plurality of cylinders, and a fuel injection valve provided for each of the plurality of cylinders.

たとえば特許文献1には、排気浄化触媒(排気浄化装置)の昇温要求がある場合、一部の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とし、残りの気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とするディザ制御処理を実行する制御装置が記載されている。   For example, in Patent Document 1, when there is a temperature increase request of the exhaust purification catalyst (exhaust purification device), some cylinders are rich combustion cylinders whose air fuel ratio is richer than the theoretical air fuel ratio, and the remaining cylinders are: A control device is described which performs dither control processing to make a lean combustion cylinder in which the air-fuel ratio is leaner than the stoichiometric air-fuel ratio.

特開2016−169665号公報JP, 2016-169665, A

ディザ制御による排気浄化装置の昇温性能は、リッチ燃焼気筒の空燃比とリーン燃焼気筒の空燃比との差の絶対値が大きいほど大きい。一方、同絶対値が大きいほど回転変動が大きくなりやすい。このため、ディザ制御では、回転変動がドライバビリティの低下を招くことがない範囲で、昇温性能を確保する上で必要な上記絶対値を設定することとなる。ただし、たとえば燃料噴射弁の経年劣化や内燃機関の圧縮比の個体差等に起因して、回転変動が想定以上に大きくなり、これによりドライバビリティの低下を招くおそれがある。しかし、ドライバビリティの改善を図るべく上記絶対値を小さくする場合、昇温性能が低下し、排気浄化装置の浄化能力の低下を招くおそれがある。   The temperature raising performance of the exhaust gas purification apparatus by dither control increases as the absolute value of the difference between the air-fuel ratio of the rich combustion cylinder and the air-fuel ratio of the lean combustion cylinder increases. On the other hand, the larger the absolute value, the greater the rotational fluctuation. For this reason, in the dither control, the above-described absolute value necessary to secure the temperature rising performance is set in a range in which the rotational fluctuation does not cause a decrease in drivability. However, due to, for example, the deterioration with age of the fuel injection valve, the individual difference of the compression ratio of the internal combustion engine, etc., the rotational fluctuation becomes larger than expected, which may result in the deterioration of the drivability. However, when the absolute value is reduced to improve the drivability, the temperature rise performance may be lowered, which may lead to a decrease in the purification capacity of the exhaust gas purification apparatus.

上記課題を解決すべく、内燃機関の制御装置は、複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とし、前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、前記内燃機関の制御量の制御に所定以上の異常が生じていると判定する場合、該異常が生じていないと判定する場合と比較して前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差の絶対値を小さくする部品保護処理と、前記所定以上の異常が生じていないと判定される場合であって前記内燃機関のクランク軸の回転変動が所定以上であると判定する場合、前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差の絶対値を小さくする振動抑制処理と、を実行し、前記部品保護処理では、前記振動抑制処理よりも前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差の絶対値を小さくする。   In order to solve the above problems, a control device for an internal combustion engine controls an internal combustion engine including an exhaust gas purification device for purifying exhaust gas discharged from a plurality of cylinders, and a fuel injection valve provided for each of the plurality of cylinders. The target is that some of the plurality of cylinders are rich combustion cylinders whose air fuel ratio is richer than the theoretical air fuel ratio, and cylinders other than the some cylinders of the plurality of cylinders are used. It is determined that the dither control processing for operating the fuel injection valve and the control amount of the internal combustion engine have a predetermined abnormality or more so that the air-fuel ratio is lean combustion cylinder leaner than the theoretical air-fuel ratio. Component protection processing for reducing the absolute value of the difference between the air-fuel ratio of the rich combustion cylinder and the air-fuel ratio of the lean combustion cylinder as compared with the case where it is determined that the abnormality has not occurred; Determined that no abnormality occurred If it is determined that the rotational fluctuation of the crankshaft of the internal combustion engine is equal to or greater than a predetermined value, vibration suppression is performed to reduce the absolute value of the difference between the air fuel ratio of the rich combustion cylinder and the air fuel ratio of the lean combustion cylinder. Processing is performed, and in the component protection processing, the absolute value of the difference between the air-fuel ratio of the rich combustion cylinder and the air-fuel ratio of the lean combustion cylinder is made smaller than in the vibration suppression processing.

ディザ制御では、ディザ制御によってリッチ燃焼気筒とリーン燃焼気筒との空燃比を異ならせることから、全ての気筒の燃焼状態を最も安定な状態に制御することが困難であり、燃焼が悪化しやすい傾向を有する。一方、内燃機関の制御量の制御に所定以上の異常が生じている場合、燃焼制御に異常がある可能性が高い。そのため、上記異常が生じると、ディザ制御による燃焼が悪化しやすい傾向が顕在化し、内燃機関の部品の劣化が促進されるおそれがある。そこで上記構成では、部品保護処理によって、リッチ燃焼気筒の空燃比とリーン燃焼気筒の空燃比との差の絶対値を小さくすることにより、部品を保護する。一方、所定以上の異常が生じていないと判定される場合であって回転変動が所定以上である場合には、リッチ燃焼気筒の空燃比とリーン燃焼気筒の空燃比との差の絶対値を小さくしつつも部品保護処理時よりも大きい値とする。これにより、排気成分の悪化を抑制しつつもドライバビリティの悪化を極力改善することができる。   In dither control, it is difficult to control the combustion state of all the cylinders to the most stable state because the air-fuel ratios of the rich combustion cylinder and the lean combustion cylinder are made different by dither control, and the combustion tends to deteriorate. Have. On the other hand, when the control of the control amount of the internal combustion engine has a predetermined abnormality or more, there is a high possibility that the combustion control has an abnormality. Therefore, when the above abnormality occurs, a tendency that the combustion by the dither control is likely to deteriorate becomes apparent, and there is a possibility that deterioration of parts of the internal combustion engine is promoted. Therefore, in the above configuration, the component protection process protects the component by reducing the absolute value of the difference between the air-fuel ratio of the rich combustion cylinder and the air-fuel ratio of the lean combustion cylinder. On the other hand, in the case where it is determined that a predetermined or more abnormality has not occurred and the rotation fluctuation is equal to or more than a predetermined value, the absolute value of the difference between the air fuel ratio of the rich combustion cylinder and the air fuel ratio of the lean combustion cylinder is reduced. However, the value should be larger than during part protection processing. Thereby, the deterioration of drivability can be improved as much as possible while suppressing the deterioration of exhaust components.

一実施形態にかかる制御装置および内燃機関を示す図。FIG. 1 shows a control device and an internal combustion engine according to one embodiment. 同実施形態にかかる制御装置が実行する処理の手順を示す流れ図。The flowchart which shows the procedure of the process which the control apparatus concerning the embodiment performs.

以下、内燃機関の制御装置にかかる一実施形態について図面を参照しつつ説明する。
図1に示す内燃機関10は、車両に搭載される。内燃機関10において、吸気通路12から吸入された空気は、過給機14を介して各気筒の燃焼室16に流入する。燃焼室16には、燃料を噴射する燃料噴射弁18と、火花放電を生じさせる点火装置20とが設けられている。燃焼室16において、空気と燃料との混合気は、燃焼に供され、燃焼に供された混合気は、排気として、排気通路22に排出される。排気通路22のうちの過給機14の下流には、酸素吸蔵能力を有した三元触媒24が設けられている。
Hereinafter, an embodiment according to a control device for an internal combustion engine will be described with reference to the drawings.
An internal combustion engine 10 shown in FIG. 1 is mounted on a vehicle. In the internal combustion engine 10, the air taken in from the intake passage 12 flows into the combustion chamber 16 of each cylinder via the supercharger 14. The combustion chamber 16 is provided with a fuel injection valve 18 for injecting fuel and an igniter 20 for generating spark discharge. In the combustion chamber 16, the mixture of air and fuel is subjected to combustion, and the mixture supplied to combustion is discharged to the exhaust passage 22 as exhaust gas. A three-way catalyst 24 having an oxygen storage capacity is provided downstream of the turbocharger 14 in the exhaust passage 22.

制御装置30は、内燃機関10を制御対象とし、その制御量(トルク、排気成分等)を制御するために、燃料噴射弁18や点火装置20等の内燃機関10の操作部を操作する。この際、制御装置30は、三元触媒24の上流側の空燃比センサ40によって検出される空燃比Afや、クランク角センサ44の出力信号Scr、エアフローメータ46によって検出される吸入空気量Gaを参照する。制御装置30は、CPU32、ROM34、およびRAM36を備えており、ROM34に記憶されたプログラムをCPU32が実行することにより上記制御量の制御を実行する。   The control device 30 controls the internal combustion engine 10, and operates the operation part of the internal combustion engine 10 such as the fuel injection valve 18 and the ignition device 20 in order to control the control amount (torque, exhaust component, etc.). At this time, the controller 30 controls the air-fuel ratio Af detected by the air-fuel ratio sensor 40 upstream of the three-way catalyst 24, the output signal Scr of the crank angle sensor 44, and the intake air amount Ga detected by the air flow meter 46. refer. The control device 30 includes a CPU 32, a ROM 34, and a RAM 36. The CPU 32 executes a program stored in the ROM 34 to control the control amount.

図2に、制御装置30が実行する処理の1つを示す。図2に示す処理は、ROM34に記憶されたプログラムをCPU32がたとえば所定周期で繰り返し実行することにより実現される。なお、以下では、先頭に「S」が付与された数字によって、ステップ番号を表現する。   FIG. 2 shows one of the processes performed by the control device 30. The process shown in FIG. 2 is realized by the CPU 32 repeatedly executing the program stored in the ROM 34 at a predetermined cycle, for example. In the following, the step number is represented by a number to which "S" is added at the beginning.

図2に示す一連の処理において、CPU32は、空燃比を目標空燃比に制御するうえで燃料噴射弁18が噴射すべき噴射量である要求噴射量Qdを算出する(S10)。詳しくはCPU32は、まず、回転速度NEと吸入空気量Gaとに基づきベース噴射量Qbを算出する。ベース噴射量Qbは、燃焼室16における混合気の空燃比を目標空燃比に開ループ制御するための操作量である開ループ操作量である。次にCPU32は、フィードバック制御量である空燃比Afを目標値Af*にフィードバック制御するための操作量であるフィードバック操作量KAFを算出する。詳しくはCPU32は、目標値Af*と空燃比Afとの差Δを入力とする比例要素、積分要素、および微分要素の各出力値の和を、ベース噴射量Qbの補正比率δとし、フィードバック操作量KAFを、「1+δ」とする。そして、CPU32は、ベース噴射量Qbにフィードバック操作量KAFを乗算した値を、要求噴射量Qdに代入する。なお、回転速度NEは、CPU32により、クランク角センサ44の出力信号Scrに基づき、図2に示す処理とは別の処理によって算出される。   In the series of processes shown in FIG. 2, the CPU 32 calculates a required injection amount Qd which is an injection amount to be injected by the fuel injection valve 18 in order to control the air fuel ratio to the target air fuel ratio (S10). Specifically, the CPU 32 first calculates the base injection amount Qb based on the rotational speed NE and the intake air amount Ga. The base injection amount Qb is an open loop operation amount that is an operation amount for open loop control of the air fuel ratio of the air fuel mixture in the combustion chamber 16 to the target air fuel ratio. Next, the CPU 32 calculates a feedback operation amount KAF, which is an operation amount for performing feedback control of the air-fuel ratio Af, which is a feedback control amount, to the target value Af *. Specifically, the CPU 32 sets the sum of the output values of the proportional element, the integral element, and the differential element, which receives the difference Δ between the target value Af * and the air-fuel ratio Af, as the correction ratio δ of the base injection amount Qb. Let the quantity KAF be "1 + δ". Then, the CPU 32 substitutes a value obtained by multiplying the base injection amount Qb by the feedback operation amount KAF into the required injection amount Qd. The rotational speed NE is calculated by the CPU 32 based on the output signal Scr of the crank angle sensor 44 by a process different from the process shown in FIG.

次に、CPU32は、三元触媒24の昇温要求があるか否かを判定する(S12)。本実施形態では、三元触媒24の暖機要求が生じていることと、硫黄被毒回復処理の実行要求が生じていることとの論理和が真である場合に、昇温要求があると判定する。ここで、三元触媒24の暖機要求は、内燃機関10の始動からの吸入空気量Gaの積算値InGaが第1規定値Inth1以上である旨の条件(ア)と、積算値InGaが第2規定値Inth2以下である旨の条件(イ)との論理積が真である場合に生じるものとする。ここで、第2規定値Inth2は、第1規定値Inth1よりも大きい。なお、条件(ア)は、三元触媒24の上流側の端部の温度が活性温度となっていると判定される条件である。また、条件(イ)は、三元触媒24の全体が未だ活性状態となっていないと判定される条件である。一方、硫黄被毒回復処理の実行要求は、硫黄被毒量が所定量以上となる場合に生じるものとする。ここで、CPU32は、図2とは別の処理で、要求噴射量Qdの積算値に基づき硫黄被毒量を算出する。   Next, the CPU 32 determines whether there is a temperature increase request for the three-way catalyst 24 (S12). In the present embodiment, if the logical sum of the requirement for warm-up of the three-way catalyst 24 and the requirement for execution of the sulfur poisoning recovery processing is true, the requirement for temperature increase is present. judge. Here, the warm-up requirement of the three-way catalyst 24 is the condition (i) that the integrated value InGa of the intake air amount Ga from the start of the internal combustion engine 10 is greater than or equal to the first specified value Inth1; (2) It occurs when the logical product with the condition (i) that the specified value Inth2 or less is true is true. Here, the second predetermined value Inth2 is larger than the first predetermined value Inth1. Condition (a) is a condition determined that the temperature of the upstream end of the three-way catalyst 24 is the activation temperature. Condition (i) is a condition under which it is determined that the entire three-way catalyst 24 has not yet been activated. On the other hand, the execution request of the sulfur poisoning recovery process is generated when the sulfur poisoning amount is equal to or more than a predetermined amount. Here, the CPU 32 calculates the sulfur poisoning amount based on the integrated value of the required injection amount Qd in a process different from that of FIG.

CPU32は、昇温要求がないと判定する場合(S12:NO)、噴射量指令値Q*に要求噴射量Qdを代入する(S14)。そしてCPU32は、燃料噴射弁18から噴射量指令値Q*に応じた量の燃料を噴射すべく、燃料噴射弁18に操作信号MS2を出力する(S16)。   When determining that the temperature increase request is not made (S12: NO), the CPU 32 substitutes the required injection amount Qd for the injection amount command value Q * (S14). Then, the CPU 32 outputs an operation signal MS2 to the fuel injection valve 18 in order to inject fuel of an amount according to the injection amount command value Q * from the fuel injection valve 18 (S16).

これに対し、CPU32は、昇温要求があると判定する場合(S12:YES)、要求噴射量Qdの補正要求値(噴射量補正要求値α)のベース値(ベース要求値α0)を算出する(S18)。噴射量補正要求値αは、内燃機関10の気筒#1〜#4のそれぞれから排出される排気全体の成分を、気筒#1〜#4の全てで燃焼対象とする混合気の空燃比を目標空燃比とした場合と同等としつつも、燃焼対象とする混合気の空燃比を気筒間で異ならせるディザ制御によって要求される要求噴射量Qdの補正量である。ここで、本実施形態にかかるディザ制御では、第1の気筒#1〜第4の気筒#4のうちの1つの気筒を、混合気の空燃比を理論空燃比よりもリッチとするリッチ燃焼気筒とし、残りの3つの気筒を、混合気の空燃比を理論空燃比よりもリーンとするリーン燃焼気筒とする。そして、リッチ燃焼気筒における噴射量を、上記要求噴射量Qdの「1+α」倍とし、リーン燃焼気筒における噴射量を、要求噴射量Qdの「1−(α/3)」倍とする。リーン燃焼気筒とリッチ燃焼気筒との上記噴射量の設定によれば、気筒#1〜#4のそれぞれに充填される空気量が同一であるなら、内燃機関10の各気筒#1〜#4から排出される排気全体の成分を、気筒#1〜#4の全てで燃焼対象とする混合気の空燃比を目標空燃比とした場合と同等とすることができる。なお、上記噴射量の設定によれば、気筒#1〜#4のそれぞれに充填される空気量が同一であるなら、各気筒において燃焼対象とされる混合気の燃空比の平均値の逆数が目標空燃比となる。なお、燃空比とは、空燃比の逆数のことである。   On the other hand, when determining that there is a temperature increase request (S12: YES), the CPU 32 calculates a base value (base request value α0) of the correction request value (injection amount correction request value α) of the request injection amount Qd. (S18). The injection amount correction request value α targets the air-fuel ratio of the air-fuel mixture that is to be burned in all the cylinders # 1 to # 4 with the components of the entire exhaust discharged from each of the cylinders # 1 to # 4 of the internal combustion engine 10 This is the correction amount of the required injection amount Qd required by the dither control in which the air-fuel ratio of the mixture to be burned is made different among the cylinders while being made equal to the air-fuel ratio. Here, in the dither control according to the present embodiment, a rich combustion cylinder in which one of the first cylinder # 1 to the fourth cylinder # 4 is made richer in air-fuel ratio of air-fuel mixture than stoichiometric air-fuel ratio Let the remaining three cylinders be lean-burning cylinders in which the air-fuel ratio of the mixture is leaner than the stoichiometric air-fuel ratio. Then, the injection amount in the rich combustion cylinder is made “1 + α” times the required injection amount Qd, and the injection amount in the lean combustion cylinder is made “1− (α / 3)” times the required injection amount Qd. According to the setting of the injection amount of the lean combustion cylinder and the rich combustion cylinder, if the amount of air charged in each of the cylinders # 1 to # 4 is the same, from each cylinder # 1 to # 4 of the internal combustion engine 10 The component of the entire exhaust gas to be discharged can be made equal to the case where the air-fuel ratio of the mixture to be burned in all the cylinders # 1 to # 4 is made the target air-fuel ratio. Note that according to the setting of the injection amount, if the amount of air charged in each of the cylinders # 1 to # 4 is the same, the reciprocal of the average value of the fuel / air ratio of the mixture to be burned in each cylinder Becomes the target air-fuel ratio. The fuel-air ratio is the reciprocal of the air-fuel ratio.

詳しくは、CPU32は、内燃機関10の動作点を規定する回転速度NEおよび負荷率KLに基づき、ベース要求値α0を可変設定する。なお、本実施形態では、硫黄被毒回復処理と触媒暖機処理とで、ベース要求値α0がゼロよりも大きくなる動作点が異なっている。ここで、負荷率KLは、燃焼室16内に充填される空気量を示すパラメータであり、CPU32により、吸入空気量Gaに基づき算出される。負荷率KLは、基準流入空気量に対する、1気筒の1燃焼サイクル当たりの流入空気量の比である。ちなみに、基準流入空気量は、回転速度NEに応じて可変設定される量としてもよい。   Specifically, the CPU 32 variably sets the base required value α0 based on the rotational speed NE and the load factor KL that define the operating point of the internal combustion engine 10. In the present embodiment, the operating point at which the base required value α0 becomes larger than zero differs between the sulfur poisoning recovery process and the catalyst warm-up process. Here, the load factor KL is a parameter indicating the amount of air charged into the combustion chamber 16, and is calculated by the CPU 32 based on the amount of intake air Ga. The load factor KL is a ratio of the amount of inflowing air per one combustion cycle of one cylinder to the reference amount of inflowing air. Incidentally, the reference inflow air amount may be an amount variably set according to the rotational speed NE.

次にCPU32は、ベース要求値α0がゼロよりも大きいか否かを判定する(S20)。そしてCPU32は、ゼロであると判定する場合(S20:NO)、S14の処理に移行する。一方、CPU32は、ゼロよりも大きいと判定する場合(S20:YES)、内燃機関10の部品を保護する要求があるか否かを判定する(S22)。この処理は、内燃機関10の制御量の制御に所定以上の異常が生じているか否かの判定処理となる。すなわち、内燃機関10の制御量の制御に所定以上の異常が生じている場合、想定した制御が正常になされないため、内燃機関10の部品の劣化を招くおそれがあるとして、部品を保護する要求があると判定する。具体的には、たとえば、クランク角センサ44の出力信号Scrに基づき把握されるクランク軸の回転変動量Δωの絶対値が規定値ΔthH以上となることを検知した場合や、空燃比Afを目標値にフィードバック制御する積分要素の出力値の絶対値が所定以上の状態が継続したりする場合に、制御量の制御に所定以上の異常が生じていると判定する。なお、回転変動量Δωは、燃焼の悪化度合いを定量化するパラメータであり、圧縮上死点を1回のみ含む所定角度間隔の回転速度(瞬時回転速度ω)を、圧縮上死点の出現タイミングが時系列的に隣り合う一対の気筒のうちの先に圧縮上死点が出現する気筒における値から後に圧縮上死点が出現する気筒における値を減算した値である。燃焼が悪化してトルクが低下する場合、回転変動量Δωは、負で絶対値が大きい値となる。   Next, the CPU 32 determines whether the base request value α0 is larger than zero (S20). When the CPU 32 determines that it is zero (S20: NO), the CPU 32 proceeds to the process of S14. On the other hand, when it is determined that the CPU 32 is larger than zero (S20: YES), the CPU 32 determines whether there is a request for protecting the components of the internal combustion engine 10 (S22). This process is a process of determining whether or not a predetermined abnormality or more has occurred in the control of the control amount of the internal combustion engine 10. That is, when the control of the control amount of the internal combustion engine 10 has a predetermined abnormality or more, the assumed control is not properly performed, and therefore, there is a possibility that the parts of the internal combustion engine 10 may be deteriorated. It is determined that there is Specifically, for example, when it is detected that the absolute value of the rotational fluctuation amount Δω of the crankshaft, which is grasped based on the output signal Scr of the crank angle sensor 44, becomes the specified value ΔthH or more, When the absolute value of the output value of the integral element subjected to feedback control continues to be in a predetermined state or more, it is determined that the control amount control has an abnormality equal to or more than the predetermined value. The rotational fluctuation amount Δω is a parameter for quantifying the degree of deterioration of the combustion, and the rotational speed (instant rotational speed ω) of a predetermined angular interval including only one compression top dead center is the timing at which the compression top dead center appears. Is a value obtained by subtracting the value in the cylinder in which the compression top dead center appears from the value in the cylinder in which the compression top dead center appears earlier in the pair of cylinders adjacent in time series. When the combustion is deteriorated and the torque is reduced, the rotational fluctuation amount Δω is negative and has a large absolute value.

CPU32は、部品保護要求がないと判定する場合(S22:NO)、クランク軸の回転変動量Δωの絶対値が上記規定値ΔthHよりも小さい所定値ΔthL以上であるか否かを判定する(S24)。この処理は、制御量の制御に所定以上の異常が生じているわけではないものの、ドライバビリティの悪化をもたらすか否かを判定するものである。なお、ベース要求値α0は、ドライバビリティを許容範囲内に保つ値に適合されている。しかし、燃料噴射弁18の個体差や経年劣化、内燃機関10の圧縮比の個体差やデポジット付着等に起因した経年変化に起因して、ベース要求値α0がドライバビリティが許容範囲から外れる事態が生じえ、S24の処理は、この事態を検知する処理である。   When it is determined that the component protection request is not made (S22: NO), the CPU 32 determines whether the absolute value of the rotational fluctuation amount Δω of the crankshaft is equal to or greater than a predetermined value ΔthL smaller than the prescribed value ΔthH (S24) ). In this process, although the control amount control does not have a predetermined abnormality or more, it is determined whether or not to cause deterioration in drivability. The base requirement value α0 is adapted to a value for keeping the drivability within the allowable range. However, there is a case where the base required value α0 is out of the allowable range of drivability due to the individual difference of the fuel injection valve 18, the aged deterioration, the aged difference caused by the individual difference of the compression ratio of the internal combustion engine 10, the deposit adhesion, etc. As may occur, the process of S24 is a process of detecting this situation.

CPU32は、所定値ΔthL未満であると判定する場合(S24:NO)、噴射量補正要求値αに、ベース要求値α0を代入する(S26)。そして、CPU32は、燃料噴射の対象となる気筒がリッチ燃焼気筒であるか否かを判定する(S28)。CPU32は、リッチ燃焼気筒であると判定する場合(S28:YES)、噴射量指令値Q*に、「Qd・(1+α)」を代入し(S30)、S16の処理に移行する。これに対し、CPU32は、リーン燃焼気筒であると判定する場合(S28:NO)、噴射量指令値Q*に、「Qd・{1−(α/3)}」を代入し(S32)、S16の処理に移行する。   When it is determined that the CPU 32 is less than the predetermined value ΔthL (S24: NO), the CPU 32 substitutes the base request value α0 into the injection amount correction request value α (S26). Then, the CPU 32 determines whether the cylinder targeted for fuel injection is a rich combustion cylinder (S28). When determining that the cylinder is a rich combustion cylinder (S28: YES), the CPU 32 substitutes “Qd · (1 + α)” for the injection amount command value Q * (S30), and shifts to the process of S16. On the other hand, when determining that the cylinder is a lean combustion cylinder (S28: NO), the CPU 32 substitutes “Qd · {1- (α / 3)}” for the injection amount command value Q * (S32), It shifts to the processing of S16.

一方、CPU32は、所定値ΔthL以上であると判定する場合(S24:YES)、ベース要求値α0が、前回の噴射量補正要求値α(n−1)から所定量Δαを減算した値よりも大きいか否かを判定する(S34)。CPU32は、減算した値以下であると判定する場合(S34:NO)、S26の処理に移行する。一方、CPU32は、減算した値よりも大きいと判定する場合(S34:YES)、前回の噴射量補正要求値α(n−1)から所定量Δαを減算した値を、噴射量補正要求値αに代入する(S36)。次にCPU32は、噴射量補正要求値αが、通常時下限値αthHよりも小さいか否かを判定する(S38)。ここで、CPU32は、通常時下限値αthHを、触媒暖機処理時と硫黄被毒回復処理時とで各別に設定している。触媒暖機処理時においては、通常時下限値αthHは、排気成分の悪化を所定以下に抑制できる下限値とされている。また、硫黄被毒回復処理時においては、通常時下限値αthHは、硫黄被毒回復処理を実行可能な下限値に設定されている。そしてCPU32は、通常時下限値αthHよりも小さいと判定する場合(S38:YES)、噴射量補正要求値αに、通常時下限値αthHを代入する(S40)。   On the other hand, when it is determined that the CPU 32 is the predetermined value ΔthL or more (S24: YES), the base request value α0 is more than a value obtained by subtracting the predetermined amount Δα from the previous injection amount correction request value α (n-1). It is determined whether it is large (S34). When it is determined that the value is equal to or less than the value obtained by the subtraction (S34: NO), the CPU 32 shifts to the processing of S26. On the other hand, when it is determined that the CPU 32 is larger than the subtracted value (S34: YES), the injection amount correction request value α is a value obtained by subtracting the predetermined amount Δα from the previous injection amount correction request value α (n-1). (S36). Next, the CPU 32 determines whether the injection amount correction request value α is smaller than the normal time lower limit value αthH (S38). Here, the CPU 32 sets the normal time lower limit value αthH separately for each of the catalyst warm-up processing and the sulfur poisoning recovery processing. In the catalyst warm-up process, the normal time lower limit value αthH is a lower limit value that can suppress the deterioration of the exhaust component to a predetermined value or less. Further, at the time of the sulfur poisoning recovery process, the normal time lower limit value αthH is set to the lower limit value at which the sulfur poisoning recovery process can be performed. Then, when it is determined that the CPU 32 is smaller than the normal time lower limit value αthH (S38: YES), the normal time lower limit value αthH is substituted for the injection amount correction request value α (S40).

これに対し、CPU32は、部品保護要求があると判定する場合(S22:YES)、ベース要求値α0がフェールセーフ時上限値αthLよりも大きいか否かを判定する(S42)。フェールセーフ時上限値αthLは、通常時下限値αthHよりも小さい値であり、部品を保護する上での噴射量補正要求値αの上限値である。そして、CPU32は、フェールセーフ時上限値αthLよりも大きいと判定する場合(S42:YES)、噴射量補正要求値αに、フェールセーフ時上限値αthLを代入する(S44)。一方、CPU32は、フェールセーフ時上限値αthL以下であると判定する場合(S42:NO)、噴射量補正要求値αに、ベース要求値α0を代入する(S46)。   On the other hand, when determining that there is a component protection request (S22: YES), the CPU 32 determines whether the base request value α0 is larger than the failsafe upper limit value αthL (S42). The fail-safe upper limit value αthL is a value smaller than the normal time lower limit value αthH, and is an upper limit value of the injection amount correction request value α for protecting the component. Then, when it is determined that the CPU 32 is larger than the failsafe upper limit value αthL (S42: YES), the failsafe upper limit value αthL is substituted for the injection amount correction request value α (S44). On the other hand, when it is determined that the CPU 32 is equal to or less than the fail-safe upper limit value αthL (S42: NO), the CPU 32 substitutes the base request value α0 for the injection amount correction request value α (S46).

CPU32は、S26,S40,S44,S46の処理が完了する場合や、S38の処理において否定判定する場合、S28の処理に移行する。なお、CPU32は、S16の処理が完了する場合には、図2に示す一連の処理を一旦終了する。   When the processes of S26, S40, S44, and S46 are completed, or when the determination of step S38 is negative, the CPU 32 proceeds to the process of S28. When the process of S16 is completed, the CPU 32 temporarily ends the series of processes shown in FIG.

以下、本実施形態の作用および効果について説明する。
CPU32は、ディザ制御の実行時に、回転変動量Δωの絶対値が規定値ΔthH以上とまではいかないものの、所定値ΔthL以上となると判定する場合、ドライバビリティを改善すべく、通常時上限値αthL以上とする条件下、噴射量補正要求値αを減少補正する。これにより、三元触媒24の下流の排気成分の悪化を抑制しつつも、ドライバビリティを極力改善できる。
Hereinafter, the operation and effect of the present embodiment will be described.
If the CPU 32 determines that the absolute value of the rotational fluctuation amount Δω does not reach the specified value ΔthH or more when performing dither control, it improves the drivability if the CPU 32 determines that the absolute value exceeds the predetermined value ΔthL. Under the conditions described above, the injection amount correction request value α is decreased and corrected. Thereby, the drivability can be improved as much as possible while suppressing the deterioration of the exhaust components downstream of the three-way catalyst 24.

一方、CPU32は、部品保護要求が生じる場合、噴射量補正要求値αを、フェールセーフ時上限値αthL以下とする。すなわち、内燃機関10の制御量の制御に所定以上の異常が生じている場合、ディザ制御によるリッチ燃焼気筒の空燃比やリーン燃焼気筒の空燃比が理論空燃比からずれるために燃焼が悪化しやすい傾向が顕在化し、内燃機関10の燃料噴射弁18や点火装置20、三元触媒24等の部品の劣化を促進するおそれがある。このため、それら部品を保護すべく、噴射量補正要求値αを回転変動量Δωの絶対値が所定値ΔthL以上となる場合よりも小さい値に制限する。   On the other hand, when a component protection request occurs, the CPU 32 sets the injection amount correction request value α to a failsafe upper limit value αthL or less. That is, when the control of the control amount of the internal combustion engine 10 has a predetermined abnormality or more, the air-fuel ratio of the rich combustion cylinder and the air-fuel ratio of the lean combustion cylinder by dither control deviate from the theoretical air-fuel ratio The tendency becomes apparent, and there is a possibility that the deterioration of parts such as the fuel injection valve 18 of the internal combustion engine 10, the ignition device 20, and the three-way catalyst 24 may be promoted. Therefore, in order to protect those parts, the injection amount correction request value α is limited to a smaller value than when the absolute value of the rotational fluctuation amount Δω is equal to or greater than the predetermined value ΔthL.

<対応関係>
上記実施形態における事項と、上記「課題を解決するための手段」の欄に記載した事項との対応関係は、次の通りである。ディザ制御処理は、S18,S26〜S32,S16の処理に対応し、部品保護処理は、S42〜S46の処理に対応し、振動抑制処理は、S24,S34〜S40の処理に対応する。
<Correspondence relationship>
Correspondence between the matters in the above-mentioned embodiment and the matters described in the above-mentioned "means for solving the problem" is as follows. The dither control processing corresponds to the processing of S18, S26 to S32, S16, the component protection processing corresponds to the processing of S42 to S46, and the vibration suppression processing corresponds to the processing of S24, S34 to S40.

<その他の実施形態>
なお、本実施形態は、以下のように変更して実施することができる。本実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Other Embodiments>
The present embodiment can be modified as follows. The present embodiment and the following modifications can be implemented in combination with one another as long as there is no technical contradiction.

・内燃機関10の制御に所定以上の異常が生じているか否かの判定処理としては上記実施形態で例示したものに限らない。たとえば、排気温度が所定温度以上となる場合に所定以上の異常が生じていると判定してもよい。   The process of determining whether or not a predetermined abnormality or more has occurred in the control of the internal combustion engine 10 is not limited to that illustrated in the above embodiment. For example, when the exhaust gas temperature is equal to or higher than a predetermined temperature, it may be determined that a predetermined abnormality or more has occurred.

・内燃機関としては、4気筒の内燃機関に限らない。また、燃料噴射弁としては、燃焼室16に燃料を噴射するものに限らず、吸気通路12に燃料を噴射するものであってもよい。   The internal combustion engine is not limited to a four-cylinder internal combustion engine. Further, the fuel injection valve is not limited to one injecting fuel into the combustion chamber 16, but may be one injecting fuel into the intake passage 12.

10…内燃機関、12…吸気通路、14…過給機、16…燃焼室、18…燃料噴射弁、20…点火装置、22…排気通路、24…三元触媒、30…制御装置、32…CPU、34…ROM、36…RAM、40…空燃比センサ、44…クランク角センサ、46…エアフローメータ。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 12 ... Intake passage, 14 ... Turbocharger, 16 ... Combustion chamber, 18 ... Fuel injection valve, 20 ... Ignition device, 22 ... Exhaust passage, 24 ... Three-way catalyst, 30 ... Control device, 32 ... CPU, 34: ROM, 36: RAM, 40: Air-fuel ratio sensor, 44: Crank angle sensor, 46: Air flow meter.

Claims (1)

複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とし、
前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、
前記内燃機関の制御量の制御に所定以上の異常が生じていると判定する場合、該異常が生じていないと判定する場合と比較して前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差の絶対値を小さくする部品保護処理と、
前記所定以上の異常が生じていないと判定される場合であって前記内燃機関のクランク軸の回転変動が所定以上であると判定する場合、前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差の絶対値を小さくする振動抑制処理と、を実行し、
前記部品保護処理では、前記振動抑制処理よりも前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差の絶対値を小さくする内燃機関の制御装置。
An internal combustion engine including an exhaust gas purification device for purifying exhaust gas discharged from a plurality of cylinders, and a fuel injection valve provided for each of the plurality of cylinders as a control target,
A part of the plurality of cylinders is a rich combustion cylinder whose air-fuel ratio is richer than the stoichiometric air-fuel ratio, and a cylinder other than the part of the plurality of cylinders is an air-fuel ratio Dither control processing for operating the fuel injection valve so as to make the lean combustion cylinder leaner than the stoichiometric air fuel ratio;
When it is determined that the control of the control amount of the internal combustion engine has a predetermined abnormality or more, the air-fuel ratio of the rich combustion cylinder and the air of the lean combustion cylinder are compared with the case where it is determined that the abnormality does not occur. Component protection processing to reduce the absolute value of the difference with the fuel ratio,
The air-fuel ratio of the rich-burning cylinder and the air-fuel ratio of the lean-burning cylinder are determined when it is determined that the abnormality above the predetermined level does not occur and the rotational fluctuation of the crankshaft of the internal combustion engine is greater than the predetermined level. Execute vibration suppression processing to reduce the absolute value of the difference from the fuel ratio;
In the component protection process, a control device of an internal combustion engine which reduces an absolute value of a difference between an air-fuel ratio of the rich combustion cylinder and an air-fuel ratio of the lean combustion cylinder than the vibration suppression process.
JP2017215924A 2017-11-08 2017-11-08 Internal combustion engine control device Active JP6881247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017215924A JP6881247B2 (en) 2017-11-08 2017-11-08 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215924A JP6881247B2 (en) 2017-11-08 2017-11-08 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2019085947A true JP2019085947A (en) 2019-06-06
JP6881247B2 JP6881247B2 (en) 2021-06-02

Family

ID=66762625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215924A Active JP6881247B2 (en) 2017-11-08 2017-11-08 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP6881247B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238338A (en) * 1997-02-28 1998-09-08 Fuji Heavy Ind Ltd Air-fuel ratio control device for engine
JP2001050082A (en) * 1999-08-06 2001-02-23 Hitachi Ltd Air-fuel ratio control system
US6651422B1 (en) * 1998-08-24 2003-11-25 Legare Joseph E. Catalyst efficiency detection and heating method using cyclic fuel control
JP2009156100A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Control device of internal combustion engine
KR20100021047A (en) * 2008-08-14 2010-02-24 현대자동차일본기술연구소 Catalyst deterioration diagnosis device and method
JP2015214966A (en) * 2014-04-25 2015-12-03 トヨタ自動車株式会社 Internal combustion engine control device
JP2016169665A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2017186931A (en) * 2016-04-04 2017-10-12 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238338A (en) * 1997-02-28 1998-09-08 Fuji Heavy Ind Ltd Air-fuel ratio control device for engine
US6651422B1 (en) * 1998-08-24 2003-11-25 Legare Joseph E. Catalyst efficiency detection and heating method using cyclic fuel control
JP2001050082A (en) * 1999-08-06 2001-02-23 Hitachi Ltd Air-fuel ratio control system
JP2009156100A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Control device of internal combustion engine
KR20100021047A (en) * 2008-08-14 2010-02-24 현대자동차일본기술연구소 Catalyst deterioration diagnosis device and method
JP2015214966A (en) * 2014-04-25 2015-12-03 トヨタ自動車株式会社 Internal combustion engine control device
JP2016169665A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2017186931A (en) * 2016-04-04 2017-10-12 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP6881247B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP5348190B2 (en) Control device for internal combustion engine
CN110360045B (en) Engine control apparatus and method
US20190128198A1 (en) Controller and control method for internal combustion engine
US10550788B2 (en) Controller and control method for internal combustion engine
JP5278466B2 (en) Cylinder air-fuel ratio variation abnormality detection device
CN109595086B (en) Control device and method for internal combustion engine
US10174696B2 (en) Control apparatus for internal combustion engine
US10677180B2 (en) Controller and control method for internal combustion engine
CN109751146B (en) Control device and control method for internal combustion engine
JP2016128662A (en) Control device of internal combustion engine
JP6866827B2 (en) Internal combustion engine control device
US10760510B2 (en) Controller and control method for internal combustion engine
US11454182B2 (en) Controller and control method for internal combustion engine
JP6737209B2 (en) Control device for internal combustion engine
JP6881247B2 (en) Internal combustion engine control device
JP7196391B2 (en) Control device for internal combustion engine
JP6915490B2 (en) Internal combustion engine control device
US10900428B2 (en) Controller for internal combustion engine
CN109296468B (en) Control device for internal combustion engine
US20190024596A1 (en) Control device for internal combustion engine
US10669960B2 (en) Controller and control method for internal combustion engine
JP6828646B2 (en) Internal combustion engine control device
JP2022163953A (en) Control device of internal combustion engine
JP2019039308A (en) Control device of internal combustion engine
JP2019031960A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R151 Written notification of patent or utility model registration

Ref document number: 6881247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151