JP2017186931A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2017186931A
JP2017186931A JP2016075168A JP2016075168A JP2017186931A JP 2017186931 A JP2017186931 A JP 2017186931A JP 2016075168 A JP2016075168 A JP 2016075168A JP 2016075168 A JP2016075168 A JP 2016075168A JP 2017186931 A JP2017186931 A JP 2017186931A
Authority
JP
Japan
Prior art keywords
fuel ratio
catalyst
air
regeneration control
catalyst regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016075168A
Other languages
Japanese (ja)
Inventor
啓一 明城
Keiichi Myojo
啓一 明城
良行 正源寺
Yoshiyuki Shogenji
良行 正源寺
勇喜 野瀬
Yuki Nose
勇喜 野瀬
英二 生田
Eiji Ikuta
英二 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016075168A priority Critical patent/JP2017186931A/en
Priority to US15/475,928 priority patent/US20170284269A1/en
Priority to CN201710213846.7A priority patent/CN107448307A/en
Publication of JP2017186931A publication Critical patent/JP2017186931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/04Exhaust treating devices having provisions not otherwise provided for for regeneration or reactivation, e.g. of catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0412Methods of control or diagnosing using pre-calibrated maps, tables or charts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/32Air-fuel ratio control in a diesel engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Analytical Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine that suppresses an excessive temperature rise of a catalyst during execution of catalyst regeneration control performed by setting a target air-fuel ratio of one cylinder to a rich air-fuel ratio and setting a target air-fuel ratio of the other cylinder to a lean air-fuel ratio.SOLUTION: An exhaust emission control device for an internal combustion engine includes: an estimation section for estimating a temperature of a catalyst on the basis of an acquired operating state of the internal combustion engine and a degree of a difference between a lean air-fuel ratio and a rich air-fuel ratio each set as a target air-fuel ratio during execution of catalyst regeneration control; a determination section for determining whether or not the estimated temperature of the catalyst exceeds a threshold value during execution of the catalyst regeneration control; and a prohibition section for prohibiting the catalyst regeneration control when a determination that the estimated temperature of the catalyst exceeds the threshold value is made during execution of the catalyst regeneration control.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の複数の気筒のうち、一の気筒の目標空燃比をリッチ空燃比に設定し、他の気筒の目標空燃比をリーン空燃比に設定する、いわゆるディザ制御によって、触媒を昇温させる手法が知られている(例えば特許文献1参照)。   A method of raising the temperature of the catalyst by so-called dither control in which a target air-fuel ratio of one cylinder among a plurality of cylinders of an internal combustion engine is set to a rich air-fuel ratio and a target air-fuel ratio of another cylinder is set to a lean air-fuel ratio Is known (see, for example, Patent Document 1).

特開平9−088663号公報Japanese Patent Application Laid-Open No. 9-088663

このような手法により、触媒を活性化する温度域よりも高い温度域にまで昇温させて触媒を再生することが考えられる。   It is conceivable to regenerate the catalyst by raising the temperature to a temperature range higher than the temperature range where the catalyst is activated by such a method.

ここで、上記の手法により目標空燃比として設定されるリッチ空燃比及びリーン空燃比は、ドライバビリティへの影響が少ないように、内燃機関の運転状態に応じて可変設定される。このため、触媒を再生する制御の実行中では、内燃機関の運転状態や設定されているリッチ空燃比及びリーン空燃比によっては、触媒の再生に必要となる温度域を超えて触媒が過剰に昇温する可能性がある。   Here, the rich air-fuel ratio and the lean air-fuel ratio set as the target air-fuel ratio by the above method are variably set according to the operating state of the internal combustion engine so that the influence on drivability is small. Therefore, during the execution of the control for regenerating the catalyst, the catalyst excessively exceeds the temperature range required for the regeneration of the catalyst depending on the operating state of the internal combustion engine and the set rich air / fuel ratio. There is a possibility of warming.

そこで本発明は、一の気筒での目標空燃比がリッチ空燃比に設定され他の気筒での目標空燃比がリーン空燃比に設定される触媒再生制御の実行中での、触媒の過昇温を抑制する内燃機関の排気浄化装置を提供することを目的とする。   Accordingly, the present invention provides a catalyst overheating temperature during execution of catalyst regeneration control in which the target air-fuel ratio in one cylinder is set to a rich air-fuel ratio and the target air-fuel ratio in another cylinder is set to a lean air-fuel ratio. It is an object of the present invention to provide an exhaust purification device for an internal combustion engine that suppresses combustion.

上記目的は、内燃機関が有する複数の気筒から排出された排気を浄化する触媒と、前記内燃機関の運転状態を取得する取得部と、前記複数の気筒のうち少なくとも一の気筒での目標空燃比を理論空燃比よりも小さいリッチ空燃比に設定し、前記複数の気筒のうち残りの他の気筒での目標空燃比を理論空燃比よりも大きいリーン空燃比に設定することにより、前記触媒を昇温させて前記触媒を再生する触媒再生制御を実行する制御部と、前記触媒再生制御の実行中に、取得された前記内燃機関の運転状態と、目標空燃比として設定された前記リーン空燃比と前記リッチ空燃比との差の大きさとに基づいて、前記触媒の温度を推定する推定部と、前記触媒再生制御の実行中に、推定された前記触媒の温度が閾値を超えたか否かを判定する判定部と、前記触媒再生制御の実行中に、推定された前記触媒の温度が前記閾値を超えたと判定された場合に、前記触媒再生制御を禁止する禁止部と、を備えた内燃機関の排気浄化装置によって達成できる。   The object is to obtain a catalyst for purifying exhaust gas discharged from a plurality of cylinders of the internal combustion engine, an acquisition unit for acquiring an operating state of the internal combustion engine, and a target air-fuel ratio in at least one of the plurality of cylinders. Is set to a rich air-fuel ratio smaller than the stoichiometric air-fuel ratio, and the target air-fuel ratio in the remaining other cylinders among the plurality of cylinders is set to a lean air-fuel ratio larger than the stoichiometric air-fuel ratio, thereby increasing the catalyst. A control unit for performing catalyst regeneration control for regenerating the catalyst by heating, an operating state of the internal combustion engine acquired during execution of the catalyst regeneration control, and the lean air-fuel ratio set as a target air-fuel ratio; Based on the magnitude of the difference from the rich air-fuel ratio, an estimation unit that estimates the temperature of the catalyst, and determines whether or not the estimated temperature of the catalyst exceeds a threshold during the execution of the catalyst regeneration control With the determination unit Achieved by an exhaust gas purification apparatus for an internal combustion engine, comprising: a prohibiting unit that prohibits the catalyst regeneration control when it is determined that the estimated temperature of the catalyst exceeds the threshold value during execution of the catalyst regeneration control it can.

触媒の温度は、触媒再生制御の実行中に、内燃機関の運転状態と、目標空燃比として設定されたリーン空燃比とリッチ空燃比との差の大きさとに基づいて、精度よく推定される。この推定された触媒の温度が閾値を超えた場合には、触媒再生制御が禁止されるため、触媒の過昇温が抑制される。   During the execution of the catalyst regeneration control, the catalyst temperature is accurately estimated based on the operating state of the internal combustion engine and the magnitude of the difference between the lean air-fuel ratio set as the target air-fuel ratio. When the estimated temperature of the catalyst exceeds the threshold value, catalyst regeneration control is prohibited, so that excessive temperature rise of the catalyst is suppressed.

前記禁止部は、前記触媒再生制御の実行中に、推定された前記触媒の温度が前記閾値を超えたと判定された場合に、前記触媒再生制御を所定期間禁止する、構成であってもよい。   The prohibition unit may be configured to prohibit the catalyst regeneration control for a predetermined period when it is determined that the estimated temperature of the catalyst exceeds the threshold during the execution of the catalyst regeneration control.

本発明によれば、一の気筒での目標空燃比がリッチ空燃比に設定され他の気筒での目標空燃比がリーン空燃比に設定される触媒再生制御の実行中での、触媒の過昇温を抑制する内燃機関の排気浄化装置を提供できる。   According to the present invention, the catalyst overheating during the catalyst regeneration control in which the target air-fuel ratio in one cylinder is set to the rich air-fuel ratio and the target air-fuel ratio in the other cylinder is set to the lean air-fuel ratio is performed. An exhaust gas purification apparatus for an internal combustion engine that suppresses temperature can be provided.

図1は、排気浄化装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an exhaust emission control device. 図2は、ECUが実行する再生禁止制御の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of the regeneration prohibition control executed by the ECU. 図3A及び図3Bは、触媒温度マップの一例である。3A and 3B are examples of a catalyst temperature map. 図4は、再生禁止制御の一例を示すタイムチャートである。FIG. 4 is a time chart showing an example of the reproduction prohibition control. 図5は、ECUが実行する再生禁止制御の変形例を示すフローチャートである。FIG. 5 is a flowchart showing a modification of the regeneration prohibition control executed by the ECU. 図6は、再生禁止制御の変形例を示すタイムチャートである。FIG. 6 is a time chart showing a modification of the regeneration prohibiting control.

図1は、排気浄化装置1(内燃機関の排気浄化装置)の概略構成図である。図1に示すように、排気浄化装置1は、内燃機関20の排気を浄化する三元触媒31等を備えている。内燃機関20は、シリンダブロック21内の燃焼室23の内で混合気を燃焼させて、ピストン24を往復動させる。内燃機関20は直列4気筒のガソリンエンジンであるが、複数の気筒を有していればこれに限定されず、例えばディーゼルエンジンであってもよい。   FIG. 1 is a schematic configuration diagram of an exhaust purification device 1 (an exhaust purification device for an internal combustion engine). As shown in FIG. 1, the exhaust gas purification apparatus 1 includes a three-way catalyst 31 that purifies the exhaust gas of the internal combustion engine 20. The internal combustion engine 20 burns the air-fuel mixture in the combustion chamber 23 in the cylinder block 21 and reciprocates the piston 24. The internal combustion engine 20 is an in-line four-cylinder gasoline engine, but is not limited to this as long as it has a plurality of cylinders, and may be a diesel engine, for example.

内燃機関20のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに設けられている。また、シリンダヘッドの頂部には、燃焼室23内の混合気に点火するための点火プラグ27が気筒ごとに取り付けられている。   The cylinder head of the internal combustion engine 20 is provided with an intake valve Vi for opening and closing an intake port and an exhaust valve Ve for opening and closing an exhaust port for each cylinder. A spark plug 27 for igniting the air-fuel mixture in the combustion chamber 23 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管を介してサージタンク18に接続されている。サージタンク18の上流側には吸気管10が接続されており、吸気管10の上流端にはエアクリーナ19が設けられている。そして吸気管10には、上流側から順に、吸入空気量を検出するためのエアフローメータ15と、電子制御式のスロットルバルブ13とが設けられている。   The intake port of each cylinder is connected to the surge tank 18 via a branch pipe for each cylinder. An intake pipe 10 is connected to the upstream side of the surge tank 18, and an air cleaner 19 is provided at the upstream end of the intake pipe 10. The intake pipe 10 is provided with an air flow meter 15 for detecting the intake air amount and an electronically controlled throttle valve 13 in order from the upstream side.

また、各気筒の吸気ポートには、燃料を吸気ポート内に噴射するインジェクタ12が設置されている。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室23に吸入され、ピストン24で圧縮され、点火プラグ27で点火燃焼させられる。   An injector 12 for injecting fuel into the intake port is installed at the intake port of each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 23 when the intake valve Vi is opened, compressed by the piston 24, and ignited and burned by the spark plug 27. It is done.

一方、各気筒の排気ポートは気筒毎の枝管を介して排気管30に接続されている。排気管30には、三元触媒31が設けられている。三元触媒31は、酸素吸蔵能を有し、NOx,HCおよびCOを浄化する。三元触媒31は、例えば、コージェライト等の基材、特にはハニカム基材上に、アルミナ(Al23)等の触媒担体と、当該触媒担体上に担持された白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒金属とを含む1つ又は複数の触媒層を形成したものである。三元触媒31は、内燃機関20が有する複数の気筒から排出された排気を浄化する触媒の一例であって、酸化触媒や、酸化触媒でコートされたガソリンパティキュレートフィルターであってもよい。 On the other hand, the exhaust port of each cylinder is connected to the exhaust pipe 30 via a branch pipe for each cylinder. A three-way catalyst 31 is provided in the exhaust pipe 30. The three-way catalyst 31 has an oxygen storage capacity and purifies NOx, HC and CO. The three-way catalyst 31 is, for example, a catalyst carrier such as alumina (Al 2 O 3 ) on a base material such as cordierite, particularly a honeycomb base material, and platinum (Pt), palladium supported on the catalyst carrier. One or a plurality of catalyst layers containing a catalyst metal such as (Pd) and rhodium (Rh) are formed. The three-way catalyst 31 is an example of a catalyst that purifies exhaust gas discharged from a plurality of cylinders of the internal combustion engine 20, and may be an oxidation catalyst or a gasoline particulate filter coated with an oxidation catalyst.

三元触媒31の上流側には、排気ガスの空燃比を検出するための空燃比センサ33が設置されている。空燃比センサ33は、いわゆる広域空燃比センサであり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。   An air-fuel ratio sensor 33 for detecting the air-fuel ratio of the exhaust gas is installed on the upstream side of the three-way catalyst 31. The air-fuel ratio sensor 33 is a so-called wide-area air-fuel ratio sensor, which can continuously detect an air-fuel ratio over a relatively wide range and outputs a signal having a value proportional to the air-fuel ratio.

排気浄化装置1は、ECU(Electronic Control Unit)50を備えている。ECU50は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び記憶装置等を備える。ECU50は、ROMや記憶装置に記憶されたプログラムを実行することにより各種制御を行う。またECU50は、後述する再生禁止制御を実行する。再生禁止制御は、CPU、ROM、及びRAMにより機能的に実現される、ECU50の取得部、制御部、推定部、及び禁止部により実現される。詳しくは後述する。   The exhaust purification device 1 includes an ECU (Electronic Control Unit) 50. The ECU 50 includes a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), and a storage device. The ECU 50 performs various controls by executing a program stored in the ROM or the storage device. Further, the ECU 50 executes regeneration prohibition control described later. The reproduction prohibition control is realized by an acquisition unit, a control unit, an estimation unit, and a prohibition unit of the ECU 50 that are functionally realized by a CPU, a ROM, and a RAM. Details will be described later.

ECU50には、上述の点火プラグ27、スロットルバルブ13及びインジェクタ12等が電気的に接続されている。またECU50には、前述のエアフローメータ15、空燃比センサ33、内燃機関20のクランク角を検出するクランク角センサ25のほか、アクセル開度を検出するアクセル開度センサ11やその他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU50は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ27、スロットルバルブ13、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。   The ECU 50 is electrically connected to the spark plug 27, the throttle valve 13, the injector 12, and the like. In addition to the above-described air flow meter 15, air-fuel ratio sensor 33, crank angle sensor 25 that detects the crank angle of the internal combustion engine 20, the accelerator opening sensor 11 that detects the accelerator opening and various other sensors are shown in the ECU 50. It is electrically connected via an A / D converter or the like that is not performed. The ECU 50 controls the ignition plug 27, the throttle valve 13, the injector 12 and the like so as to obtain a desired output based on the detection values of various sensors, etc., and performs ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.

次に、ECU50による目標空燃比の設定について説明する。後述する触媒再生制御が実行されていない通常状態では、内燃機関20の機関回転数及び機関負荷に応じた通常空燃比マップに基づいて、目標空燃比が設定される。通常空燃比マップは、予め実験により取得されECU50のROMに記憶されている。   Next, setting of the target air-fuel ratio by the ECU 50 will be described. In a normal state where catalyst regeneration control, which will be described later, is not executed, the target air-fuel ratio is set based on a normal air-fuel ratio map corresponding to the engine speed and engine load of the internal combustion engine 20. The normal air-fuel ratio map is acquired in advance by experiments and stored in the ROM of the ECU 50.

例えば目標空燃比は、低回転低負荷領域では理論空燃比に設定され、高回転高負荷領域では理論空燃比よりもリッチ側に設定される。目標空燃比が設定されると、空燃比センサ33により検出された空燃比が目標空燃比に一致するように、各気筒への燃料噴射量がフィードバック制御される。尚、通常空燃比マップの代わりに、算出式によって機関回転数及び機関負荷に応じた目標空燃比を算出してもよい。   For example, the target air-fuel ratio is set to the stoichiometric air-fuel ratio in the low rotation / low load region, and is set to a richer side than the stoichiometric air / fuel ratio in the high rotation / high load region. When the target air-fuel ratio is set, the fuel injection amount to each cylinder is feedback-controlled so that the air-fuel ratio detected by the air-fuel ratio sensor 33 matches the target air-fuel ratio. Instead of the normal air-fuel ratio map, the target air-fuel ratio corresponding to the engine speed and the engine load may be calculated by a calculation formula.

また、ECU50は、三元触媒31を所定の温度域にまで昇温することによって、三元触媒31に堆積した硫黄化合物(SO)を離脱させて三元触媒31の浄化能力を再生する触媒再生制御を実行する。触媒再生制御では、複数の気筒のうち一の気筒での目標空燃比を理論空燃比よりも小さいリッチ空燃比に設定し、残りの他の3つの気筒での目標空燃比を理論空燃比よりも大きいリーン空燃比に設定される、いわゆるディザ制御が実行される。また、全ての気筒の目標空燃比の平均が理論空燃比となるように設定される。 Further, the ECU 50 raises the temperature of the three-way catalyst 31 to a predetermined temperature range, thereby releasing the sulfur compound (SO X ) deposited on the three-way catalyst 31 and regenerating the purification ability of the three-way catalyst 31. Perform playback control. In the catalyst regeneration control, the target air-fuel ratio in one of a plurality of cylinders is set to a rich air-fuel ratio smaller than the stoichiometric air-fuel ratio, and the target air-fuel ratios in the remaining three cylinders are set to be lower than the stoichiometric air-fuel ratio. A so-called dither control, which is set to a large lean air-fuel ratio, is executed. Further, the average of the target air-fuel ratios of all the cylinders is set to be the stoichiometric air-fuel ratio.

また、触媒再生制御における目標空燃比も同様に、機関回転数及び機関負荷に応じた再生空燃比マップに基づいて設定される。再生空燃比マップは、予め実験により取得されECU50のROMに記憶されている。例えばリッチ空燃比は9〜12の間に設定され、リーン空燃比は15〜16の間に設定される。また、機関回転数及び機関負荷が大きいほど、リッチ空燃比は小さく、リーン空燃比は大きく設定される。   Similarly, the target air-fuel ratio in the catalyst regeneration control is set based on the regeneration air-fuel ratio map corresponding to the engine speed and the engine load. The regeneration air-fuel ratio map is acquired in advance by experiments and stored in the ROM of the ECU 50. For example, the rich air-fuel ratio is set between 9 and 12, and the lean air-fuel ratio is set between 15 and 16. Further, as the engine speed and the engine load are larger, the rich air-fuel ratio is smaller and the lean air-fuel ratio is set larger.

再生空燃比マップによって目標空燃比として設定されるリッチ空燃比及びリーン空燃比は、ドライバビリティへの影響が少ない範囲内で、内燃機関20の機関回転数及び機関負荷に応じて可変設定される。尚、再生空燃比マップの代わりに、算出式によって機関回転数及び機関負荷に応じた、触媒再生制御での目標空燃比を算出してもよい。尚、触媒再生制御は、アイドル運転時やアクセル開度がゼロの場合には実行されない。   The rich air-fuel ratio and the lean air-fuel ratio set as the target air-fuel ratio by the regeneration air-fuel ratio map are variably set according to the engine speed of the internal combustion engine 20 and the engine load within a range where the influence on drivability is small. Instead of the regeneration air-fuel ratio map, the target air-fuel ratio in the catalyst regeneration control corresponding to the engine speed and the engine load may be calculated by a calculation formula. Note that the catalyst regeneration control is not executed during idle operation or when the accelerator opening is zero.

上記のように触媒再生制御が実行されると、目標空燃比がリッチ空燃比に設定された気筒から排出された余剰燃料が、三元触媒31に付着し、リーン空燃比から排出された排気によるリーン雰囲気下で燃焼する。これにより三元触媒31が昇温され、SOが離脱される。 When the catalyst regeneration control is executed as described above, the surplus fuel discharged from the cylinder whose target air-fuel ratio is set to the rich air-fuel ratio adheres to the three-way catalyst 31, and is generated by the exhaust discharged from the lean air-fuel ratio. Burns in a lean atmosphere. As a result, the temperature of the three-way catalyst 31 is raised and SO X is released.

しかしながら、三元触媒31が高温に維持される触媒再生制御の実行中では、内燃機関20の運転状態や目標空燃比として設定されるリッチ空燃比及びリーン空燃比によっては、三元触媒31が再生に必要な温度域を超えて過昇温する可能性がある。そこでECU50は、触媒再生制御の実行中に触媒再生制御を禁止する再生禁止制御を実行する。   However, during the catalyst regeneration control in which the three-way catalyst 31 is maintained at a high temperature, the three-way catalyst 31 is regenerated depending on the operating state of the internal combustion engine 20 and the rich air / fuel ratio set as the target air / fuel ratio. There is a possibility of overheating beyond the necessary temperature range. Therefore, the ECU 50 executes regeneration prohibition control that prohibits catalyst regeneration control during execution of catalyst regeneration control.

図2は、ECU50が実行する再生禁止制御の一例を示すフローチャートである。図2の制御は、所定の周期で繰り返し実行される。ECU50は、触媒再生制御の実行中か否かを判定し(ステップS1)、否定判定の場合には本制御は終了する。   FIG. 2 is a flowchart showing an example of the regeneration prohibiting control executed by the ECU 50. The control in FIG. 2 is repeatedly executed at a predetermined cycle. The ECU 50 determines whether or not the catalyst regeneration control is being executed (step S1). If the determination is negative, the control is terminated.

ステップS1で肯定判定の場合には、ECU50は、内燃機関20の機関回転数及び機関負荷を取得する(ステップS3)。具体的には、クランク角センサ25からの出力値に基づいて機関回転数が取得され、アクセル開度センサ11からの出力値に基づいて機関負荷が取得される。ステップS3の処理は、内燃機関20の運転状態を取得する取得部が実行する処理の一例である。   If the determination in step S1 is affirmative, the ECU 50 acquires the engine speed and engine load of the internal combustion engine 20 (step S3). Specifically, the engine speed is acquired based on the output value from the crank angle sensor 25, and the engine load is acquired based on the output value from the accelerator opening sensor 11. The process of step S3 is an example of a process executed by an acquisition unit that acquires the operating state of the internal combustion engine 20.

次に、ECU50は、触媒再生制御において目標空燃比として設定されたリーン空燃比とリッチ空燃比との差の大きさを、空燃比差として取得する(ステップS5)。具体的には、リーン空燃比からリッチ空燃比を減算した値を、空燃比差として取得する。尚、リッチ空燃比からリーン空燃比を減算した値の絶対値を、空燃比差として取得してもよい。   Next, the ECU 50 obtains the difference between the lean air-fuel ratio set as the target air-fuel ratio in the catalyst regeneration control and the rich air-fuel ratio as the air-fuel ratio difference (step S5). Specifically, a value obtained by subtracting the rich air-fuel ratio from the lean air-fuel ratio is acquired as the air-fuel ratio difference. An absolute value obtained by subtracting the lean air-fuel ratio from the rich air-fuel ratio may be acquired as the air-fuel ratio difference.

次にECU50は、三元触媒31の温度を推定する(ステップS7)。具体的には、取得された機関回転数及び機関負荷と空燃比差とに対応した触媒温度マップに基づいて、三元触媒31の温度が推定される。触媒温度マップは、予め実験により取得されECU50のROMに記憶されている。ステップS7の処理は、触媒再生制御の実行中に、取得された内燃機関20の運転状態と、目標空燃比として設定されたリーン空燃比とリッチ空燃比との差の大きさとに基づいて、三元触媒31の温度を推定する推定部が実行する処理の一例である。   Next, the ECU 50 estimates the temperature of the three-way catalyst 31 (step S7). Specifically, the temperature of the three-way catalyst 31 is estimated based on the acquired engine speed, engine load, and catalyst temperature map corresponding to the air-fuel ratio difference. The catalyst temperature map is acquired in advance by experiments and stored in the ROM of the ECU 50. The process of step S7 is based on the obtained operating state of the internal combustion engine 20 and the magnitude of the difference between the lean air-fuel ratio set as the target air-fuel ratio and the rich air-fuel ratio during the catalyst regeneration control. It is an example of the process which the estimation part which estimates the temperature of the original catalyst 31 performs.

図3A及び図3Bは、触媒温度マップの一例である。横軸は機関回転数を示し、縦軸は機関負荷であり、複数の等温度線を示している。また、図3Aは、空燃比差が比較的大きい場合での触媒温度マップを示し、図3Bは、空燃比差が比較的小さい場合での触媒温度マップを示している。ここで、温度T1〜T6は、温度T1から温度T6の順に温度が高い。   3A and 3B are examples of a catalyst temperature map. The horizontal axis represents the engine speed, and the vertical axis represents the engine load, indicating a plurality of isothermal lines. FIG. 3A shows a catalyst temperature map when the air-fuel ratio difference is relatively large, and FIG. 3B shows a catalyst temperature map when the air-fuel ratio difference is relatively small. Here, the temperatures T1 to T6 are higher in the order of the temperature T1 to the temperature T6.

図3A及び図3Bに示すように、機関回転数及び機関負荷が同一条件下においては、空燃比差が大きいほど三元触媒31の温度は高く推定される。このような触媒温度マップに基づいて、触媒再生制御実行中での三元触媒31の温度を精度よく推定できる。尚、このような触媒温度マップの代わりに、算出式によって、機関回転数、機関負荷、及び空燃比差に基づいて、三元触媒31の温度を推定してもよい。   As shown in FIGS. 3A and 3B, under the same engine speed and engine load, the temperature of the three-way catalyst 31 is estimated to be higher as the air-fuel ratio difference is larger. Based on such a catalyst temperature map, the temperature of the three-way catalyst 31 during execution of the catalyst regeneration control can be accurately estimated. Instead of such a catalyst temperature map, the temperature of the three-way catalyst 31 may be estimated based on the engine speed, the engine load, and the air-fuel ratio difference using a calculation formula.

次にECU50は、推定された三元触媒31の温度が閾値を超えているか否かを判定し(ステップS9)、否定判定の場合には本制御が終了される。閾値は、三元触媒31が過昇温したか否かを判定するための値であり、三元触媒31の耐熱上限温度よりも若干低い値に設定されており、例えば900度であるがこれに限定されない。ステップS9の処理は、触媒再生制御の実行中に、推定された三元触媒31の温度が閾値を超えたか否かを判定する判定部が実行する処理の一例である。   Next, the ECU 50 determines whether or not the estimated temperature of the three-way catalyst 31 exceeds the threshold value (step S9). If the determination is negative, the control is terminated. The threshold value is a value for determining whether or not the three-way catalyst 31 has overheated, and is set to a value slightly lower than the heat-resistant upper limit temperature of the three-way catalyst 31, for example, 900 degrees. It is not limited to. The process of step S9 is an example of a process executed by a determination unit that determines whether or not the estimated temperature of the three-way catalyst 31 exceeds a threshold value during the execution of the catalyst regeneration control.

ステップS9で肯定判定の場合には、ECU50は触媒再生制御を禁止する(ステップS11)。触媒再生制御が禁止されている期間では、全ての気筒での目標空燃比は同じに設定される。具体的には、ステップS3で取得された機関回転数及び機関負荷に基づいて、通常運転で用いられる通常空燃比マップに基づいて目標空燃比が設定される。これにより、三元触媒31の過昇温が抑制される。尚、触媒再生制御が禁止されている期間では、全ての気筒での目標空燃比を理論空燃比に設定してもよい。ステップS9の処理は、触媒再生制御の実行中に、推定された三元触媒31の温度が閾値を超えたと判定された場合に、触媒再生制御を禁止する禁止部が実行する処理の一例である。   If the determination in step S9 is affirmative, the ECU 50 prohibits catalyst regeneration control (step S11). During the period in which the catalyst regeneration control is prohibited, the target air-fuel ratio in all the cylinders is set to be the same. Specifically, the target air-fuel ratio is set based on the normal air-fuel ratio map used in normal operation based on the engine speed and engine load acquired in step S3. Thereby, the excessive temperature rise of the three-way catalyst 31 is suppressed. Note that, during the period when the catalyst regeneration control is prohibited, the target air-fuel ratio in all the cylinders may be set to the stoichiometric air-fuel ratio. The process of step S9 is an example of a process executed by a prohibiting unit that prohibits the catalyst regeneration control when it is determined that the estimated temperature of the three-way catalyst 31 exceeds the threshold during the catalyst regeneration control. .

次に、タイムチャートを用いて再生禁止制御について説明する。図4は、再生禁止制御の一例を示すタイムチャートである。図4には、車速、アイドル判定フラグ、エンジン回転数、エンジン負荷、三元触媒31の推定温度、触媒再生実行フラグ、目標空燃比をリーン空燃比に設定される気筒での目標空燃比、目標空燃比をリッチ空燃比に設定される気筒での目標空燃比を示す波形が示されている。尚、図4においては、理解を容易にするために、触媒再生制御が実行されていない期間においても、三元触媒31の推定温度を記載している。   Next, the reproduction prohibition control will be described using a time chart. FIG. 4 is a time chart showing an example of the reproduction prohibition control. FIG. 4 shows the vehicle speed, the idle determination flag, the engine speed, the engine load, the estimated temperature of the three-way catalyst 31, the catalyst regeneration execution flag, the target air-fuel ratio in the cylinder in which the target air-fuel ratio is set to the lean air-fuel ratio, the target A waveform showing a target air-fuel ratio in a cylinder in which the air-fuel ratio is set to a rich air-fuel ratio is shown. In FIG. 4, for easy understanding, the estimated temperature of the three-way catalyst 31 is shown even during a period when the catalyst regeneration control is not executed.

時刻t1において触媒再生実行フラグがオフの状態から、時刻t2において触媒再生要求があると、触媒再生実行フラグがオンにされる。これにより、ECU50は、一の気筒の目標空燃比がリッチ空燃比に設定され、他の気筒の目標空燃比はリーン空燃比に設定されて触媒再生制御が実行される。   If there is a catalyst regeneration request at time t2 from the state where the catalyst regeneration execution flag is off at time t1, the catalyst regeneration execution flag is turned on. Thus, the ECU 50 sets the target air-fuel ratio of one cylinder to a rich air-fuel ratio, sets the target air-fuel ratio of the other cylinders to a lean air-fuel ratio, and executes catalyst regeneration control.

時刻t3で、アイドル判定フラグがオンになると、エンジン10がアイドル運転状態にあるとして、触媒再生要求がある場合であっても触媒再生実行フラグはオフとされて触媒再生制御が停止される。時刻t4で、アイドル判定フラグがオフになると、エンジン10はアイドル運転状態を脱したとして、触媒再生実行フラグはオンにされて触媒再生制御が再度実行される。時刻t5で、アイドル判定フラグが再度オンになると、触媒再生実行フラグはオフにされて触媒再生制御が停止される。   When the idle determination flag is turned on at time t3, the catalyst regeneration execution flag is turned off and the catalyst regeneration control is stopped, assuming that the engine 10 is in an idle operation state, even when there is a catalyst regeneration request. When the idle determination flag is turned off at time t4, it is assumed that the engine 10 has exited the idle operation state, the catalyst regeneration execution flag is turned on, and the catalyst regeneration control is performed again. When the idle determination flag is turned on again at time t5, the catalyst regeneration execution flag is turned off and the catalyst regeneration control is stopped.

時刻t6で、アイドル判定フラグがオフになると、触媒再生実行フラグはオンとされて触媒再生制御が再度実行される。時刻t6以降で、リーン空燃比とリッチ空燃比との空燃比差が拡大して、時刻t7で、三元触媒31の推定温度が閾値を超えると、触媒再生実行フラグが所定期間オフとなり、触媒再生制御が禁止される。その後、時刻t8でアイドル判定フラグがオンとなって、三元触媒31の推定温度は更に低下する。   When the idle determination flag is turned off at time t6, the catalyst regeneration execution flag is turned on and the catalyst regeneration control is executed again. After time t6, when the air-fuel ratio difference between the lean air-fuel ratio and the rich air-fuel ratio increases and the estimated temperature of the three-way catalyst 31 exceeds the threshold value at time t7, the catalyst regeneration execution flag is turned off for a predetermined period, and the catalyst Playback control is prohibited. Thereafter, the idle determination flag is turned on at time t8, and the estimated temperature of the three-way catalyst 31 further decreases.

以上のように触媒再生制御の実行中に触媒再生制御が禁止されることにより、三元触媒31の温度が低下し、過昇温が抑制される。これにより、三元触媒31が熱により劣化する可能性を抑制できる。尚、触媒再生制御が禁止されると、イグニッションキーがオフになるまでの今回のトリップ中において、触媒再生制御の禁止状態が維持される。従って、次回のトリップ中で所定の条件が成立することにより、触媒再生制御が実行され、三元触媒31に堆積した硫黄化合物を除去できる。   As described above, when the catalyst regeneration control is prohibited during the execution of the catalyst regeneration control, the temperature of the three-way catalyst 31 is lowered and the excessive temperature rise is suppressed. Thereby, the possibility that the three-way catalyst 31 is deteriorated by heat can be suppressed. If the catalyst regeneration control is prohibited, the catalyst regeneration control prohibition state is maintained during the current trip until the ignition key is turned off. Therefore, when a predetermined condition is satisfied during the next trip, catalyst regeneration control is executed, and the sulfur compound deposited on the three-way catalyst 31 can be removed.

ここで、上記の手法のように三元触媒31の温度を推定する代わりに、温度センサにより直接実測することや、三元触媒31の上流側及び下流側にそれぞれ温度センサを配置してその検出温度の差に基づいて三元触媒31の温度を推定することも考えられる。しかしながらこの場合、部品点数が増大する可能性がある。本実施例では、このような温度センサを設けることなく三元触媒31の温度を推定できるため、部品点数の増大が抑制されている。   Here, instead of estimating the temperature of the three-way catalyst 31 as in the above method, the temperature sensor is directly measured, or temperature sensors are arranged on the upstream side and the downstream side of the three-way catalyst 31 and detected. It is also conceivable to estimate the temperature of the three-way catalyst 31 based on the temperature difference. However, in this case, the number of parts may increase. In the present embodiment, since the temperature of the three-way catalyst 31 can be estimated without providing such a temperature sensor, an increase in the number of parts is suppressed.

次に、再生禁止制御の変形例について説明する。図5は、ECU50が実行する再生禁止制御の変形例を示すフローチャートである。図6は、再生禁止制御の変形例を示すタイムチャートである。尚、ステップS1、S3、S5、S7、S9の処理は、図2の再生禁止制御と同一であるため説明を省略する。また、時刻t1〜t7までのエンジン回転数などの運転状態は同じであるため、説明を省略する。   Next, a modified example of the reproduction prohibition control will be described. FIG. 5 is a flowchart showing a modified example of the regeneration prohibition control executed by the ECU 50. FIG. 6 is a time chart showing a modification of the regeneration prohibiting control. Note that the processing in steps S1, S3, S5, S7, and S9 is the same as the reproduction prohibition control in FIG. Further, since the operating state such as the engine speed from the time t1 to the time t7 is the same, the description is omitted.

図5に示すように、ステップS9で肯定判定の場合には、ECU50は触媒再生制御を所定期間禁止する(ステップS11a)。所定期間とは、三元触媒31の過昇温を抑制するのに適した期間であり、予め実験により取得されECU50のROMに記憶されている。所定期間は、例えば500〜1500ミリ秒程度であるが、これに限定されない。触媒再生制御の禁止期間の経過後は、触媒再生要求がある限り触媒再生制御が再度実行される。   As shown in FIG. 5, if the determination in step S9 is affirmative, the ECU 50 prohibits catalyst regeneration control for a predetermined period (step S11a). The predetermined period is a period suitable for suppressing the excessive temperature rise of the three-way catalyst 31, and is acquired in advance by an experiment and stored in the ROM of the ECU 50. The predetermined period is, for example, about 500 to 1500 milliseconds, but is not limited thereto. After the prohibition period of the catalyst regeneration control has elapsed, the catalyst regeneration control is executed again as long as there is a catalyst regeneration request.

また、図6に示すように、触媒再生制御が禁止された時刻t7から所定期間経過した時刻t7´において、触媒再生制御の禁止が解除されて、触媒再生実行フラグがオンとなり、触媒再生制御が再度実行される。その後の時刻t8でアイドル判定フラグがオンとなると、触媒再生実行フラグはオフにされて触媒再生制御が停止される。   Further, as shown in FIG. 6, at a time t7 ′ when a predetermined period has elapsed from the time t7 when the catalyst regeneration control is prohibited, the prohibition of the catalyst regeneration control is released, the catalyst regeneration execution flag is turned on, and the catalyst regeneration control is performed. Will be executed again. When the idle determination flag is turned on at time t8 thereafter, the catalyst regeneration execution flag is turned off and the catalyst regeneration control is stopped.

このように触媒再生制御を所定期間禁止することにより三元触媒31の過昇温を抑制し、所定期間経過後に触媒再生制御の禁止を解除することにより、三元触媒31が再び昇温されて、三元触媒31に堆積した硫黄化合物をできる限り早期に除去することができる。   By prohibiting the catalyst regeneration control for a predetermined period in this manner, the excessive temperature rise of the three-way catalyst 31 is suppressed, and when the prohibition of the catalyst regeneration control is canceled after the lapse of the predetermined period, the temperature of the three-way catalyst 31 is raised again. The sulfur compound deposited on the three-way catalyst 31 can be removed as early as possible.

尚、触媒再生制御が禁止される所定期間は、上記のような場合に限定されない。例えば、触媒再生制御が禁止される所定期間は、触媒再生制御が禁止されてからアイドル運転フラグがオンになるまでの期間であってもよい。尚、上述したようにアイドル運転フラグがオンの状態では触媒再生実行フラグはオフにされる。このため、触媒再生制御の禁止後にアイドル運転状態となった場合には、触媒再生制御は実際にはアイドル運転からの復帰後にのみ実行され得る。また、触媒再生制御が禁止される所定期間は、触媒再生制御が禁止されてからアクセル開度がゼロになるまでの期間であってもよい。この場合も、アクセル開度がゼロの状態では触媒再生制御は実行されないため、触媒再生制御は実際にはアクセル開度がゼロ以外となってからのみ実行され得る。   Note that the predetermined period during which the catalyst regeneration control is prohibited is not limited to the above case. For example, the predetermined period during which the catalyst regeneration control is prohibited may be a period from when the catalyst regeneration control is prohibited until the idle operation flag is turned on. As described above, the catalyst regeneration execution flag is turned off when the idle operation flag is on. For this reason, when the idle operation state is entered after the catalyst regeneration control is prohibited, the catalyst regeneration control can actually be executed only after returning from the idle operation. The predetermined period during which the catalyst regeneration control is prohibited may be a period from when the catalyst regeneration control is prohibited until the accelerator opening becomes zero. Also in this case, since the catalyst regeneration control is not executed when the accelerator opening is zero, the catalyst regeneration control can actually be executed only after the accelerator opening is other than zero.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

上記実施例では直列4気筒のエンジンを内燃機関の一例として説明したが、バンク毎に触媒を有するV型の多気筒エンジンであってもよい。この場合、触媒再生制御では、各々のバンクでの一の気筒の目標空燃比をリッチ空燃比に設定し、残りの気筒の目標空燃比をリーン空燃比に設定して、バンク毎に触媒再生制御を実行する。   Although the inline four-cylinder engine has been described as an example of the internal combustion engine in the above embodiment, a V-type multi-cylinder engine having a catalyst for each bank may be used. In this case, in the catalyst regeneration control, the target air-fuel ratio of one cylinder in each bank is set to a rich air-fuel ratio, the target air-fuel ratio of the remaining cylinders is set to a lean air-fuel ratio, and the catalyst regeneration control is performed for each bank. Execute.

1 排気浄化装置(内燃機関の排気浄化装置)
20 内燃機関
31 三元触媒(触媒)
50 ECU(取得部、制御部、推定部、判定部、禁止部)
1 Exhaust gas purification device (exhaust gas purification device for internal combustion engine)
20 Internal combustion engine 31 Three-way catalyst (catalyst)
50 ECU (acquisition part, control part, estimation part, determination part, prohibition part)

Claims (2)

内燃機関が有する複数の気筒から排出された排気を浄化する触媒と、
前記内燃機関の運転状態を取得する取得部と、
前記複数の気筒のうち少なくとも一の気筒での目標空燃比を理論空燃比よりも小さいリッチ空燃比に設定し、前記複数の気筒のうち残りの他の気筒での目標空燃比を理論空燃比よりも大きいリーン空燃比に設定することにより、前記触媒を昇温させて前記触媒を再生する触媒再生制御を実行する制御部と、
前記触媒再生制御の実行中に、取得された前記内燃機関の運転状態と、目標空燃比として設定された前記リーン空燃比と前記リッチ空燃比との差の大きさとに基づいて、前記触媒の温度を推定する推定部と、
前記触媒再生制御の実行中に、推定された前記触媒の温度が閾値を超えたか否かを判定する判定部と、
前記触媒再生制御の実行中に、推定された前記触媒の温度が前記閾値を超えたと判定された場合に、前記触媒再生制御を禁止する禁止部と、を備えた内燃機関の排気浄化装置。
A catalyst for purifying exhaust discharged from a plurality of cylinders of the internal combustion engine;
An acquisition unit for acquiring an operating state of the internal combustion engine;
The target air-fuel ratio in at least one cylinder among the plurality of cylinders is set to a rich air-fuel ratio that is smaller than the stoichiometric air-fuel ratio, and the target air-fuel ratio in the remaining other cylinders among the plurality of cylinders is set to be higher than the stoichiometric air-fuel ratio. A control unit for performing catalyst regeneration control for raising the temperature of the catalyst to regenerate the catalyst by setting the lean air-fuel ratio to a larger value,
Based on the obtained operating state of the internal combustion engine during execution of the catalyst regeneration control and the magnitude of the difference between the lean air-fuel ratio set as a target air-fuel ratio and the rich air-fuel ratio, An estimation unit for estimating
A determination unit that determines whether the estimated temperature of the catalyst exceeds a threshold value during execution of the catalyst regeneration control;
An exhaust gas purification apparatus for an internal combustion engine, comprising: a prohibition unit that prohibits the catalyst regeneration control when it is determined that the estimated temperature of the catalyst exceeds the threshold during execution of the catalyst regeneration control.
前記禁止部は、前記触媒再生制御の実行中に、推定された前記触媒の温度が前記閾値を超えたと判定された場合に、前記触媒再生制御を所定期間禁止する、請求項1の内燃機関の排気浄化装置。   2. The internal combustion engine according to claim 1, wherein the prohibiting unit prohibits the catalyst regeneration control for a predetermined period when it is determined that the estimated temperature of the catalyst exceeds the threshold during execution of the catalyst regeneration control. Exhaust purification device.
JP2016075168A 2016-04-04 2016-04-04 Exhaust emission control device for internal combustion engine Pending JP2017186931A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016075168A JP2017186931A (en) 2016-04-04 2016-04-04 Exhaust emission control device for internal combustion engine
US15/475,928 US20170284269A1 (en) 2016-04-04 2017-03-31 Exhaust gas control device for internal combustion engine and control method thereof
CN201710213846.7A CN107448307A (en) 2016-04-04 2017-04-01 Exhaust control device and its control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075168A JP2017186931A (en) 2016-04-04 2016-04-04 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2017186931A true JP2017186931A (en) 2017-10-12

Family

ID=59960735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075168A Pending JP2017186931A (en) 2016-04-04 2016-04-04 Exhaust emission control device for internal combustion engine

Country Status (3)

Country Link
US (1) US20170284269A1 (en)
JP (1) JP2017186931A (en)
CN (1) CN107448307A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085947A (en) * 2017-11-08 2019-06-06 トヨタ自動車株式会社 Control device of internal combustion engine
JP2019173738A (en) * 2018-03-29 2019-10-10 トヨタ自動車株式会社 Control device of internal combustion engine
JP2020033947A (en) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
CN111594335A (en) * 2019-02-20 2020-08-28 丰田自动车株式会社 Catalyst warm-up monitoring device, system, method, control device, data analysis device, and reception device for internal combustion engine
JP2021060026A (en) * 2019-10-09 2021-04-15 トヨタ自動車株式会社 Vehicle and control method for the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180128145A1 (en) * 2016-11-09 2018-05-10 Ford Global Technologies, Llc Method and system for an exhaust diverter valve
JP6870560B2 (en) * 2017-10-06 2021-05-12 トヨタ自動車株式会社 Internal combustion engine control device
JP7000947B2 (en) * 2018-03-26 2022-01-19 トヨタ自動車株式会社 Internal combustion engine control device
CN114837774A (en) * 2021-02-02 2022-08-02 北京福田康明斯发动机有限公司 Method, system, storage medium and electronic device for controlling DPF to exit regeneration prohibition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337137A (en) * 1998-04-15 2000-12-05 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2009174443A (en) * 2008-01-25 2009-08-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2015078698A (en) * 2014-12-17 2015-04-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3901194B2 (en) * 2005-04-21 2007-04-04 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purification system
JP5061861B2 (en) * 2007-11-21 2012-10-31 トヨタ自動車株式会社 Control device for internal combustion engine
US8256208B2 (en) * 2008-04-30 2012-09-04 Cummins Ip, Inc. Apparatus, system, and method for reducing NOx emissions on an SCR catalyst
US20110072798A1 (en) * 2009-09-28 2011-03-31 Herman Andrew D NOx CONTROL REQUEST FOR NH3 STORAGE CONTROL
WO2013134539A1 (en) * 2012-03-07 2013-09-12 Cummins Inc. Method and algorithm for performing an nh3 sensor rationality diagnostic
JP6323354B2 (en) * 2015-01-30 2018-05-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337137A (en) * 1998-04-15 2000-12-05 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2009174443A (en) * 2008-01-25 2009-08-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2015078698A (en) * 2014-12-17 2015-04-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085947A (en) * 2017-11-08 2019-06-06 トヨタ自動車株式会社 Control device of internal combustion engine
JP2019173738A (en) * 2018-03-29 2019-10-10 トヨタ自動車株式会社 Control device of internal combustion engine
JP7020242B2 (en) 2018-03-29 2022-02-16 トヨタ自動車株式会社 Internal combustion engine control device
JP2020033947A (en) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP7003878B2 (en) 2018-08-30 2022-01-21 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
CN111594335A (en) * 2019-02-20 2020-08-28 丰田自动车株式会社 Catalyst warm-up monitoring device, system, method, control device, data analysis device, and reception device for internal combustion engine
JP2020133513A (en) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 Internal combustion engine catalyst warm-up process monitoring device, internal combustion engine catalyst warm-up process monitoring system, data analysis device, and internal combustion engine control device
US11143083B2 (en) 2019-02-20 2021-10-12 Toyota Jidosha Kabushiki Kaisha Catalyst warm-up process monitoring device, system, and method for internal combustion engine, data analysis device, control device for internal combustion engine, and receiver
JP2021060026A (en) * 2019-10-09 2021-04-15 トヨタ自動車株式会社 Vehicle and control method for the same
US11371452B2 (en) 2019-10-09 2022-06-28 Toyota Jidosha Kabushiki Kaisha Vehicle and control method therefor

Also Published As

Publication number Publication date
US20170284269A1 (en) 2017-10-05
CN107448307A (en) 2017-12-08

Similar Documents

Publication Publication Date Title
CN108457758B (en) Control device for internal combustion engine
JP2017186931A (en) Exhaust emission control device for internal combustion engine
JP4172497B2 (en) Exhaust particulate measurement device
JP6314870B2 (en) Control device for internal combustion engine
JP6586942B2 (en) Control device for internal combustion engine
US10125709B2 (en) Abnormality diagnostic device for internal combustion engine and abnormality diagnostic method for internal combustion engine
CN112005002B (en) Method and device for controlling internal combustion engine
JP2006138276A (en) Engine self-diagnosis device
JPWO2012086059A1 (en) Control device for internal combustion engine
JP6597593B2 (en) Control device for internal combustion engine
JP6669100B2 (en) Abnormality diagnosis device for internal combustion engine
CN108240265B (en) Control device for internal combustion engine
US20180209367A1 (en) Misfire determination device for internal combustion engine
US10450982B2 (en) Control device for internal combustion engine
JP2019183672A (en) Exhaust emission control device
JP6665774B2 (en) Control device for internal combustion engine
JP2008261323A (en) Exhaust particulate measuring device of internal combustion engine
JP6769369B2 (en) Internal combustion engine control device
JP2020133401A (en) Exhaust emission control device of internal combustion engine
JP2017150412A (en) Control device of internal combustion engine
JP6034139B2 (en) Control device for internal combustion engine
JP2018096355A (en) Control device of internal combustion engine
JP2019120239A (en) Control device of internal combustion engine
JP2010216285A (en) Control device for multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190226