JP2017150412A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2017150412A
JP2017150412A JP2016034325A JP2016034325A JP2017150412A JP 2017150412 A JP2017150412 A JP 2017150412A JP 2016034325 A JP2016034325 A JP 2016034325A JP 2016034325 A JP2016034325 A JP 2016034325A JP 2017150412 A JP2017150412 A JP 2017150412A
Authority
JP
Japan
Prior art keywords
cylinder
fuel ratio
air
lean
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016034325A
Other languages
Japanese (ja)
Inventor
勇喜 野瀬
Yuki Nose
勇喜 野瀬
良行 正源寺
Yoshiyuki Shogenji
良行 正源寺
啓一 明城
Keiichi Myojo
啓一 明城
英二 生田
Eiji Ikuta
英二 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016034325A priority Critical patent/JP2017150412A/en
Publication of JP2017150412A publication Critical patent/JP2017150412A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To shorten a time necessary for raising a temperature of a catalyst while avoiding that combustion becomes instable, in catalyst temperature rise control accompanied by the gradual variation processing of an air-fuel ratio.SOLUTION: When starting catalyst temperature rise control, a control device of an internal combustion engine gradually changes an air-fuel ratio of each cylinder at a prescribed gradual change speed until the air-fuel ratio reaches a target air-fuel ratio. When the catalyst temperature rise control which is performed at a combination of a rich cylinder whose combustion deterioration index becomes smaller than a first threshold and a lean cylinder is performed once again in the same trip, the control device raises the gradual change speed more than the last gradual change time. When the catalyst temperature rise control at a combination of a rich cylinder whose combustion deterioration index becomes equal to or larger than the first threshold and smaller than a second threshold and the lean cylinder is performed once again in the same trip, the control device makes the gradual change speed coincide with the last gradual change speed. When the catalyst temperature rise control is performed at a combination of a rich cylinder whose deterioration index reaches the second threshold or larger and the lean cylinder once again in the same trip, the control device retards the gradual change speed more than the last gradual change speed.SELECTED DRAWING: Figure 3

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

自動車等の内燃機関から排出される炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などの有害成分を同時にかつ効率的に浄化するための排ガス浄化触媒として、貴金属である白金(Pt)、パラジウム(Pd)、ロジウム(Rh)を主な活性種(触媒金属)とした三元触媒が広く用いられている。   It is a noble metal as an exhaust gas purification catalyst for simultaneously and efficiently purifying harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) emitted from internal combustion engines such as automobiles. A three-way catalyst having platinum (Pt), palladium (Pd), and rhodium (Rh) as main active species (catalyst metal) is widely used.

触媒の排ガス浄化能力を有効に発揮させるためには、触媒昇温を行い、触媒の温度を活性化温度まで上昇させる必要がある。   In order to effectively exhibit the exhaust gas purification ability of the catalyst, it is necessary to raise the catalyst temperature and raise the catalyst temperature to the activation temperature.

特許文献1では、複数の気筒のうち任意の気筒において筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行し、他の気筒において筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行し、複数の気筒の空燃比の平均が理論空燃比となるよう各気筒での燃料噴射量を制御することで、触媒昇温を促進している。   In Patent Document 1, rich combustion in which an air-fuel ratio at the time of combustion in a cylinder is smaller than the stoichiometric air-fuel ratio in any cylinder among a plurality of cylinders is performed, and the air-fuel ratio at the time of combustion in a cylinder is stoichiometrically empty in other cylinders. Catalyst combustion is promoted by performing lean combustion larger than the fuel ratio and controlling the fuel injection amount in each cylinder so that the average of the air-fuel ratios of the plurality of cylinders becomes the stoichiometric air-fuel ratio.

また、特許文献2では、リッチ燃焼を実行するリッチ気筒をリーン燃焼を実行するリーン気筒に切り替える場合又はその逆において、空燃比をリッチ側からリーン側又はその逆に所定の徐変速度で徐変させている。   In Patent Document 2, when the rich cylinder that performs rich combustion is switched to the lean cylinder that performs lean combustion, or vice versa, the air-fuel ratio is gradually changed from the rich side to the lean side or vice versa at a predetermined gradual change rate. I am letting.

特開2012−57492号公報JP 2012-57492 A 特開2009−215924号公報JP 2009-215924 A

リッチ燃焼とリーン燃焼とを別々の気筒で実行させる触媒昇温制御において、空燃比を徐々に変化させる場合、空燃比の徐変速度が速ければ、各気筒において目標空燃比での燃焼を開始するまでの時間が短くなるため、触媒昇温にかかる時間を短縮できるが、各気筒において一時的に燃焼が不安定となるおそれがある。一方、空燃比の徐変速度を遅くすると、各気筒において目標空燃比での燃焼を開始するまでの時間が長くなるため。触媒昇温にかかる時間が長くなるおそれがある。   In catalyst temperature rise control in which rich combustion and lean combustion are executed in separate cylinders, when the air-fuel ratio is gradually changed, if the air-fuel ratio gradually changes, combustion at the target air-fuel ratio is started in each cylinder. Since the time required until the temperature of the catalyst is increased, the time required for raising the catalyst temperature can be shortened, but there is a risk that the combustion in each cylinder becomes temporarily unstable. On the other hand, if the gradual change rate of the air-fuel ratio is slowed, the time until the combustion at the target air-fuel ratio starts in each cylinder becomes longer. There is a possibility that the time required for raising the temperature of the catalyst may become longer.

そこで、本明細書開示の内燃機関の制御装置は、空燃比を徐々に変化させリッチ燃焼とリーン燃焼とを別々の気筒で実行させる触媒昇温制御において、各気筒において、燃焼が不安定になるのを回避しつつ、触媒昇温にかかる期間を低減することを課題とする。   In view of this, the control device for an internal combustion engine disclosed in the present specification makes combustion unstable in each cylinder in catalyst temperature rise control in which rich combustion and lean combustion are executed in separate cylinders by gradually changing the air-fuel ratio. It is an object to reduce the period of temperature rise of the catalyst while avoiding the above.

かかる課題を解決するために、本明細書に開示された内燃機関の制御装置は、内燃機関の排気通路に設けられた触媒と、前記内燃機関の運転状態を検出する運転状態検出部と、前記運転状態検出部により検出された前記内燃機関の運転状態に基づいて、前記内燃機関の燃焼状態が悪化しているか否かを示す燃焼悪化指標を算出する算出部と、複数の気筒のうち、任意の気筒を筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行するリッチ気筒に設定し、他の気筒を筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行するリーン気筒に設定する設定部と、前記リッチ気筒を前記リッチ燃焼させ、前記リーン気筒を前記リーン燃焼させ、全ての気筒の空燃比の平均が理論空燃比となるよう各気筒への燃料噴射量を制御し前記触媒を昇温する触媒昇温制御を実行する制御部と、を備え、前記制御部は、前記リッチ気筒と前記リーン気筒との任意の組み合わせでの前記触媒昇温制御を開始すると、各気筒の空燃比がそれぞれの目標空燃比となるまで、前記各気筒の空燃比を所定の徐変速度で徐々に変化させ、前記燃焼悪化指標が第1閾値未満となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が同一トリップ内において再び実行されるとき、前記徐変速度を、前記燃焼悪化指標が第1閾値未満となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が前回実行されたときの徐変速度よりも速くし、前記燃焼悪化指標が前記第1閾値以上第2閾値未満となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が同一トリップ内において再び実行されるとき、前記徐変速度を、前記燃焼悪化指標が前記第1閾値以上第2閾値未満となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が前回実行されたときの徐変速度と同一にし、前記燃焼悪化指標が第2閾値以上となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が同一トリップ内において再び実行されるとき、前記徐変速度を、前記燃焼悪化指標が第2閾値以上となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が前回実行されたときの徐変速度よりも遅くする。   In order to solve such a problem, an internal combustion engine control device disclosed in the present specification includes a catalyst provided in an exhaust passage of the internal combustion engine, an operating state detection unit that detects an operating state of the internal combustion engine, A calculation unit that calculates a combustion deterioration index indicating whether or not the combustion state of the internal combustion engine has deteriorated based on the operation state of the internal combustion engine detected by the operation state detection unit, and any of a plurality of cylinders This cylinder is set to a rich cylinder that executes rich combustion in which the air-fuel ratio during combustion in the cylinder is smaller than the stoichiometric air-fuel ratio, and the other cylinders are set to lean combustion where the air-fuel ratio during combustion in the cylinder is greater than the stoichiometric air-fuel ratio A setting unit for setting the lean cylinder to perform the combustion, and the rich cylinder burns the rich cylinder, the lean cylinder burns the lean combustion, and the fuel to each cylinder is set so that the average of the air-fuel ratios of all the cylinders becomes the stoichiometric air-fuel ratio. And a controller that executes a catalyst temperature increase control for increasing the temperature of the catalyst by controlling an injection amount, and the controller performs the catalyst temperature increase control in any combination of the rich cylinder and the lean cylinder. When the engine is started, the air-fuel ratio of each cylinder is gradually changed at a predetermined gradual change rate until the air-fuel ratio of each cylinder reaches the respective target air-fuel ratio, and the rich engine whose combustion deterioration index becomes less than the first threshold value. When the catalyst temperature increase control in the combination of the cylinder and the lean cylinder is executed again in the same trip, the gradual change speed is set as the rich cylinder and the lean whose combustion deterioration index is less than the first threshold. The rich cylinder and the lean cylinder in which the catalyst temperature increase control in combination with the cylinder is faster than the gradual change speed at the time of the previous execution, and the combustion deterioration index is not less than the first threshold value and less than the second threshold value. When When the catalyst temperature increase control in combination is executed again in the same trip, the gradual change speed is determined based on the rich cylinder and the lean cylinder in which the combustion deterioration index is equal to or higher than the first threshold value and lower than the second threshold value. The catalyst temperature increase control in the combination of the rich cylinder and the lean cylinder in the combination of the rich cylinder and the lean cylinder in which the combustion deterioration index is equal to or greater than a second threshold is set to be the same as the gradual change speed when the catalyst temperature increase control was previously performed. When the temperature control is executed again in the same trip, the gradual change speed is set to the previous time when the catalyst temperature increase control in the combination of the rich cylinder and the lean cylinder whose combustion deterioration index is equal to or greater than the second threshold is performed. Slower than the gradual change rate when executed.

本明細書開示の内燃機関の制御装置によれば、空燃比を徐々に変化させリッチ燃焼とリーン燃焼とを別々の気筒で実行させる触媒昇温制御において、各気筒において、燃焼が不安定になるのを回避しつつ、触媒昇温にかかる期間を低減することができる。   According to the control device for an internal combustion engine disclosed in the present specification, in the catalyst temperature increase control in which rich combustion and lean combustion are executed in separate cylinders by gradually changing the air-fuel ratio, combustion becomes unstable in each cylinder. It is possible to reduce the period of the temperature rise of the catalyst while avoiding this.

図1は、実施形態に係る内燃機関の制御装置を適用したエンジンシステムの構成を示す概略図である。FIG. 1 is a schematic diagram illustrating a configuration of an engine system to which an internal combustion engine control apparatus according to an embodiment is applied. 図2は、ECUが実行する触媒昇温制御の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of catalyst temperature increase control executed by the ECU. 図3は、ECUが実行する徐変速度変更処理の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of a gradual change speed changing process executed by the ECU. 図4は、リッチ気筒とリーン気筒との組み合わせでの触媒昇温制御を同一トリップ内で実行した実績がない場合の、徐変速度、各気筒の空燃比の変化、及び燃焼悪化指標の関係の一例を示すタイムチャートである。FIG. 4 shows the relationship between the gradual change speed, the change in the air-fuel ratio of each cylinder, and the combustion deterioration index when there is no record of performing the catalyst temperature increase control in the combination of the rich cylinder and the lean cylinder. It is a time chart which shows an example. 図5は、リッチ気筒とリーン気筒との組み合わせでの触媒昇温制御を同一トリップ内で実行した実績がある場合の、徐変速度、各気筒の空燃比の変化、及び燃焼悪化指標の関係の一例を示すタイムチャートである。FIG. 5 shows the relationship between the gradual change speed, the change in the air-fuel ratio of each cylinder, and the combustion deterioration index when there is a track record of performing the catalyst temperature increase control in a combination of the rich cylinder and the lean cylinder. It is a time chart which shows an example.

以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されて描かれている場合もある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, in the drawings, the dimensions, ratios, and the like of each part may not be shown so as to completely match the actual ones. In some cases, details are omitted in some drawings.

まず、図1を参照し、一実施形態に係る内燃機関の制御装置が適用されたエンジンシステムについて説明する。図1は、一実施形態に係る内燃機関の制御装置が適用されたエンジンシステム1の構成を示す概略図である。   First, an engine system to which a control device for an internal combustion engine according to an embodiment is applied will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating a configuration of an engine system 1 to which an internal combustion engine control device according to an embodiment is applied.

図1に示すように、エンジンシステム1は、内燃機関20を備えている。内燃機関20は、シリンダブロック21に形成された燃焼室23の内部で燃料および空気の混合気を燃焼させ、燃焼室23内でピストン24を往復移動させることにより動力を発生する。内燃機関20は車両用多気筒エンジン(1気筒のみ図示)であり、本実施形態では、気筒#1〜#4を備える4気筒エンジンであるものとする。なお、内燃機関20が備える気筒数は、本実施形態に限定されるものではない。   As shown in FIG. 1, the engine system 1 includes an internal combustion engine 20. The internal combustion engine 20 generates power by burning a mixture of fuel and air in a combustion chamber 23 formed in the cylinder block 21 and reciprocating a piston 24 in the combustion chamber 23. The internal combustion engine 20 is a vehicular multi-cylinder engine (only one cylinder is shown). In this embodiment, the internal combustion engine 20 is a four-cylinder engine including cylinders # 1 to # 4. Note that the number of cylinders included in the internal combustion engine 20 is not limited to this embodiment.

内燃機関20のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに設けられている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室23内の混合気に点火するための点火プラグ27が気筒ごとに取り付けられている。   The cylinder head of the internal combustion engine 20 is provided with an intake valve Vi for opening and closing an intake port and an exhaust valve Ve for opening and closing an exhaust port for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown). A spark plug 27 for igniting the air-fuel mixture in the combustion chamber 23 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管を介してサージタンク18に接続されている。サージタンク18の上流側には吸気管10が接続されており、吸気管10の上流端にはエアクリーナ19が設けられている。そして吸気管10には、上流側から順に、吸入空気量を検出するためのエアフローメータ15と、電子制御式スロットルバルブ13とが組み込まれている。   The intake port of each cylinder is connected to the surge tank 18 via a branch pipe for each cylinder. An intake pipe 10 is connected to the upstream side of the surge tank 18, and an air cleaner 19 is provided at the upstream end of the intake pipe 10. An air flow meter 15 for detecting the intake air amount and an electronically controlled throttle valve 13 are incorporated in the intake pipe 10 in order from the upstream side.

また、各気筒の吸気ポートには、燃料を吸気ポート内に噴射するインジェクタ12が設置されている。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室23に吸入され、ピストン24で圧縮され、点火プラグ27で点火燃焼させられる。   An injector 12 for injecting fuel into the intake port is installed at the intake port of each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 23 when the intake valve Vi is opened, compressed by the piston 24, and ignited and burned by the spark plug 27. It is done.

一方、各気筒の排気ポートは気筒毎の枝管を介して排気管30に接続されている。排気管30には、三元触媒31が設けられている。なお排気ポート、枝管及び排気管30により排気通路が形成される。三元触媒31の上流側には、排気ガスの空燃比を検出するための空燃比センサ33が設置されている。空燃比センサ33は、いわゆる広域空燃比センサであり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。   On the other hand, the exhaust port of each cylinder is connected to the exhaust pipe 30 via a branch pipe for each cylinder. A three-way catalyst 31 is provided in the exhaust pipe 30. An exhaust passage is formed by the exhaust port, the branch pipe, and the exhaust pipe 30. An air-fuel ratio sensor 33 for detecting the air-fuel ratio of the exhaust gas is installed on the upstream side of the three-way catalyst 31. The air-fuel ratio sensor 33 is a so-called wide-area air-fuel ratio sensor, which can continuously detect an air-fuel ratio over a relatively wide range and outputs a signal having a value proportional to the air-fuel ratio.

エンジンシステム1は、ECU(Electronic Control Unit)50を備えている。ECU50は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び記憶装置等を備える。ECU50は、ROMや記憶装置に記憶されたプログラムを実行することにより各種制御を行う。ECU50は、算出部、設定部、及び制御部の一例である。   The engine system 1 includes an ECU (Electronic Control Unit) 50. The ECU 50 includes a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), and a storage device. The ECU 50 performs various controls by executing a program stored in the ROM or the storage device. The ECU 50 is an example of a calculation unit, a setting unit, and a control unit.

ECU50には、上述の点火プラグ27、スロットルバルブ13及びインジェクタ12等が電気的に接続されている。またECU50には、前述のエアフローメータ15、空燃比センサ33、内燃機関20のクランク角を検出するクランク角センサ25のほか、アクセル開度を検出するアクセル開度センサやその他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。なお、クランク角センサ25は、内燃機関20の運転状態を検出する運転状態検出部の一例である。ECU50は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ27、スロットルバルブ13、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。   The ECU 50 is electrically connected to the spark plug 27, the throttle valve 13, the injector 12, and the like. In addition, the ECU 50 does not show the air flow meter 15, the air-fuel ratio sensor 33, the crank angle sensor 25 that detects the crank angle of the internal combustion engine 20, the accelerator opening sensor that detects the accelerator opening, and other various sensors. It is electrically connected via an A / D converter or the like. The crank angle sensor 25 is an example of an operation state detection unit that detects an operation state of the internal combustion engine 20. The ECU 50 controls the ignition plug 27, the throttle valve 13, the injector 12 and the like so as to obtain a desired output based on the detection values of various sensors, etc., and performs ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.

また、ECU50は、三元触媒31を昇温するための触媒昇温制御を実行する。図2は、ECU50が実行する触媒昇温制御の一例を示すフローチャートである。図2の処理は、所定の演算周期(例えば、0.1〜0.3ms毎)で実行される。   Further, the ECU 50 executes catalyst temperature increase control for increasing the temperature of the three-way catalyst 31. FIG. 2 is a flowchart showing an example of catalyst temperature increase control executed by the ECU 50. The processing in FIG. 2 is executed at a predetermined calculation cycle (for example, every 0.1 to 0.3 ms).

まず、ECU50は、触媒昇温要求がONか否か判断する(ステップS11)。触媒昇温要求がOFFの場合(ステップS11/NO)、ECU50は、図2の処理を終了する。   First, the ECU 50 determines whether or not the catalyst temperature increase request is ON (step S11). When the catalyst temperature increase request is OFF (step S11 / NO), the ECU 50 ends the process of FIG.

一方、触媒昇温要求がONの場合(ステップS11/YES)、ECU50は、筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を行うリッチ気筒と、筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を行うリーン気筒との組み合わせを設定する(ステップS13)。ECU50は、例えば、4つの気筒#1〜#4のうち、任意の気筒(例えば、気筒#1)をリッチ気筒に設定し、他の気筒(例えば、気筒#2〜#4)をリーン気筒に設定する。   On the other hand, when the catalyst temperature increase request is ON (step S11 / YES), the ECU 50 causes the rich cylinder that performs rich combustion in which the air-fuel ratio during combustion in the cylinder is smaller than the stoichiometric air-fuel ratio, and the air during combustion in the cylinder. A combination with a lean cylinder that performs lean combustion in which the fuel ratio is larger than the stoichiometric air-fuel ratio is set (step S13). For example, the ECU 50 sets an arbitrary cylinder (for example, cylinder # 1) among the four cylinders # 1 to # 4 as a rich cylinder and sets other cylinders (for example, cylinders # 2 to # 4) as lean cylinders. Set.

続いて、ECU50は、クランク角センサ25の検出値に基づくエンジン回転速度のサイクル間変動及び気筒間変動の算出及び記録を開始する(ステップS14)。エンジン回転速度のサイクル間変動及びエンジン回転速度の気筒間変動は、内燃機関20の燃焼状態が悪化しているか否かを示す燃焼悪化指標の一例である。エンジン回転速度のサイクル間変動とは、クランク角0度から720度までの間を1サイクルとした場合の、サイクル間のエンジン回転速度の差を意味する。また、エンジン回転速度の気筒間変動とは、燃焼行程における気筒間のエンジン回転速度の差を意味する。なお、ECU50は、算出したエンジン回転速度のサイクル間変動及び気筒間変動を、リーン気筒とリッチ気筒との組み合わせと関連付けて記録する。   Subsequently, the ECU 50 starts calculation and recording of the cycle-to-cycle variation and the inter-cylinder variation of the engine rotation speed based on the detection value of the crank angle sensor 25 (step S14). The cycle-to-cycle variation of the engine rotation speed and the cylinder-to-cylinder variation of the engine rotation speed are examples of a combustion deterioration index that indicates whether or not the combustion state of the internal combustion engine 20 has deteriorated. The cycle-to-cycle fluctuation of the engine rotation speed means a difference in engine rotation speed between cycles when a crank angle from 0 degree to 720 degrees is defined as one cycle. Further, the inter-cylinder fluctuation of the engine rotation speed means a difference in engine rotation speed between the cylinders in the combustion stroke. The ECU 50 records the calculated cycle-to-cycle variation of the engine speed and the variation between the cylinders in association with the combination of the lean cylinder and the rich cylinder.

ステップS14の後、ECU50は、各気筒の空燃比をそれぞれの目標空燃比まで所定の徐変速度をもって徐々に変更する徐変処理を行い(ステップS15)、各気筒の空燃比がそれぞれの目標空燃比に到達すると、当該目標空燃比での運転を継続する(ステップS17)。ここで、三元触媒31は、三元触媒31に流入する排気ガスの空燃比が理論空燃比(ストイキ、例えば14.55)近傍のときにNOx,HCおよびCOを同時に浄化する。そのため、ECU50は、ステップS15及びS17の処理の実行中、リッチ気筒でリッチ燃焼が実行され、リーン気筒でリーン燃焼が実行され、全ての気筒の空燃比の平均が理論空燃比となるように、各気筒への燃料噴射量を制御する。具体的には、ECU50は、空燃比センサ33により検出された空燃比が理論空燃比に一致するように、各気筒への燃料噴射量をフィードバック制御する。   After step S14, the ECU 50 performs a gradual change process in which the air-fuel ratio of each cylinder is gradually changed at a predetermined gradual change speed to the respective target air-fuel ratio (step S15), and the air-fuel ratio of each cylinder is changed to the target air-fuel ratio. When the fuel ratio is reached, the operation at the target air-fuel ratio is continued (step S17). Here, the three-way catalyst 31 simultaneously purifies NOx, HC, and CO when the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 31 is near the stoichiometric air-fuel ratio (stoichiometric, for example, 14.55). Therefore, the ECU 50 performs the rich combustion in the rich cylinder and the lean combustion in the lean cylinder during the processes of steps S15 and S17, so that the average of the air-fuel ratios of all the cylinders becomes the stoichiometric air-fuel ratio. The fuel injection amount to each cylinder is controlled. Specifically, the ECU 50 feedback-controls the fuel injection amount to each cylinder so that the air-fuel ratio detected by the air-fuel ratio sensor 33 matches the stoichiometric air-fuel ratio.

続いて、ECU50は、現在のリッチ気筒とリーン気筒との組み合わせで所定サイクル数運転したか否かを判断する(ステップS19)。   Subsequently, the ECU 50 determines whether or not a predetermined number of cycles have been operated with the current combination of rich and lean cylinders (step S19).

現在のリッチ気筒とリーン気筒との組み合わせで所定サイクル数運転した場合(ステップS19/YES)、ECU50は、リッチ気筒とリーン気筒との組み合わせを変更する(ステップS21)。ECU50は、例えば、4つの気筒#1〜#4のうち、任意の気筒(例えば、気筒#2)をリッチ気筒に設定し、他の気筒(例えば、気筒#1、#3、#4)をリーン気筒に設定する。   When the predetermined number of cycles is operated with the combination of the current rich cylinder and the lean cylinder (step S19 / YES), the ECU 50 changes the combination of the rich cylinder and the lean cylinder (step S21). For example, the ECU 50 sets an arbitrary cylinder (for example, cylinder # 2) among the four cylinders # 1 to # 4 as a rich cylinder, and sets other cylinders (for example, cylinders # 1, # 3, and # 4). Set to lean cylinder.

ECU50は、リッチ気筒とリーン気筒との組み合わせを変更すると、各気筒の空燃比がそれぞれの目標空燃比となるまで徐変処理を実行し(ステップS15)、その後、目標空燃比での運転を継続する(ステップS17)。   When the combination of the rich cylinder and the lean cylinder is changed, the ECU 50 executes a gradual change process until the air-fuel ratio of each cylinder reaches the target air-fuel ratio (step S15), and then continues operation at the target air-fuel ratio. (Step S17).

ところで、ECU50は、現在のリッチ気筒とリーン気筒との組み合わせで所定サイクル数運転していない場合(ステップS19/NO)、触媒昇温要求がOFFされたか否かを判断する(ステップS23)。触媒昇温要求がOFFされていない場合(ステップS23/NO)、ステップS17に戻り、現在のリッチ気筒とリーン気筒との組み合わせで運転を継続する。   Incidentally, the ECU 50 determines whether or not the catalyst temperature increase request has been turned off (step S23) when the predetermined number of cycles has not been operated with the combination of the current rich cylinder and the lean cylinder (step S19 / NO). When the catalyst temperature increase request is not turned OFF (step S23 / NO), the process returns to step S17, and the operation is continued with the current combination of the rich cylinder and the lean cylinder.

一方、触媒昇温要求がOFFされた場合(ステップS23/YES)、ECU50は、エンジン回転速度のサイクル間変動及び気筒間変動の算出及び記録を終了し(ステップS25)、図2の処理を終了する。   On the other hand, when the catalyst temperature increase request is turned OFF (step S23 / YES), the ECU 50 ends the calculation and recording of the cycle-to-cycle fluctuation and the cylinder-to-cylinder fluctuation of the engine rotation speed (step S25), and ends the process of FIG. To do.

このように、本実施形態に係るECU50は、触媒昇温制御の開始時、及び、触媒昇温制御中にリッチ気筒とリーン気筒との組み合わせを変更した時、徐変処理(図2:ステップS15)を行う。このとき、前述したように、徐変速度が遅いほど、各気筒において目標空燃比での燃焼を開始するまでの時間が長くなり、触媒昇温にかかる時間が長くなるおそれがある。また、徐変速度が速すぎると、各気筒における燃焼が一時的に不安定となるおそれがある。   As described above, the ECU 50 according to the present embodiment performs the gradual change process (FIG. 2: Step S15) at the start of the catalyst temperature increase control and when the combination of the rich cylinder and the lean cylinder is changed during the catalyst temperature increase control. )I do. At this time, as described above, the slower the gradual change rate, the longer the time required to start combustion at the target air-fuel ratio in each cylinder, and the longer the time required for catalyst temperature rise. Further, if the gradual change rate is too fast, the combustion in each cylinder may be temporarily unstable.

そこで、本実施形態に係るECU50では、徐変処理(図2:ステップS15)開始時に、以下の徐変速度変更処理を実行することにより、燃焼が不安定になることを回避しつつ、各気筒においてそれぞれの目標空燃比で燃焼を開始するまでの時間を短縮することで、触媒昇温にかかる時間を低減する。   Therefore, the ECU 50 according to the present embodiment executes the following gradual change speed changing process at the start of the gradual change process (FIG. 2: step S15), thereby avoiding instability of combustion and preventing the cylinder from becoming unstable. The time required to raise the catalyst temperature is reduced by shortening the time until combustion is started at each target air-fuel ratio.

図3は、ECU50が実行する徐変速度変更処理の一例を示すフローチャートである。図3の処理は、徐変処理の開始時、すなわち、触媒昇温制御の開始時、及び、触媒昇温制御中にリッチ気筒とリーン気筒との組み合わせを変更した時に実行される。   FIG. 3 is a flowchart illustrating an example of the gradual change speed changing process executed by the ECU 50. The process of FIG. 3 is executed when the gradual change process is started, that is, when the catalyst temperature increase control is started, and when the combination of the rich cylinder and the lean cylinder is changed during the catalyst temperature increase control.

まず、ECU50は、同一トリップ内で、現在設定されているリッチ気筒とリーン気筒との組み合わせでの触媒昇温制御を実行した実績があるか否かを判断する(ステップS51)。なお、本実施形態において、1トリップとは1回のエンジンの始動から停止までの期間をいう。   First, the ECU 50 determines whether or not there is a track record of executing the catalyst temperature increase control with the combination of the currently set rich cylinder and lean cylinder within the same trip (step S51). In the present embodiment, one trip refers to a period from one start to stop of the engine.

現在設定されているリッチ気筒とリーン気筒との組み合わせでの触媒昇温制御を実行した実績がない場合(ステップS51/NO)、ECU50は、徐変速度を予め定められたデフォルト値に設定する(ステップS53)。例えば、図4の時刻t1において触媒昇温要求がONにされ、ECU50が、気筒#1をリッチ気筒に設定し、気筒#2〜#4をリーン気筒に設定したとする。ここで、気筒#1をリッチ気筒とし気筒#2〜#4をリーン気筒とする組み合わせでの触媒昇温制御を同一トリップ内で実行した実績がない場合、ECU50は、図4に示すように、徐変速度をデフォルト値であるVdefに設定する。また、例えば、図4の時刻t4において触媒昇温要求がONにされ、ECU50が、気筒#2をリッチ気筒に設定し、気筒#1、#3、#4をリーン気筒に設定したとする。ここで、気筒#2をリッチ気筒とし気筒#1、#3、#4をリーン気筒とする組み合わせでの触媒昇温制御を同一トリップ内で実行した実績がない場合、ECU50は、図4に示すように、徐変速度をデフォルト値であるVdefに設定する。図4の場合、徐変速度が同一であるため、気筒#1をリッチ気筒と設定したときに各気筒がそれぞれの目標空燃比に到達するまでの期間T1(t2−t1)と、気筒#2をリッチ気筒と設定したときに各気筒がそれぞれの目標空燃比に到達するまでの期間T2(t5−t4)は、同一となる。   If there is no track record of executing the catalyst temperature increase control with the combination of the currently set rich cylinder and lean cylinder (step S51 / NO), the ECU 50 sets the gradual change speed to a predetermined default value ( Step S53). For example, it is assumed that the catalyst temperature increase request is turned ON at time t1 in FIG. 4, and the ECU 50 sets the cylinder # 1 as a rich cylinder and sets the cylinders # 2 to # 4 as lean cylinders. Here, when there is no track record of executing the catalyst temperature increase control in the same trip with the combination of the cylinder # 1 as the rich cylinder and the cylinders # 2 to # 4 as the lean cylinder, the ECU 50, as shown in FIG. The gradual change speed is set to the default value Vdef. Further, for example, it is assumed that the catalyst temperature increase request is turned ON at time t4 in FIG. 4, and the ECU 50 sets the cylinder # 2 as a rich cylinder and sets the cylinders # 1, # 3, and # 4 as lean cylinders. Here, when there is no track record of executing the catalyst temperature increase control in the same trip in a combination where the cylinder # 2 is a rich cylinder and the cylinders # 1, # 3, and # 4 are lean cylinders, the ECU 50 is shown in FIG. Thus, the gradual change speed is set to Vdef which is a default value. In the case of FIG. 4, since the gradual change speed is the same, when the cylinder # 1 is set as a rich cylinder, a period T1 (t2-t1) until each cylinder reaches the respective target air-fuel ratio, and the cylinder # 2 The period T2 (t5-t4) until each cylinder reaches its target air-fuel ratio when is set as a rich cylinder is the same.

図3に戻り、現在設定されているリッチ気筒とリーン気筒との組み合わせでの触媒昇温制御を実行した実績がある場合(ステップS51/YES)、ECU50は、当該組み合わせで前回触媒昇温制御を実行したときのエンジン回転速度のサイクル間変動がサイクル間第1閾値未満であり、かつ、エンジン回転速度の気筒間変動が気筒間第1閾値未満であるか否かを判断する(ステップS55)。なお、サイクル間第1閾値及び気筒間第1閾値は、第1閾値の一例であり、内燃機関20が安全に運転されていると判断できる値である。   Returning to FIG. 3, when there is a track record of executing the catalyst temperature increase control with the currently set combination of the rich cylinder and the lean cylinder (step S51 / YES), the ECU 50 performs the previous catalyst temperature increase control with the combination. It is determined whether or not the cycle-to-cycle variation of the engine rotation speed when executed is less than the first cycle threshold, and whether the variation in the engine rotation speed is less than the first cylinder threshold (step S55). The first inter-cycle threshold and the first inter-cylinder threshold are examples of the first threshold, and are values that can be used to determine that the internal combustion engine 20 is operating safely.

ステップS55の判断がYESの場合、ECU50は、徐変速度を、現在設定されているリッチ気筒とリーン気筒との組み合わせで前回触媒昇温制御を実行したときの徐変速度よりも速くする(ステップS57)。   If the determination in step S55 is YES, the ECU 50 makes the gradual change speed faster than the gradual change speed when the previous catalyst temperature increase control was executed with the combination of the currently set rich cylinder and lean cylinder (step S55). S57).

例えば、最初に気筒#1をリッチ気筒とし気筒#2〜#4をリーン気筒とする組み合わせでの触媒昇温制御を実行したとき、図4に示すようにエンジン回転速度のサイクル間変動がサイクル間第1閾値未満であり、かつ、エンジン回転速度の気筒間変動が気筒間第1閾値未満であったとする。ここで、図5に示すように同一トリップ内の時刻t7で触媒昇温要求がONとなり、ECU50が気筒#1をリッチ気筒とし気筒#2〜#4をリーン気筒とする組み合わせを設定したとする。この場合、ECU50は、図5に示すように、徐変速度を、前回触媒昇温制御を実行したときの徐変速度Vdefよりも速い徐変速度V1とする。これにより、各気筒においてそれぞれの目標空燃比での燃焼を開始するまでの期間T3(t8−t7)を、図4の期間T1よりも短くすることができるため、触媒昇温にかかる時間を短縮することができる。   For example, when the catalyst temperature increase control is first executed in a combination where the cylinder # 1 is a rich cylinder and the cylinders # 2 to # 4 are lean cylinders, the engine speed varies between cycles as shown in FIG. It is assumed that it is less than the first threshold and the inter-cylinder variation of the engine speed is less than the first inter-cylinder threshold. Here, as shown in FIG. 5, it is assumed that the catalyst temperature increase request is turned ON at time t7 in the same trip, and the ECU 50 sets a combination in which cylinder # 1 is a rich cylinder and cylinders # 2 to # 4 are lean cylinders. . In this case, as shown in FIG. 5, the ECU 50 sets the gradual change speed to a gradual change speed V1 that is faster than the gradual change speed Vdef when the previous catalyst temperature increase control was executed. As a result, the period T3 (t8-t7) until the start of combustion at each target air-fuel ratio in each cylinder can be made shorter than the period T1 in FIG. can do.

一方、ステップS55の判断がNOの場合、ECU50は、現在設定されているリッチ気筒とリーン気筒との組み合わせで前回触媒昇温制御を実行したときのエンジン回転速度のサイクル間変動がサイクル間第2閾値未満であり、かつ、エンジン回転速度の気筒間変動が気筒間第2閾値未満であるか否かを判断する(ステップS56)。ここで、サイクル間第2閾値及び気筒間第2閾値は、第2閾値の一例であり、内燃機関20が許容範囲内で安全に運転されていると判断できる値である。   On the other hand, if the determination in step S55 is NO, the ECU 50 determines that the cycle-to-cycle variation in the engine speed when the catalyst temperature increase control was previously performed with the combination of the currently set rich cylinder and lean cylinder is the second cycle. It is determined whether it is less than the threshold value and the inter-cylinder variation of the engine rotation speed is less than the second inter-cylinder threshold value (step S56). Here, the second threshold value between cycles and the second threshold value between cylinders are examples of the second threshold value, and are values that can be determined that the internal combustion engine 20 is safely operated within an allowable range.

ステップS56の判断がYESの場合、ECU50は、徐変速度を、現在設定されているリッチ気筒とリーン気筒との組み合わせで前回触媒昇温制御を実行したときの徐変速度と同一にする(ステップS59)。前回の徐変速度が、現在のリッチ気筒とリーン気筒との組み合わせにおいて、内燃機関20を安全に運転できる範囲で、各気筒において目標空燃比での燃焼を開始するまでの期間を最小とする徐変速度となっているからである。   If the determination in step S56 is YES, the ECU 50 sets the gradual change speed to be the same as the gradual change speed when the previous catalyst temperature increase control was executed with the combination of the currently set rich cylinder and lean cylinder (step S56). S59). A gradual change that minimizes the period until the start of combustion at the target air-fuel ratio in each cylinder within a range in which the previous gradual change speed can safely operate the internal combustion engine 20 in the combination of the current rich cylinder and lean cylinder. This is because it is a variable speed.

一方、ステップS56の判断がNOの場合、ECU50は、徐変速度を、現在設定されているリッチ気筒とリーン気筒との組み合わせで前回触媒昇温制御を実行したときの徐変速度よりも遅くする(ステップS61)。   On the other hand, if the determination in step S56 is NO, the ECU 50 makes the gradual change speed slower than the gradual change speed when the previous catalyst temperature increase control was executed with the combination of the rich cylinder and the lean cylinder that are currently set. (Step S61).

例えば、図4に示すように、気筒#2をリッチ気筒とし気筒#1、#3、#4をリーン気筒とする組み合わせでの触媒昇温制御を初めて実行したとき、エンジン回転速度のサイクル間変動がサイクル間第2閾値以上となり、かつ、エンジン回転速度の気筒間変動も気筒間第2閾値以上となったとする。ここで、図5に示すように、同一トリップ内の時刻t9で触媒昇温要求がONとなり、ECU50が気筒#2をリッチ気筒とし気筒#1、#3、#4をリーン気筒とする組み合わせを設定したとする。この場合、ECU50は、図5に示すように、徐変速度を、前回触媒昇温制御を実行したときの徐変速度Vdefよりも遅い徐変速度V2とする。これにより、各気筒において燃焼が不安定となることを回避することができる。   For example, as shown in FIG. 4, when the catalyst temperature increase control is executed for the first time in a combination where the cylinder # 2 is a rich cylinder and the cylinders # 1, # 3, and # 4 are lean cylinders, the engine speed varies between cycles. Is greater than or equal to the second threshold value between cycles, and the inter-cylinder variation in engine speed is also greater than or equal to the second threshold value between cylinders. Here, as shown in FIG. 5, the catalyst temperature increase request is turned ON at time t9 in the same trip, and the ECU 50 has a combination in which cylinder # 2 is a rich cylinder and cylinders # 1, # 3, and # 4 are lean cylinders. Suppose that it is set. In this case, as shown in FIG. 5, the ECU 50 sets the gradual change rate to a gradual change rate V2 that is slower than the gradual change rate Vdef when the previous catalyst temperature increase control was executed. As a result, it is possible to avoid unstable combustion in each cylinder.

ステップS53、S57、S59、又はS61の実行後、ECU50は、現在設定されているリッチ気筒とリーン気筒との組み合わせと、ステップS53、S57、S59、又はS61で設定した徐変速度とを記憶し(ステップS63)、当該徐変速度で徐変処理を実行する(ステップS65)。   After executing step S53, S57, S59, or S61, the ECU 50 stores the currently set combination of the rich cylinder and the lean cylinder and the gradually changing speed set in step S53, S57, S59, or S61. (Step S63), the gradual change process is executed at the gradual change speed (Step S65).

以上、詳細に説明したように、本実施形態にかかるエンジンシステム1は、内燃機関20の排気管30に設けられた三元触媒31と、内燃機関20のクランク角を検出するクランク角センサ25と、クランク角センサ25により検出されたクランク角に基づいて、エンジン回転速度のサイクル間変動及び気筒間変動を算出し、複数の気筒のうち、任意の気筒を筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行するリッチ気筒に設定し、他の気筒を筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行するリーン気筒に設定し、リッチ気筒をリッチ燃焼させ、リーン気筒をリーン燃焼させ、全ての気筒の空燃比の平均が理論空燃比となるよう各気筒への燃料噴射量を制御し三元触媒31を昇温する触媒昇温制御を実行するECU50と、を備える。そして、ECU50は、リッチ気筒とリーン気筒との任意の組み合わせでの触媒昇温制御を開始されると、各気筒の空燃比がそれぞれの目標空燃比となるまで、各気筒の空燃比を所定の徐変速度で徐々に変化させる。そして、ECU50は、エンジン回転速度のサイクル間変動及び気筒間変動がそれぞれサイクル間第1閾値未満及び気筒間第1閾値未満となったリッチ気筒とリーン気筒との組み合わせでの触媒昇温制御が同一トリップ内において再び実行されるとき、徐変速度を、当該組み合わせでの触媒昇温制御が前回実行されたときの徐変速度よりも速くする。これにより、各気筒においてそれぞれの目標空燃比での燃焼を開始するまでの期間を前回制御時よりも短くすることができるため、触媒昇温にかかる時間を短縮することができる。また、ECU50は、エンジン回転速度のサイクル間変動及び気筒間変動がそれぞれサイクル間第1閾値以上サイクル間第2閾値未満及び気筒間第1閾値以上気筒間第2閾値未満となったリッチ気筒とリーン気筒との組み合わせでの触媒昇温制御が同一トリップ内において再び実行されるとき、徐変速度を、当該組み合わせでの触媒昇温制御が前回実行されたときの徐変速度と同一にする。これにより、内燃機関20を安全に運転できる範囲で、各気筒においてそれぞれの目標空燃比での燃焼を開始するまでの期間を最小とすることができる。さらに、ECU50は、エンジン回転速度のサイクル間変動がサイクル間第2閾値以上、
又はエンジン回転速度の気筒間変動が気筒間第2閾値以上となったリッチ気筒とリーン気筒との組み合わせでの触媒昇温制御が同一トリップ内において再び実行されるとき、徐変速度を、当該組み合わせでの触媒昇温制御が前回実行されたときの徐変速度よりも遅くする。これにより、各気筒において燃焼が不安定となることを回避することができる。
As described above in detail, the engine system 1 according to the present embodiment includes the three-way catalyst 31 provided in the exhaust pipe 30 of the internal combustion engine 20, and the crank angle sensor 25 that detects the crank angle of the internal combustion engine 20. Based on the crank angle detected by the crank angle sensor 25, the cycle fluctuation and the cylinder fluctuation of the engine rotation speed are calculated, and the air-fuel ratio at the time of combustion in any cylinder among the plurality of cylinders is theoretically calculated. The rich cylinder that performs rich combustion smaller than the air-fuel ratio is set, the other cylinders are set to lean cylinders that perform lean combustion in which the air-fuel ratio during combustion in the cylinder is greater than the stoichiometric air-fuel ratio, and the rich cylinders are rich The fuel is burned, the lean cylinders are lean burned, the fuel injection amount to each cylinder is controlled so that the average of the air-fuel ratios of all the cylinders becomes the stoichiometric air-fuel ratio, and the temperature of the three-way catalyst 31 is raised. Comprising the ECU50 to perform temperature increase control, the. When the ECU 50 starts the catalyst temperature increase control in any combination of the rich cylinder and the lean cylinder, the ECU 50 sets the air-fuel ratio of each cylinder to a predetermined level until the air-fuel ratio of each cylinder reaches the target air-fuel ratio. Change gradually at a gradual change rate. The ECU 50 has the same catalyst temperature increase control in the combination of the rich cylinder and the lean cylinder in which the cycle-to-cycle fluctuation and the cylinder-to-cylinder fluctuation of the engine speed are less than the first threshold value between cycles and the first threshold value between cylinders, respectively. When it is executed again in the trip, the gradual change speed is made faster than the gradual change speed when the catalyst temperature increase control in the combination was executed last time. As a result, the period until the start of combustion at each target air-fuel ratio in each cylinder can be made shorter than in the previous control, so that the time required for catalyst temperature rise can be shortened. Further, the ECU 50 determines whether the engine rotation speed cycle-to-cycle variation and the cylinder-to-cylinder variation are more than the first threshold value between cycles and less than the second threshold value between cycles and between the first threshold value between cylinders and less than the second threshold value between cylinders. When the catalyst temperature increase control in combination with the cylinder is executed again in the same trip, the gradual change speed is made the same as the gradual change speed when the catalyst temperature increase control in the combination was executed last time. As a result, it is possible to minimize the period until the combustion at each target air-fuel ratio is started in each cylinder within a range where the internal combustion engine 20 can be safely operated. Further, the ECU 50 has a cycle-to-cycle variation in engine rotation speed that is greater than or equal to a second threshold value between cycles,
Alternatively, when the catalyst temperature increase control is executed again in the same trip in the combination of the rich cylinder and the lean cylinder in which the inter-cylinder fluctuation of the engine rotation speed is equal to or greater than the second threshold value between the cylinders, The catalyst temperature increase control at is made slower than the gradual change speed at the previous execution. As a result, it is possible to avoid unstable combustion in each cylinder.

上記実施形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these. Various modifications of these embodiments are within the scope of the present invention, and It is apparent from the above description that various other embodiments are possible within the scope.

なお、上記実施形態において、ECU50は、エンジン回転数のサイクル間変動及びエンジン回転速度の気筒間変動を用いて、燃焼悪化を判定していたが、エンジン回転数のサイクル間変動及びエンジン回転速度の気筒間変動のいずれか一方を用いて、燃焼悪化を判定してもよい。   In the above-described embodiment, the ECU 50 determines the deterioration of combustion using the cycle-to-cycle variation of the engine speed and the cylinder-to-cylinder variation of the engine rotation speed. Combustion deterioration may be determined using either one of the fluctuations between the cylinders.

1 エンジンシステム(内燃機関の制御装置)
20 内燃機関
25 クランク角センサ(運転状態検出部)
30 排気管(排気通路)
50 ECU(設定部、制御部、算出部)
1 Engine system (control device for internal combustion engine)
20 Internal combustion engine 25 Crank angle sensor (operating state detector)
30 Exhaust pipe (exhaust passage)
50 ECU (setting unit, control unit, calculation unit)

Claims (1)

内燃機関の排気通路に設けられた触媒と、
前記内燃機関の運転状態を検出する運転状態検出部と、
前記運転状態検出部により検出された前記内燃機関の運転状態に基づいて、前記内燃機関の燃焼状態が悪化しているか否かを示す燃焼悪化指標を算出する算出部と、
複数の気筒のうち、任意の気筒を筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行するリッチ気筒に設定し、他の気筒を筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行するリーン気筒に設定する設定部と、
前記リッチ気筒を前記リッチ燃焼させ、前記リーン気筒を前記リーン燃焼させ、全ての気筒の空燃比の平均が理論空燃比となるよう各気筒への燃料噴射量を制御し前記触媒を昇温する触媒昇温制御を実行する制御部と、
を備え、
前記制御部は、
前記リッチ気筒と前記リーン気筒との任意の組み合わせでの前記触媒昇温制御を開始すると、各気筒の空燃比がそれぞれの目標空燃比となるまで、前記各気筒の空燃比を所定の徐変速度で徐々に変化させ、
前記燃焼悪化指標が第1閾値未満となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が同一トリップ内において再び実行されるとき、前記徐変速度を、前記燃焼悪化指標が第1閾値未満となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が前回実行されたときの徐変速度よりも速くし、
前記燃焼悪化指標が前記第1閾値以上第2閾値未満となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が同一トリップ内において再び実行されるとき、前記徐変速度を、前記燃焼悪化指標が前記第1閾値以上第2閾値未満となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が前回実行されたときの徐変速度と同一にし、
前記燃焼悪化指標が第2閾値以上となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が同一トリップ内において再び実行されるとき、前記徐変速度を、前記燃焼悪化指標が第2閾値以上となった前記リッチ気筒と前記リーン気筒との組み合わせでの前記触媒昇温制御が前回実行されたときの徐変速度よりも遅くする
内燃機関の制御装置。

A catalyst provided in the exhaust passage of the internal combustion engine;
An operating state detector for detecting an operating state of the internal combustion engine;
A calculation unit that calculates a combustion deterioration index indicating whether or not the combustion state of the internal combustion engine is deteriorated based on the operation state of the internal combustion engine detected by the operation state detection unit;
Of the multiple cylinders, any cylinder is set to a rich cylinder that performs rich combustion in which the air-fuel ratio during combustion in the cylinder is smaller than the stoichiometric air-fuel ratio, and the other cylinders have theoretical air-fuel ratio during combustion in the cylinder A setting unit for setting a lean cylinder that performs lean combustion larger than the air-fuel ratio;
A catalyst for causing the rich cylinder to perform the rich combustion, causing the lean cylinder to perform the lean combustion, and controlling the fuel injection amount to each cylinder so that the average of the air-fuel ratios of all the cylinders becomes the stoichiometric air-fuel ratio, thereby raising the temperature of the catalyst. A control unit for executing temperature rise control;
With
The controller is
When the catalyst temperature increase control in any combination of the rich cylinder and the lean cylinder is started, the air-fuel ratio of each cylinder is changed to a predetermined gradual change rate until the air-fuel ratio of each cylinder becomes the respective target air-fuel ratio. Gradually change the
When the catalyst temperature increase control in the combination of the rich cylinder and the lean cylinder whose combustion deterioration index is less than the first threshold is executed again in the same trip, the gradually changing speed is set as the combustion deterioration index. Is made faster than the gradual change speed when the catalyst temperature increase control in the combination of the rich cylinder and the lean cylinder, which has become less than the first threshold, is executed last time,
When the catalyst temperature increase control in the combination of the rich cylinder and the lean cylinder whose combustion deterioration index is greater than or equal to the first threshold and less than the second threshold is executed again in the same trip, the gradual change speed is , The combustion deterioration index is the same as the gradual change speed at the time when the catalyst temperature increase control in the combination of the rich cylinder and the lean cylinder with the first threshold value or more and less than the second threshold value was previously executed,
When the catalyst temperature increase control in the combination of the rich cylinder and the lean cylinder in which the combustion deterioration index is equal to or greater than a second threshold is executed again in the same trip, the gradually changing speed is set to the combustion deterioration index. A control device for an internal combustion engine that makes the catalyst temperature increase control in a combination of the rich cylinder and the lean cylinder, for which is equal to or greater than a second threshold value, slower than a gradual change speed when it was previously executed.

JP2016034325A 2016-02-25 2016-02-25 Control device of internal combustion engine Pending JP2017150412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034325A JP2017150412A (en) 2016-02-25 2016-02-25 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034325A JP2017150412A (en) 2016-02-25 2016-02-25 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2017150412A true JP2017150412A (en) 2017-08-31

Family

ID=59738785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034325A Pending JP2017150412A (en) 2016-02-25 2016-02-25 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2017150412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091272A (en) * 2016-12-06 2018-06-14 トヨタ自動車株式会社 Control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091272A (en) * 2016-12-06 2018-06-14 トヨタ自動車株式会社 Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
CN108457758B (en) Control device for internal combustion engine
JP5136722B2 (en) Control device for internal combustion engine
JP2017186931A (en) Exhaust emission control device for internal combustion engine
JP6586942B2 (en) Control device for internal combustion engine
JP2018131918A (en) Abnormality diagnostic device of internal combustion engine
JP2009185628A (en) Fuel injection control system for internal combustion engine
US10443520B2 (en) Control apparatus for internal combustion engine
JP2008144689A (en) Engine torque control device and its adjusting method
JP6669100B2 (en) Abnormality diagnosis device for internal combustion engine
JP2018119477A (en) Misfire determination device for internal combustion engine
JP7064319B2 (en) Internal combustion engine control device
JP2017150412A (en) Control device of internal combustion engine
JP2018188975A (en) Control device of internal combustion engine
JP6665774B2 (en) Control device for internal combustion engine
JP6686863B2 (en) Control device for internal combustion engine
JP2016217338A (en) Controller for internal combustion engine
JP3842092B2 (en) Exhaust purification device and purification method for internal combustion engine
US11434806B2 (en) Catalyst deterioration detection system
JP7331785B2 (en) Control device for internal combustion engine
JP6737156B2 (en) Control device for internal combustion engine
JP2011012687A (en) Engine torque control device
JP2018162721A (en) Internal combustion engine control apparatus
JP2023132154A (en) Control device for internal combustion engine
JP2020153334A (en) Exhaust emission control device of internal combustion engine
JP2005337080A (en) Air-fuel ratio control device and air-fuel ratio control method in internal combustion engine