JP6686863B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP6686863B2
JP6686863B2 JP2016244806A JP2016244806A JP6686863B2 JP 6686863 B2 JP6686863 B2 JP 6686863B2 JP 2016244806 A JP2016244806 A JP 2016244806A JP 2016244806 A JP2016244806 A JP 2016244806A JP 6686863 B2 JP6686863 B2 JP 6686863B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
catalyst temperature
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016244806A
Other languages
Japanese (ja)
Other versions
JP2018096355A (en
Inventor
紘史 橋之口
紘史 橋之口
啓一 明城
啓一 明城
良行 正源寺
良行 正源寺
勇喜 野瀬
勇喜 野瀬
英二 生田
英二 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016244806A priority Critical patent/JP6686863B2/en
Publication of JP2018096355A publication Critical patent/JP2018096355A/en
Application granted granted Critical
Publication of JP6686863B2 publication Critical patent/JP6686863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

エンジンの排気系には排気ガスを浄化するための触媒が設けられている。触媒の排ガス浄化能力を有効に発揮させるためには、触媒昇温を行い、触媒の温度を活性化温度まで上昇させる必要がある。   The exhaust system of the engine is provided with a catalyst for purifying exhaust gas. In order to effectively exhibit the exhaust gas purifying ability of the catalyst, it is necessary to raise the temperature of the catalyst and raise the temperature of the catalyst to the activation temperature.

特許文献1では、複数の気筒のうち任意の気筒において筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行し、他の気筒において筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行し、複数の気筒の空燃比の平均が理論空燃比となるよう各気筒での燃料噴射量を制御することで、触媒昇温を促進している。   In Patent Document 1, in any of the plurality of cylinders, rich combustion is performed in which an in-cylinder combustion air-fuel ratio is smaller than the theoretical air-fuel ratio, and in other cylinders, in-cylinder combustion air-fuel ratio is the theoretical air-fuel ratio. By executing lean combustion that is larger than the fuel ratio and controlling the fuel injection amount in each cylinder so that the average of the air-fuel ratios of a plurality of cylinders becomes the theoretical air-fuel ratio, the catalyst temperature rise is promoted.

特開2012−57492号公報JP 2012-57492 A

リッチ燃焼とリーン燃焼とを別々の気筒で実行させる触媒昇温制御の実行中は、気筒毎に空燃比や点火時期などの燃焼制御パラメータが異なる。このため、触媒昇温制御の実行中は、触媒昇温制御を実行していない場合とは異なるエンジンの回転変動が生じる可能性がある。したがって、エンジンの回転変動量によって失火を判定する場合、触媒昇温制御の実行によって、失火判定の判定精度が低下するおそれがある。   During execution of the catalyst temperature raising control in which rich combustion and lean combustion are performed in different cylinders, combustion control parameters such as the air-fuel ratio and ignition timing differ for each cylinder. For this reason, during the execution of the catalyst temperature raising control, there is a possibility that the engine rotation variation may differ from that in the case where the catalyst temperature raising control is not executed. Therefore, when the misfire is determined based on the amount of rotation fluctuation of the engine, the accuracy of the misfire determination may decrease due to the execution of the catalyst temperature increase control.

そこで、本明細書開示の内燃機関の制御装置は、リッチ燃焼とリーン燃焼とを別々の気筒で実行させる触媒昇温制御に起因して、失火判定の判定精度が低下するのを抑制することを課題とする。   Therefore, the control device for the internal combustion engine disclosed in the present specification is intended to suppress a decrease in the determination accuracy of the misfire determination due to the catalyst temperature increase control in which the rich combustion and the lean combustion are performed in different cylinders. It is an issue.

かかる課題を解決するために、本明細書に開示された内燃機関の制御装置は、内燃機関の複数の気筒のうち、任意の気筒で筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行させ、他の気筒で筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行させ、前記複数の気筒からの排気を浄化する触媒を昇温する触媒昇温制御を実行する実行部と、前記内燃機関の回転変動量を算出する変動量算出部と、前記回転変動量が第1閾値よりも大きい場合に、失火が発生していると判定する失火判定部と、前記触媒昇温制御の実行中に、前記回転変動量が前記第1閾値よりも小さな第2閾値を超えた場合、前記触媒昇温制御時における前記リッチ燃焼を実行する気筒における空燃比と前記リーン燃焼を実行する気筒における空燃比との差分を、前記回転変動量が前記第2閾値未満の場合の前記差分よりも小さくする制御部と、を備え、前記第2閾値は、前記触媒昇温制御に起因して、前記回転変動量が前記触媒昇温制御を実行していない場合よりも大きくなることによって、前記失火の判定精度が低下しないよう、前記触媒昇温制御が実行されている間設定される閾値であるIn order to solve such a problem, the control device for an internal combustion engine disclosed in the present specification has a plurality of cylinders of the internal combustion engine in which any cylinder has an air-fuel ratio smaller than the theoretical air-fuel ratio during combustion in the cylinder. A catalyst temperature raising control that causes rich combustion to be performed and lean combustion to be performed in another cylinder in which the air-fuel ratio at the time of combustion in the cylinder is greater than the theoretical air-fuel ratio to raise the temperature of the catalyst that purifies exhaust gas from the plurality of cylinders. An execution unit that executes the above, a fluctuation amount calculation unit that calculates a rotation fluctuation amount of the internal combustion engine, and a misfire determination unit that determines that a misfire has occurred when the rotation fluctuation amount is larger than a first threshold value. When the rotational fluctuation amount exceeds a second threshold value that is smaller than the first threshold value during execution of the catalyst temperature increase control, the air-fuel ratio in the cylinder that executes the rich combustion during the catalyst temperature increase control and the aforesaid Willingness to perform lean burning The difference between the air-fuel ratio, and a control unit to be smaller than the difference when the amount the rotational fluctuation is lower than the second threshold value, the second threshold value, due to the catalyst Atsushi Nobori control in, It is a threshold value that is set while the catalyst temperature increasing control is being executed so that the accuracy of the misfire determination does not decrease due to the rotation fluctuation amount becoming larger than when the catalyst temperature increasing control is not executed. .

本明細書開示の内燃機関の制御装置によれば、リッチ燃焼とリーン燃焼とを別々の気筒で実行させる触媒昇温制御に起因して、失火判定の判定精度が低下するのを抑制することができる。   According to the control device for an internal combustion engine disclosed in the present specification, it is possible to suppress deterioration of the determination accuracy of misfire determination due to the catalyst temperature increase control that executes rich combustion and lean combustion in different cylinders. it can.

図1は、実施形態に係る内燃機関の制御装置を適用したエンジンシステムの構成を示す概略図である。FIG. 1 is a schematic diagram showing a configuration of an engine system to which a control device for an internal combustion engine according to an embodiment is applied. 図2は、ECUが実行する空燃比変更処理の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of the air-fuel ratio changing process executed by the ECU. 図3は、空燃比変更処理におけるリッチ気筒での空燃比及びリーン気筒での空燃比の変化の一例を示すタイムチャートである。FIG. 3 is a time chart showing an example of changes in the air-fuel ratio in the rich cylinder and the air-fuel ratio in the lean cylinder in the air-fuel ratio changing process.

以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されて描かれている場合もある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, in the drawings, the dimensions, ratios, etc. of the respective parts may not be shown to be completely the same as the actual ones. In addition, in some drawings, details may be omitted.

まず、図1を参照し、一実施形態に係る内燃機関の制御装置が適用されたエンジンシステムについて説明する。図1は、一実施形態に係る内燃機関の制御装置が適用されたエンジンシステム1の構成を示す概略図である。   First, an engine system to which a control device for an internal combustion engine according to an embodiment is applied will be described with reference to FIG. FIG. 1 is a schematic diagram showing a configuration of an engine system 1 to which a control device for an internal combustion engine according to an embodiment is applied.

図1に示すように、エンジンシステム1は、内燃機関20を備えている。内燃機関20は、シリンダブロック21に形成された燃焼室23の内部で燃料および空気の混合気を燃焼させ、燃焼室23内でピストン24を往復移動させることにより動力を発生する。内燃機関20は車両用多気筒エンジン(1気筒のみ図示)であり、本実施形態では、気筒#1〜#4を備える4気筒エンジンであるものとする。なお、内燃機関20が備える気筒数は、本実施形態に限定されるものではない。   As shown in FIG. 1, the engine system 1 includes an internal combustion engine 20. The internal combustion engine 20 burns a mixture of fuel and air inside a combustion chamber 23 formed in a cylinder block 21 and reciprocates a piston 24 in the combustion chamber 23 to generate power. The internal combustion engine 20 is a multi-cylinder engine for a vehicle (only one cylinder is shown), and in the present embodiment, it is a four-cylinder engine including cylinders # 1 to # 4. The number of cylinders included in the internal combustion engine 20 is not limited to this embodiment.

内燃機関20のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに設けられている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室23内の混合気に点火するための点火プラグ27が気筒ごとに取り付けられている。   The cylinder head of the internal combustion engine 20 is provided with an intake valve Vi that opens and closes an intake port and an exhaust valve Ve that opens and closes an exhaust port for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a cam shaft (not shown). An ignition plug 27 for igniting the air-fuel mixture in the combustion chamber 23 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管を介してサージタンク18に接続されている。サージタンク18の上流側には吸気管10が接続されており、吸気管10の上流端にはエアクリーナ19が設けられている。そして吸気管10には、上流側から順に、吸入空気量を検出するためのエアフローメータ15と、電子制御式スロットルバルブ13とが組み込まれている。   The intake port of each cylinder is connected to the surge tank 18 via a branch pipe for each cylinder. The intake pipe 10 is connected to the upstream side of the surge tank 18, and an air cleaner 19 is provided at the upstream end of the intake pipe 10. An air flow meter 15 for detecting the intake air amount and an electronically controlled throttle valve 13 are incorporated in the intake pipe 10 in order from the upstream side.

また、各気筒の吸気ポートには、燃料を吸気ポート内に噴射するインジェクタ12が設置されている。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室23に吸入され、ピストン24で圧縮され、点火プラグ27で点火燃焼させられる。   An injector 12 for injecting fuel into the intake port is installed in the intake port of each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. This air-fuel mixture is sucked into the combustion chamber 23 when the intake valve Vi is opened, compressed by the piston 24, and ignited by the ignition plug 27. To be

一方、各気筒の排気ポートは気筒毎の枝管を介して排気管30に接続されている。排気管30には、触媒31が設けられている。なお排気ポート、枝管及び排気管30により排気通路が形成される。触媒31の上流側には、排気ガスの空燃比を検出するための空燃比センサ33が設置されている。空燃比センサ33は、いわゆる広域空燃比センサであり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。   On the other hand, the exhaust port of each cylinder is connected to the exhaust pipe 30 via a branch pipe for each cylinder. The exhaust pipe 30 is provided with a catalyst 31. An exhaust passage is formed by the exhaust port, the branch pipe, and the exhaust pipe 30. An air-fuel ratio sensor 33 for detecting the air-fuel ratio of exhaust gas is installed on the upstream side of the catalyst 31. The air-fuel ratio sensor 33 is a so-called wide-range air-fuel ratio sensor, is capable of continuously detecting an air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the air-fuel ratio.

エンジンシステム1は、ECU(Electronic Control Unit)50を備えている。ECU50は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び記憶装置等を備える。ECU50は、ROMや記憶装置に記憶されたプログラムを実行することにより各種制御を行う。ECU50は、実行部、変動量算出部、失火判定部、及び制御部を備える内燃機関の制御装置の一例である。   The engine system 1 includes an ECU (Electronic Control Unit) 50. The ECU 50 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a storage device, and the like. The ECU 50 executes various programs by executing programs stored in the ROM and the storage device. The ECU 50 is an example of a control device for an internal combustion engine that includes an execution unit, a fluctuation amount calculation unit, a misfire determination unit, and a control unit.

ECU50には、上述の点火プラグ27、スロットルバルブ13及びインジェクタ12等が電気的に接続されている。またECU50には、前述のエアフローメータ15、空燃比センサ33、内燃機関20のクランク角を検出するクランク角センサ25のほか、アクセル開度を検出するアクセル開度センサやその他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU50は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ27、スロットルバルブ13、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。   The ignition plug 27, the throttle valve 13, the injector 12 and the like described above are electrically connected to the ECU 50. The ECU 50 is not shown with the air flow meter 15, the air-fuel ratio sensor 33, the crank angle sensor 25 for detecting the crank angle of the internal combustion engine 20, the accelerator opening sensor for detecting the accelerator opening, and other various sensors. It is electrically connected via an A / D converter or the like. The ECU 50 controls the ignition plug 27, the throttle valve 13, the injector 12 and the like so as to obtain a desired output based on the detection values of various sensors, and the ignition timing, the fuel injection amount, the fuel injection timing, and the throttle opening. Control degree etc.

また、ECU50は、クランク角センサ25の検出値に基づいて、失火が発生したか否かを判定する。より具体的には、ECU50は、先ず、各気筒の燃焼行程において、その圧縮上死点を始点としてクランクシャフトが30°CA回転するのに要する時間Tを計測する。そして、この時間Tと前回計測した上記時間(Ti)との差(=T−Ti)を回転変動量ΔTとして算出する。そして、この回転変動量ΔTが、第1閾値の一例である失火判定閾値よりも大きい場合に、失火が発生したと判定する。   Further, the ECU 50 determines whether or not a misfire has occurred, based on the detection value of the crank angle sensor 25. More specifically, the ECU 50 first measures the time T required for the crankshaft to rotate by 30 ° CA starting from the compression top dead center in the combustion stroke of each cylinder. Then, the difference (= T-Ti) between this time T and the previously measured time (Ti) is calculated as the rotation fluctuation amount ΔT. Then, when the rotation variation amount ΔT is larger than the misfire determination threshold value which is an example of the first threshold value, it is determined that a misfire has occurred.

また、ECU50は、触媒31を昇温するための触媒昇温制御を実行する。具体的には、ECU50は、4つの気筒のうち任意の気筒を、筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼が実行されるリッチ気筒に設定する。また、ECU50は、他の気筒を、筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼が実行されるリーン気筒に設定する。ここで、触媒31は、触媒31に流入する排気ガスの空燃比が理論空燃比(ストイキ、例えば14.55)近傍のときにその浄化能力が高くなる。そのため、ECU50は、リッチ気筒でリッチ燃焼が実行され、リーン気筒でリーン燃焼が実行され、全ての気筒の空燃比の平均が理論空燃比となるように、各気筒への燃料噴射量を制御する。具体的には、ECU50は、空燃比センサ33により検出された空燃比が理論空燃比に一致するように、各気筒への燃料噴射量をフィードバック制御する。なお、触媒31に流入する排気ガスの空燃比は理論空燃比に一致しなくてもよく、理論空燃比を含む所定の範囲内にあればよい。   Further, the ECU 50 executes catalyst temperature raising control for raising the temperature of the catalyst 31. Specifically, the ECU 50 sets any one of the four cylinders as a rich cylinder in which rich combustion is performed in which the air-fuel ratio during combustion is smaller than the stoichiometric air-fuel ratio. Further, the ECU 50 sets the other cylinders to lean cylinders in which lean combustion is performed in which the air-fuel ratio at the time of combustion in the cylinder is larger than the theoretical air-fuel ratio. Here, the purification capacity of the catalyst 31 becomes high when the air-fuel ratio of the exhaust gas flowing into the catalyst 31 is near the stoichiometric air-fuel ratio (stoichiometric, for example, 14.55). Therefore, the ECU 50 controls the fuel injection amount to each cylinder such that the rich combustion is performed in the rich cylinder and the lean combustion is performed in the lean cylinder, and the average of the air-fuel ratios of all the cylinders becomes the theoretical air-fuel ratio. . Specifically, the ECU 50 feedback-controls the fuel injection amount to each cylinder so that the air-fuel ratio detected by the air-fuel ratio sensor 33 matches the theoretical air-fuel ratio. The air-fuel ratio of the exhaust gas flowing into the catalyst 31 does not have to match the stoichiometric air-fuel ratio and may be within a predetermined range including the stoichiometric air-fuel ratio.

また、ECU50は、触媒昇温制御が開始されると、内燃機関20の回転変動量ΔTに基づいてリッチ気筒及びリーン気筒の空燃比を変更する空燃比変更処理を実行する。   Further, when the catalyst temperature raising control is started, the ECU 50 executes an air-fuel ratio changing process for changing the air-fuel ratios of the rich cylinder and the lean cylinder based on the rotation fluctuation amount ΔT of the internal combustion engine 20.

図2は、ECU50が実行する空燃比変更処理の一例を示すフローチャートである。図2の処理は、触媒昇温要求がONになると開始される。   FIG. 2 is a flowchart showing an example of the air-fuel ratio changing process executed by the ECU 50. The process of FIG. 2 is started when the catalyst temperature increase request is turned on.

触媒昇温要求がONになると、ECU50は、リッチ気筒及びリーン気筒の空燃比がリッチ気筒及びリーン気筒毎に予め定められた目標空燃比初期値となるように各気筒への燃料噴射量を制御する(ステップS11)。例えば、図3において、時刻t1に触媒昇温要求がONになると、ECU50は、リーン気筒の空燃比が、理論空燃比よりも大きなリーン気筒目標空燃比初期値となるように、リーン気筒への燃料噴射量を制御する。また、ECU50は、リッチ気筒の空燃比が理論空燃比よりも小さいリッチ気筒目標空燃比初期値となるよう、リッチ気筒への燃料噴射量を制御する。   When the catalyst temperature increase request is turned on, the ECU 50 controls the fuel injection amount to each cylinder so that the air-fuel ratios of the rich cylinder and the lean cylinder become the target air-fuel ratio initial value that is predetermined for each of the rich cylinder and the lean cylinder. Yes (step S11). For example, in FIG. 3, when the catalyst temperature increase request is turned on at time t1, the ECU 50 controls the lean cylinder so that the air-fuel ratio of the lean cylinder becomes the lean cylinder target air-fuel ratio initial value larger than the theoretical air-fuel ratio. Control the fuel injection amount. Further, the ECU 50 controls the fuel injection amount into the rich cylinder so that the air-fuel ratio of the rich cylinder becomes the rich cylinder target air-fuel ratio initial value smaller than the theoretical air-fuel ratio.

次に、ECU50は、内燃機関20の回転変動量ΔTが、失火判定閾値よりも小さい触媒昇温制御用判定閾値未満であるか否かを判断する(ステップS13)。触媒昇温制御用判定閾値は、第2閾値の一例である。   Next, the ECU 50 determines whether or not the rotation fluctuation amount ΔT of the internal combustion engine 20 is less than the catalyst temperature increase control determination threshold value that is smaller than the misfire determination threshold value (step S13). The catalyst temperature increase control determination threshold value is an example of a second threshold value.

回転変動量ΔTが触媒昇温制御用判定閾値未満である場合(ステップS13/YES)、ECU50は、現在の空燃比での触媒昇温制御を継続する(ステップS15)。例えば、図3の時刻t1〜t2では、回転変動量ΔTが触媒昇温制御用判定閾値未満であるため、ECU50は、各気筒の空燃比が目標空燃比初期値となるよう触媒昇温制御を継続する。   When the rotation variation amount ΔT is less than the catalyst temperature increase control determination threshold value (step S13 / YES), the ECU 50 continues the catalyst temperature increase control at the current air-fuel ratio (step S15). For example, at times t1 to t2 in FIG. 3, the rotation variation amount ΔT is less than the catalyst temperature increase control determination threshold value, so the ECU 50 performs the catalyst temperature increase control so that the air-fuel ratio of each cylinder becomes the target air-fuel ratio initial value. continue.

一方、回転変動量ΔTが触媒昇温制御用判定閾値以上となった場合(ステップS13/NO)、ECU50は、リッチ気筒の空燃比とリーン気筒の空燃比との差分を、回転変動量ΔTが触媒昇温制御用判定閾値未満であるときの差分よりも小さくする(ステップS17)。例えば、図3の時刻t2において、回転変動量ΔTが触媒昇温制御用判定閾値以上となったとする。この場合、ECU50は、リーン気筒では、燃焼時の空燃比を現在の空燃比よりも小さくするよう燃料噴射量を現在の燃料噴射量よりも増量し、リッチ気筒では、燃焼時の空燃比を現在の空燃比よりも大きくするよう燃料噴射量を現在の燃料噴射量よりも減量する。これにより、リッチ気筒の空燃比とリーン気筒の空燃比との差分が、回転変動量ΔTが触媒昇温制御用判定閾値未満であるときの差分(例えば、時刻t1〜t2における差分)よりも小さくなる。リッチ気筒の空燃比とリーン気筒の空燃比との差分を小さくすることにより、図3の時刻t2以降に示すように、触媒昇温制御による回転変動量ΔTが抑制されるため、触媒昇温制御に起因して失火判定の判定精度が低下するのを抑制できる。また、失火判定の判定精度に影響を与えない範囲で最大限の触媒昇温効果を達成することができる。   On the other hand, when the rotation variation amount ΔT is equal to or more than the catalyst temperature increase control determination threshold value (step S13 / NO), the ECU 50 determines that the rotation variation amount ΔT is the difference between the rich-cylinder air-fuel ratio and the lean cylinder air-fuel ratio. It is made smaller than the difference when it is less than the catalyst temperature rise control determination threshold value (step S17). For example, it is assumed that the rotation fluctuation amount ΔT becomes equal to or larger than the catalyst temperature increase control determination threshold value at time t2 in FIG. In this case, the ECU 50 increases the fuel injection amount from the current fuel injection amount in the lean cylinder so that the combustion air-fuel ratio becomes smaller than the current air-fuel ratio, and in the rich cylinder, the combustion air-fuel ratio is currently increased. The fuel injection amount is reduced from the current fuel injection amount so as to be larger than the air-fuel ratio of. Thereby, the difference between the air-fuel ratio of the rich cylinder and the air-fuel ratio of the lean cylinder is smaller than the difference (for example, the difference between times t1 and t2) when the rotation variation amount ΔT is less than the catalyst temperature increase control determination threshold value. Become. By reducing the difference between the air-fuel ratio of the rich cylinder and the air-fuel ratio of the lean cylinder, the rotational fluctuation amount ΔT due to the catalyst temperature increase control is suppressed as shown after time t2 in FIG. It is possible to suppress a decrease in the accuracy of misfire determination due to. Further, it is possible to achieve the maximum catalyst temperature raising effect within a range that does not affect the determination accuracy of the misfire determination.

ステップS15又はステップS17の実行後、ECU50は、触媒昇温要求がOFFになったか否かを判断する(ステップS19)。触媒昇温要求がONのままの場合(ステップS19/NO)、ステップS13に戻る。一方、ECU50は、触媒昇温要求がOFFになった場合(ステップS19/YES)、各気筒の目標空燃比を初期値に戻して(ステップS21)、図2の処理を終了する。   After executing step S15 or step S17, the ECU 50 determines whether or not the catalyst temperature increase request is turned off (step S19). When the catalyst temperature increase request remains ON (step S19 / NO), the process returns to step S13. On the other hand, when the catalyst temperature increase request is turned off (step S19 / YES), the ECU 50 returns the target air-fuel ratio of each cylinder to the initial value (step S21), and ends the process of FIG.

以上、詳細に説明したように、本実施形態にかかるECU50は、内燃機関20の複数の気筒のうち、任意の気筒で筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行させ、他の気筒で筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行させ、複数の気筒からの排気を浄化する触媒31を昇温する触媒昇温制御を実行する。また、ECU50は、内燃機関20の回転変動量ΔTを算出し、回転変動量ΔTが失火判定閾値(第1閾値)よりも大きい場合に、失火が発生していると判定する。さらに、ECU50は、触媒昇温制御の実行中に、回転変動量ΔTが失火判定閾値よりも小さな触媒昇温制御用判定閾値(第2閾値)を超えた場合、触媒昇温制御時においてリッチ燃焼を実行するリッチ気筒における空燃比とリーン燃焼を実行するリーン気筒における空燃比との差分を、回転変動量ΔTが触媒昇温制御用判定閾値未満の場合の差分よりも小さくする。これにより、触媒昇温制御による回転変動量ΔTが抑制されるため、触媒昇温制御に起因して失火判定の判定精度が低下するのを抑制できる。また、失火判定の判定精度に影響を与えない範囲で最大限の触媒昇温効果を達成することができる。   As described above in detail, the ECU 50 according to the present embodiment executes rich combustion in which the air-fuel ratio at the time of in-cylinder combustion is smaller than the theoretical air-fuel ratio in any of the plurality of cylinders of the internal combustion engine 20. Then, lean combustion is performed in the other cylinders in which the in-cylinder air-fuel ratio at the time of combustion is larger than the stoichiometric air-fuel ratio, and catalyst temperature raising control is performed to raise the temperature of the catalyst 31 that purifies exhaust gas from the plurality of cylinders. Further, the ECU 50 calculates the rotation variation amount ΔT of the internal combustion engine 20, and determines that the misfire has occurred when the rotation variation amount ΔT is larger than the misfire determination threshold value (first threshold value). Further, if the rotation variation amount ΔT exceeds the catalyst temperature increase control determination threshold value (second threshold value) smaller than the misfire determination threshold value during execution of the catalyst temperature increase control, the ECU 50 performs rich combustion during the catalyst temperature increase control. The difference between the air-fuel ratio in the rich cylinder that executes the above and the air-fuel ratio in the lean cylinder that executes the lean combustion is set to be smaller than the difference when the rotation fluctuation amount ΔT is less than the catalyst temperature increase control determination threshold value. As a result, the rotation variation amount ΔT due to the catalyst temperature increase control is suppressed, and thus it is possible to prevent the determination accuracy of the misfire determination from decreasing due to the catalyst temperature increase control. Further, it is possible to achieve the maximum catalyst temperature raising effect within a range that does not affect the determination accuracy of the misfire determination.

上記実施形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above embodiments are merely examples for carrying out the present invention, the present invention is not limited thereto, and various modifications of these examples are within the scope of the present invention. It is obvious from the above description that various other embodiments are possible within the scope.

20 内燃機関
31 触媒
50 ECU(内燃機関の制御装置)
20 Internal Combustion Engine 31 Catalyst 50 ECU (Control Device for Internal Combustion Engine)

Claims (1)

内燃機関の複数の気筒のうち、任意の気筒で筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行させ、他の気筒で筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行させ、前記複数の気筒からの排気を浄化する触媒を昇温する触媒昇温制御を実行する実行部と、
前記内燃機関の回転変動量を算出する変動量算出部と、
前記回転変動量が第1閾値よりも大きい場合に、失火が発生していると判定する失火判定部と、
前記触媒昇温制御の実行中に、前記回転変動量が前記第1閾値よりも小さな第2閾値を超えた場合、前記触媒昇温制御時における前記リッチ燃焼を実行する気筒における空燃比と前記リーン燃焼を実行する気筒における空燃比との差分を、前記回転変動量が前記第2閾値未満の場合の前記差分よりも小さくする制御部と、
を備え
前記第2閾値は、前記触媒昇温制御に起因して、前記回転変動量が前記触媒昇温制御を実行していない場合よりも大きくなることによって、前記失火の判定精度が低下しないよう、前記触媒昇温制御が実行されている間設定される閾値である、
内燃機関の制御装置。
Among multiple cylinders of an internal combustion engine, in any cylinder, the air-fuel ratio during combustion in the cylinder is smaller than the theoretical air-fuel ratio, and rich combustion is performed, and in other cylinders, the air-fuel ratio during combustion in the cylinder is the theoretical air-fuel ratio. An executing unit that executes a leaner combustion that is larger than the above, and executes a catalyst temperature raising control that raises the temperature of a catalyst that purifies exhaust gas from the plurality of cylinders;
A fluctuation amount calculation unit for calculating the rotation fluctuation amount of the internal combustion engine,
A misfire determination unit that determines that a misfire has occurred when the rotation fluctuation amount is larger than a first threshold value;
When the rotation variation amount exceeds a second threshold value that is smaller than the first threshold value during execution of the catalyst temperature increase control, the air-fuel ratio and the lean air-fuel ratio in the cylinder that executes the rich combustion during the catalyst temperature increase control A control unit that makes a difference from the air-fuel ratio in the cylinder that executes combustion smaller than the difference when the rotation fluctuation amount is less than the second threshold value;
Equipped with
The second threshold value is set so that the misfire determination accuracy does not decrease due to the rotation variation amount being larger than that in the case where the catalyst temperature raising control is not executed due to the catalyst temperature raising control. It is a threshold value that is set while the catalyst temperature raising control is being executed.
Control device for internal combustion engine.
JP2016244806A 2016-12-16 2016-12-16 Control device for internal combustion engine Expired - Fee Related JP6686863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016244806A JP6686863B2 (en) 2016-12-16 2016-12-16 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016244806A JP6686863B2 (en) 2016-12-16 2016-12-16 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018096355A JP2018096355A (en) 2018-06-21
JP6686863B2 true JP6686863B2 (en) 2020-04-22

Family

ID=62633675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244806A Expired - Fee Related JP6686863B2 (en) 2016-12-16 2016-12-16 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6686863B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039308A (en) * 2017-08-22 2019-03-14 トヨタ自動車株式会社 Control device of internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915335B2 (en) * 1999-08-30 2007-05-16 株式会社デンソー Control device for hybrid vehicle
JP4490721B2 (en) * 2004-04-12 2010-06-30 三菱自動車工業株式会社 Engine misfire detection device and engine combustion control device
JP2006233800A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Misfire determining device and misfire determining method for internal combustion engine
JP2012057492A (en) * 2010-09-06 2012-03-22 Denso Corp Catalyst warming-up control device
JP6309474B2 (en) * 2015-02-20 2018-04-11 日立オートモティブシステムズ株式会社 Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JP2018096355A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP4946889B2 (en) Misfire detection device for internal combustion engine
JP5772634B2 (en) Control device for multi-cylinder internal combustion engine
JP6493269B2 (en) Control device for internal combustion engine
JP2018091267A (en) Controller of internal combustion engine
JPWO2010114127A1 (en) Internal combustion engine control system
US7593807B2 (en) Method for optimizing fuel injection timing in a compression ignition engine
JP4507975B2 (en) Engine control device
WO2015133172A1 (en) Air-fuel ratio detection device for internal combustion engine
JP2008025406A (en) Controller of internal combustion engine
JP2007285194A (en) Control device of internal combustion engine
JP6686863B2 (en) Control device for internal combustion engine
US10450982B2 (en) Control device for internal combustion engine
JP2018119477A (en) Misfire determination device for internal combustion engine
JP3775942B2 (en) Fuel injection control device for internal combustion engine
JP7193224B2 (en) CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2014214676A (en) Control device for internal combustion engine
JP2007040219A (en) Control device of internal combustion engine
JP6737156B2 (en) Control device for internal combustion engine
JP2017008770A (en) Control device for internal combustion engine
US20140007856A1 (en) Inter-cylinder air/fuel ratio variation abnormality detection apparatus and method for multicylinder internal combustion engine
JP6897534B2 (en) Internal combustion engine fuel injection control device
JP2012180817A (en) Device for calculating air-fuel ratio of internal combustion engine
JP4415506B2 (en) Atmospheric pressure learning device for internal combustion engine
JP2018105225A (en) Control device of internal combustion engine
JP2009174401A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R151 Written notification of patent or utility model registration

Ref document number: 6686863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees