JP2012057492A - Catalyst warming-up control device - Google Patents

Catalyst warming-up control device Download PDF

Info

Publication number
JP2012057492A
JP2012057492A JP2010199074A JP2010199074A JP2012057492A JP 2012057492 A JP2012057492 A JP 2012057492A JP 2010199074 A JP2010199074 A JP 2010199074A JP 2010199074 A JP2010199074 A JP 2010199074A JP 2012057492 A JP2012057492 A JP 2012057492A
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
fuel
rich
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010199074A
Other languages
Japanese (ja)
Inventor
Shingo Nakada
真吾 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010199074A priority Critical patent/JP2012057492A/en
Publication of JP2012057492A publication Critical patent/JP2012057492A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst warming-up control device for promoting the warming-up of a three-way catalyst.SOLUTION: When the warming-up of the three-way catalyst is requested, among a plurality of cylinders 11, an optional cylinder is set to be a lean cylinder #1, and a cylinder other than a lean cylinders #2, #3, and #4 is set to be a rich cylinder #1. The catalyst warming-up control device includes a catalyst warming-up control means for controlling the fuel injection amount of each cylinder in such a manner that fuel is combusted at an air-fuel ratio greater than a theoretical air-fuel ratio at the lean cylinders #2, #3, and #4 and an average of the air-fuel ratios of all the cylinders #1 to #4 becomes equal to the theoretical air-fuel ratio. The number of lean cylinders #2, #3, #4 among the plurality of cylinders is set greater than that of rich cylinders #1.

Description

本発明は、複数の気筒を有する内燃機関の三元触媒に適用された、触媒暖機制御装置に関する。   The present invention relates to a catalyst warm-up control device applied to a three-way catalyst of an internal combustion engine having a plurality of cylinders.

一般的に、排気中の有害成分(HC、CO、NOx)を浄化する三元触媒は、その触媒の雰囲気がストイキ近傍(例えば空燃比=14.7±0.1〜0.2)にあるときにその浄化能力を発揮する。但し、内燃機関の冷間始動時等、触媒が低温で活性化していなければ、浄化能力が十分に発揮されない。よって、触媒を早期に活性化温度にまで上昇させる触媒暖機の実施が不可欠である。そして、触媒暖機の手法には、点火時期を遅角させて排気温度を上昇させる手法の他に、以下に説明するパータベーション制御を実施する手法(特許文献1、2参照)が知られている。   Generally, a three-way catalyst that purifies harmful components (HC, CO, NOx) in exhaust has an atmosphere of the catalyst in the vicinity of stoichiometric (for example, air-fuel ratio = 14.7 ± 0.1-0.2). Occasionally its purification ability is demonstrated. However, if the catalyst is not activated at a low temperature, such as during a cold start of the internal combustion engine, the purification capability cannot be fully exhibited. Therefore, it is essential to perform catalyst warm-up to raise the catalyst to the activation temperature at an early stage. As a method for warming up the catalyst, in addition to a method for retarding the ignition timing and increasing the exhaust gas temperature, a method for performing perturbation control described below (see Patent Documents 1 and 2) is known. Yes.

上記パータベーション制御では、例えば4気筒の内燃機関の場合において、#1、#4気筒をリッチ気筒、#3、#2気筒をリーン気筒として設定し、リーン気筒では理論空燃比より大きな空燃比で燃焼させ、リッチ気筒では理論空燃比より小さな空燃比で燃焼させるよう、各気筒における燃料噴射量を制御するものである。このパータベーション制御を実施すると、排気管のうち各気筒からの排気が集合する集合部において、リッチ気筒からのHC、COとリーン気筒からのO2とが酸化反応することとなり、その反応熱で触媒温度を上昇させることができる。   In the perturbation control, for example, in the case of a 4-cylinder internal combustion engine, # 1 and # 4 cylinders are set as rich cylinders, and # 3 and # 2 cylinders are set as lean cylinders. The fuel injection amount in each cylinder is controlled so that the rich cylinder is burned and burned at an air-fuel ratio smaller than the stoichiometric air-fuel ratio. When this perturbation control is carried out, HC and CO from the rich cylinder and O2 from the lean cylinder undergo an oxidation reaction at the gathering portion of the exhaust pipe where exhaust from each cylinder gathers, and the reaction heat causes the catalyst to react. The temperature can be raised.

但し、先述した通り三元触媒の雰囲気はストイキであることが要求されるので、パータベーション制御を実施するにあたり、リーン気筒の空気過剰率(λL)とリッチ気筒の空気過剰率(λR)の平均が1となるように燃料噴射量を制御して、排気管の集合部で集合した排ガスがストイキ近傍となるように制御する必要がある。   However, as described above, since the atmosphere of the three-way catalyst is required to be stoichiometric, when performing perturbation control, the average of the excess air ratio (λL) of the lean cylinder and the excess air ratio (λR) of the rich cylinder It is necessary to control the fuel injection amount so that becomes 1, so that the exhaust gas gathered at the gathering portion of the exhaust pipe becomes near the stoichiometric.

特開2006−183637号公報JP 2006-183637 A 特開平8−61052号公報JP-A-8-61052

ここで、リーン気筒のλLを大きくするとともにリッチ気筒のλRを小さくして気筒間の空燃比差を拡大させれば、反応熱量が増大するので触媒暖機を促進できる。しかしながら、λLが過大になるとリーン気筒での燃焼が許容を超えて不安定となるため、空燃比差を拡大させるには限界がある。よって、従来のパータベーション制御では酸化反応熱量を増大させるには限界があり、触媒暖機を十分に促進させるには至っていないのが現状である。   Here, if the λL of the lean cylinder is increased and the λR of the rich cylinder is decreased to increase the air-fuel ratio difference between the cylinders, the amount of reaction heat increases, so that the catalyst warm-up can be promoted. However, if λL becomes excessive, combustion in the lean cylinder exceeds the allowable value and becomes unstable, so there is a limit in increasing the air-fuel ratio difference. Therefore, in the conventional perturbation control, there is a limit in increasing the amount of heat of oxidation reaction, and the present situation is that the catalyst warm-up has not been sufficiently promoted.

本発明は、上記課題を解決するためになされたものであり、その目的は、三元触媒の暖機を促進させる触媒暖機制御装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a catalyst warm-up control device that promotes warm-up of a three-way catalyst.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、複数の気筒を有する内燃機関の排気管のうち、各気筒からの排気が集合する集合部よりも下流側に配置され、排気中の特定成分を酸化又は還元して浄化する三元触媒に適用され、前記三元触媒の暖機が要求されている時に、前記複数の気筒のうち任意の気筒をリーン気筒、前記リーン気筒とは別の気筒をリッチ気筒として設定し、前記リーン気筒では理論空燃比より大きな空燃比で燃焼させ、前記リッチ気筒では理論空燃比より小さな空燃比で燃焼させるとともに、前記複数の気筒の空燃比の平均が理論空燃比となるよう各気筒での燃料噴射量を制御する触媒暖機制御手段を備え、前記複数の気筒のうちの前記リーン気筒の数を、前記リッチ気筒の数より多く設定したことを特徴とする。   According to the first aspect of the present invention, the exhaust pipe of the internal combustion engine having a plurality of cylinders is disposed downstream of the collecting portion where the exhaust from each cylinder collects, and a specific component in the exhaust is oxidized or reduced. This is applied to a three-way catalyst to be purified, and when a warm-up of the three-way catalyst is required, an arbitrary cylinder among the plurality of cylinders is set as a lean cylinder, and a cylinder different from the lean cylinder is set as a rich cylinder. The lean cylinder is burned at an air / fuel ratio larger than the stoichiometric air / fuel ratio, the rich cylinder is burned at an air / fuel ratio smaller than the stoichiometric air / fuel ratio, and each cylinder has an average air / fuel ratio equal to the stoichiometric air / fuel ratio. And the number of lean cylinders among the plurality of cylinders is set to be larger than the number of rich cylinders.

先ず、本発明にかかる触媒暖機制御手段によれば、リッチ気筒から排出される還元成分(HC、CO)と、リーン気筒から排出される酸化成分(O2)との酸化反応が排気管の集合部で生じるので、その反応熱により三元触媒の温度を上昇させて暖機を促進できる。   First, according to the catalyst warm-up control means according to the present invention, the oxidation reaction between the reducing component (HC, CO) discharged from the rich cylinder and the oxidizing component (O2) discharged from the lean cylinder is a collection of exhaust pipes. Therefore, warming up can be promoted by raising the temperature of the three-way catalyst by the heat of reaction.

ここで、反応熱量の増大を図るべく、リーン気筒の空気過剰率(λL)を大きくするとともにリッチ気筒の空気過剰率(λR)を小さくして、集合部でのλを1近傍に維持させつつλL及びλRの差(空燃比差)を拡大させていくと、リーン気筒から排出される酸化成分量(O2量)に対して、リッチ気筒から排出される還元成分量(HC量及びCO量)が不足した状態になることが分かった。このことは、集合部λを1近傍に維持させる前提で、リーン気筒のλLを増大させることなく還元成分量を増大することができれば、λL増大によるリーン気筒での燃焼不安定化を抑制しつつ反応熱量を増大できることを意味する。そこで本発明者は、上述の如く還元成分量を増大させる手法について以下の如く検討した。   Here, in order to increase the amount of reaction heat, while increasing the excess air ratio (λL) of the lean cylinder and decreasing the excess air ratio (λR) of the rich cylinder, the λ at the collecting portion is maintained near 1 When the difference between λL and λR (air-fuel ratio difference) is increased, the amount of reducing component (HC amount and CO amount) discharged from the rich cylinder with respect to the amount of oxidizing component (O2 amount) discharged from the lean cylinder Was found to be in shortage. This is based on the premise that the collecting portion λ is maintained near 1. If the amount of reducing component can be increased without increasing the λL of the lean cylinder, the combustion instability in the lean cylinder due to the increase in λL is suppressed. It means that the heat of reaction can be increased. Therefore, the present inventor has studied the following method for increasing the amount of reducing component as described above.

すなわち、空気過剰率λを1から低下させていくとHC量及びCO量は共に増加していくことは周知の事実であるが、HC量はλの低下量に比例して増加していくのに対し、CO量については、λの低下量に比例した量以上に急激に増加していく。この事実を裏付けるべく、λの値を1から低下させていった時の排気中のCO濃度(CO量に相当)を計測した試験結果を図4に示す。#1気筒でのλを1→0.98→0.95→0.85と低下させていくと、#1気筒からの排気のCO濃度は0.34(符号P1参照)→0.50(符号P2参照)→1.30(符号P3参照)→4.95(符号P4参照)と増加していく。この試験結果のうち例えばP1及びP4を比較すると、#1気筒でのλを1から0.85に低下(0.85倍)させると、#1気筒からの排気のCO濃度は0.34%から4.95%にまで増加(約15倍)することが分かる。   That is, it is a well-known fact that both the amount of HC and the amount of CO increase as the excess air ratio λ decreases from 1, but the amount of HC increases in proportion to the amount of decrease in λ. On the other hand, the amount of CO increases rapidly more than the amount proportional to the amount of decrease in λ. In order to support this fact, FIG. 4 shows the test results of measuring the CO concentration in the exhaust gas (corresponding to the CO amount) when the value of λ was decreased from 1. When the λ in the # 1 cylinder is decreased from 1 → 0.98 → 0.95 → 0.85, the CO concentration of the exhaust from the # 1 cylinder becomes 0.34 (see reference numeral P1) → 0.50 ( (See reference P2) → 1.30 (see reference P3) → 4.95 (see reference P4). For example, when P1 and P4 are compared among the test results, when λ in the # 1 cylinder is decreased from 1 to 0.85 (0.85 times), the CO concentration of the exhaust from the # 1 cylinder is 0.34%. It can be seen that it increases from 1 to 4.95% (about 15 times).

また、図4の試験では、4気筒の内燃機関において各気筒のλの平均(集合部λ)を1近傍にする前提で、リーン気筒のλLを1.05に固定したままリッチ気筒の数を変更させている。例えば、図4(R2)の如く#1、#4気筒をリッチ気筒、#3、#2気筒をリーン気筒として設定した場合には、集合部における排気のCO濃度は0.71(符号P5参照)となる。これに対し、図4(R1)の如く#1気筒のみをリッチ気筒とし、残りの#3、#4、#2気筒をリーン気筒として設定した場合には、集合部における排気のCO濃度は1.33(符号P6参照)となる。   Further, in the test of FIG. 4, in the four-cylinder internal combustion engine, the number of rich cylinders is determined with λL of the lean cylinder fixed at 1.05 on the premise that the average (aggregation part λ) of each cylinder is approximately 1. I am changing it. For example, when the # 1 and # 4 cylinders are set as rich cylinders, and the # 3 and # 2 cylinders are set as lean cylinders as shown in FIG. 4 (R2), the exhaust CO concentration in the collecting portion is 0.71 (see reference numeral P5). ) On the other hand, when only the # 1 cylinder is set as a rich cylinder and the remaining # 3, # 4, and # 2 cylinders are set as lean cylinders as shown in FIG. .33 (see P6).

要するにこの試験結果は、集合部λを1近傍に維持させる前提において、リーン気筒の数をリッチ気筒の数より多く設定して、リッチ気筒の数を減らす一方でリッチ気筒1つあたりのλRを小さくすれば、リーン気筒のλLを増大させることなくCO量(還元成分量)を増大できることを表している。   In short, this test result shows that the number of lean cylinders is set to be larger than the number of rich cylinders and the number of rich cylinders is reduced while λR per rich cylinder is reduced on the premise that the collective portion λ is maintained near 1. This indicates that the CO amount (reducing component amount) can be increased without increasing the λL of the lean cylinder.

この試験結果を鑑み、上記発明では、先に説明した触媒暖機制御手段により酸化反応熱で触媒暖機を促進するにあたり、リーン気筒の数をリッチ気筒の数より多く設定しているので、リーン気筒のλLを増大させることなくCO量(還元成分量)を増大できる。よって、リーン気筒での燃焼不安定化を抑制しつつ反応熱量を増大でき、三元触媒のさらなる暖機促進を図ることができる。   In view of this test result, in the above invention, the number of lean cylinders is set to be larger than the number of rich cylinders when the catalyst warm-up control means described above promotes the catalyst warm-up with the oxidation reaction heat. The CO amount (reducing component amount) can be increased without increasing λL of the cylinder. Therefore, the amount of reaction heat can be increased while suppressing instability of combustion in the lean cylinder, and further warm-up of the three-way catalyst can be promoted.

ちなみに、上記発明にかかる触媒暖機制御手段は、「複数の気筒の空燃比の平均が理論空燃比となるよう各気筒での燃料噴射量を制御する」ものであるが、厳密に理論空燃比(例えば14.7)となるよう制御するものに限定されるものではなく、理論空燃比に対して所定範囲内(例えば14.7±0.1〜0.2)となるよう制御するものであり、その所定範囲とは、三元触媒が所定以上の浄化能力を発揮できる範囲である。   Incidentally, the catalyst warm-up control means according to the invention described above is “to control the fuel injection amount in each cylinder so that the average of the air-fuel ratios of the plurality of cylinders becomes the stoichiometric air-fuel ratio”. (For example, 14.7) It is not limited to what is controlled, but it is controlled to be within a predetermined range (for example, 14.7 ± 0.1 to 0.2) with respect to the theoretical air-fuel ratio. The predetermined range is a range in which the three-way catalyst can exhibit a purifying capacity that exceeds a predetermined level.

請求項2記載の発明では、前記内燃機関は、前記気筒の燃焼室へ燃料を直接噴射する直噴式であり、前記リーン気筒では、少なくとも圧縮行程で燃料噴射するよう噴射時期を制御し、前記リッチ気筒では、少なくとも吸気行程で燃料噴射するよう噴射時期を制御することを特徴とする。   According to a second aspect of the present invention, the internal combustion engine is a direct injection type in which fuel is directly injected into a combustion chamber of the cylinder, and the lean cylinder controls injection timing so that fuel is injected at least in a compression stroke, and the rich engine In the cylinder, the injection timing is controlled so that fuel is injected at least in the intake stroke.

ここで、上記発明にかかる触媒暖機制御手段による暖機制御を実施すると、リッチ気筒においては理論空燃比より小さな空燃比で燃焼させるので、PM発生量の増大が懸念されるようになる。しかも、圧縮行程で燃料を噴射する直噴式の内燃機関の場合には、ポート噴射式の場合に比べてPM発生量が増大するので、触媒暖機制御手段による暖機制御を直噴式内燃機関で実施すると、PM増大の懸念がより一層顕著となる。   Here, when the warm-up control by the catalyst warm-up control means according to the invention is performed, the rich cylinder is burned at an air-fuel ratio smaller than the stoichiometric air-fuel ratio. In addition, in the case of a direct injection internal combustion engine that injects fuel in the compression stroke, the amount of PM generated is increased as compared with the case of the port injection type. Therefore, warm-up control by the catalyst warm-up control means is performed in the direct injection internal combustion engine. When implemented, the concern of increasing PM becomes even more pronounced.

この点を鑑みた上記発明によれば、リッチ気筒では吸気行程で燃料噴射させるので、直噴式の内燃機関に触媒暖機制御手段を適用する場合に懸念されるPM増大を抑制できる。   According to the above-mentioned invention in view of this point, since fuel injection is performed in the intake stroke in the rich cylinder, it is possible to suppress an increase in PM that is a concern when the catalyst warm-up control means is applied to a direct injection internal combustion engine.

また、触媒暖機制御手段による暖機制御と同時に点火遅角制御を実施して暖機の促進を図る場合において、点火時期を過剰に遅角させると燃焼が許容を超えて不安定になるためその遅角量には限界がある。そして、圧縮行程での燃料噴射が可能な直噴式の場合には、点火時期を大きく遅角させてもポート噴射式の場合に比べて燃焼が安定しているため、点火遅角による触媒暖機を促進する上で有利である。この点を鑑みた上記発明では、リーン気筒では圧縮行程で燃料噴射させるので、吸気行程で燃料噴射させる場合に比べて点火時期の遅角量を増大でき、より一層の暖機促進を図ることができる。   In addition, when the ignition delay control is performed simultaneously with the warm-up control by the catalyst warm-up control means to promote the warm-up, if the ignition timing is excessively retarded, the combustion becomes unstable beyond the tolerance. There is a limit to the amount of retardation. In the case of the direct injection type capable of fuel injection in the compression stroke, combustion is more stable than in the case of the port injection type even if the ignition timing is greatly retarded. It is advantageous in promoting. In the above invention in view of this point, since the fuel is injected in the compression stroke in the lean cylinder, the retard amount of the ignition timing can be increased as compared with the case of fuel injection in the intake stroke, and further warm-up can be promoted. it can.

ちなみに、圧縮行程で燃料を噴射した場合の方が吸気行程で噴射した場合に比べて燃焼が安定することは先述した通りである。そして、上記発明にかかるリッチ気筒では、吸気行程で燃料噴射するため圧縮行程で噴射した場合に比べれば燃焼安定性は低いと言える。しかしながら、当該リッチ気筒では、理論空燃比より小さな空燃比で燃焼させるので、そもそも燃焼が不安定になるといった懸念は生じない。よって、上記発明にかかるリッチ気筒での燃焼安定性は十分に確保できる。   Incidentally, as described above, combustion is more stable when fuel is injected during the compression stroke than when fuel is injected during the intake stroke. In the rich cylinder according to the present invention, fuel is injected in the intake stroke, so that it can be said that the combustion stability is lower than in the case of injection in the compression stroke. However, since the rich cylinder burns at an air-fuel ratio smaller than the stoichiometric air-fuel ratio, there is no concern that the combustion becomes unstable in the first place. Therefore, sufficient combustion stability can be secured in the rich cylinder according to the invention.

請求項3記載の発明では、前記リッチ気筒では、吸気行程期間の前半の期間中に燃料噴射するよう噴射時期を制御することを特徴とする。   The invention according to claim 3 is characterized in that in the rich cylinder, the injection timing is controlled so that fuel is injected during the first half of the intake stroke period.

ここで、過剰量の燃料を噴射するリッチ気筒では、噴射した燃料と吸気をできるだけ攪拌させて、燃焼室内での混合気の状態を空燃比均質の状態にすることが、PM発生量を抑制する上で望ましい。この点に着目した上記発明では、リッチ気筒において吸気行程期間の前半の期間中に燃料噴射するので、燃焼室内に流入する吸気の気流により噴射した燃料の攪拌が促進されることとなる。よって、吸気行程の後半で燃料噴射する場合に比べて、燃焼室内の混合気を空燃比均質の状態にすることを促進できるので、PM発生量の低減を図ることができる。   Here, in a rich cylinder that injects an excessive amount of fuel, stirring the injected fuel and intake air as much as possible to make the air-fuel mixture in the combustion chamber in a homogeneous air-fuel ratio state suppresses the amount of PM generated. Desirable above. In the above-described invention focusing on this point, since fuel is injected during the first half of the intake stroke period in the rich cylinder, stirring of the injected fuel is promoted by the airflow of the intake air flowing into the combustion chamber. Therefore, compared with the case where fuel is injected in the latter half of the intake stroke, it is possible to promote the air-fuel ratio in the combustion chamber to be in a homogeneous state, so that the amount of PM generated can be reduced.

なお、「吸気行程期間の前半の期間」とは、圧縮行程の上死点を基準とした遅角量(BTDC)が270〜360degの期間のことである。そして、この前半期間のうち特に240〜320deg(より好ましくは260〜300deg)の期間で、リッチ気筒における燃料噴射時期を設定することが以下の点で望ましい。すなわち、噴射時期を遅角させ過ぎると、噴射した燃料がピストンヘッドに付着してPM発生を促してしまうことが懸念されるからである。また、噴射時期を進角させ過ぎると、噴射燃料と吸気との攪拌効果が低減するからである。   The “first half of the intake stroke period” is a period in which the retardation amount (BTDC) based on the top dead center of the compression stroke is 270 to 360 deg. In the first half period, it is desirable to set the fuel injection timing in the rich cylinder particularly in the period of 240 to 320 deg (more preferably 260 to 300 deg) in the following points. That is, if the injection timing is retarded too much, there is a concern that the injected fuel adheres to the piston head and promotes the generation of PM. Moreover, if the injection timing is advanced too much, the stirring effect between the injected fuel and the intake air is reduced.

請求項4記載の発明では、前記複数の気筒のうちの前記リーン気筒の数を1つに設定したことを特徴とする。   According to a fourth aspect of the present invention, the number of lean cylinders among the plurality of cylinders is set to one.

図4を用いて先述した通り、リッチ気筒でのλRを低下させていくと、そのリッチ気筒から排出されるCO量は急激に増大していく。したがって、リッチ気筒の数を少なくしてリッチ気筒1つあたりのλRを小さくするほど、CO量を増大できる。したがって、リッチ気筒の数を1つにした上記発明によれば、リッチ気筒1つあたりのλRを最小にしてCO量を増大できるので、反応熱量を最大限に増大させて触媒暖機性能を向上できる。   As described above with reference to FIG. 4, when λR in the rich cylinder is decreased, the amount of CO discharged from the rich cylinder increases rapidly. Therefore, the amount of CO can be increased as the number of rich cylinders is reduced and the λR per rich cylinder is reduced. Therefore, according to the above invention in which the number of rich cylinders is one, the amount of CO can be increased by minimizing λR per rich cylinder, so that the reaction heat amount is maximized and the catalyst warm-up performance is improved. it can.

本発明の一実施形態にかかる触媒暖機制御装置が適用される、内燃機関、三元触媒装置、及び燃料噴射システム等のハード構成を示す図。1 is a diagram illustrating a hardware configuration of an internal combustion engine, a three-way catalyst device, a fuel injection system, and the like to which a catalyst warm-up control device according to an embodiment of the present invention is applied. 上記実施形態による触媒暖機制御(パータベーション制御)の手順を示すフローチャート。The flowchart which shows the procedure of the catalyst warm-up control (perturbation control) by the said embodiment. 上記実施形態にかかるパータベーション制御によりCO排出濃度が増大する旨を確認した試験結果。The test result which confirmed that CO emission concentration increased by the perturbation control concerning the said embodiment. 上記実施形態にかかるパータベーション制御によりCO排出濃度が増大する旨を確認した試験結果。The test result which confirmed that CO emission concentration increased by the perturbation control concerning the said embodiment. 上記実施形態にかかるパータベーション制御において、リッチ気筒の数と触媒温度との関係を計測した試験結果。The test result which measured the relationship between the number of rich cylinders, and catalyst temperature in the perturbation control concerning the said embodiment. 上記実施形態にかかるパータベーション制御により触媒温度が上昇する旨を確認した試験結果。The test result which confirmed that the catalyst temperature rose by the perturbation control concerning the said embodiment. COの酸化反応開始時期(開始温度)とHCの酸化反応開始時期(開始温度)とを計測した試験結果。The test result which measured the oxidation reaction start time (start temperature) of CO, and the oxidation reaction start time (start temperature) of HC. 上記実施形態にかかるパータベーション制御において、リッチ気筒での燃料噴射時期と、PM発生量及び触媒温度との関係を計測した試験結果。The test result which measured the relationship between the fuel injection timing in a rich cylinder, PM generation amount, and catalyst temperature in the perturbation control concerning the said embodiment. 上記実施形態にかかるパータベーション制御において、リッチ気筒での燃料噴射時期とPM発生量との関係を計測した試験結果。The test result which measured the relationship between the fuel injection timing in a rich cylinder, and PM generation amount in the perturbation control concerning the said embodiment.

以下、本発明を具体化した一実施形態を図面に基づいて説明する。図1は、本実施形態にかかる触媒暖機制御装置が適用される、内燃機関10、三元触媒装置20、燃料噴射システム等のハード構成を示す図である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a hardware configuration of an internal combustion engine 10, a three-way catalyst device 20, a fuel injection system, and the like to which the catalyst warm-up control device according to the present embodiment is applied.

この内燃機関10は、車両に搭載されて走行駆動源として機能するものであり、複数の気筒11を有する多気筒エンジンである。図1では4気筒エンジンを例示している。また、この内燃機関10は、図示しない点火装置を有した火花点火式内燃機関であるとともに、燃焼室11aへ燃料を直接噴射する直噴式エンジンである。図1の例では、内燃機関10のシリンダブロック12に、燃料を噴射する燃料噴射弁13が取り付けられている。   The internal combustion engine 10 is mounted on a vehicle and functions as a travel drive source, and is a multi-cylinder engine having a plurality of cylinders 11. FIG. 1 illustrates a four-cylinder engine. The internal combustion engine 10 is a spark ignition internal combustion engine having an ignition device (not shown) and a direct injection engine that directly injects fuel into the combustion chamber 11a. In the example of FIG. 1, a fuel injection valve 13 that injects fuel is attached to a cylinder block 12 of the internal combustion engine 10.

燃料噴射弁13の作動は、電子制御装置(ECU30)から出力される噴射指令信号により制御される。具体的には、各気筒11に設けられた燃料噴射弁13の開弁時間を制御することにより、1回の開弁で噴射される噴射量を気筒毎に制御する。また、燃料噴射弁13の開弁時期を制御することにより、噴射開始時期を気筒毎に制御する。なお、燃料噴射弁13は、燃料を噴射する噴孔(図示せず)が燃焼室11aに露出するよう配置されている。また、図示は省略しているが、燃料タンク内の燃料を高圧ポンプにより蓄圧容器(デリバリパイプ)へ圧送しており、蓄圧容器に蓄圧された高圧燃料が各気筒の燃料噴射弁13へ分配供給されるよう構成されている。   The operation of the fuel injection valve 13 is controlled by an injection command signal output from an electronic control unit (ECU 30). Specifically, by controlling the valve opening time of the fuel injection valve 13 provided in each cylinder 11, the injection amount injected by one valve opening is controlled for each cylinder. Moreover, the injection start timing is controlled for each cylinder by controlling the valve opening timing of the fuel injection valve 13. The fuel injection valve 13 is disposed such that an injection hole (not shown) for injecting fuel is exposed to the combustion chamber 11a. Although not shown, the fuel in the fuel tank is pumped to a pressure accumulating vessel (delivery pipe) by a high pressure pump, and the high pressure fuel accumulated in the pressure accumulating vessel is distributed and supplied to the fuel injection valve 13 of each cylinder. It is configured to be.

さらにECU30は、エンジン回転速度及びエンジン負荷(例えば吸気量等)に基づき、成層燃焼及び均質燃焼のいずれで燃焼させるかを切り替える。例えば、アイドル運転時や市街地走行時の如く低回転速度かつ低負荷の領域においては、希薄空燃比(例えば17〜50)による成層燃焼に切り替えて燃費向上を図る。一方、高速走行時や加速走行、登坂走行時の如く高回転速度かつ高負荷の領域においては、ストイキ近傍の空燃比(例えば12〜15)による均質燃焼に切り替えてエンジン出力の向上を図る。   Further, the ECU 30 switches between stratified combustion and homogeneous combustion based on the engine rotation speed and the engine load (for example, intake air amount). For example, in an area with a low rotational speed and a low load, such as during idling or urban driving, switching to stratified combustion with a lean air-fuel ratio (for example, 17 to 50) is performed to improve fuel efficiency. On the other hand, in high-speed and high-load regions, such as during high-speed travel, acceleration travel, and uphill travel, the engine output is improved by switching to homogeneous combustion with an air-fuel ratio (for example, 12 to 15) near the stoichiometric range.

成層燃焼では、気筒11内のピストン(図示せず)が上昇する圧縮行程の後半で燃料を噴射する。すると、噴射した燃料を含む混合気がピストン頂面の形状に沿って点火プラグの近傍に濃い混合気として集められる。一方、均質燃焼では、ピストンが下降する吸気行程で燃料を噴射する。すると、噴霧した燃料は、噴射後の吸気行程中及び圧縮行程中に燃焼室11aで攪拌されて均質な混合気となる。なお、成層燃焼時において、1燃焼サイクル中に、吸気行程での噴射と圧縮行程での噴射との2回に分割して燃料を噴射することで、PM(Particulate Matter)の発生量低減を図るようにしてもよい。   In stratified combustion, fuel is injected in the latter half of the compression stroke in which a piston (not shown) in the cylinder 11 rises. Then, the air-fuel mixture containing the injected fuel is collected as a rich air-fuel mixture in the vicinity of the spark plug along the shape of the piston top surface. On the other hand, in homogeneous combustion, fuel is injected in the intake stroke in which the piston descends. Then, the sprayed fuel is stirred in the combustion chamber 11a during the intake stroke and the compression stroke after the injection, and becomes a homogeneous air-fuel mixture. At the time of stratified combustion, the amount of generation of PM (Particulate Matter) is reduced by dividing the fuel into two injections of injection in the intake stroke and injection in the compression stroke in one combustion cycle. You may do it.

各気筒11の吸気ポートには図示しない吸気マニホールド(吸気管)が接続され、その集合部の上流側部分には、図示しないスロットルバルブが設けられている。このスロットルバルブの作動(スロットル開度)をECU30が制御することにより吸気量が制御される。なお、ECU30は、内燃機関10の要求負荷(例えばアクセル操作量)及びエンジン回転速度等に基づきスロットル開度を制御して、内燃機関10の出力トルクが要求負荷となるよう吸気量を制御する。   An intake manifold (intake pipe) (not shown) is connected to the intake port of each cylinder 11, and a throttle valve (not shown) is provided at the upstream side portion of the collecting portion. The intake air amount is controlled by the ECU 30 controlling the operation (throttle opening) of the throttle valve. The ECU 30 controls the amount of intake air so that the output torque of the internal combustion engine 10 becomes the required load by controlling the throttle opening based on the required load (for example, accelerator operation amount) of the internal combustion engine 10 and the engine speed.

各気筒11の排気ポートには排気マニホールド14(排気管)が接続され、排気マニホールド14の下流端に接続された排気管15には三元触媒装置20が接続されている。各気筒11から排出された排気は、排気マニホールド14のうち各気筒からの排気が集合する集合部14aで混合し、その混合排気は排気管15を通じて三元触媒装置20へ流入する。そして、排気中の有害成分(特定成分)である炭化水素HC、一酸化炭素CO、及び窒素酸化物NOxは、三元触媒装置20により浄化される。   An exhaust manifold 14 (exhaust pipe) is connected to the exhaust port of each cylinder 11, and a three-way catalyst device 20 is connected to an exhaust pipe 15 connected to the downstream end of the exhaust manifold 14. Exhaust gas discharged from each cylinder 11 is mixed in a collection portion 14 a where exhaust gas from each cylinder gathers in the exhaust manifold 14, and the mixed exhaust gas flows into the three-way catalyst device 20 through the exhaust pipe 15. Then, the hydrocarbon HC, carbon monoxide CO, and nitrogen oxide NOx, which are harmful components (specific components) in the exhaust gas, are purified by the three-way catalyst device 20.

三元触媒装置20は、ケーシング21内に収容したハニカム構造の担体22に白金等の触媒(三元触媒)を保持させて構成されている。排気中のHC及びCOは触媒上で酸化されて、無害な二酸化炭素CO2及び水蒸気H2Oに変換される。また、排気中のNOxは触媒上で還元されて、無害な窒素N2及び酸素O2に変換される。但し、空燃比(吸気量と燃料噴射量との比)が低すぎて混合排気がリッチ状態であると、酸素不足によりHC及びCOを酸化させることができず、リーン状態であるとNOxを還元できなくなる。したがって、三元触媒装置20は、その触媒の雰囲気がストイキ(理論空燃比)の近傍(例えば空燃比=14.7±0.1〜0.2)であることを条件としてその浄化能力が十分に発揮される。   The three-way catalyst device 20 is configured by holding a catalyst such as platinum (three-way catalyst) on a honeycomb structure carrier 22 accommodated in a casing 21. HC and CO in the exhaust are oxidized on the catalyst and converted into harmless carbon dioxide CO2 and steam H2O. Further, NOx in the exhaust gas is reduced on the catalyst and converted into harmless nitrogen N2 and oxygen O2. However, if the air-fuel ratio (ratio between the intake air amount and the fuel injection amount) is too low and the mixed exhaust is in a rich state, HC and CO cannot be oxidized due to insufficient oxygen, and if it is in a lean state, NOx is reduced. become unable. Therefore, the three-way catalyst device 20 has a sufficient purification capacity on condition that the atmosphere of the catalyst is in the vicinity of stoichiometric (theoretical air-fuel ratio) (for example, air-fuel ratio = 14.7 ± 0.1-0.2). To be demonstrated.

そのため、燃料噴射弁13による燃料噴射量は、空燃比がストイキ近傍になるようにECU30により制御される。また、混合排気の空燃比を検出する空燃比センサ33(或いは、混合排気中の酸素濃度を検出する酸素濃度センサ)を排気管15等に設け、空燃比センサ33の検出値(実空燃比)に基づき燃料噴射弁13による燃料噴射量を制御することで、実空燃比がストイキになるようにECU30は燃料噴射量をフィードバック制御(空燃比フィードバック制御)している。   Therefore, the fuel injection amount by the fuel injection valve 13 is controlled by the ECU 30 so that the air-fuel ratio is in the vicinity of the stoichiometric. In addition, an air-fuel ratio sensor 33 (or an oxygen concentration sensor that detects the oxygen concentration in the mixed exhaust gas) for detecting the air-fuel ratio of the mixed exhaust gas is provided in the exhaust pipe 15 or the like, and a detected value (actual air fuel ratio) of the air-fuel ratio sensor 33 is provided. By controlling the fuel injection amount by the fuel injection valve 13 based on this, the ECU 30 performs feedback control (air-fuel ratio feedback control) of the fuel injection amount so that the actual air-fuel ratio becomes stoichiometric.

また、三元触媒装置20は、その触媒の温度が活性化温度(例えば350℃)以上になっていなければ、上述した酸化還元反応による浄化能力が発揮されない。そのため、内燃機関10の冷間始動時等、触媒温度が活性化温度未満である場合には、早期に活性化温度にまで上昇させるべく触媒暖機運転を実施することが要求される。   Further, the three-way catalyst device 20 does not exhibit the purification ability by the oxidation-reduction reaction described above unless the temperature of the catalyst is equal to or higher than the activation temperature (for example, 350 ° C.). Therefore, when the catalyst temperature is lower than the activation temperature, such as when the internal combustion engine 10 is cold-started, it is required to perform the catalyst warm-up operation so that the temperature is quickly raised to the activation temperature.

本実施形態では触媒暖機運転として、以下に説明する点火遅角制御及びパータベーション制御(触媒暖機制御手段による触媒暖機制御に相当)をECU30は実施する。   In the present embodiment, as the catalyst warm-up operation, the ECU 30 performs ignition retard control and perturbation control (corresponding to catalyst warm-up control by the catalyst warm-up control means) described below.

先ず、点火装置に対する点火遅角制御について説明する。触媒暖機が完了した後の通常運転時における点火時期(基本点火時期)は、ノッキングが生じない程度に進角させることが、高効率なエンジン出力を得られる点で望ましい。これに対し触媒暖機要求時には、基本点火時期を遅角するよう補正することで燃焼温度を上昇させ、排気温度を上昇させている。これにより、触媒温度を早期に活性化温度にまで上昇させて触媒暖機の早期完了を図ることができる。   First, ignition retardation control for the ignition device will be described. It is desirable that the ignition timing (basic ignition timing) in the normal operation after the catalyst warm-up is advanced to such an extent that knocking does not occur, in order to obtain a highly efficient engine output. On the other hand, when the catalyst warm-up is requested, the combustion temperature is raised by correcting the basic ignition timing to be retarded, and the exhaust temperature is raised. Thereby, catalyst temperature can be raised to activation temperature at an early stage, and catalyst warm-up can be completed early.

次に、燃料噴射弁13に対するパータベーション制御について説明する。この制御では、複数気筒11のうち任意の気筒を、空燃比リーン状態で燃焼させるリーン気筒11Lとして設定する。また、リーン気筒とは別の残りの気筒を、空燃比リッチ状態で燃焼させるリッチ気筒11Rとして設定する。そして、リーン気筒の数をリッチ気筒の数より多く設定する。具体的には図2に示すように、触媒暖機要求が有る場合(S10:YES)にはステップS20(触媒暖機制御手段)に進み、以下に詳述するパータベーション制御を実施し、触媒暖機要求が無い場合(S10:NO)にはステップS30に進み、先述した空燃比フィードバック制御を実施する。   Next, perturbation control for the fuel injection valve 13 will be described. In this control, an arbitrary cylinder among the plurality of cylinders 11 is set as a lean cylinder 11L that burns in an air-fuel ratio lean state. Further, the remaining cylinder other than the lean cylinder is set as the rich cylinder 11R that burns in the air-fuel ratio rich state. Then, the number of lean cylinders is set to be larger than the number of rich cylinders. Specifically, as shown in FIG. 2, when there is a catalyst warm-up request (S10: YES), the process proceeds to step S20 (catalyst warm-up control means), and perturbation control, which will be described in detail below, is performed. When there is no warm-up request (S10: NO), the process proceeds to step S30, and the above-described air-fuel ratio feedback control is performed.

なお、ステップS10では、触媒温度または触媒温度と相関性の高い温度が所定温度未満である場合に、触媒暖機要求有りと判定して触媒暖機運転を実施するように判定すればよい。例えば、冷却水温センサにより検出された機関冷却水温度や、排気温度センサにより検出された排気温度、触媒温度センサにより検出された触媒温度等が所定温度未満であるか否かを判定すればよい。また、触媒暖機運転を開始してから所定時間が経過した時点で触媒暖機要求無しと判定して触媒暖機運転を終了するようにしてもよい。   In step S10, when the catalyst temperature or the temperature highly correlated with the catalyst temperature is less than the predetermined temperature, it may be determined that the catalyst warm-up operation is performed by determining that there is a catalyst warm-up request. For example, it may be determined whether the engine coolant temperature detected by the coolant temperature sensor, the exhaust temperature detected by the exhaust temperature sensor, the catalyst temperature detected by the catalyst temperature sensor, or the like is less than a predetermined temperature. Alternatively, the catalyst warm-up operation may be terminated by determining that there is no catalyst warm-up request when a predetermined time has elapsed since the start of the catalyst warm-up operation.

ステップS20で実施するパータベーション制御についてより詳細に説明すると、4気筒エンジンである図1の例では、#1気筒、#3気筒、#4気筒、#2気筒の順に点火させて順次燃焼行程を実施しており、#1気筒をリッチ気筒11R、残りの#3、#4、#2気筒をリーン気筒11Lとして設定している。つまり、#1気筒でリッチ燃焼させた後、#3、#4、#2気筒で順次リーン燃焼が実施される。そして、図1中の白抜矢印に示すように、各気筒から順次排出される排気は集合部14aで混合しながら三元触媒装置20へ流入する。   The perturbation control performed in step S20 will be described in more detail. In the example of FIG. 1, which is a four-cylinder engine, the # 1 cylinder, # 3 cylinder, # 4 cylinder, and # 2 cylinder are ignited in this order, and the combustion stroke is sequentially performed. The # 1 cylinder is set as the rich cylinder 11R, and the remaining # 3, # 4, and # 2 cylinders are set as the lean cylinder 11L. That is, after rich combustion is performed in the # 1 cylinder, lean combustion is sequentially performed in the # 3, # 4, and # 2 cylinders. As indicated by the white arrows in FIG. 1, the exhaust gas discharged from each cylinder sequentially flows into the three-way catalyst device 20 while being mixed in the collecting portion 14a.

パータベーション制御を実施している時の各気筒での燃料噴射量は、上述したリッチ燃焼及びリーン燃焼を実施しつつ、全ての気筒11の空燃比の平均(つまり集合部14aにおける空燃比)がストイキとなるよう制御される。例えば、リッチ気筒11Rである#1気筒での空気過剰率λRを0.85とするよう#1気筒での燃料噴射量を制御するとともに、リーン気筒11Lである#3、#4、#2気筒での空気過剰率λLを1.05とするよう#3、#4、#2気筒での燃料噴射量を制御する。これによれば、リッチ燃焼及びリーン燃焼を実施しつつ、集合部14aにおける空燃比を1.00にできる。   The fuel injection amount in each cylinder when the perturbation control is performed is the average of the air-fuel ratios of all the cylinders 11 (that is, the air-fuel ratio in the collecting portion 14a) while performing the rich combustion and the lean combustion described above. Controlled to be stoic. For example, the fuel injection amount in the # 1 cylinder is controlled so that the excess air ratio λR in the # 1 cylinder that is the rich cylinder 11R is 0.85, and the # 3, # 4, and # 2 cylinders that are the lean cylinder 11L The fuel injection amounts in the # 3, # 4, and # 2 cylinders are controlled so that the excess air ratio λL at 1.0 is 1.05. According to this, the air-fuel ratio in the collecting portion 14a can be set to 1.00 while performing rich combustion and lean combustion.

このパータベーション制御を実施すると、リッチ気筒11Rから排出されるHC量及びCO量が増大する。その結果、集合部14aにおいて、リッチ気筒からのHC、COとリーン気筒からのO2とが酸化反応することとなり、その反応熱で触媒温度を上昇させることができる。これにより、触媒暖機を促進できる。   When this perturbation control is performed, the amount of HC and CO discharged from the rich cylinder 11R increases. As a result, in the collecting portion 14a, HC and CO from the rich cylinder and O2 from the lean cylinder undergo an oxidation reaction, and the catalyst temperature can be raised by the reaction heat. Thereby, catalyst warm-up can be promoted.

ここで、反応熱量の増大を図るべく、リーン気筒11LのλLを大きくするとともにリッチ気筒11RのλRを小さくして、集合部λを1近傍に維持させつつλL及びλRの差(空燃比差)を拡大させれば、反応熱量が増大するので触媒暖機をより一層促進できる。しかしながら、λLが過大になるとリーン気筒11Lでの燃焼が許容を超えて不安定となるため、空燃比差を拡大させるには限界がある。この問題に対し本実施形態では、上述の如くリーン気筒11Lの数をリッチ気筒11Rの数より多く設定することで、以下に説明する理由により、燃焼不安定化の回避と反応熱量の増大との両立を実現できる。   Here, in order to increase the amount of reaction heat, the λL of the lean cylinder 11L is increased and the λR of the rich cylinder 11R is decreased to maintain the collective portion λ in the vicinity of 1, while the difference between λL and λR (air-fuel ratio difference). Is increased, the amount of heat of reaction increases, so that catalyst warm-up can be further promoted. However, if λL becomes excessive, combustion in the lean cylinder 11L exceeds the allowable value and becomes unstable, so there is a limit in increasing the air-fuel ratio difference. In this embodiment, the number of lean cylinders 11L is set to be larger than the number of rich cylinders 11R as described above, thereby avoiding instability of combustion and increasing the amount of reaction heat for the reason described below. A balance can be realized.

図3は、任意の1つの気筒における空気過剰率λを変化させた時の、その気筒から排出される排気中のCO濃度を計測した試験結果を示す。これによれば、λを1から低下させてリッチ化を促進させていくとCO濃度は上昇していくことが分かる。そして、そのCO濃度の上昇量は、λの低下量に比例した量以上であり、その上昇の傾きは一次直線よりも大きい。したがって、リッチ気筒11Rを2つに設定する場合に比べて、リッチ気筒11Rを1つに設定してその1つのλRを大きく低下させた方が、集合部14aでのCO量を多くできる。   FIG. 3 shows a test result obtained by measuring the CO concentration in the exhaust gas discharged from the cylinder when the excess air ratio λ in any one cylinder is changed. This shows that the CO concentration increases as λ is decreased from 1 to promote enrichment. The amount of increase in the CO concentration is not less than an amount proportional to the amount of decrease in λ, and the gradient of the increase is larger than the linear line. Therefore, compared with the case where the number of rich cylinders 11R is set to two, the amount of CO in the collecting portion 14a can be increased by setting the number of rich cylinders 11R to one and greatly reducing one λR.

この知見を確認するために実施した以下の試験の結果を図4に示す。この試験では、全気筒における空気過剰率λの組み合わせを変化させた時の、各気筒でのCO濃度及び集合部でのCO濃度を計測している。図4中の(R0)は、パータベーション制御を実施せずに全ての空気過剰率λを1にした場合であり、気筒間での空燃比差がない状態である。この場合に各気筒から排出される排気中のCO濃度は0.34であった。   The results of the following tests conducted to confirm this finding are shown in FIG. In this test, the CO concentration in each cylinder and the CO concentration in the collecting portion when the combination of the excess air ratio λ in all cylinders is changed are measured. (R0) in FIG. 4 is the case where all the excess air ratios λ are set to 1 without performing the perturbation control, and there is no air-fuel ratio difference between the cylinders. In this case, the CO concentration in the exhaust discharged from each cylinder was 0.34.

図4中の(R3)は、#1、#2、#3気筒の3つをリッチ気筒11Rに設定した場合であり、λL=1.05に対し、λR=0.98にして集合部λを1にしている。ちなみに、λLを1.05より大きくすると、リーン気筒11Lでの燃焼が許容を超えて不安定となる。つまりλL=1.05は、燃焼安定化の許容範囲の最大値である。そして、この場合のCO濃度はリッチ気筒11Rで0.50、リーン気筒11Lで0.12であり、トータルでのCO濃度(集合部14aでのCO濃度)は0.45であった。   (R3) in FIG. 4 is a case where the three cylinders # 1, # 2, and # 3 are set as the rich cylinder 11R, and λL = 0.98 with respect to λL = 1.05, and the collective portion λ Is set to 1. Incidentally, if λL is larger than 1.05, the combustion in the lean cylinder 11L exceeds the allowable value and becomes unstable. That is, λL = 1.05 is the maximum value of the allowable range of combustion stabilization. The CO concentration in this case was 0.50 for the rich cylinder 11R and 0.12 for the lean cylinder 11L, and the total CO concentration (CO concentration in the collecting portion 14a) was 0.45.

図4中の(R2)は、#1、#2気筒の2つをリッチ気筒11Rに設定した場合であり、λL=1.05(燃焼安定化の許容範囲の最大値)に対し、λR=0.95にして集合部λを1にしている。この場合のCO濃度はリッチ気筒11Rで1.30、リーン気筒11Lで0.12であり、トータルでのCO濃度は0.71である。   (R2) in FIG. 4 is a case where the two cylinders # 1 and # 2 are set as the rich cylinder 11R, and λL = 1.05 (maximum value of the allowable range of combustion stabilization), λR = The aggregate portion λ is set to 1 by 0.95. The CO concentration in this case is 1.30 for the rich cylinder 11R and 0.12 for the lean cylinder 11L, and the total CO concentration is 0.71.

図4中の(R3)は、#1気筒の1つをリッチ気筒11Rに設定した場合であり、λL=1.05(燃焼安定化の許容範囲の最大値)に対し、λR=0.85にして集合部λを1にしている。この場合のCO濃度はリッチ気筒11Rで4.98、リーン気筒11Lで0.12であり、トータルでのCO濃度は1.33である。   (R3) in FIG. 4 is a case where one of the # 1 cylinders is set to the rich cylinder 11R, and λR = 0.85 with respect to λL = 1.05 (the maximum value of the allowable range of combustion stabilization). Thus, the set part λ is set to 1. The CO concentration in this case is 4.98 for the rich cylinder 11R and 0.12 for the lean cylinder 11L, and the total CO concentration is 1.33.

以上により、図4の試験結果によれば、リッチ気筒11Rの数を少なくするほど、リッチ気筒11RでのCO濃度を急激に増大でき、トータルCO濃度を増大できることが確認できる。図5は、上記図4の試験結果をまとめたものであり、図4中の(R0)〜(R3)の各試験に対応した集合部λ、集合部CO濃度(トータルCO濃度)、及びパータベーション制御を所定時間実施した時点での触媒中心温度を示す。1気筒のみをリッチにした(R3)の場合に、トータルCO濃度を最大にでき、触媒中心温度も最大になることを示している。   As described above, according to the test results of FIG. 4, it can be confirmed that the CO concentration in the rich cylinder 11R can be increased rapidly and the total CO concentration can be increased as the number of the rich cylinders 11R is decreased. FIG. 5 summarizes the test results of FIG. 4. The aggregated portion λ, aggregated portion CO concentration (total CO concentration), and pattern corresponding to each of the tests (R0) to (R3) in FIG. The catalyst center temperature at the time when the basation control is performed for a predetermined time is shown. This shows that when only one cylinder is made rich (R3), the total CO concentration can be maximized and the catalyst center temperature can be maximized.

図6は、内燃機関10の始動を開始させた以降における、三元触媒装置20へ流入する排気温度及び触媒中心温度の変化を計測した試験結果である。そして、図中の破線は、図4(R0)の如く気筒間での空燃比差がない状態で内燃機関10を運転させた時の試験結果、図中の実線は、図4中の(R1)の如く気筒間での空燃比差を生じさせたパータベーション制御を実施した時の試験結果を示す。この試験結果によれば、パータベーション制御の実施により、排気温度の上昇速度を増大させて触媒中心温度の上昇速度を増大できることが分かる。   FIG. 6 shows test results obtained by measuring changes in the exhaust gas temperature and the catalyst center temperature flowing into the three-way catalyst device 20 after starting the internal combustion engine 10. The broken line in the figure indicates the test result when the internal combustion engine 10 is operated in the state where there is no air-fuel ratio difference between the cylinders as shown in FIG. 4 (R0), and the solid line in the figure indicates (R1 in FIG. 4). The test results when the perturbation control in which the air-fuel ratio difference between the cylinders is generated as shown in FIG. According to this test result, it can be seen that by performing perturbation control, it is possible to increase the rate of increase of the catalyst center temperature by increasing the rate of increase of the exhaust gas temperature.

ところで、上述した図3〜図6では、CO量を増大させることによる酸化反応熱量の増大の効果について説明してきたが、HC量を増大させることによっても酸化反応熱量を増大させることができる。しかしながら、1つの気筒でのλを低下させた場合において、CO量については、図3に示すようにλ低下量に比例した以上に急激に増大するのに対し、HC増大量はCO増大量に比べて少ない。また、触媒温度を活性化温度に向けて上昇させていくと、COが酸化反応を開始する時の温度に比べて、HCが酸化反応を開始する時の温度の方が高い。   3 to 6 described above have described the effect of increasing the amount of heat of oxidation reaction by increasing the amount of CO, but the amount of heat of oxidation reaction can also be increased by increasing the amount of HC. However, when λ in one cylinder is decreased, the CO amount increases more rapidly than the λ decrease amount as shown in FIG. 3, whereas the HC increase amount becomes the CO increase amount. There are few compared. Further, when the catalyst temperature is increased toward the activation temperature, the temperature at which HC starts the oxidation reaction is higher than the temperature at which CO starts the oxidation reaction.

この知見を確認するために実施した以下の試験の結果を図7に示す。この試験では、エンジン始動を開始してパータベーション制御を開始してからの、CO浄化率及びHC浄化率を計測している。図7中の実線はエンジン始動後の経過時間に対するCO浄化率の変化を示し、図7中の破線はHC浄化率の変化を示す。この試験結果は、暖機運転を開始してから約4秒経過した時点でHC浄化率が上昇を開始するのに対し、CO浄化率は約3秒で上昇を開始することを示す。つまり、触媒上におけるCOの酸化反応は、HCに比べて低温の状態でも反応を開始する。この点で、HCではなくCO量を増大させて反応熱量を増大させる上記パータベーション制御は、触媒暖機を促進させる上で有利である。   The results of the following test conducted to confirm this finding are shown in FIG. In this test, the CO purification rate and the HC purification rate after the start of the engine and the start of perturbation control are measured. The solid line in FIG. 7 shows the change in the CO purification rate with respect to the elapsed time after engine start, and the broken line in FIG. 7 shows the change in the HC purification rate. This test result indicates that the HC purification rate starts increasing at about 4 seconds after the start of the warm-up operation, whereas the CO purification rate starts increasing at about 3 seconds. That is, the oxidation reaction of CO on the catalyst starts even at a lower temperature than HC. In this respect, the perturbation control that increases the amount of heat of reaction by increasing the amount of CO instead of HC is advantageous in promoting catalyst warm-up.

さらに、パータベーション制御を図2のステップS20で実施するにあたり、燃料噴射時期を次のように制御している。すなわち、リーン気筒11Lでは、圧縮行程で燃料噴射するよう噴射時期を制御して、先述した成層燃焼の状態にする。一方、リッチ気筒11Rでは、吸気行程で燃料噴射するよう噴射時期を制御して、先述した均質燃焼の状態にする。   Furthermore, when performing the perturbation control in step S20 of FIG. 2, the fuel injection timing is controlled as follows. That is, in the lean cylinder 11L, the injection timing is controlled so that fuel is injected in the compression stroke, and the above-described stratified combustion state is obtained. On the other hand, in the rich cylinder 11R, the injection timing is controlled so that fuel is injected in the intake stroke, and the above-described homogeneous combustion state is obtained.

なお、リッチ気筒11Rでは、1燃焼サイクル中に複数回燃料噴射する分割噴射を実施して、目標噴射量を複数回に分けて噴射するようにしてもよい。例えば、圧縮行程及び吸気行程で1回ずつ噴射するよう2回に分けて噴射する分割噴射を実施してもよいし、吸気行程で1回噴射するだけにしてもよい。   Note that in the rich cylinder 11R, split injection in which fuel is injected a plurality of times during one combustion cycle may be performed, and the target injection amount may be divided into a plurality of times for injection. For example, split injection may be performed in which the injection is performed in two times so that the injection is performed once in the compression stroke and the intake stroke, or only one injection may be performed in the intake stroke.

このように、リッチ気筒11Rでは吸気行程で燃料噴射して均質燃焼にするので、成層燃焼にした場合に比べてPM発生量を低減できる。そのPM低減効果を確認した試験結果を図8(a)に示し、触媒温度上昇の効果を確認した試験結果を図8(b)に示す。   In this way, in the rich cylinder 11R, fuel is injected during the intake stroke for homogeneous combustion, so that the amount of PM generated can be reduced compared to the case of stratified combustion. The test result for confirming the PM reduction effect is shown in FIG. 8 (a), and the test result for confirming the effect of increasing the catalyst temperature is shown in FIG. 8 (b).

図8の試験では、図4中の(R0)と同様にしてパータベーション制御を実施せずに気筒間での空燃比差がない場合の試験結果と、図4中の(R1)と同様にして、#1気筒のみをリッチ気筒11Rとして気筒間での空燃比差を生じさせた場合の試験結果を示す。さらに、空燃比差を生じさせた場合において、リッチ気筒11Rの燃料噴射を吸気行程で1回実施した場合と、リッチ気筒11Rの燃料噴射を吸気行程及び圧縮行程で1回ずつ分割噴射した場合との試験結果を示す。図8中の横軸は噴射時期を示しており、圧縮行程の上死点を基準とした遅角量(BTDC)を示している。なお、気筒間空燃比差有りの分割噴射の場合は1回目の分割噴射(吸気噴射)にかかる噴射時期を示す。   In the test of FIG. 8, the test result when there is no air-fuel ratio difference between the cylinders without performing the perturbation control in the same manner as (R0) in FIG. 4, and the same as (R1) in FIG. Thus, the test result when only the # 1 cylinder is the rich cylinder 11R and the air-fuel ratio difference between the cylinders is generated will be shown. Further, when the air-fuel ratio difference is generated, the fuel injection of the rich cylinder 11R is performed once in the intake stroke, and the fuel injection of the rich cylinder 11R is divided and injected once in the intake stroke and the compression stroke. The test results are shown. The horizontal axis in FIG. 8 represents the injection timing, and represents the retard amount (BTDC) based on the top dead center of the compression stroke. In the case of split injection with an air-fuel ratio difference between cylinders, the injection timing for the first split injection (intake injection) is shown.

図8(a)の試験結果によれば、気筒間空燃比差有りの場合にリッチ気筒11Rにおいて吸気行程1回噴射にすれば、リッチ気筒11Rにおいて分割噴射にした場合に比べての場合に比べて、PM発生量を低減できることが分かる。また、リッチ気筒11Rにおいて吸気行程1回噴射の場合のPM発生量は、気筒間空燃比差を生じさせない場合のPM発生量と同等にできることが分かる。   According to the test result of FIG. 8A, when there is an air-fuel ratio difference between cylinders, if the intake stroke is injected once in the rich cylinder 11R, compared to the case where the rich injection is performed in the rich cylinder 11R. Thus, it can be seen that the amount of PM generated can be reduced. It can also be seen that the PM generation amount in the rich cylinder 11R when the intake stroke is injected once can be made equal to the PM generation amount when no inter-cylinder air-fuel ratio difference is caused.

また、図8(b)の試験結果によれば、吸気行程で1回噴射及び分割噴射のいずれの場合においても、パータベーション制御を実施して気筒間空燃比差を生じさせれば、噴射時期の遅角量にかかわらず、パータベーション制御を実施しない場合に比べて触媒温度を上昇できることが分かる。   Further, according to the test results of FIG. 8B, if the perturbation control is performed to generate the inter-cylinder air-fuel ratio difference in both the single injection and the split injection in the intake stroke, the injection timing It can be seen that the catalyst temperature can be increased regardless of the retardation amount of the catalyst as compared with the case where the perturbation control is not performed.

さらに、パータベーション制御にかかるリッチ気筒11Rにおいて、上述の如く吸気行程で燃料噴射するにあたり、その噴射時期を吸気行程の前半にすることが望ましい。具体的には、圧縮行程の上死点を基準とした遅角量(BTDC)を、240〜320deg(より好ましくは260〜300deg)にすることが望ましい。   Furthermore, when the fuel is injected in the intake stroke as described above in the rich cylinder 11R related to the perturbation control, the injection timing is preferably set to the first half of the intake stroke. Specifically, it is desirable that the retardation amount (BTDC) with reference to the top dead center of the compression stroke be 240 to 320 deg (more preferably 260 to 300 deg).

このように吸気行程の前半で燃料噴射すれば、吸気行程の後半で噴射した場合に比べて噴射燃料と吸気との攪拌が促進されるので均質燃焼を促進でき、ひいてはPM発生量を抑制できる。そのPM低減効果を確認した試験結果を図9に示す。   If fuel is injected in the first half of the intake stroke in this way, the agitation between the injected fuel and the intake air is promoted compared to the case where the fuel is injected in the second half of the intake stroke, so that homogeneous combustion can be promoted and, in turn, the amount of PM generated can be suppressed. The test result which confirmed the PM reduction effect is shown in FIG.

図9の試験では、任意の1つの気筒において空燃比を変化させた時のPM発生量を、吸気行程の前半で噴射した場合と後半で噴射した場合とで計測している。図9の試験結果によれば、前半噴射の場合には後半噴射に比べてPM発生量を低減できることが分かる。特にパータベーション制御にかかるリッチ気筒11Rにおいて空燃比リッチで燃焼させる場合には、前半噴射によるPM低減の効果が大きく現れることが分かる。   In the test of FIG. 9, the amount of PM generated when the air-fuel ratio is changed in any one cylinder is measured in the case of injection in the first half of the intake stroke and in the case of injection in the second half. According to the test results of FIG. 9, it can be seen that the amount of PM generated can be reduced in the first half injection compared to the second half injection. In particular, when the rich cylinder 11R related to perturbation control is burned with rich air-fuel ratio, it can be seen that the effect of PM reduction by the first half injection appears greatly.

以上により、本実施形態によれば、リッチ気筒11Rの数を1つにしてパータベーション制御を実施するので、リーン気筒11LのλLを増大させることなく、集合部λを1に維持させつつCO量を増大できる(図4(R1)参照)。よって、λL増大によるリーン気筒11Lでの燃焼不安定化を抑制しつつ反応熱量を増大でき、触媒暖気を促進できる(図5参照)。   As described above, according to the present embodiment, since the perturbation control is performed with the number of the rich cylinders 11R being one, the CO amount is maintained while maintaining the collective portion λ at 1 without increasing the λL of the lean cylinder 11L. Can be increased (see FIG. 4 (R1)). Therefore, the amount of reaction heat can be increased while suppressing the instability of combustion in the lean cylinder 11L due to the increase in λL, and catalyst warm-up can be promoted (see FIG. 5).

また、リッチ気筒での燃料噴射時期を吸気行程にして均質燃焼させるので、成層燃焼させる場合に比べてPM発生量を低減できる。しかも、吸気行程の前半で燃料噴射するので、後半で噴射する場合に比べてPM発生量をより一層低減できる(図9参照)。   In addition, since the fuel injection timing in the rich cylinder is set to the intake stroke and homogeneous combustion is performed, the amount of PM generated can be reduced as compared with the case of stratified combustion. In addition, since the fuel is injected in the first half of the intake stroke, the amount of PM generated can be further reduced as compared with the case where the fuel is injected in the second half (see FIG. 9).

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記実施形態では、本発明にかかる触媒暖機制御装置を直噴式エンジンに適用させているが、吸気管へ燃料を噴射するポート噴射式のエンジンに適用させてもよい。   In the above embodiment, the catalyst warm-up control device according to the present invention is applied to a direct injection engine, but may be applied to a port injection engine that injects fuel into an intake pipe.

・上記実施形態にかかるパータベーション制御では、リッチ気筒11Rでの燃料噴射時期を吸気行程の前半(BTDC240〜320deg)に設定しているが、後半(BTDC180〜240deg)に設定してもよい。また、BTDC320〜360degに設定してもよい。但し、BTDC320よりも遅角側で噴射させると、噴射した燃料がピストンヘッドに付着してPM発生を促してしまうことが懸念される。また、BTDC240よりも進角側で噴射させると、噴射燃料と吸気との攪拌効果が低減する。よって、パータベーション制御にかかるリッチ気筒11Rでは、BTDC240〜320degの範囲で燃料噴射させることが望ましい。   In the perturbation control according to the above embodiment, the fuel injection timing in the rich cylinder 11R is set to the first half (BTDC 240 to 320 deg) of the intake stroke, but may be set to the second half (BTDC 180 to 240 deg). Moreover, you may set to BTDC320-360deg. However, if the fuel is injected on the retard side of the BTDC 320, there is a concern that the injected fuel adheres to the piston head and promotes the generation of PM. Further, when the fuel is injected on the advance side from the BTDC 240, the stirring effect between the injected fuel and the intake air is reduced. Therefore, it is desirable to inject fuel in the range of BTDC 240 to 320 deg in the rich cylinder 11R related to perturbation control.

・上記実施形態にかかるパータベーション制御では、リッチ気筒11Rでの燃料噴射時期を吸気行程の1回にしているが、吸気行程の1回と圧縮行程の1回に分割噴射するようにしてもよく、少なくとも吸気行程で1回噴射させればよい。   In the perturbation control according to the above embodiment, the fuel injection timing in the rich cylinder 11R is set to one intake stroke, but it may be divided and injected into one intake stroke and one compression stroke. It is sufficient to inject at least once in the intake stroke.

・上記実施形態では4気筒エンジンを対象としているが、本発明の適用対象はこれに限られるものではなく、例えば6気筒エンジンや8気筒エンジンを対象としてもよい。また、パータベーション制御にかかるリッチ気筒11Rの数をリーン気筒11Lの数より少なくすればよいので、例えば6気筒エンジンの場合にはリッチ気筒11Rの数を1つに設定する場合の他に、2つに設定してもよい。同様に、8気筒エンジンの場合にはリッチ気筒11Rの数を1つ〜3つに設定してもよい。   In the above embodiment, a 4-cylinder engine is targeted, but the application target of the present invention is not limited to this, and for example, a 6-cylinder engine or an 8-cylinder engine may be targeted. Further, since the number of rich cylinders 11R related to perturbation control may be made smaller than the number of lean cylinders 11L, for example, in the case of a 6-cylinder engine, in addition to setting the number of rich cylinders 11R to one, 2 It may be set to one. Similarly, in the case of an 8-cylinder engine, the number of rich cylinders 11R may be set to 1 to 3.

10…内燃機関、11…気筒、14a…排気管の集合部、20…三元触媒装置、30…ECU(触媒暖機制御装置)、S20…触媒暖機制御手段、#1…リッチ気筒、#2,#3,#4…リーン気筒。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... Cylinder, 14a ... Collecting part of exhaust pipe, 20 ... Three-way catalyst device, 30 ... ECU (catalyst warm-up control device), S20 ... Catalyst warm-up control means, # 1 ... Rich cylinder, # 2, # 3, # 4 ... Lean cylinder.

Claims (4)

複数の気筒を有する内燃機関の排気管のうち、各気筒からの排気が集合する集合部よりも下流側に配置され、排気中の特定成分を酸化又は還元して浄化する三元触媒に適用され、
前記三元触媒の暖機が要求されている時に、前記複数の気筒のうち任意の気筒をリーン気筒、前記リーン気筒とは別の気筒をリッチ気筒として設定し、前記リーン気筒では理論空燃比より大きな空燃比で燃焼させ、前記リッチ気筒では理論空燃比より小さな空燃比で燃焼させるとともに、前記複数の気筒の空燃比の平均が理論空燃比となるよう各気筒での燃料噴射量を制御する触媒暖機制御手段を備え、
前記複数の気筒のうちの前記リーン気筒の数を、前記リッチ気筒の数より多く設定したことを特徴とする触媒暖機制御装置。
Among exhaust pipes of an internal combustion engine having a plurality of cylinders, the exhaust pipe is disposed downstream of a collecting portion where exhaust from each cylinder collects, and is applied to a three-way catalyst that purifies by oxidizing or reducing specific components in the exhaust. ,
When warming up of the three-way catalyst is required, an arbitrary cylinder among the plurality of cylinders is set as a lean cylinder, and a cylinder different from the lean cylinder is set as a rich cylinder. A catalyst that burns at a large air-fuel ratio, burns at an air-fuel ratio smaller than the stoichiometric air-fuel ratio in the rich cylinder, and controls the fuel injection amount in each cylinder so that the average air-fuel ratio of the plurality of cylinders becomes the stoichiometric air-fuel ratio Equipped with warm-up control means,
The catalyst warm-up control apparatus, wherein the number of lean cylinders among the plurality of cylinders is set to be larger than the number of rich cylinders.
前記内燃機関は、前記気筒の燃焼室へ燃料を直接噴射する直噴式であり、
前記リーン気筒では、少なくとも圧縮行程で燃料噴射するよう噴射時期を制御し、
前記リッチ気筒では、少なくとも吸気行程で燃料噴射するよう噴射時期を制御することを特徴とする請求項1に記載の触媒暖機制御装置。
The internal combustion engine is a direct injection type that directly injects fuel into the combustion chamber of the cylinder,
In the lean cylinder, the injection timing is controlled so that fuel is injected at least in the compression stroke,
2. The catalyst warm-up control device according to claim 1, wherein an injection timing is controlled so that fuel is injected at least in an intake stroke in the rich cylinder.
前記リッチ気筒では、吸気行程期間の前半の期間中に燃料噴射するよう噴射時期を制御することを特徴とする請求項2に記載の触媒暖機制御装置。   The catalyst warm-up control apparatus according to claim 2, wherein the rich cylinder controls the injection timing so that fuel is injected during the first half of the intake stroke period. 前記複数の気筒のうちの前記リーン気筒の数を1つに設定したことを特徴とする請求項1〜3のいずれか1つに記載の触媒暖機制御装置。   The catalyst warm-up control device according to any one of claims 1 to 3, wherein the number of lean cylinders among the plurality of cylinders is set to one.
JP2010199074A 2010-09-06 2010-09-06 Catalyst warming-up control device Pending JP2012057492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199074A JP2012057492A (en) 2010-09-06 2010-09-06 Catalyst warming-up control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199074A JP2012057492A (en) 2010-09-06 2010-09-06 Catalyst warming-up control device

Publications (1)

Publication Number Publication Date
JP2012057492A true JP2012057492A (en) 2012-03-22

Family

ID=46054896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199074A Pending JP2012057492A (en) 2010-09-06 2010-09-06 Catalyst warming-up control device

Country Status (1)

Country Link
JP (1) JP2012057492A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110530A (en) * 2015-12-15 2017-06-22 トヨタ自動車株式会社 Control device of internal combustion engine
JP2018096355A (en) * 2016-12-16 2018-06-21 トヨタ自動車株式会社 Control device of internal combustion engine
DE102017131108A1 (en) 2016-12-26 2018-06-28 Toyota Jidosha Kabushiki Kaisha Control device and control method for an internal combustion engine
DE102017131175A1 (en) 2016-12-27 2018-06-28 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
DE102017131019A1 (en) 2016-12-26 2018-06-28 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
DE102017130721A1 (en) 2016-12-27 2018-06-28 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
JP2018105222A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Control device of internal combustion engine
DE102018101433A1 (en) 2017-01-24 2018-07-26 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
CN108397301A (en) * 2017-01-25 2018-08-14 丰田自动车株式会社 Determining device of catching fire for internal combustion engine
CN108468598A (en) * 2017-02-23 2018-08-31 丰田自动车株式会社 Apparatus for diagnosis of abnormality and abnormality diagnostic method for internal combustion engine
CN108487996A (en) * 2017-02-13 2018-09-04 丰田自动车株式会社 Apparatus for diagnosis of abnormality and abnormality diagnostic method for internal combustion engine
US20190048816A1 (en) * 2017-08-10 2019-02-14 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
US20190048818A1 (en) * 2017-08-09 2019-02-14 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
CN109386391A (en) * 2017-08-10 2019-02-26 丰田自动车株式会社 The control device and control method of internal combustion engine
CN109555612A (en) * 2017-09-27 2019-04-02 丰田自动车株式会社 The control device and control method of internal combustion engine
EP3462011A1 (en) * 2017-09-27 2019-04-03 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
EP3462009A1 (en) * 2017-09-27 2019-04-03 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
CN109595086A (en) * 2017-10-03 2019-04-09 丰田自动车株式会社 The control device and method of internal combustion engine
EP3467284A1 (en) * 2017-10-06 2019-04-10 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
DE102018122410A1 (en) 2017-10-26 2019-05-02 Toyota Jidosha Kabushiki Kaisha Control unit and control method for internal combustion engine
JP2019090376A (en) * 2017-11-15 2019-06-13 トヨタ自動車株式会社 Control device of internal combustion engine
EP3546731A1 (en) 2018-03-29 2019-10-02 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
WO2020187415A1 (en) * 2019-03-20 2020-09-24 Volvo Penta Corporation A method and a control system for controlling an internal combustion engine
WO2022264565A1 (en) 2021-06-14 2022-12-22 株式会社豊田自動織機 Control device for catalyst temperature raising system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119507A (en) * 1993-10-18 1995-05-09 Toyota Motor Corp Inter-cylinder injection type spark ignition engine
JP2004092513A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Combustion control device for internal combustion engine
JP2010150971A (en) * 2008-12-24 2010-07-08 Mazda Motor Corp Spark-ignition direct-injection engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119507A (en) * 1993-10-18 1995-05-09 Toyota Motor Corp Inter-cylinder injection type spark ignition engine
JP2004092513A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Combustion control device for internal combustion engine
JP2010150971A (en) * 2008-12-24 2010-07-08 Mazda Motor Corp Spark-ignition direct-injection engine

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110530A (en) * 2015-12-15 2017-06-22 トヨタ自動車株式会社 Control device of internal combustion engine
JP2018096355A (en) * 2016-12-16 2018-06-21 トヨタ自動車株式会社 Control device of internal combustion engine
JP2018105222A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Control device of internal combustion engine
US10260439B2 (en) 2016-12-26 2019-04-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
DE102017131019A1 (en) 2016-12-26 2018-06-28 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10378471B2 (en) 2016-12-26 2019-08-13 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
US10294881B2 (en) 2016-12-26 2019-05-21 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2018105224A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Control device of internal combustion engine
JP2018105223A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Control device of internal combustion engine
DE102017131019B4 (en) * 2016-12-26 2020-10-08 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN108343525A (en) * 2016-12-26 2018-07-31 丰田自动车株式会社 Control device and control method for internal combustion engine
DE102017131108A1 (en) 2016-12-26 2018-06-28 Toyota Jidosha Kabushiki Kaisha Control device and control method for an internal combustion engine
DE102017131108B4 (en) 2016-12-26 2021-10-21 Toyota Jidosha Kabushiki Kaisha Control unit and control method for an internal combustion engine
US10174696B2 (en) 2016-12-27 2019-01-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
DE102017131175B4 (en) 2016-12-27 2023-06-29 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
DE102017131175A1 (en) 2016-12-27 2018-06-28 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
DE102017130721A1 (en) 2016-12-27 2018-06-28 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
DE102017130721B4 (en) 2016-12-27 2023-07-27 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
US10443520B2 (en) 2016-12-27 2019-10-15 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN108457758B (en) * 2017-01-24 2021-04-06 丰田自动车株式会社 Control device for internal combustion engine
DE102018101433B4 (en) * 2017-01-24 2020-10-08 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
US10309327B2 (en) 2017-01-24 2019-06-04 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN108457758A (en) * 2017-01-24 2018-08-28 丰田自动车株式会社 Control Device for Internal Combustion Engine
DE102018101433A1 (en) 2017-01-24 2018-07-26 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
CN108397301A (en) * 2017-01-25 2018-08-14 丰田自动车株式会社 Determining device of catching fire for internal combustion engine
US10125709B2 (en) 2017-02-13 2018-11-13 Toyota Jidosha Kabushiki Kaisha Abnormality diagnostic device for internal combustion engine and abnormality diagnostic method for internal combustion engine
CN108487996A (en) * 2017-02-13 2018-09-04 丰田自动车株式会社 Apparatus for diagnosis of abnormality and abnormality diagnostic method for internal combustion engine
CN108468598B (en) * 2017-02-23 2021-06-15 丰田自动车株式会社 Abnormality diagnostic device and abnormality diagnostic method for internal combustion engine
CN108468598A (en) * 2017-02-23 2018-08-31 丰田自动车株式会社 Apparatus for diagnosis of abnormality and abnormality diagnostic method for internal combustion engine
US10337437B2 (en) 2017-02-23 2019-07-02 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis device and abnormality diagnosis method for internal combustion engine
US10753298B2 (en) 2017-08-09 2020-08-25 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
US20190048818A1 (en) * 2017-08-09 2019-02-14 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
DE102018117608A1 (en) 2017-08-09 2019-02-14 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
DE102018117608B4 (en) 2017-08-09 2023-07-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller
US10900428B2 (en) 2017-08-10 2021-01-26 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
JP2019035335A (en) * 2017-08-10 2019-03-07 トヨタ自動車株式会社 Control device for internal combustion engine
US20190048816A1 (en) * 2017-08-10 2019-02-14 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
DE102018118403A1 (en) 2017-08-10 2019-02-14 Toyota Jidosha Kabushiki Kaisha CONTROL UNIT FOR INTERNAL COMBUSTION ENGINE
CN109386391A (en) * 2017-08-10 2019-02-26 丰田自动车株式会社 The control device and control method of internal combustion engine
DE102018118404B4 (en) 2017-08-10 2022-12-15 Toyota Jidosha Kabushiki Kaisha CONTROL UNIT FOR INTERNAL COMBUSTION ENGINE AND METHOD OF CONTROLLING AN INTERNAL ENGINE
CN109386390B (en) * 2017-08-10 2022-06-03 丰田自动车株式会社 Control device for internal combustion engine
CN109386390A (en) * 2017-08-10 2019-02-26 丰田自动车株式会社 The control device of internal combustion engine
CN109386391B (en) * 2017-08-10 2021-09-07 丰田自动车株式会社 Control device and control method for internal combustion engine
US10753295B2 (en) 2017-08-10 2020-08-25 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine and method for controlling internal combustion engine
JP2019035334A (en) * 2017-08-10 2019-03-07 トヨタ自動車株式会社 Control device for internal combustion engine
CN109555612A (en) * 2017-09-27 2019-04-02 丰田自动车株式会社 The control device and control method of internal combustion engine
EP3462009A1 (en) * 2017-09-27 2019-04-03 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
EP3462011A1 (en) * 2017-09-27 2019-04-03 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
EP3462012A1 (en) * 2017-09-27 2019-04-03 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
US11028748B2 (en) 2017-09-27 2021-06-08 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
US10961928B2 (en) * 2017-10-03 2021-03-30 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine and method for controlling internal combustion engine
CN109595086A (en) * 2017-10-03 2019-04-09 丰田自动车株式会社 The control device and method of internal combustion engine
CN109595086B (en) * 2017-10-03 2021-05-18 丰田自动车株式会社 Control device and method for internal combustion engine
EP3467284A1 (en) * 2017-10-06 2019-04-10 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
US10626814B2 (en) 2017-10-06 2020-04-21 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
KR102074126B1 (en) 2017-10-06 2020-02-06 도요타 지도샤(주) Control device and control method for internal combustion engine
KR20190039855A (en) * 2017-10-06 2019-04-16 도요타 지도샤(주) Control device and control method for internal combustion engine
DE102018122410A1 (en) 2017-10-26 2019-05-02 Toyota Jidosha Kabushiki Kaisha Control unit and control method for internal combustion engine
JP2019090376A (en) * 2017-11-15 2019-06-13 トヨタ自動車株式会社 Control device of internal combustion engine
US10823095B2 (en) 2018-03-29 2020-11-03 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
EP3546731A1 (en) 2018-03-29 2019-10-02 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
WO2020187415A1 (en) * 2019-03-20 2020-09-24 Volvo Penta Corporation A method and a control system for controlling an internal combustion engine
US11808223B2 (en) 2019-03-20 2023-11-07 Volvo Penta Corporation Method and a control system for controlling an internal combustion engine
WO2022264565A1 (en) 2021-06-14 2022-12-22 株式会社豊田自動織機 Control device for catalyst temperature raising system

Similar Documents

Publication Publication Date Title
JP2012057492A (en) Catalyst warming-up control device
JP6314870B2 (en) Control device for internal combustion engine
JP4862592B2 (en) Spark ignition gasoline engine
JP4788554B2 (en) Spark ignition direct injection gasoline engine
JP5418675B2 (en) Fuel control device for internal combustion engine
US10443525B2 (en) Exhaust emission control system of engine
US10443521B2 (en) Exhaust emission control system of engine
JP5332962B2 (en) Control device for internal combustion engine
US10443524B2 (en) Exhaust emission control system of engine
JP2018105222A (en) Control device of internal combustion engine
JP2000120471A (en) Cylinder injection type engine control device
JP3731403B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
JP2012225266A (en) Control device of internal combustion engine
JP2011017285A (en) Fuel injection control device for internal combustion engine
US20190360447A1 (en) Internal combustion engine
JP2017115632A (en) Fuel injection control device for internal combustion engine
JP3680241B2 (en) Exhaust gas purification device for internal combustion engine
JP2001159311A (en) Exhaust emission control device for engine
JP5435157B2 (en) Fuel injection control device for internal combustion engine
JP3331974B2 (en) Internal combustion engine
JP2010163930A (en) Control device of direct-injection spark ignition internal combustion engine
JP4902632B2 (en) Exhaust gas purification device for internal combustion engine
JP2004232477A (en) Control device of internal combustion engine
JP3331986B2 (en) Multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029