JP7196391B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP7196391B2
JP7196391B2 JP2017215925A JP2017215925A JP7196391B2 JP 7196391 B2 JP7196391 B2 JP 7196391B2 JP 2017215925 A JP2017215925 A JP 2017215925A JP 2017215925 A JP2017215925 A JP 2017215925A JP 7196391 B2 JP7196391 B2 JP 7196391B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinders
fuel
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017215925A
Other languages
Japanese (ja)
Other versions
JP2019085948A (en
Inventor
啓一 明城
勇喜 野瀬
美紗子 伴
英二 生田
良行 正源寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017215925A priority Critical patent/JP7196391B2/en
Publication of JP2019085948A publication Critical patent/JP2019085948A/en
Application granted granted Critical
Publication of JP7196391B2 publication Critical patent/JP7196391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とする内燃機関の制御装置に関する。 The present invention relates to an internal combustion engine control apparatus for controlling an internal combustion engine including an exhaust purification device for purifying exhaust gas emitted from a plurality of cylinders and a fuel injection valve provided for each of the plurality of cylinders.

たとえば特許文献1には、排気浄化触媒(排気浄化装置)の上流側の空燃比センサの検出値を目標値にフィードバック制御すべく、噴射量を補正する制御装置が記載されている。この制御装置は、排気浄化装置の昇温要求がある場合、一部の気筒における空燃比を理論空燃比よりもリッチとし、残りの気筒における空燃比を理論空燃比よりもリーンとするディザ制御処理を実行する。 For example, Patent Literature 1 describes a control device that corrects the injection amount in order to feedback-control the detection value of an air-fuel ratio sensor on the upstream side of an exhaust purification catalyst (exhaust purification device) to a target value. This control device performs dither control processing to make the air-fuel ratio of some cylinders richer than the stoichiometric air-fuel ratio and to make the air-fuel ratio of the remaining cylinders leaner than the stoichiometric air-fuel ratio when there is a request to raise the temperature of the exhaust purification device. to run.

特開2016-169665号公報JP 2016-169665 A

ところで、ディザ制御の実行時には、空燃比センサの検出値が、ディザ制御に起因して変動し、これによって空燃比の制御性が低下するおそれがある。 By the way, when the dither control is executed, the detected value of the air-fuel ratio sensor may fluctuate due to the dither control, which may deteriorate the controllability of the air-fuel ratio.

上記課題を解決すべく、内燃機関の制御装置は、複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とし、前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、空燃比センサによって検出される空燃比を目標値にフィードバック制御すべく前記燃料噴射弁から噴射される噴射量を補正するフィードバック処理と、前記ディザ制御処理が実行されている場合、実行されていない場合よりも前記フィードバック処理のゲインを小さくする低減処理と、を実行する。 In order to solve the above problems, a control device for an internal combustion engine controls an internal combustion engine that includes an exhaust purification device that purifies exhaust gas emitted from a plurality of cylinders, and a fuel injection valve that is provided for each of the plurality of cylinders. Some of the plurality of cylinders are set as rich combustion cylinders in which the air-fuel ratio is richer than the stoichiometric air-fuel ratio, and a cylinder other than the one of the plurality of cylinders is selected. , a dither control process for operating the fuel injection valve in order to create a lean combustion cylinder in which the air-fuel ratio is leaner than the stoichiometric air-fuel ratio; A feedback process for correcting the injection amount injected from the injection valve and a reduction process for making the gain of the feedback process smaller when the dither control process is executed than when the dither control process is not executed are executed.

上記構成では、ディザ制御処理が実行されている場合に実行されていない場合よりもフィードバック制御のゲインを小さくする。これにより、ディザ制御処理に起因して空燃比センサによって検出される空燃比がディザ制御処理を実行していない場合と比較して大きく変動する場合であっても、フィードバック制御の安定性が損なわれる事態に陥ることを抑制でき、ひいては空燃比の制御性の低下を抑制できる。 In the above configuration, the feedback control gain is made smaller when the dither control process is being executed than when it is not being executed. As a result, even if the air-fuel ratio detected by the air-fuel ratio sensor due to the dither control process fluctuates significantly compared to when the dither control process is not executed, the stability of the feedback control is impaired. It is possible to prevent a situation from occurring, and in turn to prevent deterioration of controllability of the air-fuel ratio.

一実施形態にかかる制御装置および内燃機関を示す図。1 is a diagram showing a control device and an internal combustion engine according to one embodiment; FIG. 同実施形態にかかる制御装置が実行する処理の手順を示す流れ図。FIG. 4 is a flowchart showing the procedure of processing executed by the control device according to the embodiment; FIG.

以下、内燃機関の制御装置の一実施形態について、図面を参照しつつ説明する。
図1に示す内燃機関10において、吸気通路12から吸入された空気は、過給機14を介して各気筒の燃焼室16に流入する。燃焼室16には、燃料を噴射する燃料噴射弁18と、火花放電を生じさせる点火装置20とが設けられている。燃焼室16において、空気と燃料との混合気は、燃焼に供され、燃焼に供された混合気は、排気として、排気通路22に排出される。排気通路22のうちの過給機14の下流には、酸素吸蔵能力を有した三元触媒24が設けられている。
An embodiment of a control device for an internal combustion engine will be described below with reference to the drawings.
In the internal combustion engine 10 shown in FIG. 1 , air drawn from an intake passage 12 flows through a supercharger 14 into a combustion chamber 16 of each cylinder. The combustion chamber 16 is provided with a fuel injection valve 18 for injecting fuel and an ignition device 20 for generating spark discharge. In the combustion chamber 16, the mixture of air and fuel is combusted, and the combusted mixture is discharged to the exhaust passage 22 as exhaust. Downstream of the supercharger 14 in the exhaust passage 22, a three-way catalyst 24 having an oxygen storage capacity is provided.

制御装置30は、内燃機関10を制御対象とし、その制御量(トルク、排気成分等)を制御するために、燃料噴射弁18や点火装置20等の内燃機関10の操作部を操作する。この際、制御装置30は、三元触媒24の上流側の空燃比センサ40によって検出される空燃比Afや、クランク角センサ44の出力信号Scr、エアフローメータ46によって検出される吸入空気量Gaを参照する。制御装置30は、CPU32、ROM34、およびRAM36を備えており、ROM34に記憶されたプログラムをCPU32が実行することにより上記制御量の制御を実行する。 The control device 30 controls the internal combustion engine 10 and operates operating units of the internal combustion engine 10 such as the fuel injection valve 18 and the ignition device 20 in order to control the control amounts (torque, exhaust components, etc.) of the internal combustion engine 10 . At this time, the control device 30 determines the air-fuel ratio Af detected by the air-fuel ratio sensor 40 on the upstream side of the three-way catalyst 24, the output signal Scr of the crank angle sensor 44, and the intake air amount Ga detected by the air flow meter 46. refer. The control device 30 includes a CPU 32, a ROM 34, and a RAM 36. The CPU 32 executes a program stored in the ROM 34 to control the control amount.

図2に、制御装置30が実行する処理の1つを示す。図2に示す処理は、ROM34に記憶されたプログラムをCPU32がたとえば所定周期で繰り返し実行することにより実現される。なお、以下では、先頭に「S」が付与された数字によって、ステップ番号を表現する。 FIG. 2 shows one of the processes executed by the control device 30. As shown in FIG. The processing shown in FIG. 2 is implemented by the CPU 32 repeatedly executing a program stored in the ROM 34, for example, at predetermined intervals. In the following description, step numbers are represented by numerals prefixed with "S".

図2に示す一連の処理において、CPU32は、クランク角センサ44の出力信号Scrに基づき算出された回転速度NEと吸入空気量Gaとに基づきベース噴射量Qbを算出する(S10)。ベース噴射量Qbは、燃焼室16における混合気の空燃比を目標空燃比に開ループ制御するための操作量である開ループ操作量である。次にCPU32は、ディザ制御時であるか否かを判定する(S12)。そしてCPU32は、ディザ制御時ではないと判定する場合(S12:NO)、空燃比フィードバック制御の比例ゲインKpに、通常ゲインKpHを代入する(S14)。これに対し、CPU32は、ディザ制御時であると判定する場合(S12:YES)、比例ゲインKpに、ディザ時ゲインKpLを代入する(S16)。ディザ時ゲインKpLは、通常時ゲインKpHよりも小さい値である。 In the series of processes shown in FIG. 2, the CPU 32 calculates the base injection amount Qb based on the rotation speed NE calculated based on the output signal Scr of the crank angle sensor 44 and the intake air amount Ga (S10). The base injection amount Qb is an open-loop manipulated variable that is a manipulated variable for open-loop controlling the air-fuel ratio of the air-fuel mixture in the combustion chamber 16 to the target air-fuel ratio. Next, the CPU 32 determines whether or not dither control is in effect (S12). When the CPU 32 determines that dither control is not being performed (S12: NO), the CPU 32 substitutes the normal gain KpH for the proportional gain Kp of the air-fuel ratio feedback control (S14). On the other hand, when the CPU 32 determines that dither control is being performed (S12: YES), it substitutes the dither gain KpL for the proportional gain Kp (S16). The dithering gain KpL is a value smaller than the normal gain KpH.

CPU32は、S14,S16の処理が完了する場合、フィードバック制御量である空燃比Afを目標値Af*にフィードバック制御するための操作量であるフィードバック操作量KAFを算出する(S18)。詳しくはCPU32は、目標値Af*と空燃比Afとの差Δを入力とする比例要素、積分要素、および微分要素の各出力値の和を、ベース噴射量Qbの補正比率δとし、フィードバック操作量KAFを、「1+δ」とする。そして、CPU32は、ベース噴射量Qbにフィードバック操作量KAFを乗算した値を、要求噴射量Qdに代入する(S20)。 When the processes of S14 and S16 are completed, the CPU 32 calculates a feedback manipulated variable KAF, which is a manipulated variable for feedback-controlling the air-fuel ratio Af, which is a feedback controlled variable, to the target value Af* (S18). More specifically, the CPU 32 sets the sum of the output values of the proportional element, the integral element, and the differential element to the input of the difference Δ between the target value Af* and the air-fuel ratio Af as the correction ratio δ of the base injection amount Qb, and performs the feedback operation. Let the quantity KAF be "1+δ". Then, the CPU 32 substitutes the value obtained by multiplying the base injection amount Qb by the feedback operation amount KAF into the required injection amount Qd (S20).

次に、CPU32は、三元触媒24の昇温要求があるか否かを判定する(S22)。本実施形態では、三元触媒24の暖機要求が生じていることと、硫黄被毒回復処理の実行要求が生じていることとの論理和が真である場合に、昇温要求があると判定する。ここで、三元触媒24の暖機要求は、内燃機関10の始動からの吸入空気量Gaの積算値InGaが第1規定値Inth1以上である旨の条件(ア)と、積算値InGaが第2規定値Inth2以下である旨の条件(イ)との論理積が真である場合に生じるものとする。ここで、第2規定値Inth2は、第1規定値Inth1よりも大きい。なお、条件(ア)は、三元触媒24の上流側の端部の温度が活性温度となっていると判定される条件である。また、条件(イ)は、三元触媒24の全体が未だ活性状態となっていないと判定される条件である。一方、硫黄被毒回復処理の実行要求は、硫黄被毒量が所定量以上となる場合に生じるものとする。ここで、CPU32は、図2とは別の処理で、要求噴射量Qdの積算値に基づき硫黄被毒量を算出する。 Next, the CPU 32 determines whether or not there is a request to raise the temperature of the three-way catalyst 24 (S22). In this embodiment, if the logical sum of the three-way catalyst 24 warm-up request and the sulfur poisoning recovery processing execution request is true, it is determined that there is a temperature increase request. judge. Here, the warm-up request for the three-way catalyst 24 is based on the condition (a) that the integrated value InGa of the intake air amount Ga from the start of the internal combustion engine 10 is equal to or greater than the first specified value Inth1, and 2. It is assumed that this occurs when the logical AND with the condition (a) that it is equal to or less than the specified value Inth2 is true. Here, the second specified value Inth2 is greater than the first specified value Inth1. Condition (a) is a condition under which it is determined that the temperature of the upstream end of the three-way catalyst 24 is the activation temperature. Condition (a) is a condition under which the three-way catalyst 24 as a whole is not yet activated. On the other hand, it is assumed that the execution request for the sulfur poisoning recovery process is made when the amount of sulfur poisoning is equal to or greater than a predetermined amount. Here, the CPU 32 calculates the amount of sulfur poisoning based on the integrated value of the required injection amount Qd in a process different from that shown in FIG.

CPU32は、昇温要求がないと判定する場合(S22:NO)、噴射量指令値Q*に要求噴射量Qdを代入する(S24)。そしてCPU32は、燃料噴射弁18から噴射量指令値Q*に応じた量の燃料を噴射すべく、燃料噴射弁18に操作信号MS2を出力する(S26)。 If the CPU 32 determines that there is no temperature increase request (S22: NO), it substitutes the required injection amount Qd for the injection amount command value Q* (S24). Then, the CPU 32 outputs an operation signal MS2 to the fuel injection valve 18 so that the fuel injection valve 18 injects an amount of fuel corresponding to the injection amount command value Q* (S26).

これに対し、CPU32は、昇温要求があると判定する場合(S22:YES)、要求噴射量Qdの補正要求値(噴射量補正要求値α)を算出して出力する(S28)。噴射量補正要求値αは、内燃機関10の気筒#1~#4のそれぞれから排出される排気全体の成分を、気筒#1~#4の全てで燃焼対象とする混合気の空燃比を目標空燃比とした場合と同等としつつも、燃焼対象とする混合気の空燃比を気筒間で異ならせるディザ制御によって要求される要求噴射量Qdの補正量である。ここで、本実施形態にかかるディザ制御では、第1の気筒#1~第4の気筒#4のうちの1つの気筒を、混合気の空燃比を理論空燃比よりもリッチとするリッチ燃焼気筒とし、残りの3つの気筒を、混合気の空燃比を理論空燃比よりもリーンとするリーン燃焼気筒とする。そして、リッチ燃焼気筒における噴射量を、上記要求噴射量Qdの「1+α」倍とし、リーン燃焼気筒における噴射量を、要求噴射量Qdの「1-(α/3)」倍とする。リーン燃焼気筒とリッチ燃焼気筒との上記噴射量の設定によれば、気筒#1~#4のそれぞれに充填される空気量が同一であるなら、内燃機関10の各気筒#1~#4から排出される排気全体の成分を、気筒#1~#4の全てで燃焼対象とする混合気の空燃比を目標空燃比とした場合と同等とすることができる。なお、上記噴射量の設定によれば、気筒#1~#4のそれぞれに充填される空気量が同一であるなら、各気筒において燃焼対象とされる混合気の燃空比の平均値の逆数が目標空燃比となる。なお、燃空比とは、空燃比の逆数のことである。 On the other hand, if the CPU 32 determines that there is a temperature increase request (S22: YES), it calculates and outputs a correction request value (injection amount correction request value α) for the required injection amount Qd (S28). The injection amount correction request value α targets the air-fuel ratio of the air-fuel mixture in which the components of the entire exhaust gas emitted from each of the cylinders #1 to #4 of the internal combustion engine 10 are combusted in all of the cylinders #1 to #4. This is the correction amount of the required injection amount Qd required by the dither control for making the air-fuel ratio of the air-fuel mixture to be combusted different between the cylinders while making it the same as in the case of using the air-fuel ratio. Here, in the dither control according to the present embodiment, one of the first cylinder #1 to the fourth cylinder #4 is a rich combustion cylinder in which the air-fuel ratio of the air-fuel mixture is richer than the stoichiometric air-fuel ratio. and the remaining three cylinders are lean-burn cylinders in which the air-fuel ratio of the air-fuel mixture is leaner than the stoichiometric air-fuel ratio. Then, the injection amount in the rich burn cylinder is set to "1+α" times the requested injection amount Qd, and the injection amount in the lean burn cylinder is set to "1-(α/3)" times the requested injection amount Qd. According to the setting of the injection amount for the lean-burn cylinder and the rich-burn cylinder, if the amount of air charged to each of the cylinders #1 to #4 is the same, then from each cylinder #1 to #4 of the internal combustion engine 10, The components of the entire discharged exhaust gas can be made equivalent to the case where the air-fuel ratio of the air-fuel mixture to be combusted in all of the cylinders #1 to #4 is set as the target air-fuel ratio. According to the setting of the injection amount, if the amount of air charged to each of the cylinders #1 to #4 is the same, the reciprocal of the average value of the fuel-air ratio of the air-fuel mixture to be combusted in each cylinder is is the target air-fuel ratio. The fuel-air ratio is the reciprocal of the air-fuel ratio.

詳しくは、CPU32は、内燃機関10の動作点を規定する回転速度NEおよび負荷率KLに基づき、噴射量補正要求値αを可変設定する。ここで、負荷率KLは、燃焼室16内に充填される空気量を示すパラメータであり、CPU32により、吸入空気量Gaに基づき算出される。負荷率KLは、基準流入空気量に対する、1気筒の1燃焼サイクル当たりの流入空気量の比である。ちなみに、基準流入空気量は、回転速度NEに応じて可変設定される量としてもよい。 Specifically, the CPU 32 variably sets the injection amount correction request value α based on the rotation speed NE and the load factor KL that define the operating point of the internal combustion engine 10 . Here, the load factor KL is a parameter indicating the amount of air charged into the combustion chamber 16, and is calculated by the CPU 32 based on the intake air amount Ga. The load factor KL is the ratio of the inflow air amount per cylinder per combustion cycle to the reference inflow air amount. Incidentally, the reference inflow air amount may be set variably according to the rotation speed NE.

そして、CPU32は、燃料噴射の対象となる気筒がリッチ燃焼気筒であるか否かを判定する(S30)。CPU32は、リッチ燃焼気筒であると判定する場合(S30:YES)、噴射量指令値Q*に、「Qd・(1+α)」を代入し(S32)、S26の処理に移行する。これに対し、CPU32は、リーン燃焼気筒であると判定する場合(S30:NO)、噴射量指令値Q*に、「Qd・{1-(α/3)}」を代入し(S34)、S26の処理に移行する。 Then, the CPU 32 determines whether or not the cylinder targeted for fuel injection is a rich combustion cylinder (S30). When the CPU 32 determines that it is a rich combustion cylinder (S30: YES), it substitutes "Qd·(1+α)" for the injection amount command value Q* (S32), and proceeds to the process of S26. On the other hand, if the CPU 32 determines that it is a lean combustion cylinder (S30: NO), it substitutes "Qd·{1−(α/3)}" into the injection amount command value Q* (S34), The process proceeds to S26.

なお、CPU32は、S26の処理が完了する場合には、図2に示す一連の処理を一旦終了する。
以下、本実施形態の作用および効果について説明する。
It should be noted that the CPU 32 temporarily terminates the series of processes shown in FIG. 2 when the process of S26 is completed.
The operation and effects of this embodiment will be described below.

CPU32は、三元触媒24の昇温要求が生じると、ディザ制御を実行する。この場合、リッチ燃焼気筒の排気成分とリーン燃焼気筒の排気成分とが異なることから、空燃比センサ40によって検出される空燃比Afが、ディザ制御を実行していない場合よりも大きく変動することがある。そしてその場合、回転速度NEなどが変化した際、空燃比フィードバック制御の制御周期と、ディザに起因した空燃比Afの変動等が干渉し、フィードバック制御が共振、発散に陥り、空燃比制御の制御性が低下するおそれがある。そこで、本実施形態では、ディザ制御を実行する場合、フィードバック制御の比例ゲインKpを、ディザ制御が実行されていない場合よりも小さい値とする。これにより、比例ゲインKpを小さくしない場合と比較して、フィードバック制御が発散しにくくなることから、空燃比制御の制御性の低下を抑制できる。 The CPU 32 executes dither control when a temperature increase request for the three-way catalyst 24 is generated. In this case, since the exhaust components of the rich burn cylinder and the exhaust components of the lean burn cylinder are different, the air-fuel ratio Af detected by the air-fuel ratio sensor 40 may fluctuate more than when the dither control is not executed. be. In that case, when the rotation speed NE changes, the control period of the air-fuel ratio feedback control and the fluctuation of the air-fuel ratio Af due to dither interfere with each other, and the feedback control falls into resonance and divergence, and the control of the air-fuel ratio control performance may decrease. Therefore, in this embodiment, when dither control is executed, the proportional gain Kp of feedback control is set to a smaller value than when dither control is not executed. As a result, compared to the case where the proportional gain Kp is not reduced, the feedback control is less likely to diverge, and thus a decrease in the controllability of the air-fuel ratio control can be suppressed.

ちなみに、上記実施形態では、空燃比センサ40を、気筒#1~#4のそれぞれが排出する排気が合流した部分の排気成分を感知するものとしたが、これに代えて、合流した部分よりも上流側において、気筒毎にその排出した排気成分を感知する空燃比センサを設けることも考えられる。この場合、それぞれの空燃比センサが検出する空燃比をその気筒の目標値にフィードバック制御するなら、フィードバック制御が共振、発散に陥ることを抑制することが可能となる。ただしその場合、制御が煩雑となる。 Incidentally, in the above embodiment, the air-fuel ratio sensor 40 senses the exhaust components in the portion where the exhaust gases emitted from the cylinders #1 to #4 are merged. On the upstream side, it is conceivable to provide an air-fuel ratio sensor for sensing the components of the exhaust gas discharged from each cylinder. In this case, if the air-fuel ratio detected by each air-fuel ratio sensor is feedback-controlled to the target value of the cylinder, it is possible to prevent the feedback control from falling into resonance and divergence. However, in that case, the control becomes complicated.

<対応関係>
上記実施形態における事項と、上記「課題を解決するための手段」の欄に記載した事項との対応関係は、次の通りである。排気浄化装置は、三元触媒24に対応し、ディザ制御処理は、S26~S34の処理に対応し、フィードバック処理は、S18,S20の処理に対応し、低減処理は、S12~S16の処理に対応する。
<Correspondence>
Correspondence relationships between the items in the above embodiment and the items described in the "Means for Solving the Problems" column are as follows. The exhaust purification device corresponds to the three-way catalyst 24, the dither control process corresponds to the processes of S26 to S34, the feedback process corresponds to the processes of S18 and S20, and the reduction process corresponds to the processes of S12 to S16. handle.

<その他の実施形態>
本実施形態は、以下のように変更して実施することができる。本実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Other embodiments>
This embodiment can be implemented with the following modifications. This embodiment and the following modifications can be implemented in combination with each other within a technically consistent range.

・上記実施形態は、ディザ制御が実行される場合に実行されない場合と比較して、比例ゲインKpを小さい値としたが、これに限らない。たとえば比例ゲインKpに加えて、積分ゲインKiを小さい値としてもよく、またたとえば、比例ゲインKpに加えて微分ゲインKdを小さい値としてもよく、さらにたとえば、比例ゲインKpに加えて積分ゲインKiおよび微分ゲインKdを小さい値としてもよい。また、比例ゲインKpを小さい値とすることも必須ではなく、たとえば積分ゲインKiのみを小さい値としたり、微分ゲインKdのみを小さい値としたりしてもよい。なお、補正比率δを、比例要素、積分要素および微分要素の各出力値の和とすることも必須ではなく、たとえば比例要素および積分要素の出力値の和であってもよく、またたとえば比例要素および微分要素の和であってもよく、またたとえば比例要素の出力値としてもよい。また、たとえば積分要素および微分要素の和であってもよい。 In the above embodiment, the proportional gain Kp is set to a smaller value when dither control is performed than when it is not performed, but the present invention is not limited to this. For example, in addition to the proportional gain Kp, the integral gain Ki may be set to a small value.For example, in addition to the proportional gain Kp, the differential gain Kd may be set to a small value.Further, in addition to the proportional gain Kp, the integral gain Ki and Differential gain Kd may be set to a small value. It is also not essential to set the proportional gain Kp to a small value. For example, only the integral gain Ki may be set to a small value, or only the differential gain Kd may be set to a small value. It should be noted that it is not essential that the correction ratio δ is the sum of the output values of the proportional element, the integral element and the differential element. and the sum of the differential elements, or, for example, the output value of the proportional element. Alternatively, for example, it may be the sum of an integral element and a differential element.

・上記実施形態では、空燃比センサ40によって検出される空燃比Afが、空燃比センサ40の出力値自体であるのか否かについて、特に記載しなかったが、たとえば出力値にローパスフィルタ処理を施した値を空燃比Afとしてもよい。これは、たとえば、今回の出力値AOUT(n)、前回の空燃比Af(n-1)、および「1」よりも大きい数Nを用いて、今回の空燃比Af(n)を、前回の空燃比Af(n-1)に、「{AOUT(n)-Af(n-1)}/N」を加算した値とすることにより実現できる。この場合であっても、たとえば気筒毎の空燃比の変動をある程度は検知可能な時定数を設定する場合には、空燃比Afがディザ制御に起因して変動するために、フィードバック制御が不安定となるおそれがあるため、フィードバック処理のゲインを小さくすることが有効である。また、噴射量補正要求値αを大きくするほど、ローパスフィルタ処理によって空燃比Afからディザ制御による変動を除きにくくなるため、噴射量補正要求値αが大きい場合にもフィードバック制御が不安定となるおそれがあるため、フィードバック処理のゲインを小さくすることが有効である。 In the above embodiment, whether or not the air-fuel ratio Af detected by the air-fuel ratio sensor 40 is the output value itself of the air-fuel ratio sensor 40 was not specifically described. The resulting value may be used as the air-fuel ratio Af. For example, using the current output value AOUT(n), the previous air-fuel ratio Af(n-1), and a number N larger than "1", the current air-fuel ratio Af(n) is It can be realized by adding "{AOUT(n)-Af(n-1)}/N" to the air-fuel ratio Af(n-1). Even in this case, for example, when setting a time constant that allows detection of air-fuel ratio fluctuations for each cylinder to some extent, the air-fuel ratio Af fluctuates due to dither control, and feedback control becomes unstable. Therefore, it is effective to reduce the gain of feedback processing. In addition, as the injection amount correction request value α is increased, it becomes more difficult to remove fluctuations due to dither control from the air-fuel ratio Af by low-pass filter processing, so feedback control may become unstable even when the injection amount correction request value α is large. Therefore, it is effective to reduce the gain of feedback processing.

・内燃機関としては、4気筒の内燃機関に限らない。また、燃料噴射弁としては、燃焼室16に燃料を噴射するものに限らず、吸気通路12に燃料を噴射するものであってもよい。 - The internal combustion engine is not limited to a four-cylinder internal combustion engine. Further, the fuel injection valve is not limited to one that injects fuel into the combustion chamber 16 , and may be one that injects fuel into the intake passage 12 .

10…内燃機関、12…吸気通路、14…過給機、16…燃焼室、18…燃料噴射弁、20…点火装置、22…排気通路、24…三元触媒、30…制御装置、32…CPU、34…ROM、36…RAM、40…空燃比センサ、44…クランク角センサ、46…エアフローメータ。 Reference Signs List 10 Internal combustion engine 12 Intake passage 14 Supercharger 16 Combustion chamber 18 Fuel injection valve 20 Ignition device 22 Exhaust passage 24 Three-way catalyst 30 Control device 32 CPU, 34 -- ROM, 36 -- RAM, 40 -- air-fuel ratio sensor, 44 -- crank angle sensor, 46 -- air flow meter.

Claims (1)

複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とし、
前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、
前記排気浄化装置の上流側に設けられた空燃比センサによって検出される空燃比を目標値にフィードバック制御すべく前記燃料噴射弁から噴射される噴射量を補正するフィードバック処理と、
前記ディザ制御処理が実行されている場合、実行されていない場合よりも前記フィードバック処理のゲインを小さくする低減処理と、を実行する内燃機関の制御装置。
Controlling an internal combustion engine comprising an exhaust purification device for purifying exhaust gas emitted from a plurality of cylinders and a fuel injection valve provided for each of the plurality of cylinders,
Some of the plurality of cylinders are rich combustion cylinders in which the air-fuel ratio is richer than the stoichiometric air-fuel ratio, and cylinders other than the some of the plurality of cylinders have an air-fuel ratio. a dither control process for operating the fuel injection valve to create a lean combustion cylinder in which is leaner than the stoichiometric air-fuel ratio;
A feedback process for correcting the injection amount injected from the fuel injection valve to feedback-control the air-fuel ratio detected by an air-fuel ratio sensor provided upstream of the exhaust purification device to a target value;
and a control device for an internal combustion engine that performs a reduction process for making the gain of the feedback process smaller when the dither control process is being performed than when the dither control process is not being performed.
JP2017215925A 2017-11-08 2017-11-08 Control device for internal combustion engine Active JP7196391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017215925A JP7196391B2 (en) 2017-11-08 2017-11-08 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215925A JP7196391B2 (en) 2017-11-08 2017-11-08 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2019085948A JP2019085948A (en) 2019-06-06
JP7196391B2 true JP7196391B2 (en) 2022-12-27

Family

ID=66762631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215925A Active JP7196391B2 (en) 2017-11-08 2017-11-08 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP7196391B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428151B2 (en) 2021-01-28 2024-02-06 トヨタ自動車株式会社 Internal combustion engine control device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271691A (en) 2000-03-27 2001-10-05 Mazda Motor Corp Exhaust emission control device for engine
JP2002256934A (en) 2001-02-27 2002-09-11 Mazda Motor Corp Exhaust emission control device of engine
JP2004076668A (en) 2002-08-20 2004-03-11 Toyota Motor Corp Control unit for internal combustion engine
JP2004092513A (en) 2002-08-30 2004-03-25 Toyota Motor Corp Combustion control device for internal combustion engine
JP2008095542A (en) 2006-10-06 2008-04-24 Toyota Motor Corp Control system of internal combustion engine
JP2012087673A (en) 2010-10-19 2012-05-10 Toyota Motor Corp Control device of internal combustion engine
US20160265467A1 (en) 2015-03-12 2016-09-15 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP6229308B2 (en) 2013-05-23 2017-11-15 住友電気工業株式会社 Regeneration rate estimation device, route search system, and computer program
JP7166934B2 (en) 2017-02-03 2022-11-08 株式会社半導体エネルギー研究所 semiconductor equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533705A (en) * 1991-07-31 1993-02-09 Nippondenso Co Ltd Control apparatus for internal combustion engine
JPH06229308A (en) * 1993-01-29 1994-08-16 Mazda Motor Corp Air-fuel ratio controller of engine
JP3735868B2 (en) * 1993-12-14 2006-01-18 マツダ株式会社 Engine air-fuel ratio control device
JP3564847B2 (en) * 1996-02-15 2004-09-15 日産自動車株式会社 Engine exhaust purification device
US6651422B1 (en) * 1998-08-24 2003-11-25 Legare Joseph E. Catalyst efficiency detection and heating method using cyclic fuel control
KR20040046822A (en) * 2002-11-28 2004-06-05 현대자동차주식회사 A method for air fuel raio control of go with sustenance on vehicle
JP2009002170A (en) * 2007-06-19 2009-01-08 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271691A (en) 2000-03-27 2001-10-05 Mazda Motor Corp Exhaust emission control device for engine
JP2002256934A (en) 2001-02-27 2002-09-11 Mazda Motor Corp Exhaust emission control device of engine
JP2004076668A (en) 2002-08-20 2004-03-11 Toyota Motor Corp Control unit for internal combustion engine
JP2004092513A (en) 2002-08-30 2004-03-25 Toyota Motor Corp Combustion control device for internal combustion engine
JP2008095542A (en) 2006-10-06 2008-04-24 Toyota Motor Corp Control system of internal combustion engine
JP2012087673A (en) 2010-10-19 2012-05-10 Toyota Motor Corp Control device of internal combustion engine
JP6229308B2 (en) 2013-05-23 2017-11-15 住友電気工業株式会社 Regeneration rate estimation device, route search system, and computer program
US20160265467A1 (en) 2015-03-12 2016-09-15 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP2016169665A (en) 2015-03-12 2016-09-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP7166934B2 (en) 2017-02-03 2022-11-08 株式会社半導体エネルギー研究所 semiconductor equipment

Also Published As

Publication number Publication date
JP2019085948A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6870560B2 (en) Internal combustion engine control device
US10550788B2 (en) Controller and control method for internal combustion engine
JP6844488B2 (en) Internal combustion engine control device
CN108252815B (en) Control device for internal combustion engine
JP6915440B2 (en) Internal combustion engine control device
JP2019060302A (en) Internal combustion engine control device
JP7196391B2 (en) Control device for internal combustion engine
JP6866827B2 (en) Internal combustion engine control device
JP2019100296A (en) Control device of internal combustion engine
JP6737209B2 (en) Control device for internal combustion engine
CN109751146B (en) Control device and control method for internal combustion engine
CN109386391B (en) Control device and control method for internal combustion engine
JP6965614B2 (en) Internal combustion engine control device
US10823095B2 (en) Controller and control method for internal combustion engine
JP6879115B2 (en) Internal combustion engine control device
JP6911678B2 (en) Internal combustion engine control device
JP6881247B2 (en) Internal combustion engine control device
JP6915490B2 (en) Internal combustion engine control device
JP7159774B2 (en) Control device for internal combustion engine
JP2018141382A (en) Control device of internal combustion engine
JP2019011730A (en) Control device of internal combustion engine
JP2019070345A (en) Engine control device
JP2019039308A (en) Control device of internal combustion engine
JP2019031960A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220922

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R151 Written notification of patent or utility model registration

Ref document number: 7196391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151