JP2019083220A - Solar battery - Google Patents

Solar battery Download PDF

Info

Publication number
JP2019083220A
JP2019083220A JP2016052540A JP2016052540A JP2019083220A JP 2019083220 A JP2019083220 A JP 2019083220A JP 2016052540 A JP2016052540 A JP 2016052540A JP 2016052540 A JP2016052540 A JP 2016052540A JP 2019083220 A JP2019083220 A JP 2019083220A
Authority
JP
Japan
Prior art keywords
type
crystalline
layer
solar cell
superlattice structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016052540A
Other languages
Japanese (ja)
Inventor
繁 山田
Shigeru Yamada
繁 山田
幸美 市川
Yukimi Ichikawa
幸美 市川
政和 平井
Masakazu Hirai
政和 平井
修平 吉葉
Shuhei Yoshiba
修平 吉葉
保聡 屋敷
Yasuaki Yashiki
保聡 屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2016052540A priority Critical patent/JP2019083220A/en
Priority to PCT/JP2017/006995 priority patent/WO2017159281A1/en
Publication of JP2019083220A publication Critical patent/JP2019083220A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

To provide a solar battery with a high photoelectric conversion efficiency by increasing an internal quantum efficiency.SOLUTION: A solar battery comprises a structure part having a superlattice structure in which a crystalline Si layer 101 as a substantially intrinsic semiconductor layer and a SiOlayer 102, alternately laminated on an insulation substrate 100 having an insulating front surface. A first side surface of the superlattice structure is a p-type superlattice structure 110p in which a p-type crystalline Si layer and the SiOlayer are alternately laminated. A second side surface opposite to the first side surface is an n-type superlattice structure 110n in which an n-type crystalline Si and the SiOlayer are alternately laminated. The p-type crystalline Si layer and the crystalline Si layer as the intrinsic semiconductor layer are pi-bonded, and the n-type crystalline Si layer and the crystalline Si layer as the intrinsic semiconductor layer are ni-bonded. Thus, loss of carriers distributed is remarkably suppressed, and a solar battery with a photoelectric conversion efficiency can be obtained by increasing an internal quantum efficiency.SELECTED DRAWING: Figure 2

Description

本発明は、太陽電池技術に関し、より詳細には、量子サイズ効果を利用した光電変換効率の高いシリコン太陽電池の技術に関する。   The present invention relates to solar cell technology, and more particularly, to the technology of silicon solar cells with high photoelectric conversion efficiency utilizing quantum size effect.

近年の環境保全への社会的関心が高まるにつれ、化石燃料に代替するクリーンエネルギーの技術開発の重要性は益々高くなってきている。このような社会背景の下、太陽電池は、自然エネルギーを利用した電力用デバイスとして普及してきたが、太陽電池が主要なエネルギー供給源として利用されるようになるためには、更なるコスト低減と光電変換効率の向上が求められる。   As social concern for environmental protection has increased in recent years, the importance of technological development of clean energy alternative to fossil fuels is becoming increasingly important. Under such a social background, solar cells have been widely used as power devices utilizing natural energy, but in order to be used as a major energy supply source, solar cells are further reduced in cost and Improvement of photoelectric conversion efficiency is required.

これまで、太陽電池の構造として種々のものが提案されてきているが、例えば特許文献1(特開2014−27119号公報)には、光吸収層を、例えばシリコンから成る半導体層と、この半導体層よりバンドギャップの大きな材料(例えば酸化シリコン)からなる障壁層とを交互に積層した超格子構造とした態様のものが開示されている。   Until now, various structures have been proposed as the structure of a solar cell. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2014-27119) includes a light absorption layer, a semiconductor layer made of, for example, silicon, and this semiconductor A superlattice structure is disclosed in which barrier layers made of a material having a band gap larger than that of the layer (for example, silicon oxide) are alternately stacked.

特開2014−27119号公報JP, 2014-27119, A

図1は、上述の超格子構造を備える太陽電池において、光生成したキャリア(電子および正孔)の流れを概念的に説明するための図である。この図に示した例では、n型のSi基板200の主面上に、結晶性のSi層201とSiO2層202が交互に複数積層された超格子構造体210が設けられており、その上面に、p型Si層203と透明導電膜層204と表面電極205が順次形成されている。この太陽電池に光が入射すると、超格子構造体210を構成するSi層201中で電子206と正孔207が生成し、電子206はn型Si基板200側へ、正孔207はp型Si層203側へと、SiO2層202を横切りながら縦方向に拡散することにより電流が流れることになる。 FIG. 1 is a view for conceptually explaining the flow of photogenerated carriers (electrons and holes) in a solar cell provided with the above-described superlattice structure. In the example shown in this figure, a superlattice structure 210 in which a plurality of crystalline Si layers 201 and SiO 2 layers 202 are alternately stacked is provided on the main surface of an n-type Si substrate 200. The p-type Si layer 203, the transparent conductive film layer 204, and the surface electrode 205 are sequentially formed on the top surface. When light enters this solar cell, electrons 206 and holes 207 are generated in the Si layer 201 constituting the superlattice structure 210, and the electrons 206 are directed to the n-type Si substrate 200 side, and the holes 207 are p-type Si. A current flows by diffusing in the vertical direction while crossing the SiO 2 layer 202 to the layer 203 side.

しかし、このような電流は、キャリアがSiO2層202が有する高いエネルギー障壁をトンネル効果により横切ること(透過する)で生じるものであるため、SiO2層202の厚みを最適化してその厚みを高い精度で制御することが必要になるだけでなく、拡散中のキャリアのロスを招き、内部量子効率を高めて高い光電変換効率の太陽電池を得るという観点からは望ましくない。加えて、Si層201を結晶化させるために行う比較的高温でのアニールに伴い、n型Si基板からドーパント(この場合はドナーであるPなど)が不可避的に拡散して、n側でのコンタクト形成が設計どおりに行えないという懸念もある。 However, such current, since carriers is caused by traversing the tunnel effect a high energy barrier with the SiO 2 layer 202 (transmitting), a high thickness thereof by optimizing the thickness of the SiO 2 layer 202 It is not only necessary to control with accuracy, but it is not desirable from the viewpoint of increasing the internal quantum efficiency and obtaining a solar cell with high photoelectric conversion efficiency, resulting in loss of carriers during diffusion. In addition, with annealing at a relatively high temperature performed to crystallize the Si layer 201, a dopant (in this case, P which is a donor in this case) is inevitably diffused from the n-type Si substrate, There is also a concern that contact formation can not be performed as designed.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、光生成したキャリアを効率的に電流に変換して内部量子効率を高めることにより高い光電変換効率の太陽電池を提供すること、また、高温でのアニールに伴い不可避的に生じるドーパントの拡散が生じてもコンタクト形成を設計どおりに行いやすい太陽電池を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to convert photogenerated carriers efficiently into a current to enhance internal quantum efficiency, thereby achieving high photoelectric conversion efficiency. It is an object of the present invention to provide a solar cell, and to provide a solar cell which can be easily subjected to contact formation as designed even if dopant diffusion which inevitably occurs with annealing at high temperature occurs.

上述の課題を解決するために、本発明に係る太陽電池は、表面が絶縁性の基板上に、結晶性Si層とSiO2層が交互に複数積層された超格子構造体を有する構造部を備え、前記結晶性Si層は実質的に真性半導体層であり、前記超格子構造体の第1の側面はp型の結晶性Si層とSiO2層が交互に複数積層されたp型超格子構造とされるとともに、前記第1の側面に対向する第2の側面はn型の結晶性Si層とSiO2層が交互に複数積層されたn型超格子構造とされており、前記p型の結晶性Si層と前記真性の結晶性Si層がpi接合するとともに、前記n型の結晶性Si層と前記真性の結晶性Si層がni接合している、ことを特徴とする。 In order to solve the above-mentioned subject, the solar cell concerning the present invention has a structure part which has a superlattice structure where a crystalline Si layer and a plurality of SiO 2 layers are alternately laminated in a plurality on a substrate whose surface is insulating. The crystalline Si layer is substantially an intrinsic semiconductor layer, and the first side surface of the superlattice structure is a p-type superlattice in which a plurality of p-type crystalline Si layers and SiO 2 layers are alternately stacked. The second side opposite to the first side has a n-type superlattice structure in which a plurality of n-type crystalline Si layers and SiO 2 layers are alternately stacked. The crystalline Si layer and the intrinsic crystalline Si layer form a pi junction, and the n-type crystalline Si layer and the intrinsic crystalline Si layer form an ni junction.

ある態様では、前記基板上に、前記超格子構造体が相互に離間して複数形成されている。   In one aspect, a plurality of the superlattice structures are formed apart from each other on the substrate.

また、ある態様では、前記複数の超格子構造体の隣接する超格子構造体は、前記p型超格子構造同士が対向するとともに、前記n型超格子構造同士が対向して配置されている。   In one aspect, adjacent superlattice structures of the plurality of superlattice structures are arranged such that the p-type superlattice structures face each other and the n-type superlattice structures face each other.

また、ある態様では、前記複数の超格子構造体の隣接する超格子構造体は、前記p型超格子構造と前記n型超格子構造同士が対向して配置されている。   In one aspect, adjacent superlattice structures of the plurality of superlattice structures are arranged such that the p-type superlattice structure and the n-type superlattice structure face each other.

さらに、ある態様では、前記超格子構造体が相互に離間する領域に、p型電極もしくはn型電極が形成されている。   Furthermore, in one aspect, a p-type electrode or an n-type electrode is formed in a region where the superlattice structures are separated from each other.

また、好ましい態様では、前記超格子構造体は、前記p型超格子構造および前記n型超格子構造が形成されている側面に傾斜を有するメサ形状を有している。   In a preferred embodiment, the superlattice structure has a mesa shape having a slope on the side surface on which the p-type superlattice structure and the n-type superlattice structure are formed.

例えば、前記p型の結晶性Si層中のアクセプタおよび前記n型の結晶性Si層中のドナーは、イオン注入された不純物である。   For example, the acceptor in the p-type crystalline Si layer and the donor in the n-type crystalline Si layer are ion-implanted impurities.

好ましくは、前記結晶性Si層の厚みは5nm以下である。   Preferably, the thickness of the crystalline Si layer is 5 nm or less.

また、好ましくは、前記基板は透光性基板である。   In addition, preferably, the substrate is a translucent substrate.

ある態様では、前記超格子構造体を構成するSiO2層の厚みは受光側ほど厚い。 In one aspect, the thickness of the SiO 2 layer constituting the superlattice structure is thicker toward the light receiving side.

また、ある態様では、前記超格子構造体の前記第1の側面と前記第2の側面との距離は10μm以下である。   In one aspect, the distance between the first side surface and the second side surface of the superlattice structure is 10 μm or less.

さらに、ある態様では、前記超格子構造体の中央領域に開口部が設けられている。   Furthermore, in one aspect, an opening is provided in a central region of the superlattice structure.

ある態様では、前記超格子構造体が相互に離間する領域に形成されたp型電極およびn型電極を直列接続する電極パターンを備えている。   In one aspect, the superlattice structure includes an electrode pattern formed by connecting in series a p-type electrode and an n-type electrode formed in an area separated from each other.

また、別の態様では、前記超格子構造体が相互に離間する領域に形成されたp型電極およびn型電極を並列接続する電極パターンを備えている。   In another aspect, the superlattice structure is provided with an electrode pattern connecting in parallel a p-type electrode and an n-type electrode formed in the mutually spaced area.

本発明の太陽電池は、光入射側に設けられたトップセルと該トップセルの下方に設けられたボトムセルが積層されたタンデム型の太陽電池であって、前記トップセルは上述した構造部を備え、前記ボトムセルは結晶性Siからなり、前記トップセルの表面には受光面電極が、前記ボトムセルの裏面には裏面電極が設けられている態様とすることもできる。   A solar cell according to the present invention is a tandem solar cell in which a top cell provided on the light incident side and a bottom cell provided below the top cell are stacked, and the top cell includes the above-described structure. The bottom cell may be made of crystalline Si, a light receiving surface electrode may be provided on the surface of the top cell, and a back surface electrode may be provided on the back surface of the bottom cell.

本発明に係る太陽電池では、光生成したキャリアが結晶性Si層/SiO2層からなる超格子構造体中を拡散する際にSiO2層が有する高いエネルギー障壁を横切る必要がないため、SiO2層の厚みに対する制約が緩和されるとともに、拡散中のキャリアのロスが顕著に抑制され、内部量子効率を高めて高い光電変換効率の太陽電池を得ることが可能となる。 In the solar cell according to the present invention, since it is not necessary to cross the high energy barrier of the SiO 2 layer when the photogenerated carriers diffuse in the superlattice structure consisting of the crystalline Si layer / SiO 2 layer, SiO 2 While the restriction on the thickness of the layer is relaxed, the loss of carriers during diffusion is significantly suppressed, and the internal quantum efficiency can be enhanced to obtain a solar cell with high photoelectric conversion efficiency.

また、接合(pi接合およびni接合)を横方向に形成するため、Si層を結晶化させるための比較的高温でのアニールに伴い仮に基板からドーパントが不可避的に拡散しても、コンタクト形成は概ね設計どおりに行うことが可能である。   Also, in order to form junctions (pi junctions and ni junctions) in the lateral direction, even if the dopant is inevitably diffused from the substrate along with annealing at a relatively high temperature for crystallizing the Si layer, contact formation is It is generally possible to do as designed.

従来の超格子構造を備える太陽電池において、光生成したキャリア(電子および正孔)の流れを概念的に説明するための図である。In the solar cell provided with the conventional super lattice structure, it is a figure for demonstrating notionally the flow of the photogenerated carrier (electron and hole). 本発明に係る太陽電池の基本構造の概略を説明するための断面図である。It is a sectional view for explaining an outline of basic structure of a solar cell concerning the present invention. 表面が絶縁性の基板上に、本発明で採用する超格子構造体が相互に離間して複数形成されている態様の太陽電池の構造を概念的に説明するための図である。It is a figure for demonstrating notionally the structure of the solar cell of the aspect by which the superlattice structure employ | adopted by this invention mutually separates mutually, and is formed in multiple numbers on the board | substrate with an insulating surface. 隣接する複数の超格子構造体が、p型超格子構造同士が対向するとともにn型超格子構造同士が対向して配置されている態様の太陽電池の構造を概念的に説明するための図である。The figure for demonstrating notionally the structure of the solar cell of the aspect by which several adjacent superlattice structures are arrange | positioned with n-type superlattice structures facing each other while p-type superlattice structures face each other. is there. 超格子構造体が、p型超格子構造およびn型超格子構造が形成されている側面に傾斜を有するメサ形状を有している態様を説明するための図である。It is a figure for demonstrating the aspect which has a mesa shape in which the superlattice structure has a slope in the side in which a p-type superlattice structure and an n-type superlattice structure are formed. 超格子構造体の中央領域に開口部が設けられている構造例を説明するための図である。It is a figure for demonstrating the structural example in which the opening part is provided in the center area | region of a superlattice structure. 超格子構造体が相互に離間する領域に形成されたp型電極およびn型電極を並列接続する電極パターンを備えている構成例を説明するための図である。It is a figure for demonstrating the structural example provided with the electrode pattern which carries out the parallel connection of the p-type electrode and the n-type electrode which were formed in the area | region where a super lattice structure mutually separates. 図7Aに示した電極パターンを備える太陽電池の斜視図である。It is a perspective view of a solar cell provided with an electrode pattern shown in Drawing 7A. 超格子構造体が相互に離間する領域に形成されたp型電極およびn型電極を直列接続する電極パターンを備えている構成例を説明するための図である。It is a figure for demonstrating the structural example provided with the electrode pattern which connects in series the p-type electrode and the n-type electrode which were formed in the area | region where a super lattice structure mutually separates. 図8Aに示した電極パターンを備える太陽電池の斜視図である。It is a perspective view of a solar cell provided with an electrode pattern shown in Drawing 8A. 本発明に係る構造体を、タンデム型太陽電池に応用した例を説明するための図である。It is a figure for demonstrating the example which applied the structure which concerns on this invention to a tandem-type solar cell.

以下に、図面を参照して、本発明に係る太陽電池の構造について説明する。なお、以降の説明において、結晶性Si層は、単結晶Si層であっても多結晶Si層であってもよい。   The structure of the solar cell according to the present invention will be described below with reference to the drawings. In the following description, the crystalline Si layer may be a single crystal Si layer or a polycrystalline Si layer.

[基本構造の概略]
図2は、本発明に係る太陽電池の基本構造の概略を説明するための断面図である。この図に示した例では、表面が絶縁性の基板100の主面上に、結晶性のSi層101とSiO2層102が交互に複数積層されて超格子構造体を形成している。なお、結晶性Si層101は実質的に真性半導体である。この超格子構造体の第1の側面(この図では左側面)はp型の結晶性Si層とSiO2層が交互に複数積層されたp型超格子構造110pとされている。また、第1の側面に対向する第2の側面(この図では右側面)はn型の結晶性Si層とSiO2層が交互に複数積層されたn型超格子構造110nとされている。そして、p型超格子構造110pを構成するp型結晶性Si層と超格子構造体を構成する真性結晶性Si層はpi接合し、n型超格子構造110nを構成するn型結晶性Si層と超格子構造体を構成する真性結晶性Si層はni接合している。なお、p型超格子構造110pとn型超格子構造110nのそれぞれには、p型電極105pとn型電極105nが形成されており、図中に符号104で示したものは保護膜である。
[Outline of basic structure]
FIG. 2 is a cross-sectional view for explaining an outline of a basic structure of a solar cell according to the present invention. In the example shown in this figure, a plurality of crystalline Si layers 101 and SiO 2 layers 102 are alternately stacked on the main surface of a substrate 100 having an insulating surface to form a superlattice structure. Note that the crystalline Si layer 101 is substantially an intrinsic semiconductor. The first side surface (left side surface in this figure) of the superlattice structure is a p-type superlattice structure 110p in which a plurality of p-type crystalline Si layers and SiO 2 layers are alternately stacked. Further, a second side surface (right side surface in this figure) opposite to the first side surface is an n-type superlattice structure 110n in which a plurality of n-type crystalline Si layers and SiO 2 layers are alternately stacked. The p-type crystalline Si layer constituting the p-type superlattice structure 110p and the intrinsic crystalline Si layer constituting the superlattice structure form a pi junction, and an n-type crystalline Si layer constituting the n-type superlattice structure 110n And the intrinsic crystalline Si layer constituting the superlattice structure is a Ni junction. A p-type electrode 105p and an n-type electrode 105n are formed in each of the p-type superlattice structure 110p and the n-type superlattice structure 110n, and the one shown by reference numeral 104 in the figure is a protective film.

すなわち、本発明に係る太陽電池は、表面が絶縁性の基板上に、結晶性Si層とSiO2層が交互に複数積層された超格子構造体を有する構造部を備え、前記結晶性Si層は実質的に真性半導体層であり、前記超格子構造体の第1の側面はp型の結晶性Si層とSiO2層が交互に複数積層されたp型超格子構造とされるとともに、前記第1の側面に対向する第2の側面はn型の結晶性Si層とSiO2層が交互に複数積層されたn型超格子構造とされており、前記p型の結晶性Si層と前記真性の結晶性Si層がpi接合するとともに、前記n型の結晶性Si層と前記真性の結晶性Si層がni接合している構造を有している。 That is, the solar cell according to the present invention comprises a structural portion having a superlattice structure in which a plurality of crystalline Si layers and SiO 2 layers are alternately stacked on a substrate having an insulating surface, and the crystalline Si layer Is substantially an intrinsic semiconductor layer, and the first side surface of the superlattice structure has a p-type superlattice structure in which a plurality of p-type crystalline Si layers and SiO 2 layers are alternately stacked. The second side opposite to the first side has an n-type superlattice structure in which a plurality of n-type crystalline Si layers and SiO 2 layers are alternately stacked, and the p-type crystalline Si layer The intrinsic crystalline Si layer has a pi junction, and the n-type crystalline Si layer and the intrinsic crystalline Si layer have an ni junction.

この太陽電池に光が入射すると、超格子構造体を構成する真性結晶性Si層101中で電子106と正孔107が生成し、電子106はn型電極105n側へ、正孔107はp型電極105p側へと拡散することにより電流が流れることになる。つまり、この構成の太陽電池では、光生成したキャリアが結晶性Si層/SiO2層からなる超格子構造体中を拡散する際にSiO2層が有する高いエネルギー障壁を横切る必要がない。加えて、超格子構造体を構成するそれぞれの真性結晶性Si層101の面内では、電界の印加に関わらず、キャリアは局在することなく面内全体に広がる状態が維持される。このため、SiO2層の厚みに対する制約が緩和されるとともに、拡散中のキャリアのロスが顕著に抑制され、内部量子効率を高めて高い光電変換効率の太陽電池を得ることが可能となる。 When light enters this solar cell, electrons 106 and holes 107 are generated in the intrinsic crystalline Si layer 101 constituting the superlattice structure, and the electrons 106 are on the n-type electrode 105 n side, and the holes 107 are p-type. By diffusing toward the electrode 105p, current flows. That is, in the solar cell of this configuration, it is not necessary to cross the high energy barrier of the SiO 2 layer when the photogenerated carriers diffuse in the superlattice structure of the crystalline Si layer / SiO 2 layer. In addition, in the plane of each of the intrinsic crystalline Si layers 101 forming the superlattice structure, carriers are maintained in a state of being spread over the entire plane without being localized regardless of the application of the electric field. Therefore, the restriction on the thickness of the SiO 2 layer is alleviated, and the loss of carriers during diffusion is significantly suppressed, and it is possible to enhance the internal quantum efficiency and obtain a solar cell with high photoelectric conversion efficiency.

しかも、p型超格子構造110pを構成するp型結晶性Si層と超格子構造体を構成する真性結晶性Si層のpi接合、および、n型超格子構造110nを構成するn型結晶性Si層と超格子構造体を構成する真性結晶性Si層のni接合は、何れも超格子構造体の側面に形成されている。従来構造のものでは、超格子と基板との間でpi接合もしくはni接合を形成するためにドーパント不純物を含有する基板を用いる必要があったが、本発明では斯かる基板を用いる必要がなくなる。その結果、スパッタリング等の手法で成膜されたSi層を結晶化させるための比較的高温(例えば1000〜1100℃)でのアニールに伴う意図しない基板からのドーパントの不可逆的な拡散の問題を回避することができる。このため、本件発明の場合、コンタクト形成が概ね設計どおりに行うことが可能となる。   Moreover, the pi junction of the p-type crystalline Si layer constituting the p-type superlattice structure 110 p and the intrinsic crystalline Si layer constituting the superlattice structure, and the n-type crystalline Si constituting the n-type superlattice structure 110 n Both the layer and the ni junction of the intrinsic crystalline Si layer constituting the superlattice structure are formed on the side surface of the superlattice structure. In the conventional structure, it was necessary to use a substrate containing a dopant impurity to form a pi junction or an ni junction between the superlattice and the substrate, but in the present invention, it is not necessary to use such a substrate. As a result, the problem of irreversible diffusion of the dopant from the unintended substrate accompanying the annealing at a relatively high temperature (for example, 1000 to 1100 ° C.) for crystallizing the Si layer formed by sputtering or the like is avoided. can do. For this reason, in the case of the present invention, contact formation can be carried out generally as designed.

基板100はその表面が絶縁性であればよく、石英基板等の絶縁性基板はもとより、例えば、n型もしくはp型のSi基板上にSiO2等の絶縁膜を設けた基板などでもよい。なお、基板側を光入射面とする構造の太陽電池の場合には、基板は透光性基板である必要がある。また、基板側を光入射面とする構造の太陽電池の場合、超格子構造体の表面にZnO等の材料から成るテクスチャ層を設けて裏面(基板と反対側の面)での反射率を高めるようにしてもよい。 The substrate 100 may have an insulating surface, and may be an insulating substrate such as a quartz substrate, for example, an n-type or p-type Si substrate provided with an insulating film such as SiO 2 . In addition, in the case of the solar cell of the structure which makes a board | substrate side a light-incidence surface, a board | substrate needs to be a translucent board | substrate. In the case of a solar cell having a light incident surface on the substrate side, a texture layer made of a material such as ZnO is provided on the surface of the superlattice structure to increase the reflectance on the back surface (surface opposite to the substrate). You may do so.

上述のとおり、本発明に係る太陽電池では、p型超格子構造110pを構成するp型結晶性Si層と超格子構造体を構成する真性結晶性Si層はpi接合し、n型超格子構造110nを構成するn型結晶性Si層と超格子構造体を構成する真性結晶性Si層はni接合している。つまり、この太陽電池は、p型超格子/i型超格子/n型超格子の構造を有し、pi接合とni接合はSi層/SiO2層が複数積層された超格子のみで構成されている。これは、pi接合領域とni接合領域に1.7eV程度の広いバンドギャップ(すなわち、超格子構造体のバンドギャップ)をもたせ、接合を形成したことに起因する開放電圧の低下を防ぐためである。 As described above, in the solar cell according to the present invention, the p-type crystalline Si layer constituting the p-type superlattice structure 110p and the intrinsic crystalline Si layer constituting the superlattice structure form a pi junction, and an n-type superlattice structure The n-type crystalline Si layer constituting 110 n and the intrinsic crystalline Si layer constituting the superlattice structure are in an n-junction. That is, this solar cell has a structure of p-type superlattice / i-type superlattice / n-type superlattice, and pi junction and ni junction are constituted only by superlattices in which a plurality of Si layers / SiO 2 layers are stacked. ing. This is to provide a wide band gap (that is, the band gap of the superlattice structure) of about 1.7 eV in the pi junction region and the ni junction region, and to prevent the decrease in open circuit voltage due to the formation of the junction. .

仮に、結晶性Si層とSiO2層が交互に複数積層された超格子構造体の対向する側面に、超格子構造を有さないp型およびn型のポリシリコン電極を形成してしまうと、これら接合領域のバンドギャップはポリシリコン電極のそれ(約1.1eV)となり、太陽電池の開放電圧はこの値に律則され、接合領域での開放電圧の低下を招く恐れがある。 Assuming that p-type and n-type polysilicon electrodes having no superlattice structure are formed on opposing sides of a superlattice structure in which a plurality of crystalline Si layers and SiO 2 layers are alternately stacked. The band gap of these junction regions is that of the polysilicon electrode (about 1.1 eV), and the open circuit voltage of the solar cell is limited by this value, which may lead to a drop in the open circuit voltage at the junction regions.

このようなpi接合およびni接合は、例えば、上記超格子構造体を形成した後に、その側面にp型不純物(アクセプター)ないしn型不純物(ドナー)をイオン注入することで形成する。   Such pi junctions and ni junctions are formed, for example, by ion implantation of p-type impurity (acceptor) or n-type impurity (donor) on the side surface after forming the superlattice structure.

量子サイズ効果によりバンドギャップを広げて開放電圧を高める効果を担保するためには、超格子構造体を構成する結晶性Si層の厚みを5nm以下に設計することが好ましい。また、超格子構造体を構成するSiO2層の厚みを制御すると超格子構造体の屈折率を変化させることができる。この原理を利用して、超格子構造体を構成するSiO2層の厚みが受光側(光入射面側)ほど厚くなるように設計し、光電変換効率を高めることも可能である。 In order to secure the effect of widening the band gap and increasing the open circuit voltage by the quantum size effect, it is preferable to design the thickness of the crystalline Si layer constituting the superlattice structure to 5 nm or less. In addition, the refractive index of the superlattice structure can be changed by controlling the thickness of the SiO 2 layer constituting the superlattice structure. It is also possible to design the thickness of the SiO 2 layer constituting the superlattice structure to be thicker toward the light receiving side (light incident surface side) by using this principle, and to enhance the photoelectric conversion efficiency.

[超格子構造体を複数有する構造の概略]
図2には、上述の超格子構造体がひとつのみ図示されているが、太陽電池として構成するに際しては、このような超格子構造体を隣接して複数設けるようにしてもよいことは勿論である。
[Outline of a structure having a plurality of superlattice structures]
Although only one superlattice structure described above is illustrated in FIG. 2, it goes without saying that a plurality of such superlattice structures may be provided adjacent to each other when configured as a solar cell. is there.

図3は、表面が絶縁性の基板100上に、上述した超格子構造体110が相互に離間して複数形成されている態様の太陽電池の構造を概念的に説明するための図である。   FIG. 3 is a view for conceptually explaining the structure of the solar cell in a mode in which a plurality of the superlattice structures 110 described above are formed separately from each other on the substrate 100 having an insulating surface.

なお、この図に示した態様では、互いに隣接する超格子構造体は、p型超格子構造110pとn型超格子構造110n同士が対向して配置され、超格子構造体が相互に離間する領域に、p型電極もしくはn型電極が形成されているが、図4に示したように、隣接する複数の超格子構造体110が、p型超格子構造110p同士が対向するとともにn型超格子構造110n同士が対向して配置されている態様としてもよい。   In the embodiment shown in this figure, the superlattice structures adjacent to each other are arranged such that the p-type superlattice structure 110p and the n-type superlattice structure 110n face each other, and the superlattice structures are separated from each other. A p-type electrode or an n-type electrode is formed, but as shown in FIG. 4, the adjacent superlattice structures 110 are n-type superlattices while the p-type superlattice structures 110p face each other. The structures 110 n may be arranged to face each other.

また、図5に示したように、超格子構造体110は、p型超格子構造110pおよびn型超格子構造110nが形成されている側面に傾斜を有するメサ形状を有している態様としてもよい。このようなメサ形状の超格子構造体110とした場合には、p型超格子構造110pおよびn型超格子構造110nをイオン注入法により形成する際の注入イオンの分布制御が容易になる等の利点がある。   In addition, as shown in FIG. 5, the superlattice structure 110 may have a mesa shape having a slope on the side on which the p-type superlattice structure 110 p and the n-type superlattice structure 110 n are formed. Good. In the case of such a mesa-shaped superlattice structure 110, distribution control of implanted ions becomes easy when forming the p-type superlattice structure 110p and the n-type superlattice structure 110n by ion implantation. There is an advantage.

さらに、図6に示したように、超格子構造体の中央領域に開口部108が設けられている構造としてもよい。このような、開口部108を設けておくと、超格子構造体を構成する結晶性Si層101中に比較的多くの欠陥が含まれているような場合に、水素処理化により当該欠陥を不活性化し易くなるという利点がある。超格子構造体の第1の側面(p型超格子構造110p形成面)と第2の側面(n型超格子構造110n形成面)との距離は10μm以下であることが好ましいが、上記開口部108の直径は例えば2μm程度とする。   Furthermore, as shown in FIG. 6, an opening 108 may be provided in the central region of the superlattice structure. When such an opening 108 is provided, if a relatively large number of defects are contained in the crystalline Si layer 101 constituting the superlattice structure, the defects are not removed by hydrogen treatment. It has the advantage of being easy to activate. The distance between the first side surface (p-type super lattice structure 110 p-forming surface) and the second side surface (n-type super lattice structure 110 n-forming surface) of the superlattice structure is preferably 10 μm or less. The diameter of 108 is, for example, about 2 μm.

[電極パターンのデザイン例]
超格子構造体を隣接して複数設けた構成の太陽電池において、超格子構造体を有するそれぞれの構造部に設けられたp型電極およびn型電極をどのように相互接続するかについての特別な制限はない。
[Design example of electrode pattern]
In a solar cell having a plurality of adjacent superlattice structures, a special method of interconnecting the p-type electrode and the n-type electrode provided in each structure having the superlattice structure is provided. There is no limit.

例えば図7Aに図示した一例のように、超格子構造体が相互に離間する領域に形成されたp型電極およびn型電極を並列接続する電極パターン109を備えている構成としてもよい。この場合の太陽電池10の斜視図を図8Aに示す。なお、図中の符号103はウォール形成部である。   For example, as shown in an example shown in FIG. 7A, the super lattice structure may be configured to include an electrode pattern 109 connecting in parallel a p-type electrode and an n-type electrode formed in the mutually separated region. A perspective view of the solar cell 10 in this case is shown in FIG. 8A. In addition, the code | symbol 103 in a figure is a wall formation part.

また、例えば図8Aに図示した一例のように、超格子構造体が相互に離間する領域に形成されたp型電極およびn型電極を直列接続する電極パターン109を備えている構成としてもよい。この場合の太陽電池10の斜視図を図8Bに示す。   For example, as in the example illustrated in FIG. 8A, an electrode pattern 109 may be provided in which a p-type electrode and an n-type electrode formed in a region where the superlattice structures are separated from each other are connected in series. A perspective view of the solar cell 10 in this case is shown in FIG. 8B.

[タンデム型太陽電池への応用]
上述した構造を有する太陽電池は、タンデム型の太陽電池とすることもできる。
[Application to tandem solar cells]
The solar cell having the above-described structure can also be a tandem solar cell.

図9は、本発明に係る構造体を、タンデム型太陽電池に応用した例を説明するための図で、符号10で示したものはトップセル、符号20で示したものは結晶性Siから成るボトムセルである。この図に示した例では、トップセルとして、図5に示した構造部を利用している。なお、この場合の基板は透光性を有するものであることが必要であることは言うまでもない。   FIG. 9 is a view for explaining an example in which the structure according to the present invention is applied to a tandem solar cell, in which reference numeral 10 is a top cell and reference numeral 20 is crystalline Si. It is a bottom cell. In the example shown in this figure, the structure shown in FIG. 5 is used as the top cell. It is needless to say that the substrate in this case needs to be translucent.

すなわち、この太陽電池は、光入射側に設けられたトップセルと該トップセルの下方に設けられたボトムセルが積層されたタンデム型の太陽電池であって、トップセルは上述した構造部を備え、ボトムセルは結晶性Siからなり、トップセル10の表面には受光面電極が、ボトムセル20の裏面には裏面電極が設けられている。   That is, this solar cell is a tandem solar cell in which a top cell provided on the light incident side and a bottom cell provided below the top cell are stacked, and the top cell includes the above-described structure, The bottom cell is made of crystalline Si, a light receiving surface electrode is provided on the surface of the top cell 10, and a back surface electrode is provided on the back surface of the bottom cell 20.

このように、本発明に係る太陽電池では、光生成したキャリアが結晶性Si層/SiO2層からなる超格子構造体中を拡散する際にSiO2層が有する高いエネルギー障壁を横切る必要がないため、SiO2層の厚みに対する制約が緩和されるとともに、拡散中のキャリアのロスが顕著に抑制され、内部量子効率を高めて高い光電変換効率の太陽電池を得ることが可能となる。 Thus, in the solar cell according to the present invention, it is not necessary to cross the high energy barrier of the SiO 2 layer when the photogenerated carriers diffuse through the crystalline Si layer / SiO 2 layer superlattice structure. Therefore, the restriction on the thickness of the SiO 2 layer is relaxed, and the loss of carriers during diffusion is significantly suppressed, and it is possible to increase the internal quantum efficiency and obtain a solar cell with high photoelectric conversion efficiency.

100 基板
101 結晶性Si層
102 SiO2
103 ウォール部
104 保護膜
105p p型電極
105n n型電極
106 電子
107 正孔
108 開口部
109 電極パターン
110p p型超格子構造
110n n型超格子構造
Reference Signs List 100 substrate 101 crystalline Si layer 102 SiO 2 layer 103 wall portion 104 protective film 105 p p-type electrode 105 n n-type electrode 106 electron 107 hole 108 opening 109 electrode pattern 110 p p-type superlattice structure 110n n-type superlattice structure

Claims (15)

表面が絶縁性の基板上に、結晶性Si層とSiO2層が交互に複数積層された超格子構造体を有する構造部を備え、
前記結晶性Si層は実質的に真性半導体層であり、
前記超格子構造体の第1の側面はp型の結晶性Si層とSiO2層が交互に複数積層されたp型超格子構造とされるとともに、前記第1の側面に対向する第2の側面はn型の結晶性Si層とSiO2層が交互に複数積層されたn型超格子構造とされており、
前記p型の結晶性Si層と前記真性の結晶性Si層がpi接合するとともに、前記n型の結晶性Si層と前記真性の結晶性Si層がni接合している、
ことを特徴とする太陽電池。
A structure portion having a superlattice structure in which a plurality of crystalline Si layers and SiO 2 layers are alternately stacked in a plurality on a substrate having an insulating surface;
The crystalline Si layer is substantially an intrinsic semiconductor layer,
The first side surface of the superlattice structure has a p-type superlattice structure in which a plurality of p-type crystalline Si layers and SiO 2 layers are alternately stacked, and a second side facing the first side surface is formed. The side surface has an n-type superlattice structure in which a plurality of n-type crystalline Si layers and SiO 2 layers are alternately stacked,
The p-type crystalline Si layer and the intrinsic crystalline Si layer form a pi junction, and the n-type crystalline Si layer and the intrinsic crystalline Si layer form an ni junction.
A solar cell characterized by
前記基板上に、前記超格子構造体が相互に離間して複数形成されている、請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein a plurality of the superlattice structures are formed apart from each other on the substrate. 前記複数の超格子構造体の隣接する超格子構造体は、前記p型超格子構造同士が対向するとともに、前記n型超格子構造同士が対向して配置されている、請求項2に記載の太陽電池。   The adjacent superlattice structures of the plurality of superlattice structures are arranged such that the p-type superlattice structures face each other and the n-type superlattice structures face each other. Solar cell. 前記複数の超格子構造体の隣接する超格子構造体は、前記p型超格子構造と前記n型超格子構造同士が対向して配置されている、請求項2に記載の太陽電池。   The solar cell according to claim 2, wherein adjacent superlattice structures of the plurality of superlattice structures are arranged such that the p-type superlattice structure and the n-type superlattice structure face each other. 前記超格子構造体が相互に離間する領域に、p型電極もしくはn型電極が形成されている、請求項2に記載の太陽電池。   The solar cell according to claim 2, wherein a p-type electrode or an n-type electrode is formed in a region where the superlattice structures are separated from each other. 前記超格子構造体は、前記p型超格子構造および前記n型超格子構造が形成されている側面に傾斜を有するメサ形状を有している、請求項1〜5の何れか1項に記載の太陽電池。   The superlattice structure according to any one of claims 1 to 5, wherein the superlattice structure has a mesa shape having a slope on a side surface on which the p-type superlattice structure and the n-type superlattice structure are formed. Solar cells. 前記p型の結晶性Si層中のアクセプタおよび前記n型の結晶性Si層中のドナーは、イオン注入された不純物である、請求項1〜6の何れか1項に記載の太陽電池。   The solar cell according to any one of claims 1 to 6, wherein the acceptor in the p-type crystalline Si layer and the donor in the n-type crystalline Si layer are ion-implanted impurities. 前記結晶性Si層の厚みは5nm以下である、請求項1〜7の何れか1項に記載の太陽電池。   The solar cell according to any one of claims 1 to 7, wherein the thickness of the crystalline Si layer is 5 nm or less. 前記基板は透光性基板である、請求項1〜8の何れか1項に記載の太陽電池。   The solar cell according to any one of claims 1 to 8, wherein the substrate is a translucent substrate. 前記超格子構造体を構成するSiO2層の厚みは受光側ほど厚い、請求項1〜9の何れか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 9, wherein the thickness of the SiO 2 layer constituting the superlattice structure is thicker toward the light receiving side. 前記超格子構造体の前記第1の側面と前記第2の側面との距離は10μm以下である、請求項1〜10の何れか1項に記載の太陽電池。   The solar cell according to any one of claims 1 to 10, wherein a distance between the first side surface and the second side surface of the super lattice structure is 10 μm or less. 前記超格子構造体の中央領域に開口部が設けられている、請求項1〜11の何れか1項に記載の太陽電池。   The solar cell according to any one of claims 1 to 11, wherein an opening is provided in a central region of the super lattice structure. 前記超格子構造体が相互に離間する領域に形成されたp型電極およびn型電極を直列接続する電極パターンを備えている、請求項5〜12の何れか1項に記載の太陽電池。   The solar cell according to any one of claims 5 to 12, further comprising an electrode pattern in which p-type electrodes and n-type electrodes formed in mutually spaced areas of the superlattice structure are connected in series. 前記超格子構造体が相互に離間する領域に形成されたp型電極およびn型電極を並列接続する電極パターンを備えている、請求項5〜12の何れか1項に記載の太陽電池。   The solar cell according to any one of claims 5 to 12, further comprising an electrode pattern connecting in parallel a p-type electrode and an n-type electrode formed in mutually spaced regions of the superlattice structure. 光入射側に設けられたトップセルと該トップセルの下方に設けられたボトムセルが積層されたタンデム型の太陽電池であって、
前記トップセルは請求項1〜14の何れか1項に記載の構造部を備え、
前記ボトムセルは結晶性Siからなり、
前記トップセルの表面には受光面電極が、前記ボトムセルの裏面には裏面電極が設けられている、
ことを特徴とする太陽電池。
It is a tandem solar cell in which a top cell provided on the light incident side and a bottom cell provided below the top cell are stacked,
The top cell comprises the structure according to any one of claims 1-14,
The bottom cell is made of crystalline Si,
A light receiving surface electrode is provided on the surface of the top cell, and a back surface electrode is provided on the back surface of the bottom cell.
A solar cell characterized by
JP2016052540A 2016-03-16 2016-03-16 Solar battery Pending JP2019083220A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016052540A JP2019083220A (en) 2016-03-16 2016-03-16 Solar battery
PCT/JP2017/006995 WO2017159281A1 (en) 2016-03-16 2017-02-24 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052540A JP2019083220A (en) 2016-03-16 2016-03-16 Solar battery

Publications (1)

Publication Number Publication Date
JP2019083220A true JP2019083220A (en) 2019-05-30

Family

ID=59850312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052540A Pending JP2019083220A (en) 2016-03-16 2016-03-16 Solar battery

Country Status (2)

Country Link
JP (1) JP2019083220A (en)
WO (1) WO2017159281A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195575A (en) * 1984-10-17 1986-05-14 Zenko Hirose High photo voltaic photo cell element using super grating structure
JPS6195576A (en) * 1984-10-17 1986-05-14 Zenko Hirose High efficiency high electromotive force photocell using hetero junction superlattice structure
US8829336B2 (en) * 2006-05-03 2014-09-09 Rochester Institute Of Technology Nanostructured quantum dots or dashes in photovoltaic devices and methods thereof
JP2010186915A (en) * 2009-02-13 2010-08-26 Panasonic Corp Solar cell
WO2010110888A1 (en) * 2009-03-23 2010-09-30 The Board Of Trustees Of The Leland Stanford Junior University Quantum confinement solar cell fabriacated by atomic layer deposition
JP5557721B2 (en) * 2010-12-10 2014-07-23 株式会社日立製作所 Manufacturing method of solar cell

Also Published As

Publication number Publication date
WO2017159281A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
US10903375B2 (en) Solar cell
JP6059173B2 (en) Solar cell
KR101889775B1 (en) Solar cell and method for manufacturing the smae
JP2015130527A (en) Solar battery and manufacturing method of the same
KR101699743B1 (en) Solar cell
JP2017135385A (en) Solar cell
JP2006173381A (en) Photoelectromotive force element
JP6188921B2 (en) Solar cell and method for manufacturing solar cell
WO2015098426A1 (en) Solar cell and method for manufacturing same
KR20160052271A (en) Solar cell
KR20120040016A (en) Substrate for solar cell and solar cell
KR20120086593A (en) Solar cell and the method of manufacturing the same
KR20140140200A (en) Solar cell and method for manufacturing the same
KR20120119807A (en) Solar cell
JP2023033940A (en) Solar battery cell and solar battery
JP2019083220A (en) Solar battery
KR101961370B1 (en) Solar cell
JP2013102073A (en) Bypass diode
KR101345506B1 (en) Back contact solar cell and method for fabricating the same
KR20140147977A (en) Solar cell
KR102110527B1 (en) Solar cell
KR101307204B1 (en) Solar cell and manufacturing method thereof
TWM559513U (en) Solar cell
KR20110017244A (en) Thin film solar cell and method of fabricating the same
TW201929243A (en) Solar cell