JP2019080476A - Ac-dc converter control device - Google Patents

Ac-dc converter control device Download PDF

Info

Publication number
JP2019080476A
JP2019080476A JP2017208024A JP2017208024A JP2019080476A JP 2019080476 A JP2019080476 A JP 2019080476A JP 2017208024 A JP2017208024 A JP 2017208024A JP 2017208024 A JP2017208024 A JP 2017208024A JP 2019080476 A JP2019080476 A JP 2019080476A
Authority
JP
Japan
Prior art keywords
synchronous generator
converter
virtual synchronous
output
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017208024A
Other languages
Japanese (ja)
Other versions
JP7052290B2 (en
Inventor
鈴木 健一
Kenichi Suzuki
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Holdings Inc
Priority to JP2017208024A priority Critical patent/JP7052290B2/en
Publication of JP2019080476A publication Critical patent/JP2019080476A/en
Application granted granted Critical
Publication of JP7052290B2 publication Critical patent/JP7052290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

To provide an AC-DC converter control device capable of simplifying the control circuit of an AC-DC converter, while restraining frequency change equally to synchronous generator.SOLUTION: A generator characteristic arithmetic section 19 for calculating the generator characteristics of a virtual synchronous generator has a rotor angular speed arithmetic part 21 for obtaining the rotor angular speed of the virtual synchronous generator on the basis of the torque command value and the output torque of the virtual synchronous generator and the inertia constant and the brake factor of the virtual synchronous generator, and a voltage command value arithmetic part 20 for calculating the voltage command value of an AC-DC converter so that the output power from an AC-DC converter 17 becomes the output command value of the virtual synchronous generator, on the basis of the internal induction voltage of the virtual synchronous generator calculated on the basis of the rotor angular speed and the internal impedance of the virtual synchronous generator, and an output current suppression part 32 changes the internal impedance of the virtual synchronous generator, so that the output current from the AC-DC converter does not exceed a current limit value when short circuit incident occurs in a power system.SELECTED DRAWING: Figure 1

Description

本発明は、同期発電機及び蓄電池が連系された電力系統に蓄電池の電力を充放電する交直変換器を制御する交直変換器制御装置に関する。   The present invention relates to an AC-DC converter control device that controls an AC-DC converter that charges and discharges the power of a storage battery to an electric power system in which a synchronous generator and a storage battery are linked.

電力系統は、従前においては同期発電機による発電システムで構成されていたが、近年は同期発電機による発電システムに替わり太陽光発電設備などの再生可能エネルギー電源も増加している。例えば、再生可能エネルギー電源である太陽光発電設備は電力系統の需要量に関係なく、発電電力を電力系統に供給するように運転されるので、電力系統には蓄電池が接続され、電力系統に余剰電力があるときは電力系統から蓄電池に充電し、電力系統の需要量が多いときは蓄電池から電力系統に放電するように運用されている。電力系統に太陽光発電設備が多くなると、相対的に電力系統に連系運転される同期発電機が少なくなる。   The power system was previously constituted by a power generation system by a synchronous generator, but in recent years, instead of the power generation system by a synchronous generator, renewable energy power sources such as solar power generation facilities are increasing. For example, since the photovoltaic power generation equipment, which is a renewable energy power supply, is operated to supply generated power to the power system regardless of the demand of the power system, a storage battery is connected to the power system, and surplus power system The battery is operated to charge the storage battery from the power system when power is available, and to discharge the storage battery to the power system when the demand of the power system is large. When the number of solar power generation facilities in the power system increases, the number of synchronous generators connected to the power system relatively decreases.

このような電力系統においては、電力系統の負荷の増減により、電力系統の周波数が変動した際には、同一系統に接続されている同期発電機がこの負荷の増減分を担うことになる。同期発電機は、電力系統の周波数変動を抑制する作用を潜在的に持っており、また、調速機が具備されているので、周波数が変動した際にはそれを抑制するように発電量が調整されることから周波数の安定化に寄与する。一方、太陽光発電設備は日射量一定の場合電力系統の負荷の変動に関係なく一定の電力を出力するので、電力系統の同期発電機が少ないと負荷急変時には同期発電機が持っていた慣性力が失われ負荷急変時の周波数の変化が大きくなる。   In such an electric power system, when the frequency of the electric power system fluctuates due to the increase and decrease of the load of the electric power system, the synchronous generator connected to the same system bears the increase and decrease of the load. The synchronous generator potentially has the function of suppressing the frequency fluctuation of the electric power system, and since the governor is equipped, the amount of power generation can be reduced so as to suppress the frequency fluctuation. The adjustment contributes to the stabilization of the frequency. On the other hand, since the solar power generation facility outputs constant electric power regardless of the load fluctuation of the electric power system when the amount of solar radiation is constant, if the synchronous generator of the electric power system is small, the inertia force that the synchronous electric generator had at the time of sudden load change Is lost and the change in frequency at the time of sudden load change becomes large.

そこで、蓄電池の出力特性を電力系統に連系される同期発電機と同等の特性になるように蓄電池の制御に同期化力または慣性力を擬似的に持たせ、同期発電機と同等に周波数の変動を抑制するようにしたもの(以降、仮想同期発電機という)がある(例えば、特許文献1参照)。   Therefore, the control of the storage battery is simulated to have a synchronization force or an inertial force so that the output characteristics of the storage battery have the same characteristics as those of a synchronous generator linked to the electric power system, and the frequency of the same as that of the synchronous generator. There is a device (hereinafter, referred to as a virtual synchronous generator) in which the fluctuation is suppressed (see, for example, Patent Document 1).

特開2013−162623号公報JP, 2013-162623, A

しかし、特許文献1のものは、蓄電池を制御する電力変換装置の電力変換制御部は、同期発電機をモデル化した発電機特性演算部から出力される周波数変動抑制発電量を含んだ仮想同期発電機の出力電流値IGrefを入力し、蓄電池から電力系統に供給される出力電流が仮想同期発電機の出力電流値IGrefとなるように蓄電池を制御するので、蓄電池用電力変換装置は等価的には電流源としての振る舞いを示すため、例えば交流回路にコンデンサを接続して系統インピーダンスが増大した場合にも過電圧を抑制し、また電圧波形を正弦波に近づけるために電流制御を高速に行う必要がある。   However, according to Patent Document 1, the power conversion control unit of the power conversion device that controls the storage battery is a virtual synchronous power generation that includes the frequency fluctuation suppression power generation output from the generator characteristic calculation unit that models the synchronous generator. Since the storage battery is controlled so that the output current value IGref of the generator is supplied and the output current supplied from the storage battery to the power system becomes the output current value IGref of the virtual synchronous generator, the storage battery power converter is equivalent to In order to exhibit the behavior as a current source, for example, when a capacitor is connected to an AC circuit to suppress overvoltage even when the system impedance increases, it is necessary to perform current control at high speed to approximate a voltage waveform to a sine wave. .

本発明の目的は、同期発電機のように制御特性として、慣性力や同期化力を擬似的に持ち、電力系統との並列・解列が容易に行えることで単独運転を可能とし、また電力系統に短絡事故が発生しても過電流による保護停止することなく運転継続が可能な交直変換器制御装置を有する交直変換器を提供することである。   The object of the present invention is to make it possible to achieve isolated operation by artificially having inertia force and synchronization force as control characteristics like a synchronous generator, and easily performing parallel and parallel connection with the power system, and An AC / DC converter having an AC / DC converter control device capable of continuing operation without protection and stop due to an overcurrent even if a short circuit accident occurs in the system.

請求項1の発明に係る交直変換器制御装置は、同期発電機及び蓄電池が連系された電力系統に前記蓄電池の電力を充放電する交直変換器を制御する交直変換器制御装置において、前記蓄電池から出力される電力が前記同期発電機の特性と同等な特性となるように前記同期発電機特性を演算する発電機特性演算部と、前記電力系統に短絡事故が発生したとき前記交直変換器の出力電流が電流制限値を超えないように前記仮想同期発電機の内部インピーダンスを変化させる出力電流抑制部とを備え、前記発電機特性演算部は、前記仮想同期発電機のトルク指令値と出力トルク及び前記仮想同期発電機の慣性定数と制動係数に基づいて前記仮想同期発電機の回転子角速度を求める回転子角速度演算部と、前記回転子角速度演算部で得られた回転子角速度に基づき前記仮想同期発電機の内部誘起電圧を演算しその内部誘起電圧及び前記仮想同期発電機の内部インピーダンスに基づき前記交直変換器の出力電力が前記仮想同期発電機の出力指令値になるように前記交直変換器の電圧指令値を演算する電圧指令値演算部とを有したことを特徴とする。   An AC / DC converter control device according to the invention of claim 1 controls an AC / DC converter for charging and discharging electric power of the storage battery in an electric power system in which a synchronous generator and a storage battery are connected. A generator characteristic calculation unit for calculating the synchronous generator characteristic such that the electric power output from the unit has the same characteristic as the characteristic of the synchronous generator, and a short circuit accident in the electric power system; And an output current suppression unit that changes the internal impedance of the virtual synchronous generator so that the output current does not exceed the current limit value, and the generator characteristic calculation unit calculates a torque command value and an output torque of the virtual synchronous generator. A rotor angular velocity calculation unit for calculating a rotor angular velocity of the virtual synchronous generator based on an inertia constant and a braking coefficient of the virtual synchronous generator; and a rotor angle obtained by the rotor angular velocity calculation unit Calculate the internal induced voltage of the virtual synchronous generator based on the degree, and the output power of the AC / DC converter becomes the output command value of the virtual synchronous generator based on the internal induced voltage and the internal impedance of the virtual synchronous generator And a voltage command value calculating unit for calculating a voltage command value of the AC / DC converter.

請求項2の発明に係る交直変換器制御装置は、請求項1の発明において、前記電流制限値は、前記仮想同期発電機の許容電流値以下であることを特徴とする。   The AC / DC converter control device according to the invention of claim 2 is characterized in that, in the invention of claim 1, the current limit value is equal to or less than an allowable current value of the virtual synchronous generator.

請求項3の発明に係る交直変換器制御装置は、請求項1の発明において、前記電流制限値は、前記電力系統の短絡事故発生箇所のアークを消滅できる電流値であることを特徴とする。   The AC / DC converter control device according to the invention of claim 3 is characterized in that, in the invention of claim 1, the current limit value is a current value capable of eliminating an arc at a short circuit accident occurrence point of the power system.

請求項4の発明に係る交直変換器制御装置は、請求項1乃至3のいずれか1項の発明において、前記電力系統に連系する同期発電機台数に応じて前記回転子角速度演算部の前記慣性定数及び前記制動係数を変化させることを特徴とする。   In the AC / DC converter control device according to the invention of claim 4, according to the invention of any one of claims 1 to 3, according to the number of synchronous generators interconnected to the electric power system, It is characterized in that the inertia constant and the braking coefficient are changed.

請求項5の発明に係る交直変換器制御装置は、請求項1乃至4のいずれか1項の発明において、前記仮想同期発電機の前記内部誘起電圧の位相を前記電力系統の系統電圧の位相に同期させる同期検定部を設けたことを特徴とする。   The AC / DC converter control device according to the invention of claim 5 is the invention according to any one of claims 1 to 4, wherein a phase of the internal induced voltage of the virtual synchronous generator is a phase of a system voltage of the power system. A synchronization verification unit is provided to synchronize.

請求項1の発明によれば、蓄電池から出力される電力が同期発電機の特性と同等な特性となるように仮想同期発電機の同期発電機特性を演算し、蓄電池の交直変換器の出力電力が仮想同期発電機の出力指令値として、電圧源としての特性を有するように蓄電池の交直変換器の電圧指令値を出力する回路構成とし、交直変換器の出力電流が電流制限値を超えないように仮想同期発電機の内部インピーダンスを変化させる。このため、電力系統に短絡事故が発生したとしても蓄電池から電力系統に出力される電流が電流制限値以上になることを防止できる。また、仮想同期発電機の内部インピーダンスを変化させる構成としているので、同期発電機をモデル化した発電機特性演算部を有していても蓄電池を制御する交直変換器の制御回路を簡素化でき、電力系統の負荷が急変した場合に蓄電池の交直変換器を制御し同期発電機と同等の周波数変化での抑制ができる。   According to the invention of claim 1, the synchronous generator characteristic of the virtual synchronous generator is calculated so that the power output from the storage battery has a characteristic equivalent to the characteristic of the synchronous generator, and the output power of the AC / DC converter of the storage battery Has a circuit configuration that outputs the voltage command value of the AC / DC converter of the storage battery so as to have characteristics as a voltage source as the output command value of the virtual synchronous generator, and the output current of the AC / DC converter does not exceed the current limit value. Vary the internal impedance of the virtual synchronous generator. Therefore, even if a short circuit accident occurs in the power system, it can be prevented that the current output from the storage battery to the power system becomes equal to or more than the current limit value. Further, since the internal impedance of the virtual synchronous generator is changed, the control circuit of the AC / DC converter that controls the storage battery can be simplified even if the generator characteristic calculation unit modeled the synchronous generator is used, When the load of the electric power system changes suddenly, the AC / DC converter of the storage battery can be controlled to suppress the frequency change equivalent to that of the synchronous generator.

請求項2の発明によれば、請求項1の発明の効果に加え、電流制限値は仮想同期発電機の許容電流値以下であるので、電力系統に短絡事故が発生したとしても短絡電流を仮想同期発電機の許容電流値以下に抑制できる。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, since the current limit value is equal to or less than the allowable current value of the virtual synchronous generator, the short circuit current is assumed even if a short circuit accident occurs in the power system. It can be suppressed below the allowable current value of the synchronous generator.

請求項3の発明によれば、請求項1の発明の効果に加え、電流制限値は、電力系統の短絡事故発生箇所のアークを消滅できる電流値であるので、雷などにより一過的に発生したアークを消滅でき短絡事故を除去できる。   According to the invention of claim 3, in addition to the effect of the invention of claim 1, the current limit value is a current value capable of extinguishing the arc at the short circuit accident occurrence point of the power system. It is possible to extinguish an arc and eliminate a short circuit accident.

請求項4の発明によれば、請求項1乃至3のいずれか1項の発明の効果に加え、電力系統に連系する同期発電機台数に応じて回転子角速度演算部の慣性定数及び制動係数を変化させるので、再生可能エネルギー電源の増加に伴い電力系統に連系する同期発電機台数が少なくなる場合であっても、仮想同期発電機の慣性力を確保でき負荷急変時の周波数の変化を抑制できる。   According to the invention of claim 4, in addition to the effect of the invention according to any one of claims 1 to 3, according to the number of synchronous generators interconnected to the electric power system, inertia constant and braking coefficient of the rotor angular velocity calculation unit Because the inertia force of the virtual synchronous generator can be secured even if the number of synchronous generators connected to the power system decreases with the increase of renewable energy power sources, the frequency change at the time of a sudden change in load can be obtained. It can be suppressed.

請求項5の発明によれば、請求項1乃至4のいずれか1項の発明の効果に加え、仮想同期発電機の内部誘起電圧の位相を電力系統の系統電圧の位相に同期させる同期検定部を設けたので、仮想同期発電機を電力系統に連系する場合に同期検定器が不要となり、また位相同期回路PLL(phase locked loop)も不要となる。   According to the invention of claim 5, in addition to the effect of the invention according to any one of claims 1 to 4, a synchronization test unit which synchronizes the phase of the internal induced voltage of the virtual synchronous generator with the phase of the grid voltage of the power system. In the case of connecting the virtual synchronous generator to the electric power system, the synchronous detector becomes unnecessary, and the phase locked circuit PLL (phase locked loop) also becomes unnecessary.

本発明の第1実施形態に係る交直変換器制御装置の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the AC / DC converter control apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態における出力電流抑制部の動作の一例を示す動作説明図Operation explanatory drawing which shows an example of operation | movement of the output current suppression part in 1st Embodiment of this invention 電力系統に2相短絡事故が発生した場合の交直変換器の出力電流の一例を示す波形図。The wave form diagram which shows an example of the output current of an AC / DC converter when a two-phase short circuit accident generate | occur | produces in electric power system. 電力系統に3相短絡事故が発生した場合の交直変換器の出力電流の一例を示す波形図。The wave form diagram which shows an example of the output current of an AC / DC converter when a 3-phase short circuit accident generate | occur | produces in an electric power grid | system. 本発明の第2実施形態に係る交直変換器制御装置の構成図。The block diagram of the AC / DC converter control apparatus which concerns on 2nd Embodiment of this invention.

以下、本発明の実施形態を説明する。図1は本発明の第1実施形態に係る交直変換器制御装置11の構成図である。図1では、電力系統12に遮断器13を介して交直変換器蓄電池システム14が接続されたものを示しており、交直変換器蓄電池システム14は、蓄電池15の電力をリアクトル16を介して充放電する交直変換器17とから構成されている。なお、太陽光発電設備などの再生可能エネルギー電源の図示は省略している。   Hereinafter, embodiments of the present invention will be described. FIG. 1 is a block diagram of an AC / DC converter control device 11 according to a first embodiment of the present invention. FIG. 1 shows that the AC / DC converter storage battery system 14 is connected to the power system 12 via the circuit breaker 13, and the AC / DC converter storage battery system 14 charges and discharges the power of the storage battery 15 via the reactor 16. And an AC / DC converter 17. In addition, illustration of renewable energy power supplies, such as a solar power generation facility, is abbreviate | omitted.

交直変換器蓄電池システム14の交直変換器17は、本発明の第1実施形態に係る交直変換器制御装置11で制御される。交直変換器制御装置11は、制御演算部18と発電機特性演算部19とから構成され、発電機特性演算部19は電圧指令値演算部20と回転子角速度演算部21とから構成されている。   The AC / DC converter 17 of the AC / DC converter battery system 14 is controlled by the AC / DC converter controller 11 according to the first embodiment of the present invention. The AC / DC converter control device 11 is composed of a control computing unit 18 and a generator characteristic computing unit 19, and the generator characteristic computing unit 19 is composed of a voltage command value computing unit 20 and a rotor angular velocity computing unit 21. .

制御演算部18は、発電機特性演算部19の電圧指令値演算部20で演算された電圧指令値Vm(=va、vb、vc)をPWM制御部22でPWM制御しゲートパルス発生部23を介して交直変換器17に出力し、蓄電池15から出力される電力が発電機特性演算部19で演算された仮想同期発電機の出力電力となるように蓄電池15からの出力電力を制御する。発電機特性演算部19は、蓄電池15から出力される電力が同期発電機の特性と同等な特性となるように仮想同期発電機の発電機特性を演算するものであり、制御演算部18の交直変換器17の制御により、蓄電池15から同期発電機の特性と同等な特性の出力電力を出力でき、電力系統の周波数変動に対して同期発電機の慣性力による周波数維持効果を高められるようにしている。   The control operation unit 18 performs PWM control of the voltage command value Vm (= va, vb, vc) calculated by the voltage command value calculation unit 20 of the generator characteristic calculation unit 19 by the PWM control unit 22 and controls the gate pulse generation unit 23. The output power from the storage battery 15 is controlled so that the power output from the storage battery 15 becomes the output power of the virtual synchronous generator calculated by the generator characteristic calculation unit 19 via the output to the AC / DC converter 17. The generator characteristic calculation unit 19 calculates the generator characteristic of the virtual synchronous generator so that the power output from the storage battery 15 has the same characteristic as the characteristic of the synchronous generator. By controlling the converter 17, the storage battery 15 can output the output power having the same characteristic as that of the synchronous generator, so that the frequency maintenance effect by the inertia force of the synchronous generator can be enhanced against the frequency fluctuation of the power system. There is.

発電機特性演算部19の回転子角速度演算部21は、仮想同期発電機の回転子角速度ωを求めるものである。仮想同期発電機の出力指令値(出力目標値)Pmは比例器24aに入力され、1/ωが乗算されてトルク指令値(トルク目標値)Tmが演算され加算器25aに入力される。加算器25aには、仮想同期発電機の出力トルクTe、制動トルクTd、調速機トルクTgも入力され、トルク偏差ΔT(=Tm−Te−Td−Tg)が演算される。トルク偏差ΔTは比例器24bに入力され、1/Mが乗算されて角加速度偏差ΔT/Mが演算され積分器26aに入力される。Mは仮想同期発電機の回転子の慣性定数である。角加速度偏差ΔT/Mは積分器26aで積分されて角速度偏差Δωが求められる。   The rotor angular velocity calculation unit 21 of the generator characteristic calculation unit 19 obtains the rotor angular velocity ω of the virtual synchronous generator. The output command value (output target value) Pm of the virtual synchronous generator is input to the proportional unit 24a, multiplied by 1 / ω to calculate a torque command value (torque target value) Tm, and input to the adder 25a. The output torque Te of the virtual synchronous generator, the braking torque Td, and the governor torque Tg are also input to the adder 25a, and a torque deviation ΔT (= Tm-Te-Td-Tg) is calculated. The torque deviation ΔT is input to the proportional unit 24b, multiplied by 1 / M to calculate the angular acceleration deviation ΔT / M, and input to the integrator 26a. M is the inertia constant of the rotor of the virtual synchronous generator. The angular acceleration deviation ΔT / M is integrated by the integrator 26 a to obtain the angular velocity deviation Δω.

角速度偏差Δωは比例器24cで制動係数Dが乗算されて制動トルクTdとなり加算器25aへ負帰還される。同様に、角速度偏差Δωは比例器24dで調速係数Kが乗算されて調速トルクTgとなり加算器25aへ負帰還される。また、角速度偏差Δωは加算器25bに入力され角速度基準値ω0に加算されて仮想同期発電機の回転子角速度ωとなる。ここで、出力トルクTeは、電圧指令値演算部19の除算器27にて仮想同期発電機の出力電力Peを回転子角速度ωで除算して求められ加算器25aへ負帰還される。   The angular velocity deviation .DELTA..omega. Is multiplied by the braking coefficient D by the proportional unit 24c to become the braking torque Td and negatively fed back to the adder 25a. Similarly, the angular velocity deviation .DELTA..omega. Is multiplied by the control coefficient K by the proportional unit 24d to become the control torque Tg and negatively fed back to the adder 25a. Further, the angular velocity deviation Δω is input to the adder 25 b and added to the angular velocity reference value ω 0 to become the rotor angular velocity ω of the virtual synchronous generator. Here, the output torque Te is obtained by dividing the output power Pe of the virtual synchronous generator by the rotor angular velocity ω by the divider 27 of the voltage command value calculation unit 19, and is negatively fed back to the adder 25a.

このように、回転子角速度演算部21は、仮想同期発電機の出力電力Peに相当する出力トルクTeと出力指令値Pmに相当するトルク指令値Tm及び前記仮想同期発電機の慣性定数Mと制動係数Dに基づいて仮想同期発電機の回転子角速度ωを求める。   As described above, the rotor angular velocity calculation unit 21 calculates the output torque Te corresponding to the output power Pe of the virtual synchronous generator, the torque command value Tm corresponding to the output command value Pm, and the inertia constant M of the virtual synchronous generator and braking. The rotor angular velocity ω of the virtual synchronous generator is determined based on the coefficient D.

発電機特性演算部19の電圧指令値演算部20は、交直変換器17への電圧指令値Vmを演算するものである。電圧指令値Vmは3相であるので、Vm(=va、vb、vc)と表している。前述したように、電圧指令値Vm(=va、vb、vc)は制御演算部18のPWM制御部22及びゲートパルス発生部23を介して交直変換器17に出力される。   The voltage command value calculator 20 of the generator characteristic calculator 19 calculates the voltage command value Vm to the AC / DC converter 17. Since voltage command value Vm is three phases, it is expressed as Vm (= va, vb, vc). As described above, voltage command values Vm (= va, vb, vc) are output to AC / DC converter 17 through PWM control unit 22 and gate pulse generation unit 23 of control operation unit 18.

回転子角速度演算部21で得られた回転子角速度ωは、電圧指令値演算部20の積分器26bに入力され、積分器26bで積分されて回転子位相θが求められる。回転子位相θは正弦波発生器28に入力され、正弦波発生器28で3相の正弦波{sinθ、sin(θ−2π/3)、sin(θ+2π/3)}が演算され乗算器29aに入力される。   The rotor angular velocity ω obtained by the rotor angular velocity calculation unit 21 is input to the integrator 26 b of the voltage command value calculation unit 20 and integrated by the integrator 26 b to obtain the rotor phase θ. The rotor phase θ is input to the sine wave generator 28, and the sine wave generator 28 calculates a three-phase sine wave {sin θ, sin (θ-2π / 3), sin (θ + 2π / 3)} and the multiplier 29a Is input to

一方、電圧検出器30で検出された系統電圧V1は、発電機特性演算部19の加算器25cに入力され、加算器25cでは電圧基準値Vrと系統電圧V1の差分を演算し電圧調整器31に入力される。電圧調整器31は系統電圧V1が電圧基準値Vrとなるように3相の正弦波{sinθ、sin(θ−2π/3)、sin(θ+2π/3)}の波高値Eiを演算し、乗算器29aに出力する。   On the other hand, the system voltage V1 detected by the voltage detector 30 is input to the adder 25c of the generator characteristic calculation unit 19, and the adder 25c calculates the difference between the voltage reference value Vr and the system voltage V1 to calculate the voltage regulator 31. Is input to Voltage regulator 31 calculates peak value Ei of 3-phase sine wave {sin θ, sin (θ−2π / 3), sin (θ + 2π / 3)} so that system voltage V1 becomes voltage reference value Vr, and multiplication Output to the output unit 29a.

乗算器29aは、波高値Eiと3相の正弦波{sinθ、sin(θ−2π/3)、sin(θ+2π/3)}とを乗算し、仮想同期発電機の内部誘起電圧eiを演算する。内部誘起電圧eiは、3相の正弦波として、ei={Ei・sinθ、Ei・sin(θ−2π/3)、Ei・sin(θ+2π/3)}で表される。仮想同期発電機の内部誘起電圧eiは乗算器29b及び加算器25dに入力される。   The multiplier 29a multiplies the peak value Ei by the three-phase sine wave {sin θ, sin (θ-2π / 3), sin (θ + 2π / 3)} to calculate the internal induced voltage ei of the virtual synchronous generator. . The internal induced voltage ei is expressed as ei = {Ei · sin θ, Ei · sin (θ−2π / 3), Ei · sin (θ + 2π / 3)} as a three-phase sine wave. The internal induced voltage ei of the virtual synchronous generator is input to the multiplier 29b and the adder 25d.

乗算器29bには電流検出器31で検出された交直変換器蓄電池システム14の交直変換器17の出力電流I1も入力され、乗算器29bでは仮想同期発電機の内部誘起電圧eiと交直変換器17の出力電流I1とが乗算され、交直変換器蓄電池システム14から電力系統12に出力される仮想同期発電機の出力電力Pe(=ei・I1)が演算される。前述したように、仮想同期発電機の出力電力Peは除算器27にて回転子角速度ωで除算され出力トルクTe(=Pe/ω)が求められ、回転子角速度演算部21の加算器25aへ負帰還される。   The output current I1 of the AC / DC converter 17 of the AC / DC converter battery system 14 detected by the current detector 31 is also input to the multiplier 29b, and the multiplier 29b receives the internal induced voltage ei of the virtual synchronous generator and the AC / DC converter 17. Output current I1 of the virtual synchronous generator output from the AC / DC converter battery system 14 to the electric power system 12 is calculated. As described above, the output power Pe of the virtual synchronous generator is divided by the rotor angular velocity ω by the divider 27 to obtain the output torque Te (= Pe / ω), and to the adder 25 a of the rotor angular velocity calculation unit 21 Negative feedback.

一方、加算器25dには仮想同期発電機の内部誘起電圧eiに加え、比例器24eからの仮想同期発電機の内部インピーダンスZの抵抗Rの電圧VRが入力されるとともに、比例器24fからの仮想同期発電機の内部インピーダンスZのリアクタンスLの電圧VLが入力される。これにより、系統電圧V1及び仮想同期発電機の出力指令値Pmを維持した交直変換器17の電圧指令値Vm(=va、vb、vc)が演算される。   On the other hand, in addition to the internal induced voltage ei of the virtual synchronous generator, the voltage VR of the resistance R of the internal impedance Z of the virtual synchronous generator is input to the adder 25d from the proportional unit 24e and the virtual from the proportional unit 24f. The voltage VL of the reactance L of the internal impedance Z of the synchronous generator is input. Thus, voltage command values Vm (= va, vb, vc) of the AC-DC converter 17 maintaining the grid voltage V1 and the output command value Pm of the virtual synchronous generator are calculated.

このように、本発明の第1実施形態の交直変換器制御装置11では、交直変換器17の出力電流I1を検出して、交直変換器17の電圧指令値Vm(=va、vb、vc)を演算し、交直変換器17を電圧源として動作させている。この場合、電力系統12に短絡事故が発生した場合には交直変換器17から電力系統12に過電流が供給されることになる。そこで、本発明の第1実施形態の交直変換器制御装置11では、電力系統12の短絡事故時の過電流に対して限流作用を持たせるため、出力電流抑制部32を設けている。出力電流抑制部32は、電流検出器31で検出された交直変換器17の出力電流I1が電流閾値を超えたときは、交直変換器17の出力電流I1が電流制限値ILを超えないように仮想同期発電機の内部インピーダンスZが大きくなるように変化させるものである。   Thus, in the AC / DC converter control device 11 according to the first embodiment of the present invention, the output current I1 of the AC / DC converter 17 is detected, and the voltage command value Vm (= va, vb, vc) of the AC / DC converter 17 is detected. The AC / DC converter 17 is operated as a voltage source. In this case, when a short circuit accident occurs in the power system 12, an overcurrent is supplied from the AC / DC converter 17 to the power system 12. Therefore, in the AC / DC converter control device 11 according to the first embodiment of the present invention, an output current suppression unit 32 is provided in order to have a current limiting function with respect to an overcurrent at the time of a short circuit accident of the power system 12. When the output current I1 of the AC-DC converter 17 detected by the current detector 31 exceeds the current threshold, the output current suppression unit 32 prevents the output current I1 of the AC-DC converter 17 from exceeding the current limit value IL. The internal impedance Z of the virtual synchronous generator is changed to increase.

図2は出力電流抑制部32の動作の一例を示す動作説明図であり、図2(a)は交直変換器17の出力電流I1と内部インピーダンスZとの関係図、図2(b)は交直変換器17の出力電流I1が電流閾値を超えた場合の波形図である。図2(a)において、交直変換器17の出力電流I1の電流閾値は第1閾値|I1a|と第2閾値|I1b|とを有し、第1閾値|I1a|と第2閾値|I1b|との関係は|I1a|>|I1b|である。いま、交直変換器17の出力電流I1が第1閾値|I1a|の範囲(−I1a<I1<I1a)にあるときは内部インピーダンスZは変化させずにZ1のままとする。   FIG. 2 is an operation explanatory view showing an example of the operation of the output current suppression unit 32, and FIG. 2 (a) is a diagram showing the relationship between the output current I1 of the AC / DC converter 17 and the internal impedance Z, and FIG. It is a wave form diagram when output current I1 of converter 17 exceeds a current threshold. In FIG. 2A, the current threshold of the output current I1 of the AC / DC converter 17 has the first threshold | I1a | and the second threshold | I1b |, and the first threshold | I1a | and the second threshold | I1b | The relationship with is | I1a |> | I1b |. Now, when the output current I1 of the AC / DC converter 17 is in the range of the first threshold value | I1a | (−I1a <I1 <I1a), the internal impedance Z remains unchanged at Z1.

一方、交直変換器17の出力電流I1が第1閾値|I1a|の範囲(−I1a<I1<I1a)を逸脱したときは、内部インピーダンスZをZ1からZ2に変化させ、内部インピーダンスZを大きくする。また、内部インピーダンスZの復帰は、交直変換器17の出力電流I1が第2閾値|I1b|の範囲(−I1b<I1<I1b)に戻ったときに内部インピーダンスZをZ2からZ1に変化させ元に戻す。   On the other hand, when the output current I1 of the AC / DC converter 17 deviates from the range of the first threshold value | I1a | (−I1a <I1 <I1a), the internal impedance Z is changed from Z1 to Z2 to increase the internal impedance Z . Further, the internal impedance Z is restored by changing the internal impedance Z from Z2 to Z1 when the output current I1 of the AC / DC converter 17 returns to the range of the second threshold | I1b | (−I1b <I1 <I1b) Back to.

図2(b)において、いま、時点t1で交直変換器17の出力電流I1が第1閾値|I1a|の範囲(−I1a<I1<I1a)のマイナス領域で逸脱したので、内部インピーダンスZはZ2となり、時点t2で第2閾値|I1b|の範囲(−I1b<I1<I1b)のマイナス領域で復帰したので、内部インピーダンスZはZ1に復帰する。そして、時点t3で交直変換器17の出力電流I1が第1閾値|I1a|の範囲(−I1a<I1<I1a)のプラス領域で逸脱したので、内部インピーダンスZはZ2となり、時点t4で第2閾値|I1b|の範囲(−I1b<I1<I1b)のプラス領域で復帰したので、内部インピーダンスZはZ1に復帰する。以下同様に、時点t5で内部インピーダンスZはZ2となり、時点t6で内部インピーダンスZはZ1に復帰し、時点t7で内部インピーダンスZはZ2となり、時点t8で内部インピーダンスZはZ1に復帰し、交直変換器17の出力電流I1が第1閾値|I1a|を超える限りはこの動作を繰り返す。   In FIG. 2B, since the output current I1 of the AC / DC converter 17 deviates in the minus region of the range of the first threshold value | I1a | (−I1a <I1 <I1a) at time t1, the internal impedance Z is Z2 Then, at time t2, the internal impedance Z returns to Z1 because it returns in the minus region of the range of the second threshold | I1b | (−I1b <I1 <I1b). Then, at time t3, the output current I1 of the AC / DC converter 17 deviates in the plus region of the range of the first threshold value | I1a | (−I1a <I1 <I1a), so the internal impedance Z becomes Z2, and the second impedance at time t4. The internal impedance Z returns to Z1 because it returns in the plus region of the range of the threshold value | I1b | (−I1b <I1 <I1b). Likewise, the internal impedance Z becomes Z2 at time t5, the internal impedance Z returns to Z1 at time t6, the internal impedance Z becomes Z2 at time t7, and the internal impedance Z returns to Z1 at time t8. This operation is repeated as long as the output current I1 of the unit 17 exceeds the first threshold | I1a |.

内部インピーダンスZがZ2である範囲では、交直変換器17の出力電流I1は抑制される。これにより、交直変換器17の出力電流I1が電流制限値ILを超えないようにする。図3は電力系統12に2相短絡事故が発生した場合の交直変換器17の出力電流I1の一例を示す波形図であり、図3(a)は出力電流抑制部32を動作させなかった場合の交直変換器17の出力電流I1の一例の波形図、図3(b)は出力電流抑制部32を動作させた場合の交直変換器17の出力電流I1の一例を示す波形図である。図3(a)に示すように、出力電流抑制部32を動作させなかった場合の交直変換器17の出力電流I1は、電力系統12に2相短絡が発生した場合、2相短絡した2相に大きな電流が流れているが、出力電流抑制部32を動作させた場合の交直変換器17の出力電流I1は、図3(b)示すように電流制限値IL以下に抑制されている。   In the range in which the internal impedance Z is Z2, the output current I1 of the AC / DC converter 17 is suppressed. Thus, the output current I1 of the AC / DC converter 17 is prevented from exceeding the current limit value IL. FIG. 3 is a waveform diagram showing an example of the output current I1 of the AC-DC converter 17 when a two-phase short circuit accident occurs in the power system 12, and FIG. 3 (a) is a case where the output current suppression unit 32 is not operated. FIG. 3B is a waveform diagram showing an example of the output current I1 of the AC / DC converter 17 when the output current suppression unit 32 is operated. As shown in FIG. 3A, the output current I1 of the AC-DC converter 17 when the output current suppression unit 32 is not operated is two-phase shorted when the two-phase short circuit occurs in the power system 12 A large current flows in the output current I1, but the output current I1 of the AC-DC converter 17 when the output current suppression unit 32 is operated is suppressed to the current limit value IL or less as shown in FIG. 3 (b).

図4は電力系統12に3相短絡事故が発生した場合の交直変換器17の出力電流I1の一例を示す波形図であり、図4(a)は出力電流抑制部32を動作させなかった場合の交直変換器17の出力電流I1の一例の波形図、図4(b)は出力電流抑制部32を動作させた場合の交直変換器17の出力電流I1の一例を示す波形図である。図4(a)に示すように、出力電流抑制部32を動作させなかった場合の交直変換器17の出力電流I1は、電力系統12に3相短絡が発生した場合、3相ともに大きな電流が流れているが、出力電流抑制部32を動作させた場合の交直変換器17の出力電流I1は、図4(b)示すように電流制限値IL以下に抑制されている。   FIG. 4 is a waveform diagram showing an example of the output current I1 of the AC-DC converter 17 when a three-phase short circuit accident occurs in the power system 12. FIG. 4A shows the case where the output current suppression unit 32 is not operated. 4 (b) is a waveform diagram showing an example of the output current I1 of the AC / DC converter 17 when the output current suppression unit 32 is operated. As shown in FIG. 4A, the output current I1 of the AC-DC converter 17 when the output current suppression unit 32 is not operated is a large current for all three phases when a three-phase short circuit occurs in the power system 12 Although flowing, the output current I1 of the AC / DC converter 17 when the output current suppression unit 32 is operated is suppressed to the current limit value IL or less as shown in FIG. 4 (b).

ここで、電流制限値ILは、例えば仮想同期発電機の許容電流値とする。これにより、電力系統12に短絡事故が発生したとしても短絡電流を仮想同期発電機の許容電流値以下に抑制できる。内部インピーダンスZを大きくしたZ2は、交直変換器17の出力電流I1が電流制限値ILである仮想同期発電機の許容電流値を超えないように定められる。また、電流制限値ILは、例えば、電力系統12の短絡事故発生箇所のアークを消滅できる電流値とする。これにより、雷などにより一過的に発生した短絡事故の場合はアークを消滅でき短絡事故を除去できる。   Here, the current limit value IL is, for example, an allowable current value of the virtual synchronous generator. Thereby, even if a short circuit accident occurs in the power system 12, the short circuit current can be suppressed to the allowable current value or less of the virtual synchronous generator. Z2 in which the internal impedance Z is increased is determined so that the output current I1 of the AC / DC converter 17 does not exceed the allowable current value of the virtual synchronous generator, which is the current limit value IL. Also, the current limit value IL is, for example, a current value that can extinguish the arc at the short circuit accident occurrence point of the power system 12. As a result, in the case of a short circuit accident that occurs temporarily due to lightning or the like, the arc can be extinguished and the short circuit accident can be eliminated.

次に、本発明の第1実施形態の交直変換器制御装置11では、電力系統12の負荷急変時の周波数の変化を抑制できるようにするため仮想同期発電機の慣性力を確保するようにしている。仮想同期発電機の慣性力を確保するために、回転子角速度演算部21の比例器24bの慣性定数M及び比例器24cの制動係数Dを可変できるように構成し、電力系統12に連系している同期発電機台数に応じて、回転子角速度演算部21の比例器24bの慣性定数M及び比例器24cの制動係数Dを適切な値に設定する。具体的には、同期発電機による発電システムに代えて導入された交直変換器蓄電池システムの発電能力に応じて、その仮想同期発電機が慣性力を確保できるように、回転子角速度演算部21の比例器24bの慣性定数M及び比例器24cの制動係数Dを適切な値に設定する。これにより、電力系統12に連系する同期発電機台数が少ない場合であっても、仮想同期発電機を含めた電力系統全体の慣性力を確保でき負荷急変時の周波数の変化を抑制できる。   Next, in the AC / DC converter control device 11 according to the first embodiment of the present invention, the inertial force of the virtual synchronous generator is secured in order to be able to suppress the change in frequency when the load of the power system 12 changes suddenly. There is. In order to secure the inertia force of the virtual synchronous generator, the inertia constant M of the proportional unit 24 b of the rotor angular velocity calculation unit 21 and the braking coefficient D of the proportional unit 24 c can be varied, and are interconnected with the power system 12 In accordance with the number of synchronous generators, the inertia constant M of the proportional unit 24b of the rotor angular velocity calculation unit 21 and the braking coefficient D of the proportional unit 24c are set to appropriate values. Specifically, according to the power generation capacity of the AC / DC converter storage battery system introduced instead of the power generation system by the synchronous generator, the virtual synchronous generator can secure the inertial force, The inertia constant M of the proportional unit 24b and the damping coefficient D of the proportional unit 24c are set to appropriate values. As a result, even when the number of synchronous generators interconnected to the power system 12 is small, the inertial force of the entire power system including the virtual synchronous generator can be secured, and the change in frequency at the time of a sudden load change can be suppressed.

次に、本発明の第2実施形態を説明する。図5は本発明の第2実施形態に係る交直変換器制御装置11の構成図である。この第2実施形態は、図1に示した第1実施形態に対し、仮想同期発電機の内部誘起電圧eiの位相θを電力系統12の系統電圧V1の位相に同期させる同期検定部33を設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   Next, a second embodiment of the present invention will be described. FIG. 5 is a block diagram of an AC / DC converter control device 11 according to a second embodiment of the present invention. This second embodiment is provided with a synchronization test unit 33 that synchronizes the phase θ of the internal induced voltage ei of the virtual synchronous generator with the phase of the grid voltage V1 of the electric power system 12 with respect to the first embodiment shown in FIG. It is The same elements as those in FIG.

図5において、第2実施形態では同期検定部33が追加して設けられている。同期検定部33は仮想同期発電機を電力系統12に連系する際に仮想同期発電機の出力電圧の位相θを電力系統12の系統電圧V1の位相に同期させるものである。仮想同期発電機を電力系統12に連系するには、仮想同期発電機の出力電圧の大きさ、周波数、位相が、系統電圧の大きさ、周波数、位相に一致していることが必要である。   In FIG. 5, in the second embodiment, a synchronization test unit 33 is additionally provided. The synchronization verification unit 33 synchronizes the phase θ of the output voltage of the virtual synchronous generator with the phase of the grid voltage V1 of the power system 12 when the virtual synchronous generator is linked to the power system 12. In order to link the virtual synchronous generator to the power system 12, it is necessary that the magnitude, frequency and phase of the output voltage of the virtual synchronous generator match the size, frequency and phase of the grid voltage .

仮想同期発電機の出力電圧の大きさは電圧指令値演算部20の加算器25dから出力される交直変換器17の電圧指令値Vmであり、電圧指令値Vmの大きさは系統電圧V1と同じ大きさの電圧値である。仮想同期発電機の出力電圧の周波数は、回転子角速度演算部21の加算器25bから出力される回転子角速度ω(=2πf:fは周波数)であり、角速度基準値ω0(=2πf0:f0は周波数基準値)に角速度偏差を加算した値である。角速度偏差Δωは微少であることから、仮想同期発電機の出力電圧の周波数は系統電圧V1の周波数とほぼ等しい。一方、仮想同期発電機の出力電圧の位相θは回転子角速度ωを積分して得られるが、系統電圧V1の位相と同じであるかどうかは分からない。   The magnitude of the output voltage of the virtual synchronous generator is the voltage command value Vm of the AC / DC converter 17 output from the adder 25d of the voltage command value computing unit 20, and the magnitude of the voltage command value Vm is the same as the grid voltage V1. It is a voltage value of magnitude. The frequency of the output voltage of the virtual synchronous generator is the rotor angular velocity ω (= 2πf: f is a frequency) output from the adder 25 b of the rotor angular velocity calculation unit 21, and the angular velocity reference value ω 0 (= 2πf 0: f 0 is This is a value obtained by adding the angular velocity deviation to the frequency reference value). Since the angular velocity deviation Δω is very small, the frequency of the output voltage of the virtual synchronous generator is approximately equal to the frequency of the grid voltage V1. On the other hand, although the phase θ of the output voltage of the virtual synchronous generator is obtained by integrating the rotor angular velocity ω, it is not known whether it is the same as the phase of the grid voltage V1.

そこで、第1実施形態では、同期検定器または位相同期回路PLLにより、仮想同期発電機の出力電圧の位相θと系統電圧V1の位相とを一致させて、仮想同期発電機を電力系統12に同期併入させることになる。   Therefore, in the first embodiment, the virtual synchronous generator is synchronized with the power system 12 by matching the phase θ of the output voltage of the virtual synchronous generator with the phase of the grid voltage V1 by the synchronization checker or the phase synchronization circuit PLL. You will be forced to enter.

一方、第2実施形態では、同期検定部33により仮想同期発電機の出力電圧の位相θと系統電圧V1の位相とを一致させて、仮想同期発電機を電力系統12に同期併入させる。同期検定部33の位相差検出部34は、系統電圧V1の位相と仮想同期発電機の出力電圧の位相θとの位相偏差Δθを演算しスイッチ35を介して比例積分器36に入力する。比例積分器36は位相偏差Δθに相当する角速度偏差Δω1を加算器25eに出力する。加算器25eは、加算器25bから出力される回転子角速度ωに角速度偏差Δω1を加算して積分器26bに入力する。これにより、位相偏差Δθが0になるように調整され、仮想同期発電機の出力電圧の位相θは系統電圧V1の位相とほぼ同じとなる。   On the other hand, in the second embodiment, the synchronization test unit 33 synchronizes the virtual synchronous generator with the power system 12 by matching the phase θ of the output voltage of the virtual synchronous generator with the phase of the system voltage V1. The phase difference detection unit 34 of the synchronization test unit 33 calculates the phase deviation Δθ between the phase of the grid voltage V1 and the phase θ of the output voltage of the virtual synchronous generator, and inputs the phase deviation Δθ to the proportional integrator 36 via the switch 35. The proportional integrator 36 outputs an angular velocity deviation Δω1 corresponding to the phase deviation Δθ to the adder 25e. The adder 25e adds the angular velocity deviation Δω1 to the rotor angular velocity ω output from the adder 25b, and inputs the result to the integrator 26b. Thus, the phase deviation Δθ is adjusted to 0, and the phase θ of the output voltage of the virtual synchronous generator becomes substantially the same as the phase of the system voltage V1.

スイッチ35は遮断器13が開放しているときにオンし、遮断器13が投入されたときはオフとなる。つまり、交直変換器蓄電池システム14の交直変換器17が電力系統12に接続されていないときにオンし、仮想同期発電機が電力系統12に連系されたとき(交直変換器17が電力系統12に接続されたとき)はオフとなる。同期検定部33を設けたことにより、仮想同期発電機を電力系統12に連系する場合に同期検定器が不要となり、交直変換器制御装置11には位相同期回路PLLは不要となる。   The switch 35 is turned on when the circuit breaker 13 is open, and turned off when the circuit breaker 13 is turned on. That is, it turns on when the AC / DC converter 17 of the AC / DC converter storage battery system 14 is not connected to the power system 12, and when the virtual synchronous generator is interconnected with the power system 12 (the AC / DC converter 17 is (When connected to) is off. By providing the synchronization verification unit 33, when the virtual synchronous generator is linked to the power system 12, the synchronization verification device is not necessary, and the AC / DC converter control device 11 becomes unnecessary the phase synchronization circuit PLL.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

11…交直変換器制御装置
12…電力系統
13…遮断器
14…交直変換器蓄電池システム
15…蓄電池
16…リアクトル
17…交直変換器
18…制御演算部
19…発電機特性演算部
20…電圧指令値演算部
21…回転子角速度演算部
22…PWM制御部
23…ゲートパルス発生部
24…比例器
25…加算器
26…積分器
27…除算器
28…正弦波発生器
29…乗算器
30…電圧検出器
31…電流検出器
32…出力電流抑制部
33…同期検定部
34…位相差検出部
35…スイッチ
36…比例積分器
11 AC-DC Converter Controller 12 Electric Power System 13 Circuit Breaker 14 AC-DC Converter Storage Battery System 15 Storage Battery 16 Reactor 17 AC-DC Converter 18 Control Operation Unit 19 Generator Characteristic Operation Unit 20 Voltage Command Value Calculation unit 21 ... Rotor angular velocity calculation unit 22 ... PWM control unit 23 ... Gate pulse generation unit 24 ... Proportioner 25 ... Adder 26 ... Integrator 27 ... Divider 28 ... Sine wave generator 29 ... Multiplier 30 ... Voltage detection Unit 31 Current detector 32 Output current suppression unit 33 Synchronization test unit 34 Phase difference detection unit 35 Switch 36 Proportional integrator

Claims (5)

同期発電機及び蓄電池が連系された電力系統に前記蓄電池の電力を充放電する交直変換器を制御する交直変換器制御装置において、
前記蓄電池から出力される電力が前記同期発電機の特性と同等な特性となるように前記同期発電機特性を演算する発電機特性演算部と、前記電力系統に短絡事故が発生したとき前記交直変換器の出力電流が電流制限値を超えないように前記仮想同期発電機の内部インピーダンスを変化させる出力電流抑制部とを備え、
前記発電機特性演算部は、前記仮想同期発電機のトルク指令値と出力トルク及び前記仮想同期発電機の慣性定数と制動係数に基づいて前記仮想同期発電機の回転子角速度を求める回転子角速度演算部と、前記回転子角速度演算部で得られた回転子角速度に基づき前記仮想同期発電機の内部誘起電圧を演算しその内部誘起電圧及び前記仮想同期発電機の内部インピーダンスに基づき前記交直変換器の出力電力が前記仮想同期発電機の出力指令値になるように前記交直変換器の電圧指令値を演算する電圧指令値演算部とを有したことを特徴とする交直変換器制御装置。
An AC / DC converter control device for controlling an AC / DC converter for charging and discharging electric power of the storage battery in an electric power system in which a synchronous generator and a storage battery are connected,
A generator characteristic calculation unit that calculates the synchronous generator characteristics such that the power output from the storage battery has characteristics equivalent to the characteristics of the synchronous generator, and the AC / DC conversion when a short circuit accident occurs in the power system And an output current suppression unit that changes the internal impedance of the virtual synchronous generator so that the output current of the generator does not exceed the current limit value,
The generator characteristic calculation unit calculates a rotor angular velocity of the virtual synchronous generator based on a torque command value and an output torque of the virtual synchronous generator, and an inertia constant and a braking coefficient of the virtual synchronous generator. Internal induction voltage of the virtual synchronous generator based on the rotor angular velocity obtained by the rotor angular velocity calculation unit, and the AC / DC converter of the AC / DC converter based on the internal induction voltage and the internal impedance of the virtual synchronous generator An AC / DC converter control device comprising: a voltage command value calculation unit that calculates a voltage command value of the AC / DC converter so that an output power becomes an output command value of the virtual synchronous generator.
前記電流制限値は、前記仮想同期発電機の許容電流値であることを特徴とする請求項1記載の交直変換器制御装置。   The AC / DC converter control device according to claim 1, wherein the current limit value is an allowable current value of the virtual synchronous generator. 前記電流制限値は、前記電力系統の短絡事故発生箇所のアークを消滅できる電流値であることを特徴とする請求項1記載の交直変換器制御装置。   The AC / DC converter control device according to claim 1, wherein the current limit value is a current value that can extinguish an arc at a short circuit occurrence point of the power system. 前記電力系統に連系する発電機台数に応じて前記回転子角速度演算部の前記慣性定数及び前記制動係数を変化させることを特徴とする請求項1乃至3のいずれか1項に記載の交直変換器制御装置。   The AC / DC conversion according to any one of claims 1 to 3, wherein the inertia constant and the braking coefficient of the rotor angular velocity calculation unit are changed according to the number of generators interconnected to the power system. Controller. 前記仮想同期発電機の前記内部誘起電圧の位相を前記電力系統の系統電圧の位相に同期させる同期検定部を設けたことを特徴とする請求項1乃至4のいずれか1項に記載の交直変換器制御装置。   The AC / DC conversion according to any one of claims 1 to 4, further comprising a synchronization test unit that synchronizes the phase of the internal induced voltage of the virtual synchronous generator with the phase of a grid voltage of the power system. Controller.
JP2017208024A 2017-10-27 2017-10-27 AC / DC converter controller Active JP7052290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017208024A JP7052290B2 (en) 2017-10-27 2017-10-27 AC / DC converter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017208024A JP7052290B2 (en) 2017-10-27 2017-10-27 AC / DC converter controller

Publications (2)

Publication Number Publication Date
JP2019080476A true JP2019080476A (en) 2019-05-23
JP7052290B2 JP7052290B2 (en) 2022-04-12

Family

ID=66628217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208024A Active JP7052290B2 (en) 2017-10-27 2017-10-27 AC / DC converter controller

Country Status (1)

Country Link
JP (1) JP7052290B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122203A (en) * 2020-01-02 2020-05-08 上海电力大学 Virtual configuration device of inertia and drag experiment platform
CN111555306A (en) * 2020-04-29 2020-08-18 云南电网有限责任公司电力科学研究院 System and method for wind turbine generator set to participate in rapid frequency modulation of regional power grid
JP2020198705A (en) * 2019-06-03 2020-12-10 東京電力ホールディングス株式会社 Inverter controller, inverter control program and inverter control method
JP2021013207A (en) * 2019-07-03 2021-02-04 一般財団法人電力中央研究所 Converter control device and converter control method for simulating virtual impedance
JPWO2021029313A1 (en) * 2019-08-09 2021-02-18
CN112751346A (en) * 2020-12-30 2021-05-04 郑州轻工业大学 Design method of DFIG-PSS controller based on virtual impedance
CN112865099A (en) * 2021-04-12 2021-05-28 李畅 Amplitude-phase motion analysis system and method for judging frequency motion state of grid-connected inverter under VSG control
JP2021151081A (en) * 2020-03-19 2021-09-27 富士電機株式会社 System interconnection inverter and fluctuation suppression method of system frequency
JP6949286B1 (en) * 2021-03-19 2021-10-13 三菱電機株式会社 Control device and power converter
WO2022029924A1 (en) * 2020-08-05 2022-02-10 三菱電機株式会社 Distributed power supply management device
JP7023430B1 (en) * 2021-06-24 2022-02-21 三菱電機株式会社 Power converter
WO2022097269A1 (en) * 2020-11-06 2022-05-12 三菱電機株式会社 Power conversion device
WO2022153477A1 (en) * 2021-01-15 2022-07-21 三菱電機株式会社 Power conversion device
JP7126631B1 (en) * 2021-10-07 2022-08-26 三菱電機株式会社 Power conversion device and control device
WO2023275937A1 (en) * 2021-06-28 2023-01-05 三菱電機株式会社 Power conversion device
JP2023513851A (en) * 2020-04-23 2023-04-03 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Power support equipment for power grids operating as virtual synchronous machines
WO2023058196A1 (en) 2021-10-07 2023-04-13 三菱電機株式会社 Power conversion device and control device
CN116505578A (en) * 2023-05-16 2023-07-28 茅台学院 Distributed self-adaptive virtual inertia and damping control method and device for serial virtual synchronous machine
JP7374816B2 (en) 2020-03-05 2023-11-07 東京電力ホールディングス株式会社 Power converter control system
JP7392884B1 (en) 2023-03-23 2023-12-06 富士電機株式会社 Power converter and detection method
WO2024009438A1 (en) * 2022-07-06 2024-01-11 株式会社東芝 Power generation plan control device, control method for power generation plan control device, and program

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417521A (en) * 1990-05-08 1992-01-22 Toshiba Corp Power system simulation unit
JPH06233452A (en) * 1993-02-05 1994-08-19 Hitachi Ltd Current limiting device and current limiting control method
JPH09233686A (en) * 1996-02-20 1997-09-05 Ngk Insulators Ltd Protector of power system
JP2011193606A (en) * 2010-03-12 2011-09-29 Toshiba Corp Solar power generation system
US20110270463A1 (en) * 2008-11-12 2011-11-03 George Weiss Static synchronous generators
JP2012152058A (en) * 2011-01-20 2012-08-09 Toshiba Corp Photovoltaic power generation system
JP2014509179A (en) * 2011-02-28 2014-04-10 アベンゴア ソーラー ニュー テクノロジーズ ソシエダ アノニマ Synchronous power controller for power generation system based on static power converter
JP2014168351A (en) * 2013-02-28 2014-09-11 Kawasaki Heavy Ind Ltd Power converter for system interconnection
JP2017127141A (en) * 2016-01-14 2017-07-20 国立大学法人広島大学 Pseudo synchronization voltage type converter and controller therefor
US20170229857A1 (en) * 2014-10-29 2017-08-10 Younicos Ag System for handling short circuits on an electrical network

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417521A (en) * 1990-05-08 1992-01-22 Toshiba Corp Power system simulation unit
JPH06233452A (en) * 1993-02-05 1994-08-19 Hitachi Ltd Current limiting device and current limiting control method
JPH09233686A (en) * 1996-02-20 1997-09-05 Ngk Insulators Ltd Protector of power system
US20110270463A1 (en) * 2008-11-12 2011-11-03 George Weiss Static synchronous generators
JP2011193606A (en) * 2010-03-12 2011-09-29 Toshiba Corp Solar power generation system
JP2012152058A (en) * 2011-01-20 2012-08-09 Toshiba Corp Photovoltaic power generation system
JP2014509179A (en) * 2011-02-28 2014-04-10 アベンゴア ソーラー ニュー テクノロジーズ ソシエダ アノニマ Synchronous power controller for power generation system based on static power converter
JP2014168351A (en) * 2013-02-28 2014-09-11 Kawasaki Heavy Ind Ltd Power converter for system interconnection
US20170229857A1 (en) * 2014-10-29 2017-08-10 Younicos Ag System for handling short circuits on an electrical network
JP2017538384A (en) * 2014-10-29 2017-12-21 ユーニコス アクチェンゲゼルシャフトYounicos AG System for handling short circuits on electrical networks
JP2017127141A (en) * 2016-01-14 2017-07-20 国立大学法人広島大学 Pseudo synchronization voltage type converter and controller therefor

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198705A (en) * 2019-06-03 2020-12-10 東京電力ホールディングス株式会社 Inverter controller, inverter control program and inverter control method
JP7238608B2 (en) 2019-06-03 2023-03-14 東京電力ホールディングス株式会社 INVERTER CONTROL DEVICE, INVERTER CONTROL PROGRAM AND INVERTER CONTROL METHOD
JP2021013207A (en) * 2019-07-03 2021-02-04 一般財団法人電力中央研究所 Converter control device and converter control method for simulating virtual impedance
JP7263156B2 (en) 2019-07-03 2023-04-24 一般財団法人電力中央研究所 Converter control device and converter control method for simulating virtual impedance
US11973417B2 (en) 2019-08-09 2024-04-30 Tokyo Electric Power Company Holdings, Incorporated System interconnection power conversion device
JPWO2021029313A1 (en) * 2019-08-09 2021-02-18
WO2021029313A1 (en) * 2019-08-09 2021-02-18 東京電力ホールディングス株式会社 System interconnection power conversion device
AU2020330794B2 (en) * 2019-08-09 2023-03-30 Meidensha Corporation System interconnection power conversion device
CN111122203B (en) * 2020-01-02 2021-12-24 上海电力大学 Virtual configuration device of inertia and drag experiment platform
CN111122203A (en) * 2020-01-02 2020-05-08 上海电力大学 Virtual configuration device of inertia and drag experiment platform
JP7374816B2 (en) 2020-03-05 2023-11-07 東京電力ホールディングス株式会社 Power converter control system
JP2021151081A (en) * 2020-03-19 2021-09-27 富士電機株式会社 System interconnection inverter and fluctuation suppression method of system frequency
JP2023513851A (en) * 2020-04-23 2023-04-03 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Power support equipment for power grids operating as virtual synchronous machines
JP7461099B2 (en) 2020-04-23 2024-04-03 ヒタチ・エナジー・リミテッド Power support equipment for power grids operating as virtual synchronous machines
US11855454B2 (en) 2020-04-23 2023-12-26 Hitachi Energy Switzerland Ag Power supporting arrangement for a power grid operated as a virtual synchronous machine
CN111555306A (en) * 2020-04-29 2020-08-18 云南电网有限责任公司电力科学研究院 System and method for wind turbine generator set to participate in rapid frequency modulation of regional power grid
CN111555306B (en) * 2020-04-29 2023-09-01 云南电网有限责任公司电力科学研究院 System and method for participating in regional power grid rapid frequency modulation of wind turbine generator system
WO2022029924A1 (en) * 2020-08-05 2022-02-10 三菱電機株式会社 Distributed power supply management device
JP7475457B2 (en) 2020-08-05 2024-04-26 三菱電機株式会社 Distributed Power Management Equipment
WO2022097269A1 (en) * 2020-11-06 2022-05-12 三菱電機株式会社 Power conversion device
JP7483037B2 (en) 2020-11-06 2024-05-14 三菱電機株式会社 Power Conversion Equipment
CN112751346A (en) * 2020-12-30 2021-05-04 郑州轻工业大学 Design method of DFIG-PSS controller based on virtual impedance
CN112751346B (en) * 2020-12-30 2023-02-28 郑州轻工业大学 Design method of DFIG-PSS controller based on virtual impedance
WO2022153477A1 (en) * 2021-01-15 2022-07-21 三菱電機株式会社 Power conversion device
TWI781870B (en) * 2021-01-15 2022-10-21 日商三菱電機股份有限公司 Power conversion device
JP6949286B1 (en) * 2021-03-19 2021-10-13 三菱電機株式会社 Control device and power converter
WO2022195872A1 (en) * 2021-03-19 2022-09-22 三菱電機株式会社 Control device and power conversion device
CN112865099A (en) * 2021-04-12 2021-05-28 李畅 Amplitude-phase motion analysis system and method for judging frequency motion state of grid-connected inverter under VSG control
CN112865099B (en) * 2021-04-12 2024-05-03 李畅 Amplitude-phase motion analysis system and analysis method for judging frequency motion state of grid-connected inverter under VSG control
WO2022269857A1 (en) 2021-06-24 2022-12-29 三菱電機株式会社 Power conversion device
JP7023430B1 (en) * 2021-06-24 2022-02-21 三菱電機株式会社 Power converter
TWI810790B (en) * 2021-06-28 2023-08-01 日商三菱電機股份有限公司 power conversion device
WO2023275937A1 (en) * 2021-06-28 2023-01-05 三菱電機株式会社 Power conversion device
WO2023058195A1 (en) 2021-10-07 2023-04-13 三菱電機株式会社 Power conversion device and control device
WO2023058196A1 (en) 2021-10-07 2023-04-13 三菱電機株式会社 Power conversion device and control device
JP7126631B1 (en) * 2021-10-07 2022-08-26 三菱電機株式会社 Power conversion device and control device
WO2024009438A1 (en) * 2022-07-06 2024-01-11 株式会社東芝 Power generation plan control device, control method for power generation plan control device, and program
JP7392884B1 (en) 2023-03-23 2023-12-06 富士電機株式会社 Power converter and detection method
CN116505578B (en) * 2023-05-16 2023-11-21 茅台学院 Distributed self-adaptive virtual inertia and damping control method and device for serial virtual synchronous machine
CN116505578A (en) * 2023-05-16 2023-07-28 茅台学院 Distributed self-adaptive virtual inertia and damping control method and device for serial virtual synchronous machine

Also Published As

Publication number Publication date
JP7052290B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
JP2019080476A (en) Ac-dc converter control device
Shuai et al. Transient angle stability of virtual synchronous generators using Lyapunov’s direct method
JP6809753B2 (en) Combined cycle system
US9425677B2 (en) Grid-interconnected power converter
JP6510741B1 (en) SYSTEM, CONTROL DEVICE, AND CONTROL METHOD OF SYSTEM
JP6398414B2 (en) Power storage system, power conversion device, self-sustaining operation system, and power storage system control method
JP6796029B2 (en) New energy source integrated power converter
JP6735039B1 (en) Grid-connected inverter and grid frequency fluctuation suppression method
JP6852585B2 (en) AC / DC converter controller
JP6700102B2 (en) Power converter
JP2013162623A (en) Power supply system
JP7296762B2 (en) power converter
JP2018196182A (en) Control device and reactive power compensation apparatus
JP7008892B1 (en) Control device and power converter
EP3218981B1 (en) Power controller and power control method
JP7023430B1 (en) Power converter
JP6831565B2 (en) Single-phase pseudo-synchronization power inverter and its controller
JP2023012086A (en) Inverter device
JP7365116B2 (en) Power system stabilizer
JP2022148986A (en) Grid-connected power conversion device and control method for grid-connected power conversion device
Khayat et al. Virtual inertia emulating in power electronic–based power systems
Huiyu et al. A novel control strategy for hybrid energy system in virtual synchronous generator
JPWO2022097269A5 (en)
Shinde et al. Virtual resistance technique for power limit management of microgrid DG inverters
Gao et al. An accurate power-sharing control method based on circulating-current power model for voltage-source-inverter parallel system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7052290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150