JP6852585B2 - AC / DC converter controller - Google Patents

AC / DC converter controller Download PDF

Info

Publication number
JP6852585B2
JP6852585B2 JP2017118242A JP2017118242A JP6852585B2 JP 6852585 B2 JP6852585 B2 JP 6852585B2 JP 2017118242 A JP2017118242 A JP 2017118242A JP 2017118242 A JP2017118242 A JP 2017118242A JP 6852585 B2 JP6852585 B2 JP 6852585B2
Authority
JP
Japan
Prior art keywords
power
phase
frequency
converter
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017118242A
Other languages
Japanese (ja)
Other versions
JP2019003454A (en
Inventor
鈴木 健一
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2017118242A priority Critical patent/JP6852585B2/en
Publication of JP2019003454A publication Critical patent/JP2019003454A/en
Application granted granted Critical
Publication of JP6852585B2 publication Critical patent/JP6852585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

本発明は、電力系統に有効電力及び無効電力を充放電する蓄電池の交直変換器を制御する交直変換器制御装置に関する。 The present invention relates to an AC / DC converter control device that controls an AC / DC converter of a storage battery that charges / discharges active power and ineffective power to an electric power system.

電力系統には蓄電池が接続され、電力系統の需要量が多いときは蓄電池から電力系統に放電し、電力系統に余剰電力があるときは電力系統から蓄電池に充電するように運用されている。一方、同期発電機による発電システムに替わり太陽光発電設備などの再エネルギー電源が増加している。電力系統に太陽光発電設備が多くなると、相対的に電力系統に連系運転される同期発電機が少なくなる。 A storage battery is connected to the power system, and when the demand for the power system is high, the storage battery is discharged to the power system, and when there is surplus power in the power system, the storage battery is charged from the power system. On the other hand, the number of re-energy power sources such as solar power generation facilities is increasing instead of the power generation system using synchronous generators. As the number of photovoltaic power generation facilities increases in the power system, the number of synchronous generators connected to the power system decreases.

電力系統においては、電力系統の負荷が増減した場合には、同一系統に接続されている同期発電機がこの増減分を担うことになる。同期発電機は電力系統の周波数が変動した際にはそれを抑制する作用を潜在的に持っており、また、調速機が具備されているので、周波数が変動した際にはそれを抑制するように発電量が調整されることから周波数の安定化に寄与する。太陽光発電設備は電力系統の負荷の変動に関係なく一定の電力を出力するので、電力系統の同期発電機が少ないと負荷急変時には同期発電機が持っていた慣性力が失われ負荷急変時の周波数の変化が大きくなる。 In the power system, when the load on the power system increases or decreases, the synchronous generator connected to the same system bears the increase or decrease. The synchronous generator has the potential to suppress the frequency of the power system when it fluctuates, and since it is equipped with a speed governor, it suppresses it when the frequency fluctuates. Since the amount of power generation is adjusted in this way, it contributes to frequency stabilization. Since the photovoltaic power generation facility outputs a constant amount of power regardless of fluctuations in the load of the power system, if the number of synchronous generators in the power system is small, the inertial force of the synchronous generator will be lost when the load suddenly changes, and when the load suddenly changes. The change in frequency becomes large.

そこで、蓄電池の電力変換装置の制御装置は、電力系統の負荷変動や周波数変動が発生した場合に、それに対応する同期発電機そのものの動作を演算し、その際に同期発電機から出力される周波数変動抑制発電量を蓄電池から電力系統に出力し、蓄電池の制御により、同期発電機と同等に周波数の変動を抑制するようにしたものがある(例えば、特許文献1参照)。 Therefore, the control device of the power conversion device of the storage battery calculates the operation of the synchronous generator itself corresponding to the load fluctuation or frequency fluctuation of the power system, and the frequency output from the synchronous generator at that time. Fluctuation suppression There is one in which the amount of power generation is output from the storage battery to the power system, and the fluctuation of the frequency is suppressed in the same manner as that of a synchronous generator by controlling the storage battery (see, for example, Patent Document 1).

特開2013−162623号公報Japanese Unexamined Patent Publication No. 2013-162623

しかし、特許文献1のものは、電力変換装置の制御装置により、同期発電機をモデル化した発電システムから出力される周波数変動抑制発電量を電力系統に出力し周波数変化を抑制するものであるので、電力変換装置の制御装置の演算制御内容が複雑となる。 However, in Patent Document 1, the control device of the power conversion device outputs the amount of power generation for suppressing frequency fluctuations output from the power generation system modeled on the synchronous generator to the power system to suppress the frequency changes. , The calculation control content of the control device of the power conversion device becomes complicated.

本発明の目的は、電力系統の負荷が急変した場合に蓄電池の交直変換器を制御し電力系統に電力を充放電して同期発電機と同等の周波数変化の抑制ができる交直変換器制御装置を提供することである。 An object of the present invention is an AC / DC converter control device capable of controlling an AC / DC converter of a storage battery and charging / discharging electric power to the electric power system to suppress a frequency change equivalent to that of a synchronous generator when the load of the electric power system suddenly changes. To provide.

請求項1の発明に係る交直変換器制御装置は、電力系統に蓄電池から有効電力及び無効電力を充放電する交直変換器を制御する交直変換器制御装置において、前記蓄電池から前記電力系統に充放電する有効電力及び無効電力が目標値になるように前記交直変換器に制御指令を出力する電力制御部と、前記交直変換器の出力電圧の位相が前記電力系統の系統電圧の位相となるように前記電力制御部に前記系統電圧の位相に同期した信号を出力する位相同期部と、前記位相同期部の応答を遅延させた回路を有しその回路で得られた前記系統電圧との位相差に基づいて同期発電機の慣性力相当の周波数変動抑制量を算出し前記電力制御部の前記有効電力の目標値に加算する発電機慣性力発生部とを備えたことを特徴とする。 The AC / DC converter control device according to the invention of claim 1 is an AC / DC converter control device that controls an AC / DC converter that charges / discharges active power and invalid power from a storage battery to a power system, and charges / discharges the power system from the storage battery. The phase of the output voltage of the AC / DC converter and the power control unit that outputs a control command to the AC / DC converter so that the active power and the ineffective power to be performed become the target values becomes the phase of the system voltage of the power system. The phase difference between the phase synchronization unit that outputs a signal synchronized with the phase of the system voltage to the power control unit and the system voltage obtained by the circuit having a circuit that delays the response of the phase synchronization unit. Based on this, a generator inertial force generating unit is provided, which calculates a frequency fluctuation suppression amount corresponding to the inertial force of the synchronous generator and adds it to the target value of the active power of the power control unit.

請求項2の発明に係る交直変換器制御装置は、請求項1の発明において、電力系統の周波数が変動したとき前記同期発電機のガバナフリー運転に相当する周波数調整量を算出し前記電力制御部の前記有効電力の目標値に加算するガバナフリー制御部を備えたことを特徴とする。 In the invention of claim 1, the AC / DC converter control device according to the invention of claim 2 calculates a frequency adjustment amount corresponding to the governor-free operation of the synchronous generator when the frequency of the power system fluctuates, and the power control unit. It is characterized in that it is provided with a governor-free control unit that adds to the target value of the active power.

請求項1の発明によれば、発電機慣性力発生部は交直変換器の出力電圧の位相が電力系統の系統電圧の位相となるように電力制御部に系統電圧の位相に同期した信号を出力する位相同期部の応答を遅延させた回路を有し、その回路で得られた系統電圧との位相差に基づいて同期発電機の慣性力相当の周波数変動抑制量を算出し電力制御部の有効電力の目標値に加算するので、簡単な回路で電力系統の周波数低下を大幅に改善できる。 According to the invention of claim 1, the generator inertial force generating unit outputs a signal synchronized with the phase of the system voltage to the power control unit so that the phase of the output voltage of the AC / DC converter becomes the phase of the system voltage of the power system. It has a circuit that delays the response of the phase synchronization unit, and calculates the amount of frequency fluctuation suppression equivalent to the inertial force of the synchronous generator based on the phase difference with the system voltage obtained in that circuit, and the power control unit is effective. Since it is added to the target value of electric power, the frequency drop of the electric power system can be greatly improved with a simple circuit.

請求項2の発明によれば、請求項1の発明の効果に加え、ガバナフリー制御部は、電力系統の周波数が変動したとき同期発電機のガバナフリー運転に相当する周波数調整量を算出し電力制御部の前記有効電力の目標値に加算するので、発電機慣性力発生部による電力系統の周波数低下抑制に加えガバナフリー領域での周波数も調整できる。 According to the invention of claim 2, in addition to the effect of the invention of claim 1, the governor-free control unit calculates a frequency adjustment amount corresponding to the governor-free operation of the synchronous generator when the frequency of the power system fluctuates, and power is generated. Since it is added to the target value of the active power of the control unit, the frequency in the governor-free region can be adjusted in addition to suppressing the frequency decrease of the power system by the generator inertial force generating unit.

本発明の第1実施形態に係る交直変換器制御装置の構成図。The block diagram of the AC / DC converter control device which concerns on 1st Embodiment of this invention. 電力系統の負荷急変時の本発明の第1実施形態に係る交直変換器制御装置の応答の波形図。FIG. 3 is a waveform diagram of the response of the AC / DC converter control device according to the first embodiment of the present invention when the load of the electric power system suddenly changes. 電力系統の負荷急変時の従来の交直変換器制御装置の応答の波形図。Waveform diagram of the response of the conventional AC / DC converter controller when the load of the power system suddenly changes. 本発明の第2実施形態に係る交直変換器制御装置の構成図。The block diagram of the AC / DC converter control device which concerns on 2nd Embodiment of this invention. 電力系統の負荷急変時の本発明の第2実施形態に係る交直変換器制御装置の応答の波形図。FIG. 3 is a waveform diagram of the response of the AC / DC converter control device according to the second embodiment of the present invention when the load of the power system suddenly changes. ガバナフリー機能を有した従来の交直変換器制御装置の負荷急変時の応答の波形図。Waveform diagram of the response of a conventional AC / DC converter controller with a governor-free function when the load suddenly changes.

以下、本発明の実施形態を説明する。図1は本発明の第1実施形態に係る交直変換器制御装置の構成図である。図1では、電力系統11に、同期発電機を有した発電システム12及び蓄電池から有効電力及び無効電力を充放電する交直変換器蓄電池システム13が接続されたものを示しており、太陽光発電設備などの再エネルギー電源の図示は省略している。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a configuration diagram of an AC / DC converter control device according to a first embodiment of the present invention. FIG. 1 shows a power generation system 12 having a synchronous generator and an AC / DC converter storage battery system 13 that charges and discharges active power and ineffective power from a storage battery, and is connected to a photovoltaic power generation facility. The illustration of the rechargeable power source such as is omitted.

発電システム12は、同期発電機14を原動機15で駆動して電力系統11の負荷16に電力を供給するものであり、制御装置17は、電圧検出器18aで検出された同期発電機14の出力電圧及び電流検出器19aで検出された同期発電機14の出力電流を入力し、原動機15及び同期発電機14を制御して出力電力が目標値になるように制御する。 The power generation system 12 drives the synchronous generator 14 with the prime mover 15 to supply power to the load 16 of the power system 11, and the control device 17 outputs the synchronous generator 14 detected by the voltage detector 18a. The output current of the synchronous generator 14 detected by the voltage and current detector 19a is input, and the prime mover 15 and the synchronous generator 14 are controlled so that the output power reaches the target value.

交直変換器蓄電池システム13は、蓄電池20の交直変換器21を制御して電力系統11に有効電力及び無効電力を充放電するものであり、交直変換器21はリアクトル22及び変圧器23を介して電力系統11に接続されている。 The AC / DC converter storage battery system 13 controls the AC / DC converter 21 of the storage battery 20 to charge and discharge the active power and the ineffective power to the power system 11, and the AC / DC converter 21 passes through the reactor 22 and the transformer 23. It is connected to the power system 11.

また、交直変換器21は、本発明の第1実施形態に係る交直変換器制御装置24で制御される。交直変換器制御装置24は、電圧検出器18bで検出された変圧器23の出力電圧(系統電圧)、電流検出器19b1で検出された変圧器23の出力電流及び電流検出器19b2で検出された交直変換器21の出力電流を入力し、電力系統11に充放電する有効電力及び無効電力が目標値になるように制御する。その際に、蓄電池20から同期発電機14の慣性力に相当する電力を出力するようにし周波数維持効果を高める。 Further, the AC / DC converter 21 is controlled by the AC / DC converter control device 24 according to the first embodiment of the present invention. The AC / DC converter control device 24 is detected by the output voltage (system voltage) of the transformer 23 detected by the voltage detector 18b, the output current of the transformer 23 detected by the current detector 19b1, and the current detector 19b2. The output current of the AC / DC converter 21 is input, and the active power and the ineffective power to be charged and discharged to the power system 11 are controlled to be the target values. At that time, the power corresponding to the inertial force of the synchronous generator 14 is output from the storage battery 20 to enhance the frequency maintenance effect.

交直変換器制御装置24は、電力制御部25と位相同期部26と発電機慣性力発生部27とから構成される。電力制御部25は蓄電池20から電力系統11に充放電する有効電力及び無効電力が目標値になるように交直変換器21に制御指令を出力するものであり、位相同期部26は交直変換器21の出力電圧の位相が電力系統11の系統電圧の位相となるように電力制御部25に系統電圧の位相に同期した信号を出力するものである。また、発電機慣性力発生部27は、位相同期部26の応答を遅延させた回路を有しその回路で得られた系統電圧との位相差に基づいて、同期発電機14の慣性力相当の周波数変動抑制量を算出し電力制御部25の有効電力の目標値に加算するものである。 The AC / DC converter control device 24 includes a power control unit 25, a phase synchronization unit 26, and a generator inertial force generating unit 27. The power control unit 25 outputs a control command to the AC / DC converter 21 so that the active power and the ineffective power charged / discharged from the storage battery 20 to the power system 11 become target values, and the phase synchronization unit 26 outputs the AC / DC converter 21. A signal synchronized with the phase of the system voltage is output to the power control unit 25 so that the phase of the output voltage of is the phase of the system voltage of the power system 11. Further, the generator inertial force generating unit 27 has a circuit in which the response of the phase synchronization unit 26 is delayed, and is equivalent to the inertial force of the synchronous generator 14 based on the phase difference with the system voltage obtained by the circuit. The amount of frequency fluctuation suppression is calculated and added to the target value of the active power of the power control unit 25.

電力制御部25の電力演算部28は、電圧検出器18bで検出された変圧器23の出力電圧、電流検出器19b1で検出された変圧器23の出力電流を入力し、交直変換器制御装置24から出力される有効電力及び無効電力を演算し、三相二相変換して二相変換された有効電力P及び無効電力Qを出力する。電力演算部28で演算された有効電力Pは加算器29a1に入力され、電力演算部28で演算された無効電力Qは加算器29b1に入力される。電力制御部25の三相/dq変換部30aは、電流検出器19b2で検出された交直変換器21の出力電流(三相電流)を入力して三相二相変換し、二相変換された交直変換器21の出力電流を加算器29a2、29b2に出力する。 The power calculation unit 28 of the power control unit 25 inputs the output voltage of the transformer 23 detected by the voltage detector 18b and the output current of the transformer 23 detected by the current detector 19b1 to input the AC / DC converter control device 24. The active power and the ineffective power output from are calculated, and the active power P and the ineffective power Q which are converted into two phases by three-phase and two-phase conversion are output. The active power P calculated by the power calculation unit 28 is input to the adder 29a1, and the reactive power Q calculated by the power calculation unit 28 is input to the adder 29b1. The three-phase / dq conversion unit 30a of the power control unit 25 inputs the output current (three-phase current) of the AC / DC converter 21 detected by the current detector 19b2, performs three-phase two-phase conversion, and performs two-phase conversion. The output current of the AC / DC converter 21 is output to the adders 29a2 and 29b2.

加算器29a1では、有効電力目標値P1に後述の発電機慣性力発生部27から出力される同期発電機14の慣性力相当の周波数変動抑制量Piを加算器29d1で加算した加算値(P1+Pi)と、交直変換器制御装置24から出力される有効電力Pとの差分ΔPを演算し有効電力調整器31に出力する。同様に、加算器29b1では、無効電力目標値Q1と、交直変換器制御装置24から出力される無効電力Qとの差分ΔQを演算し無効電力調整器32に出力する。 In the adder 29a1, the added value (P1 + Pi) obtained by adding the frequency fluctuation suppression amount Pi corresponding to the inertial force of the synchronous generator 14 output from the generator inertial force generating unit 27, which will be described later, to the active power target value P1 by the adder 29d1. And the difference ΔP from the active power P output from the AC / DC converter control device 24 is calculated and output to the active power regulator 31. Similarly, the adder 29b1 calculates the difference ΔQ between the invalid power target value Q1 and the invalid power Q output from the AC / DC converter control device 24 and outputs the difference ΔQ to the invalid power regulator 32.

加算器29a2では、有効電力調整器31の出力と三相/dq変換部30aで二相変換されたd軸電流との差分を演算しd軸電流調整器33に出力する。d軸電流調整器33の出力は加算器29a3にて後述の位相同期部26からの位相角信号が加算され充放電する有効電力指令値が演算される。同様に、加算器29b2では、無効電力調整器32の出力と三相/dq変換部30aで二相変換されたq軸電流との差分を演算しq軸電流調整器34に出力する。q軸電流調整器34の出力は加算器29b3にて後述の位相同期部26からの位相角信号が加算され充放電する無効電力指令値が演算される。 The adder 29a2 calculates the difference between the output of the active power regulator 31 and the d-axis current converted into two-phase by the three-phase / dq converter 30a and outputs the difference to the d-axis current regulator 33. For the output of the d-axis current regulator 33, the adder 29a3 calculates the active power command value for charging / discharging by adding the phase angle signal from the phase synchronization unit 26 described later. Similarly, the adder 29b2 calculates the difference between the output of the ineffective power regulator 32 and the q-axis current converted into two-phase by the three-phase / dq converter 30a and outputs the difference to the q-axis current regulator 34. For the output of the q-axis current regulator 34, the adder 29b3 calculates an invalid power command value for charging / discharging by adding a phase angle signal from the phase synchronization unit 26 described later.

加算器29a3からの有効電力指令値及び加算器29b3からの無効電力指令値は、dq/三相変換部35に入力され二相三相変換されてゲートパルス発生部36を介して交直変換器21に入力される。これにより、交直変換器21は、有効電力及び無効電力が目標値になるように制御され、蓄電池20から同期発電機14の慣性力に相当する電力が加算された有効電力になるように制御される。 The active power command value from the adder 29a3 and the invalid power command value from the adder 29b3 are input to the dq / three-phase conversion unit 35, converted into two-phase and three-phase, and are converted into two-phase and three-phase, and the AC / DC converter 21 is transmitted via the gate pulse generator 36. Is entered in. As a result, the AC / DC converter 21 is controlled so that the active power and the ineffective power become target values, and the active power is obtained by adding the power corresponding to the inertial force of the synchronous generator 14 from the storage battery 20. To.

次に、位相同期部26は交直変換器21の出力電圧の位相が電力系統11の系統電圧の位相となるように電力制御部25に系統電圧の位相に同期した信号を出力するものであり、位相同期回路PLL(Phase Locked Loop)で構成される。 Next, the phase synchronization unit 26 outputs a signal synchronized with the phase of the system voltage to the power control unit 25 so that the phase of the output voltage of the AC / DC converter 21 becomes the phase of the system voltage of the power system 11. It is composed of a phase-locked loop PLL (Phase Locked Loop).

位相同期部26の三相/dq変換部30bは、電圧検出器18bで検出された変圧器23の出力電圧(系統電圧)を入力し、三相の系統電圧を二相に変換するとともに、二相成分演算部37aで求めた内部信号(交直変換器21の出力電圧)の二相成分の位相角(cosθH、sinθH)を入力し、系統電圧の位相と内部信号の位相とを比較する。そして、その比較結果を位相角信号として電力制御部25の加算器29a3、29b3に出力するとともに位相差検出部38aに出力する。 The three-phase / dq conversion unit 30b of the phase synchronization unit 26 inputs the output voltage (system voltage) of the transformer 23 detected by the voltage detector 18b, converts the three-phase system voltage into two phases, and at the same time, performs two phases. The phase angles (cosθH, sinθH) of the two-phase components of the internal signal (output voltage of the AC / DC converter 21) obtained by the phase component calculation unit 37a are input, and the phase of the system voltage and the phase of the internal signal are compared. Then, the comparison result is output as a phase angle signal to the adders 29a3 and 29b3 of the power control unit 25 and output to the phase difference detection unit 38a.

位相差検出部38aは、系統電圧の位相と内部信号の位相との位相差ΦHを演算し位相差調整部39aに出力する。位相差調整部39aは位相差ΦHが零となるような調整量を演算し加算器29cに出力する。加算器29cは、位相差調整部39aからの調整量と基準周波数(系統電圧の周波数)とを加算して内部信号の角周波数ωHを求める。内部信号の角周波数ωHは積分要素40aに入力され、積分要素40aにて位相角θHが求められる。積分要素40aにて求められた位相角θHは二相成分演算部37aに入力され、二相成分演算部37aにて内部信号(交直変換器21の出力電圧)の二相成分の位相角(cosθH、sinθH)が求められる。 The phase difference detecting unit 38a calculates the phase difference ΦH between the phase of the system voltage and the phase of the internal signal and outputs the phase difference ΦH to the phase difference adjusting unit 39a. The phase difference adjusting unit 39a calculates an adjustment amount so that the phase difference ΦH becomes zero and outputs it to the adder 29c. The adder 29c adds the adjustment amount from the phase difference adjusting unit 39a and the reference frequency (frequency of the system voltage) to obtain the angular frequency ωH of the internal signal. The angular frequency ωH of the internal signal is input to the integrating element 40a, and the phase angle θH is obtained by the integrating element 40a. The phase angle θH obtained by the integrating element 40a is input to the two-phase component calculation unit 37a, and the phase angle (cos θH) of the two-phase component of the internal signal (output voltage of the AC / DC converter 21) is input by the two-phase component calculation unit 37a. , SinθH).

このように、位相同期部26は、内部信号(交直変換器21の出力電圧)の位相が電力系統11の系統電圧の位相となるように、電力制御部25の加算器29a3、29b3に位相角信号として出力するものである。これにより、交直変換器21の出力電圧の位相は電力系統11の系統電圧の位相に一致するように調整される。 In this way, the phase synchronization unit 26 has a phase angle on the adders 29a3 and 29b3 of the power control unit 25 so that the phase of the internal signal (output voltage of the AC / DC converter 21) is the phase of the system voltage of the power system 11. It is output as a signal. As a result, the phase of the output voltage of the AC / DC converter 21 is adjusted so as to match the phase of the system voltage of the power system 11.

次に、発電機慣性力発生部27は、位相同期部26の応答を遅延させた回路を有し、その回路で得られた系統電圧との位相差に基づいて、同期発電機14の慣性力相当の周波数変動抑制量を算出し、電力制御部25の有効電力の目標値に加算するものである。 Next, the generator inertial force generating unit 27 has a circuit in which the response of the phase synchronization unit 26 is delayed, and the inertial force of the synchronous generator 14 is based on the phase difference with the system voltage obtained by the circuit. A considerable amount of frequency fluctuation suppression is calculated and added to the target value of the active power of the power control unit 25.

発電機慣性力発生部27の位相同期回路PLLは、三相/dq変換部30c、二相成分演算部37b、位相差検出部38b、位相差調整部39b、加算器29c2、積分要素40bで構成され、位相同期部26の位相同期回路PLL(位相同期部26の三相/dq変換部30b、二相成分演算部37a、位相差検出部38a、位相差調整部39a、加算器29c1、積分要素40a)と同様な回路構成である。発電機慣性力発生部27の位相同期回路PLLは、位相同期部26の位相同期回路PLLの応答を遅延させた回路である。 The phase-locked loop PLL of the generator inertial force generation unit 27 is composed of a three-phase / dq conversion unit 30c, a two-phase component calculation unit 37b, a phase difference detection unit 38b, a phase difference adjustment unit 39b, an adder 29c2, and an integrating element 40b. The phase-locked loop PLL of the phase-locked loop unit 26 (three-phase / dq conversion unit 30b of the phase synchronization unit 26, two-phase component calculation unit 37a, phase difference detection unit 38a, phase difference adjustment unit 39a, adder 29c1, integration element. The circuit configuration is the same as that of 40a). The phase-locked loop PLL of the generator inertial force generating unit 27 is a circuit in which the response of the phase-locked loop PLL of the phase-locked loop unit 26 is delayed.

交直変換器21は、系統電圧に対して、いかなる電圧を発生するのかを瞬時に演算して蓄電池20の出力電力を所望の電力になるように制御する必要がある。すなわち、系統電圧が実際のものと違っていれば蓄電池20の出力電力を所望電力にすることは困難であるため、できる限り系統電圧は実際のものに近づけておく必要がある。そこで、位相同期部26の位相同期回路PLLは応答速度が早くなるように位相同期部26の位相差調整部39aの制御定数は定められている。一方、発電機慣性力発生部27の位相差調整部39bの制御定数は、位相同期部26の位相差調整部39aの制御定数より応答が遅くなるように設定されている。これは、電力系統11の負荷16の急変により電力系統11の周波数が変動した場合に、同期発電機14の特性と同様に電力系統11の周波数変動が抑制される応答とするためである。 The AC / DC converter 21 needs to instantly calculate what kind of voltage is generated with respect to the system voltage and control the output power of the storage battery 20 to become a desired power. That is, if the system voltage is different from the actual one, it is difficult to make the output power of the storage battery 20 the desired power. Therefore, it is necessary to keep the system voltage as close to the actual one as possible. Therefore, the control constant of the phase difference adjusting unit 39a of the phase synchronization unit 26 is determined so that the phase synchronization circuit PLL of the phase synchronization unit 26 has a faster response speed. On the other hand, the control constant of the phase difference adjusting unit 39b of the generator inertial force generating unit 27 is set so that the response is slower than the control constant of the phase difference adjusting unit 39a of the phase synchronization unit 26. This is because when the frequency of the power system 11 fluctuates due to a sudden change in the load 16 of the power system 11, the response is such that the frequency fluctuation of the power system 11 is suppressed in the same manner as the characteristics of the synchronous generator 14.

位相同期部26の位相同期回路PLLが発電機慣性力発生部27の位相同期回路PLLより応答が早いことから、図1では、位相同期部26の位相同期回路PLLの諸量には添え字Hを付し、発電機慣性力発生部27の位相同期回路PLLの諸量には添え字Lを付している。 Since the phase-locked loop PLL of the phase-locked loop unit 26 responds faster than the phase-locked loop PLL of the generator inertial force generating unit 27, in FIG. 1, the various quantities of the phase-locked loop PLL of the phase-locked loop unit 26 are subscript H. Is attached, and a subscript L is attached to various quantities of the phase-locked loop PLL of the generator inertial force generating unit 27.

そして、発電機慣性力発生部27は、発電機慣性力発生部27の位相同期回路PLL(位相同期部26の三相/dq変換部30b、二相成分演算部37a、位相差検出部38a、位相差調整部39a、加算器29c1、積分要素40a)に加え、発電機慣性力発生部27の位相同期回路PLLで得られた系統電圧との位相差ΦLに基づいて、同期発電機14の慣性力相当の周波数変動抑制量Piを演算する慣性力演算部41を有する。慣性力演算部41は、同期発電機14の慣性力相当の周波数変動抑制量Piとして、負荷急変時に同期発電機14が出力する電気出力{Pi=(1/XT)*sinΦL}を演算する。XTは交直変換器21の交流側のリアクタンス(主に交流リアクトルまたは変圧器のリアクタンス)、ΦLは系統電圧の位相と内部信号(交直変換器21の出力電圧)の位相との位相差である。 Then, the generator inertial force generation unit 27 is a phase-locked loop PLL of the generator inertial force generation unit 27 (three-phase / dq conversion unit 30b of the phase synchronization unit 26, two-phase component calculation unit 37a, phase difference detection unit 38a, In addition to the phase difference adjusting unit 39a, adder 29c1, and integrating element 40a), the inertia of the synchronous generator 14 is based on the phase difference ΦL with the system voltage obtained by the phase-locked loop PLL of the generator inertial force generating unit 27. It has an inertial force calculation unit 41 that calculates a frequency fluctuation suppression amount Pi corresponding to the force. The inertial force calculation unit 41 calculates the electric output {Pi = (1 / XT) * sinΦL} output by the synchronous generator 14 when the load suddenly changes, as the frequency fluctuation suppression amount Pi corresponding to the inertial force of the synchronous generator 14. XT is the reactance on the AC side of the AC / DC converter 21 (mainly the reactance of the AC reactor or the transformer), and ΦL is the phase difference between the phase of the system voltage and the phase of the internal signal (output voltage of the AC / DC converter 21).

慣性力演算部41は演算した周波数変動抑制量Piを加算器29d1に出力する。加算器29d1は周波数変動抑制量Piを電力制御部25の有効電力の目標値P1に加算する。これにより、同期発電機の慣性力相当の周波数変動抑制量Piを有効電力の目標値P1に加算するので、電力系統11の負荷16の急変時に電力系統11の周波数低下を大幅に改善できる。 The inertial force calculation unit 41 outputs the calculated frequency fluctuation suppression amount Pi to the adder 29d1. The adder 29d1 adds the frequency fluctuation suppression amount Pi to the target value P1 of the active power of the power control unit 25. As a result, the frequency fluctuation suppression amount Pi corresponding to the inertial force of the synchronous generator is added to the target value P1 of the active power, so that the frequency decrease of the power system 11 can be significantly improved when the load 16 of the power system 11 suddenly changes.

図2は電力系統の負荷急変時の本発明の第1実施形態に係る交直変換器制御装置の応答の波形図であり、図2(a)は負荷変動に対する発電機出力及び蓄電池出力の波形図、図2(b)は図2(a)の場合の周波数変動の波形図である。図2(b)では電力系統11の基準周波数が50Hzの場合を示している。 FIG. 2 is a waveform diagram of the response of the AC / DC converter control device according to the first embodiment of the present invention when the load of the power system suddenly changes, and FIG. 2 (a) is a waveform diagram of the generator output and the storage battery output with respect to the load fluctuation. 2 (b) is a waveform diagram of frequency fluctuation in the case of FIG. 2 (a). FIG. 2B shows a case where the reference frequency of the power system 11 is 50 Hz.

図2(a)において、いま、時点t1で電力系統11の負荷が2000kWから2500kWに急増したとする。電力系統11に同期発電機14が連系されているので電力系統の負荷変動に応じて同期発電機14は出力を増加させる。また、本発明の第1実施形態に係る交直変換器制御装置は発電機慣性力発生機能を有しているので、電力系統11の負荷急変に伴い、蓄電池20からも負荷急変に対応して電力が電力系統11に出力される。従って、図2(b)に示すように、電力系統11の周波数の変動は、負荷が急増した時点t1において、わずかに0.3Hz程度変動しただけである。 In FIG. 2A, it is assumed that the load of the power system 11 has rapidly increased from 2000 kW to 2500 kW at the time point t1. Since the synchronous generator 14 is connected to the electric power system 11, the synchronous generator 14 increases the output according to the load fluctuation of the electric power system. Further, since the AC / DC converter control device according to the first embodiment of the present invention has a generator inertial force generating function, power is generated from the storage battery 20 in response to a sudden load change in the power system 11. Is output to the power system 11. Therefore, as shown in FIG. 2B, the frequency fluctuation of the power system 11 fluctuates only about 0.3 Hz at the time t1 when the load suddenly increases.

図3は電力系統の負荷急変時の従来の交直変換器制御装置の応答の波形図であり、図3(a)は負荷変動に対する発電機出力及び蓄電池出力の波形図、図3(b)は図2の場合の周波数変動の波形図である。図3は図2の比較例として示した。 FIG. 3 is a waveform diagram of the response of the conventional AC / DC converter controller when the load of the power system suddenly changes, FIG. 3 (a) is a waveform diagram of the generator output and the storage battery output with respect to the load fluctuation, and FIG. 3 (b) is a waveform diagram. It is a waveform diagram of the frequency fluctuation in the case of FIG. FIG. 3 is shown as a comparative example of FIG.

図3(a)において、いま、時点t1で電力系統11の負荷が2000kWから2500kWに急増したとする。電力系統11に同期発電機14が連系されているので電力系統の負荷変動に応じて同期発電機14は出力を増加させる。一方、従来の交直変換器制御装置は発電機慣性力発生機能を有していないので、電力系統11の負荷急変に伴い、蓄電池20から電力が追加して出力されることはない。従って、図3(b)に示すように、電力系統11の周波数の変動は、負荷が急増した時点t1から負荷変動が収束するまでの時点t2において大きく変動する。図2及び図3から分かるように本発明の第1実施形態によれば、電力系統11の負荷16の急変時に電力系統11の周波数低下を大幅に改善できる。また、発電機慣性力発生機能は位相同期回路PLLで実現できるので、簡単な回路で実現が可能である。 In FIG. 3A, it is assumed that the load of the power system 11 has suddenly increased from 2000 kW to 2500 kW at the time point t1. Since the synchronous generator 14 is connected to the electric power system 11, the synchronous generator 14 increases the output according to the load fluctuation of the electric power system. On the other hand, since the conventional AC / DC converter control device does not have a generator inertial force generating function, no additional power is output from the storage battery 20 due to a sudden change in the load of the power system 11. Therefore, as shown in FIG. 3B, the frequency fluctuation of the power system 11 greatly fluctuates from the time point t1 when the load suddenly increases to the time point t2 until the load fluctuation converges. As can be seen from FIGS. 2 and 3, according to the first embodiment of the present invention, the frequency drop of the power system 11 can be significantly improved when the load 16 of the power system 11 suddenly changes. Further, since the generator inertial force generation function can be realized by the phase-locked loop PLL, it can be realized by a simple circuit.

次に、本発明の第2実施形態を説明する。図4は本発明の第2実施形態に係る交直変換器制御装置の構成図である。この第2実施形態は、図1に示した第1実施形態に対し、電力系統の周波数が変動したとき同期発電機のガバナフリー運転に相当する周波数調整量を算出し電力制御部25の有効電力の目標値に加算するガバナフリー制御部42を追加して設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。 Next, a second embodiment of the present invention will be described. FIG. 4 is a configuration diagram of an AC / DC converter control device according to a second embodiment of the present invention. In this second embodiment, with respect to the first embodiment shown in FIG. 1, the frequency adjustment amount corresponding to the governor-free operation of the synchronous generator is calculated when the frequency of the power system fluctuates, and the active power of the power control unit 25 is calculated. The governor-free control unit 42 to be added to the target value of is additionally provided. The same elements as those in FIG. 1 are designated by the same reference numerals, and redundant description will be omitted.

ガバナフリー制御部42は、電力系統11の系統周波数が変動したとき、同期発電機14のガバナフリー運転に相当する周波数調整量ΔPfを算出するものである。ガバナフリー運転は、数秒〜数十秒(1〜2分くらいまで)の系統周波数の変動を吸収する周波数調整量ΔPfを出力するものである。なお、同期発電機14の慣性力による周波数変動の抑制は系統周波数の変動が0〜十数秒の系統周波数の変動を吸収する周波数変動抑制量Piを出力するものである。 The governor-free control unit 42 calculates the frequency adjustment amount ΔPf corresponding to the governor-free operation of the synchronous generator 14 when the system frequency of the power system 11 fluctuates. The governor-free operation outputs a frequency adjustment amount ΔPf that absorbs fluctuations in the system frequency for several seconds to several tens of seconds (up to about 1 to 2 minutes). The suppression of frequency fluctuations due to the inertial force of the synchronous generator 14 outputs a frequency fluctuation suppression amount Pi that absorbs fluctuations in the system frequency for 0 to a dozen seconds.

図4において、電力系統11の系統周波数fは周波数検出器43で検出され、周波数検出器43で検出された系統周波数fは加算器29eに入力される。加算器29eは系統周波数fと基準周波数f0との差分を演算し周波数偏差Δfとして関数発生器44に出力する。関数発生器44は周波数偏差Δfに基づいて、同期発電機14のガバナフリー運転に相当する周波数調整量ΔPfを発生する。関数発生器44は周波数偏差Δfが零を中心として所定幅では周波数調整量ΔPfが零となる不感帯を有し、また、周波数偏差Δfの絶対値が所定値を超えると周波数調整量ΔPfが一定値となる関数を有する。周波数偏差Δfが不感帯及び絶対値が所定値を超えない範囲では、周波数調整量ΔPfは、Pf=−K・Δfで示される。Kは同期発電機14でいう速度調停率の逆数(K=1/速度調定率)である。 In FIG. 4, the system frequency f of the power system 11 is detected by the frequency detector 43, and the system frequency f detected by the frequency detector 43 is input to the adder 29e. The adder 29e calculates the difference between the system frequency f and the reference frequency f0 and outputs it to the function generator 44 as a frequency deviation Δf. The function generator 44 generates a frequency adjustment amount ΔPf corresponding to the governor-free operation of the synchronous generator 14 based on the frequency deviation Δf. The function generator 44 has a dead zone in which the frequency adjustment amount ΔPf becomes zero in a predetermined width with the frequency deviation Δf centered on zero, and when the absolute value of the frequency deviation Δf exceeds a predetermined value, the frequency adjustment amount ΔPf becomes a constant value. Has a function that In the range where the frequency deviation Δf does not exceed the dead zone and the absolute value does not exceed a predetermined value, the frequency adjustment amount ΔPf is represented by Pf = −K · Δf. K is the reciprocal of the speed arbitration rate (K = 1 / speed arbitration rate) in the synchronous generator 14.

系統周波数fが基準周波数f0より低下し不感帯を逸脱しているときは、周波数偏差Δfは負であるので、蓄電池20の放電を増加させる周波数調整量ΔPfが関数発生器44より出力される。逆に、系統周波数fが基準周波数f0より上昇し不感帯を逸脱しているときは、周波数偏差Δfは正であるので、蓄電池20の放電を減少させる周波数調整量ΔPfが関数発生器44より出力される。 When the system frequency f is lower than the reference frequency f0 and deviates from the dead zone, the frequency deviation Δf is negative, so that the frequency adjustment amount ΔPf that increases the discharge of the storage battery 20 is output from the function generator 44. On the contrary, when the system frequency f rises above the reference frequency f0 and deviates from the dead zone, the frequency deviation Δf is positive, so that the frequency adjustment amount ΔPf for reducing the discharge of the storage battery 20 is output from the function generator 44. To.

ガバナフリー制御部42からの周波数調整量ΔPfは加算器29d2に出力される。加算器29d2は、ガバナフリー制御部42からの周波数調整量ΔPfと、発電機慣性力発生部27から出力される同期発電機14の慣性力相当の周波数変動抑制量Piとを加算し加算器29d2に出力する。加算器29d2は、周波数調整量ΔPfと周波数変動抑制量Piとを加算し加算値(ΔPf+Pi)を加算器29d1に出力する。加算器29d1は加算値(ΔPf+Pi)を電力制御部25の有効電力の目標値P1に加算する。これにより、ガバナフリー制御部42からの周波数調整量ΔPf及び同期発電機の慣性力相当の周波数変動抑制量Piの加算値(ΔPf+Pi)を有効電力の目標値P1に加算するので、電力系統11の負荷16の急変時に電力系統11の周波数低下を大幅に改善できる。 The frequency adjustment amount ΔPf from the governor-free control unit 42 is output to the adder 29d2. The adder 29d2 adds the frequency adjustment amount ΔPf from the governor-free control unit 42 and the frequency fluctuation suppression amount Pi corresponding to the inertial force of the synchronous generator 14 output from the generator inertial force generating unit 27, and addser 29d2. Output to. The adder 29d2 adds the frequency adjustment amount ΔPf and the frequency fluctuation suppression amount Pi and outputs an addition value (ΔPf + Pi) to the adder 29d1. The adder 29d1 adds the added value (ΔPf + Pi) to the target value P1 of the active power of the power control unit 25. As a result, the added value (ΔPf + Pi) of the frequency adjustment amount ΔPf from the governor-free control unit 42 and the frequency fluctuation suppression amount Pi corresponding to the inertial force of the synchronous generator is added to the target value P1 of the active power. When the load 16 suddenly changes, the frequency drop of the power system 11 can be significantly improved.

図5は電力系統の負荷急変時の本発明の第2実施形態に係る交直変換器制御装置の応答の波形図であり、図5(a)は負荷変動に対する発電機出力及び蓄電池出力の波形図、図5(b)は図5(a)の場合の周波数変動の波形図である。図5(b)では電力系統11の基準周波数が50Hzの場合を示している。 FIG. 5 is a waveform diagram of the response of the AC / DC converter control device according to the second embodiment of the present invention when the load of the power system suddenly changes, and FIG. 5 (a) is a waveform diagram of the generator output and the storage battery output with respect to the load fluctuation. 5 (b) is a waveform diagram of frequency fluctuation in the case of FIG. 5 (a). FIG. 5B shows a case where the reference frequency of the power system 11 is 50 Hz.

図5(a)において、いま、時点t1で電力系統11の負荷が2000kWから2500kWに急増したとする。電力系統11に同期発電機14が連系されているので電力系統の負荷変動に応じて同期発電機14は出力を増加させる。また、本発明の第2実施形態に係る交直変換器制御装置は発電機慣性力発生機能及びガバナフリー機能を有しているので、電力系統11の負荷急変に伴い、蓄電池20からも負荷急変に対応して電力が電力系統11に出力される。従って、図2(b)に示すように、電力系統11の周波数の変動は、負荷が急増した時点t1において、わずかに0.2Hz程度変動しただけである。 In FIG. 5A, it is assumed that the load of the power system 11 has suddenly increased from 2000 kW to 2500 kW at the time point t1. Since the synchronous generator 14 is connected to the electric power system 11, the synchronous generator 14 increases the output according to the load fluctuation of the electric power system. Further, since the AC / DC converter control device according to the second embodiment of the present invention has a generator inertial force generating function and a governor-free function, the load suddenly changes from the storage battery 20 as the load of the power system 11 suddenly changes. Correspondingly, power is output to the power system 11. Therefore, as shown in FIG. 2B, the frequency fluctuation of the power system 11 fluctuates only about 0.2 Hz at the time t1 when the load suddenly increases.

図6はガバナフリー機能を有した従来の交直変換器制御装置の負荷急変時の応答の波形図であり、図6(a)は負荷変動に対する発電機出力及び蓄電池出力の波形図、図6(b)は図6(a)の場合の周波数変動の波形図である。図6は図5の比較例として示した。 FIG. 6 is a waveform diagram of the response of a conventional AC / DC converter controller having a governor-free function when the load suddenly changes, and FIG. 6A is a waveform diagram of the generator output and the storage battery output with respect to the load fluctuation, FIG. b) is a waveform diagram of frequency fluctuation in the case of FIG. 6A. FIG. 6 is shown as a comparative example of FIG.

図6(a)において、いま、時点t1で電力系統11の負荷が2000kWから2500kWに急増したとする。電力系統11に同期発電機14が連系されているので電力系統の負荷変動に応じて同期発電機14は出力を増加させる。一方、従来の交直変換器制御装置はガバナフリー機能は有しているが発電機慣性力発生機能を有していないので、電力系統11の負荷急変に伴い、蓄電池20から電力が追加して出力されるのはガバナフリー機能に基づくものだけである。従って、ガバナフリー機能は、前述したように、数秒〜数十秒(1〜2分くらいまで)の系統周波数の変動を吸収する周波数調整量ΔPfを出力するものであり、系統周波数の変動が0〜十数秒の系統周波数の変動を吸収する周波数変動抑制量Piは出力されない。このことから、図3(b)に示すように、電力系統11の周波数の変動は、負荷が急増した時点t1から負荷変動が収束するまでの時点t2において大きく変動する。発電機慣性力発生機能を有している場合には、図5から分かるように電力系統11の負荷16の急変時に電力系統11の周波数低下を大幅に改善できる。なお、本発明の第2実施形態の場合には、ガバナフリー機能を有しているので、数秒〜数十秒(1〜2分くらいまで)の系統周波数の変動を吸収できる。 In FIG. 6A, it is assumed that the load of the power system 11 has rapidly increased from 2000 kW to 2500 kW at the time point t1. Since the synchronous generator 14 is connected to the electric power system 11, the synchronous generator 14 increases the output according to the load fluctuation of the electric power system. On the other hand, the conventional AC / DC converter control device has a governor-free function but does not have a generator inertial force generation function, so that power is additionally output from the storage battery 20 due to a sudden change in the load of the power system 11. Only those based on the governor-free function will be done. Therefore, as described above, the governor-free function outputs the frequency adjustment amount ΔPf that absorbs the fluctuation of the system frequency for several seconds to several tens of seconds (up to about 1 to 2 minutes), and the fluctuation of the system frequency is 0. The frequency fluctuation suppression amount Pi that absorbs the fluctuation of the system frequency for about ten and several seconds is not output. From this, as shown in FIG. 3B, the frequency fluctuation of the power system 11 greatly fluctuates from the time point t1 when the load suddenly increases to the time point t2 until the load fluctuation converges. When the generator has the inertial force generating function, as can be seen from FIG. 5, the frequency drop of the power system 11 can be significantly improved when the load 16 of the power system 11 suddenly changes. In the case of the second embodiment of the present invention, since it has a governor-free function, it is possible to absorb fluctuations in the system frequency from several seconds to several tens of seconds (up to about 1 to 2 minutes).

本発明の第2実施形態によれば、蓄電池システム13の交直変換器21にガバナフリー機能に加え慣性力発生機能を付加することで、周波数低下を大幅に改善できる。また、発電機慣性力発生機能は位相同期回路PLLで実現できるので、簡単な回路で実現が可能である。 According to the second embodiment of the present invention, the frequency decrease can be significantly improved by adding the inertial force generation function in addition to the governor-free function to the AC / DC converter 21 of the storage battery system 13. Further, since the generator inertial force generation function can be realized by the phase-locked loop PLL, it can be realized by a simple circuit.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

11…電力系統
12…発電システム
13…交直変換器蓄電池システム
14…同期発電機
15…原動機
16…負荷
17…制御装置
18…電圧検出器
19…電流検出器
20…蓄電池
21…交直変換器
22…リアクトル
23…変圧器
24…交直変換器制御装置
25…電力制御部
26…位相同期部
27…発電機慣性力発生部
28…電力演算部
29…加算器
30…三相/dq変換部
31…有効電力調整器
32…無効電力調整器
33…p軸電流調整器
34…q軸電流調整器
35…dq/三相変換部
36…ゲートパルス発生部
37…二相成分演算部
38…位相差検出部
39…位相差調整部
40…積分要素
41…慣性力演算部
42…ガバナフリー制御部
43…周波数検出器
44…関数発生器
11 ... Electric power system 12 ... Power generation system 13 ... AC / DC converter Storage battery system 14 ... Synchronous generator 15 ... Motor 16 ... Load 17 ... Control device 18 ... Voltage detector 19 ... Current detector 20 ... Storage battery 21 ... AC / DC converter 22 ... Reactor 23 ... Transformer 24 ... AC / DC converter control device 25 ... Power control unit 26 ... Phase synchronization unit 27 ... Generator inertial force generation unit 28 ... Power calculation unit 29 ... Adder 30 ... Three-phase / dq conversion unit 31 ... Effective Power regulator 32 ... Invalid power regulator 33 ... p-axis current regulator 34 ... q-axis current regulator 35 ... dq / three-phase conversion unit 36 ... Gate pulse generator 37 ... Two-phase component calculation unit 38 ... Phase difference detection unit 39 ... Phase difference adjusting unit 40 ... Integrating element 41 ... Inertial force calculation unit 42 ... Governor-free control unit 43 ... Frequency detector 44 ... Function generator

Claims (2)

電力系統に有効電力及び無効電力を充放電する蓄電池の交直変換器を制御する交直変換器制御装置において、
前記蓄電池から前記電力系統に充放電する有効電力及び無効電力が目標値になるように前記交直変換器に制御指令を出力する電力制御部と、
前記交直変換器の出力電圧の位相が前記電力系統の系統電圧の位相となるように前記電力制御部に前記系統電圧の位相に同期した信号を出力する位相同期部と、
前記位相同期部の応答を遅延させた回路を有しその回路で得られた前記系統電圧との位相差に基づいて同期発電機の慣性力相当の周波数変動抑制量を算出し前記電力制御部の前記有効電力の目標値に加算する発電機慣性力発生部とを備えたことを特徴とする交直変換器制御装置。
In the AC / DC converter control device that controls the AC / DC converter of the storage battery that charges and discharges active power and invalid power to the power system.
A power control unit that outputs a control command to the AC / DC converter so that the active power and the ineffective power charged / discharged from the storage battery to the power system become target values.
A phase synchronization unit that outputs a signal synchronized with the phase of the system voltage to the power control unit so that the phase of the output voltage of the AC / DC converter becomes the phase of the system voltage of the power system.
The power control unit has a circuit in which the response of the phase synchronization unit is delayed, and the frequency fluctuation suppression amount corresponding to the inertial force of the synchronous generator is calculated based on the phase difference from the system voltage obtained in the circuit. An AC / DC converter control device including a generator inertial force generating unit that adds to the target value of active power.
電力系統の周波数が変動したとき前記同期発電機のガバナフリー運転に相当する周波数調整量を算出し前記電力制御部の前記有効電力の目標値に加算するガバナフリー制御部を備えたことを特徴とする請求項1に記載の交直変換器制御装置。 It is characterized by having a governor-free control unit that calculates a frequency adjustment amount corresponding to the governor-free operation of the synchronous generator when the frequency of the power system fluctuates and adds it to the target value of the active power of the power control unit. The AC / DC converter control device according to claim 1.
JP2017118242A 2017-06-16 2017-06-16 AC / DC converter controller Active JP6852585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017118242A JP6852585B2 (en) 2017-06-16 2017-06-16 AC / DC converter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017118242A JP6852585B2 (en) 2017-06-16 2017-06-16 AC / DC converter controller

Publications (2)

Publication Number Publication Date
JP2019003454A JP2019003454A (en) 2019-01-10
JP6852585B2 true JP6852585B2 (en) 2021-03-31

Family

ID=65006368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017118242A Active JP6852585B2 (en) 2017-06-16 2017-06-16 AC / DC converter controller

Country Status (1)

Country Link
JP (1) JP6852585B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351620B2 (en) * 2019-02-01 2023-09-27 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method in multiple generation power supply system
JP7324653B2 (en) * 2019-08-09 2023-08-10 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method
JP6735039B1 (en) 2020-03-19 2020-08-05 富士電機株式会社 Grid-connected inverter and grid frequency fluctuation suppression method
CN116979561B (en) * 2023-09-05 2024-05-10 国网湖南省电力有限公司 Judgment method and system for wind power and energy storage to actively participate in regulation of power system
JP7490166B1 (en) 2023-10-20 2024-05-24 三菱電機株式会社 Control device and control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672525B2 (en) * 2005-11-04 2011-04-20 三菱電機株式会社 Power quality maintenance control device
JP5580147B2 (en) * 2010-08-31 2014-08-27 オリジン電気株式会社 Stabilization control method
JP2012130146A (en) * 2010-12-15 2012-07-05 Kawasaki Heavy Ind Ltd Self-supporting power supply system adjustment device and adjustment method for self-supporting power supply system
JP6020721B2 (en) * 2013-06-05 2016-11-02 富士電機株式会社 Power stabilization system and control device

Also Published As

Publication number Publication date
JP2019003454A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6852585B2 (en) AC / DC converter controller
JP7052290B2 (en) AC / DC converter controller
JP6796029B2 (en) New energy source integrated power converter
JP6306804B2 (en) Gas turbine power generation system and control system used therefor
JP5566736B2 (en) Solar power system
JP6735039B1 (en) Grid-connected inverter and grid frequency fluctuation suppression method
EP2822163A1 (en) Power supply system
JP2010161901A (en) Inverter control circuit and grid-connected inverter system with this inverter control circuit
JP5742591B2 (en) Solar power generation equipment
JP7119732B2 (en) Solar power system
JP7161398B2 (en) power converter
JP6831565B2 (en) Single-phase pseudo-synchronization power inverter and its controller
JP2023012086A (en) Inverter device
JP7365116B2 (en) Power system stabilizer
Nazib et al. Dynamic grid frequency support using a self-synchronising grid-following inverter
WO2020003619A1 (en) Power conversion system
JPH0698469A (en) Control system of voltage detection-type reactive-power compensation apparatus
JP2016082860A (en) Wind turbine power generation system, wind turbine power generation method, wind turbine generator control device and wind turbine generator control method
JP7198074B2 (en) Power converter and power conversion system
JP3655058B2 (en) Self-excited AC / DC converter controller
JP2009033798A (en) Starting system for induction generator
JP2012170191A (en) Power feed system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6852585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150