JP2019070506A - Absorption type heat exchange system - Google Patents

Absorption type heat exchange system Download PDF

Info

Publication number
JP2019070506A
JP2019070506A JP2017197952A JP2017197952A JP2019070506A JP 2019070506 A JP2019070506 A JP 2019070506A JP 2017197952 A JP2017197952 A JP 2017197952A JP 2017197952 A JP2017197952 A JP 2017197952A JP 2019070506 A JP2019070506 A JP 2019070506A
Authority
JP
Japan
Prior art keywords
heat
fluid
temperature
absorption
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017197952A
Other languages
Japanese (ja)
Inventor
與四郎 竹村
Yoshiro Takemura
與四郎 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2017197952A priority Critical patent/JP2019070506A/en
Priority to CN201821632548.8U priority patent/CN209588452U/en
Priority to CN201811172216.0A priority patent/CN109654767B/en
Publication of JP2019070506A publication Critical patent/JP2019070506A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B33/00Boilers; Analysers; Rectifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/026Evaporators specially adapted for sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

To provide an absorption type heat exchange system which can reduce energy required for fluid conveyance even when a place heat is supplied for is away from a place using it.SOLUTION: An absorption type heat exchange system 1 includes: a temperature rise absorption heat pump X1 higher in evaporation pressure of a cooling medium than in condensation pressure; a carburetion absorption heat pump Y1 lower in evaporation pressure of the cooling medium than in condensation pressure; a temperature rise object fluid passage 81 leading heated temperature rise object fluid RP to the carburetion absorption heat pump Y1; and a low-temperature heat source fluid passage 82 leading a low-temperature heat source fluid GP flown out of the carburetion absorption heat pump Y1 to the temperature rise absorption heat pump X1. The carburetion absorption heat pump Y1 has: a carburetion object fluid introduction part Y56 introducing a carburetion object fluid TS; and a carburetion object fluid outflow part Y58 flown out to a heat consuming part HCF. The temperature rise absorption heat pump X1 has: a temperature rise drive heat source fluid inflow part X56 introducing a temperature rise drive heat source fluid RS from a heat supply part HSF; and a temperature rise drive heat source fluid outflow part X58 flowing the temperature rise drive heat source fluid RS out.SELECTED DRAWING: Figure 1

Description

本発明は吸収式熱交換システムに関し、特に吸収ヒートポンプを用いて熱を移動させる吸収式熱交換システムに関する。   The present invention relates to absorption heat exchange systems, and more particularly to an absorption heat exchange system that transfers heat using an absorption heat pump.

低温熱源から高温熱源へ熱を移動させる熱源機械として、吸収ヒートポンプがある。吸収ヒートポンプには、駆動熱源が有する熱エネルギーよりも多くの熱エネルギーを取り出す増熱型の第1種吸収ヒートポンプと、駆動熱源温度より高い温度の被加熱流体を取り出す昇温型の第2種吸収ヒートポンプとがある。第2種吸収ヒートポンプとして、排熱を駆動熱源として導入し、導入した排熱よりも高い温度の被加熱流体を取り出すものがある(例えば、特許文献1参照。)。   As a heat source machine for transferring heat from a low temperature heat source to a high temperature heat source, there is an absorption heat pump. In the absorption heat pump, a heat-raising type-type 1 absorption heat pump that extracts more thermal energy than the heat energy of the driving heat source, and a temperature-raising-type second absorption that There is a heat pump. As a second-class absorption heat pump, exhaust heat is introduced as a driving heat source, and there is one that takes out a fluid to be heated at a temperature higher than the introduced exhaust heat (see, for example, Patent Document 1).

特開2006−207882号公報JP, 2006-207882, A

特許文献1に記載の吸収ヒートポンプでは、排熱を導入してより利用価値の高い高温流体として取り出すことができる。しかしながら、製鉄所や発電所等で出た排熱を、住居等で利用しようとすると、一般に両者の位置は離れているから、吸収ヒートポンプをどちらに設置するにしても、流体搬送に要するエネルギーが嵩むこととなる。   In the absorption heat pump described in Patent Document 1, it is possible to introduce exhaust heat and take it out as a high-temperature fluid having higher utility value. However, when it is intended to use waste heat from steelworks or power plants etc. in residences etc., the positions of both are generally separated, so the energy required for fluid transport is no matter which absorption heat pump is installed It will be bulky.

本発明は上述の課題に鑑み、熱を供給する場所(排熱)と熱を利用する場所とが離れている場合でも流体搬送に要するエネルギーを削減できる吸収式熱交換システムを提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above problems, the present invention has an object to provide an absorption heat exchange system capable of reducing the energy required for fluid transportation even when the place for supplying heat (exhaust heat) and the place using heat are separated. I assume.

上記目的を達成するために、本発明の第1の態様に係る吸収式熱交換システムは、例えば図1(図10)に示すように、吸収液と冷媒との吸収ヒートポンプサイクルによって作動し、冷媒の蒸発圧力が冷媒の凝縮圧力よりも高い昇温吸収ヒートポンプX1(X2)と;吸収液と冷媒との吸収ヒートポンプサイクルによって作動し、冷媒の蒸発圧力が冷媒の凝縮圧力よりも低い増熱吸収ヒートポンプY1(Y2)と;昇温吸収ヒートポンプX1(X2)で加熱された昇温対象流体RPを増熱吸収ヒートポンプY1(Y2)に導く昇温対象流体流路81と;増熱吸収ヒートポンプY1(Y2)から流出した低温熱源流体GPを昇温吸収ヒートポンプX1(X2)に導く低温熱源流体流路82とを備え;増熱吸収ヒートポンプY1(Y2)は、増熱吸収ヒートポンプY1(Y2)で加熱する増熱対象流体TSを導入する増熱対象流体導入部Y56と、増熱吸収ヒートポンプY1(Y2)で加熱された増熱対象流体TSを、熱を消費する熱消費部HCFに向けて流出する増熱対象流体流出部Y58と、を有し;昇温吸収ヒートポンプX1(X2)は、昇温吸収ヒートポンプX1(X2)において吸収ヒートポンプサイクルを駆動する昇温駆動熱源流体RSを、熱を供給する熱供給部HSFから導入する昇温駆動熱源流体流入部X56と、昇温吸収ヒートポンプX1(X2)において吸収ヒートポンプサイクルを駆動した昇温駆動熱源流体RSを流出する昇温駆動熱源流体流出部X58と、を有する。   In order to achieve the above object, the absorption heat exchange system according to the first aspect of the present invention is operated by an absorption heat pump cycle of an absorption liquid and a refrigerant as shown in FIG. 1 (FIG. 10), for example. Heat-up absorption heat pump X1 (X2) whose evaporation pressure is higher than the condensation pressure of the refrigerant; and a heat-up absorption heat pump operated by the absorption heat pump cycle of absorption liquid and refrigerant, the evaporation pressure of the refrigerant is lower than the condensation pressure of the refrigerant Y1 (Y2) and; temperature increase target fluid flow path 81 leading the temperature increase target fluid RP heated by the temperature increase absorption heat pump X1 (X2) to the heat increase absorption heat pump Y1 (Y2); and heat increase absorption heat pump Y1 (Y2) And the low temperature heat source fluid channel 82 for leading the low temperature heat source fluid GP which has flowed out to the temperature rising absorption heat pump X1 (X2); the heat buildup absorption heat pump Y1 (Y2) Heat that consumes heat, the heat-increasing target fluid TS heated in the heat-increasing fluid intake part Y56 for introducing the heat-increasing target fluid TS to be heated by the heat pump Y1 (Y2) and the heat-absorption absorption heat pump Y1 (Y2) Heat-up absorption heat pump X1 (X2) has a temperature rising drive heat source for driving an absorption heat pump cycle in temperature rising absorption heat pump X1 (X2). The temperature rising driving heat source fluid inflow section X56 which introduces the fluid RS from the heat supply section HSF supplying heat, and the temperature rising driving heat source fluid RS which drives the absorption heat pump cycle in the temperature rising absorption heat pump X1 (X2) And a thermal drive heat source fluid outlet X58.

このように構成すると、昇温吸収ヒートポンプに導入される昇温駆動熱源流体よりも温度を上昇させた昇温対象流体が保有する熱によって増熱された増熱対象流体を熱消費部に供給することができ、熱消費部と熱供給部とが離れている場合に昇温対象流体と低温熱源流体との温度差を大きくし両者の流量を少なくして流体搬送に要するエネルギーを削減することができる。   According to this structure, the fluid to be heated which is heated by the heat possessed by the fluid to be heated which is raised in temperature than the temperature rising drive heat source fluid introduced to the temperature rising absorption heat pump is supplied to the heat consuming portion When the heat consuming part and the heat supplying part are separated, the temperature difference between the fluid to be heated and the low temperature heat source fluid is increased, the flow rate of both is reduced, and the energy required for fluid transportation is reduced. it can.

また、本発明の第2の態様に係る吸収式熱交換システムは、例えば図1(図10)に示すように、上記本発明の第1の態様に係る吸収式熱交換システム1(1A)において、昇温対象流体流路81は、増熱吸収ヒートポンプY1(Y2)において吸収ヒートポンプサイクルを駆動する増熱駆動熱源流体HPを流す部位に昇温対象流体RPを供給するように増熱吸収ヒートポンプY1(Y2)に接続され;低温熱源流体流路82は、昇温吸収ヒートポンプX1(X2)における低温熱源流体GPを流す部位に接続されている。   The absorption heat exchange system according to the second aspect of the present invention is, for example, as shown in FIG. 1 (FIG. 10), in the absorption heat exchange system 1 (1A) according to the first aspect of the present invention. The temperature-increase target fluid flow path 81 is a heat-increase absorption heat pump Y1 so as to supply the temperature-increase target fluid RP to a portion where the heat-increase driving heat source fluid HP for driving the absorption heat pump cycle flows in the heat-absorption absorption heat pump Y1 (Y2). The low temperature heat source fluid flow channel 82 is connected to a portion of the temperature rising absorption heat pump X1 (X2) through which the low temperature heat source fluid GP flows.

このように構成すると、昇温吸収ヒートポンプで温度が上昇した昇温対象流体を増熱させて熱消費部に熱を供給することができる。   According to this structure, it is possible to supply heat to the heat consuming portion by increasing the temperature of the temperature raising target fluid whose temperature has been increased by the temperature rising absorption heat pump.

また、本発明の第3の態様に係る吸収式熱交換システムは、例えば図1(図10)に示すように、上記本発明の第1の態様又は第2の態様に係る吸収式熱交換システム1(1A)において、低温熱源流体GPを直接又は間接的に流動させる第1のポンプ91と;増熱対象流体TA(TS)を直接又は間接的に流動させる第2のポンプ92とを備える。ここで、間接的に流動させるとは、典型的には、当該部位と連通している部分の流体を動かすことで当該部位の流体を動かすことである。   The absorption heat exchange system according to the third aspect of the present invention is, for example, as shown in FIG. 1 (FIG. 10), an absorption heat exchange system according to the first aspect or the second aspect of the present invention. In 1 (1A), the first pump 91 that causes the low temperature heat source fluid GP to flow directly or indirectly; and the second pump 92 that causes the heat-increase target fluid TA (TS) to flow directly or indirectly. Here, to indirectly flow is typically moving the fluid at the site by moving the fluid in the portion in communication with the site.

このように構成すると、低温熱源流体及び増熱対象流体を安定して流動させることができる。   With this configuration, the low temperature heat source fluid and the fluid to be heated can be stably flowed.

また、本発明の第4の態様に係る吸収式熱交換システムは、例えば図1(図10)に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収式熱交換システム1(1A)において、低温熱源流体流路82又は低温熱源流体流路82と連通している流路に接続された膨張タンク98を備える。ここで、低温熱源流体流路と連通している流路とは、典型的には低温熱源流体流路の圧力変動の影響が現れる流路である。   The absorption heat exchange system according to the fourth aspect of the present invention is, for example, as shown in FIG. 1 (FIG. 10), in any one of the first to third aspects of the present invention. In the absorption heat exchange system 1 (1A), an expansion tank 98 connected to the low temperature heat source fluid channel 82 or a channel communicating with the low temperature heat source fluid channel 82 is provided. Here, the flow path communicating with the low temperature heat source fluid flow path is a flow path in which the influence of the pressure fluctuation of the low temperature heat source fluid flow path typically appears.

このように構成すると、低温熱源流体流路内の圧力変動を適切に緩和させることができる。   With this configuration, pressure fluctuations in the low temperature heat source fluid flow channel can be appropriately alleviated.

また、本発明の第5の態様に係る吸収式熱交換システムは、例えば図2に示すように、上記本発明の第1の態様乃至第4の態様のいずれか1つの態様に係る吸収式熱交換システムにおいて、昇温吸収ヒートポンプX1は、冷媒の液XVfが蒸発して冷媒の蒸気XVeとなる際に必要な蒸発潜熱を、昇温駆動熱源流体RSから奪う昇温蒸発部X20と、冷媒XVeを吸収して濃度が低下した吸収液である希溶液XSwを加熱し希溶液XSwから冷媒XVgを離脱させて濃度が上昇した濃溶液XSaとするのに必要な熱を昇温駆動熱源流体RSから奪う昇温再生部X30と、濃溶液XSaを導入し、昇温蒸発部X20で発生した冷媒の蒸気XVeを濃溶液XSaが吸収して希溶液XSwとなる際に放出した吸収熱によって、昇温蒸発部X20及び昇温再生部X30に導入される前の昇温駆動熱源流体RAから分岐された一部の昇温駆動熱源流体を昇温対象流体RPとして導入して昇温対象流体RPを加熱する昇温吸収部X10と、冷媒の蒸気XVgが凝縮して冷媒の液XVfとなる際に放出した凝縮熱によって低温熱源流体GPを加熱する昇温凝縮部X40とを有し、昇温凝縮部X40で加熱された低温熱源流体GPが、昇温蒸発部X20及び昇温再生部X30から流出した昇温駆動熱源流体RSに合流するように構成されている。   The absorption heat exchange system according to the fifth aspect of the present invention is, for example, as shown in FIG. 2, an absorption heat according to any one of the first to fourth aspects of the present invention. In the heat exchange system, the temperature rising absorption heat pump X1 removes the latent heat of vaporization required when the liquid XVf of the refrigerant evaporates and becomes the vapor XVe of the refrigerant from the temperature rising drive heat source fluid RS, and the refrigerant XVe Heat is necessary to heat the dilute solution XSw, which is the absorbing solution with reduced concentration, to desorb the refrigerant XVg from the dilute solution XSw to form the concentrated solution XSa with increased concentration from the temperature rising driving heat source fluid RS The concentrated solution XSa is introduced by introducing the concentrated solution XSa and the absorbed heat released when the concentrated solution XSa absorbs the vapor XVe of the refrigerant generated in the temperature-rising evaporation unit X20 and becomes the dilute solution XSw. Evaporation unit X20 and A temperature rising absorption part which heats a temperature rising target fluid RP by introducing a part of the temperature rising driving heat source fluid branched from the temperature rising driving heat source fluid RA before being introduced into the temperature regeneration unit X30 as a temperature rising target fluid RP X10 and a temperature rising / condensing portion X40 for heating the low temperature heat source fluid GP by condensation heat released when the refrigerant vapor XVg condenses and becomes liquid refrigerant VXf, and is heated by the temperature rising / condensing portion X40 The low temperature heat source fluid GP is configured to merge with the temperature rising driving heat source fluid RS that has flowed out from the temperature rising and evaporating unit X20 and the temperature rising and reproducing unit X30.

このように構成すると、システム構成を簡単にしつつ、昇温吸収部から流出した昇温対象流体の温度を昇温蒸発部及び昇温再生部に導入される前の昇温駆動熱源流体の温度よりも高くすることができる。   With this configuration, while simplifying the system configuration, the temperature of the temperature rising fluid that has flowed out of the temperature rising absorption unit is greater than the temperature of the temperature rising driving heat source fluid before being introduced into the temperature rising evaporation unit and the temperature rising regeneration unit. Can also be high.

また、本発明の第6の態様に係る吸収式熱交換システムは、例えば図11に示すように、上記本発明の第1の態様乃至第4の態様のいずれか1つの態様に係る吸収式熱交換システムにおいて、昇温吸収ヒートポンプX2は、冷媒の液XVfが蒸発して冷媒の蒸気XVeとなる際に必要な蒸発潜熱を、昇温駆動熱源流体RSから奪う昇温蒸発部X20と、冷媒XVeを吸収して濃度が低下した吸収液である希溶液XSwを加熱し希溶液XSwから冷媒XVgを離脱させて濃度が上昇した濃溶液XSaとするのに必要な熱を昇温駆動熱源流体RSから奪う昇温再生部X30と、昇温蒸発部X20及び昇温再生部X30に導入される前の昇温駆動熱源流体RAから分岐された一部の昇温駆動熱源流体RQを、昇温蒸発部X20及び昇温再生部X30をバイパスして、昇温蒸発部X20及び昇温再生部X30から流出した後の昇温駆動熱源流体RSに合流させる昇温駆動熱源流体バイパス流路X53と、冷媒の蒸気XVgが凝縮して冷媒の液XVfとなる際に放出した凝縮熱によって低温熱源流体GPを加熱する昇温凝縮部X40と、昇温凝縮部X40で加熱された低温熱源流体GPと、昇温駆動熱源流体バイパス流路X53を流れる昇温駆動熱源流体RQと、で熱交換させる昇温熱交換器X71と、濃溶液XSaを導入し、昇温蒸発部X20で発生した冷媒の蒸気XVeを濃溶液XSaが吸収して希溶液XSwとなる際に放出した吸収熱によって、昇温熱交換器X71で加熱された低温熱源流体GPを昇温対象流体RPとして導入して昇温対象流体RPを加熱する昇温吸収部X10とを有する。   The absorption heat exchange system according to the sixth aspect of the present invention is, for example, as shown in FIG. 11, an absorption heat according to any one of the first to fourth aspects of the present invention. In the heat exchange system, the temperature rising absorption heat pump X2 removes the latent heat of vaporization required when the liquid XVf of the refrigerant evaporates and becomes the vapor XVe of the refrigerant from the temperature rising drive heat source fluid RS, and the refrigerant XVe Heat is necessary to heat the dilute solution XSw, which is the absorbing solution with reduced concentration, to desorb the refrigerant XVg from the dilute solution XSw to form the concentrated solution XSa with increased concentration from the temperature rising driving heat source fluid RS The temperature rising and driving heat source fluid RQ branched from the temperature rising driving heat source fluid RA before being introduced into the temperature rising and reproducing unit X30 and the temperature rising and evaporating unit X20 and the temperature rising and reproducing unit X30 X20 and temperature rise regeneration unit X30 The temperature rising drive heat source fluid bypass flow path X53 for bypassing and joining the temperature rising drive heat source fluid RS after flowing out from the temperature rising evaporation unit X20 and the temperature rising regeneration unit X30, and the refrigerant vapor XVg condenses as a refrigerant The temperature rising condensation part X40 which heats the low temperature heat source fluid GP by condensation heat released when becoming the liquid XVf, the low temperature heat source fluid GP heated by the temperature rising condensation part X40, and the temperature rising driving heat source fluid bypass flow path X53 The concentrated solution XSa is introduced by introducing the temperature rising heat exchanger X71 which exchanges heat with the flowing temperature rising driving heat source fluid RQ, and the concentrated solution XSa absorbs the vapor XVe of the refrigerant generated in the temperature rising evaporator X20 to dilute the dilute solution XSw The low temperature heat source fluid GP heated by the temperature rising heat exchanger X71 is introduced as a temperature rising target fluid RP by the absorption heat released at the time of temperature That.

このように構成すると、昇温吸収部から流出する昇温対象流体の温度を、昇温蒸発部及び昇温再生部に流入する昇温駆動熱源流体の温度よりも高くすることができる。   According to this structure, the temperature of the temperature-rising fluid flowing out of the temperature-raising and absorbing portion can be made higher than the temperature of the temperature-rising driving heat-source fluid flowing into the temperature-rising portion and the temperature-rising portion.

また、本発明の第7の態様に係る吸収式熱交換システムは、例えば図13に示すように、上記本発明の第1の態様乃至第4の態様のいずれか1つの態様に係る吸収式熱交換システムにおいて、昇温吸収ヒートポンプX2Aは、冷媒の液XVfが蒸発して冷媒の蒸気XVeとなる際に必要な蒸発潜熱を、昇温駆動熱源流体RSから奪う昇温蒸発部X20と、冷媒XVeを吸収して濃度が低下した吸収液である希溶液XSwを加熱し希溶液XSwから冷媒XVgを離脱させて濃度が上昇した濃溶液XSaとするのに必要な熱を昇温駆動熱源流体RSから奪う昇温再生部X30と、冷媒の蒸気XVgが凝縮して冷媒の液XVfとなる際に放出した凝縮熱によって低温熱源流体GPを加熱する昇温凝縮部X40と、昇温凝縮部X40で加熱された低温熱源流体GPと、昇温蒸発部X20及び昇温再生部X30を流出した昇温駆動熱源流体RSと、で熱交換させる昇温熱交換器X71と、濃溶液XSaを導入し、昇温蒸発部X20で発生した冷媒の蒸気XVeを濃溶液XSaが吸収して希溶液XSwとなる際に放出した吸収熱によって、昇温熱交換器X71で加熱された低温熱源流体GPを昇温対象流体RPとして導入して昇温対象流体RPを加熱する昇温吸収部X10とを有する。   The absorption heat exchange system according to the seventh aspect of the present invention is, for example, as shown in FIG. 13, an absorption heat according to any one of the first to fourth aspects of the present invention. In the heat exchange system, the temperature rising absorption heat pump X2A removes the latent heat of vaporization required when the liquid XVf of the refrigerant evaporates and becomes the vapor XVe of the refrigerant from the temperature rising drive heat source fluid RS, and the refrigerant XVe Heat is necessary to heat the dilute solution XSw, which is the absorbing solution with reduced concentration, to desorb the refrigerant XVg from the dilute solution XSw to form the concentrated solution XSa with increased concentration from the temperature rising driving heat source fluid RS A temperature rising regeneration section X30 which takes away, a temperature rising condensation section X40 which heats the low temperature heat source fluid GP by condensation heat released when the refrigerant vapor XVg condenses and turns into a liquid XVf of the refrigerant, and a temperature rising condensation section X40 heats Low temperature A concentrated solution XSa is introduced by means of a temperature rising heat exchanger X71 for heat exchange between the source fluid GP and the temperature rising driving heat source fluid RS that has flowed out of the temperature rising evaporating section X20 and the temperature rising reproducing section X30. The low temperature heat source fluid GP heated by the temperature rising heat exchanger X71 is introduced as a temperature rising target fluid RP by the absorption heat released when the concentrated solution XSa absorbs the vapor XVe of the refrigerant generated in the above to form a dilute solution XSw. And the temperature rising absorption part X10 which heats the temperature rising object fluid RP.

このように構成すると、昇温吸収部から流出する昇温対象流体の温度を、昇温蒸発部及び昇温再生部に流入する昇温駆動熱源流体の温度よりも高くすることができる。   According to this structure, the temperature of the temperature-rising fluid flowing out of the temperature-raising and absorbing portion can be made higher than the temperature of the temperature-rising driving heat-source fluid flowing into the temperature-rising portion and the temperature-rising portion.

また、本発明の第8の態様に係る吸収式熱交換システムは、例えば図3に示すように、上記本発明の第1の態様乃至第7の態様のいずれか1つの態様に係る吸収式熱交換システムにおいて、増熱吸収ヒートポンプY1は、冷媒の蒸気YVgが凝縮して冷媒の液YVfとなる際に放出した凝縮熱によって増熱対象流体TSを加熱する増熱凝縮部Y40と、増熱凝縮部Y40から冷媒の液YVfを導入し、導入した冷媒の液YVfが蒸発して冷媒の蒸気YVeとなる際に必要な蒸発潜熱を低温熱源流体GPから奪う増熱蒸発部Y20と、増熱蒸発部Y20から冷媒の蒸気YVeを導入し、導入した冷媒の蒸気YVeを吸収液が吸収して濃度が低下した希溶液YSwとなる際に放出した吸収熱によって増熱対象流体TSを加熱する増熱吸収部Y10と、増熱吸収部Y10から希溶液YSwを導入し、導入した希溶液YSwを加熱し希溶液YSwから冷媒YVgを離脱させて濃度が上昇した濃溶液YSaとするのに必要な熱を、増熱駆動熱源流体HPから奪う増熱再生部Y30とを有し、増熱凝縮部Y40及び増熱吸収部Y10に導入される前の増熱対象流体TAから分岐された一部の増熱対象流体を低温熱源流体GPとして増熱蒸発部Y20に導入するように構成され;増熱再生部Y30で熱を奪われた増熱駆動熱源流体HPが、増熱吸収部Y10及び増熱凝縮部Y40から流出した増熱対象流体TSに合流するように構成されている。   The absorption heat exchange system according to the eighth aspect of the present invention is, for example, as shown in FIG. 3, an absorption heat according to any one of the first to seventh aspects of the present invention. In the heat exchange system, the heat-accumulation absorption heat pump Y1 is a heat-accumulation condensation unit Y40 that heats the fluid to be heat-increased by condensation heat released when the refrigerant vapor YVg condenses and becomes the liquid YVf of the refrigerant, The heat transfer evaporation part Y20 which deprives the low temperature heat source fluid GP of the latent heat of vaporization necessary when the liquid YVf of the refrigerant is introduced from the part Y40 and the introduced liquid YVf of the refrigerant evaporates to become the refrigerant vapor YVe Heat transfer to heat the fluid to be heated TS by absorbing heat released by introducing the refrigerant vapor YVe from the part Y20 and absorbing the absorbed refrigerant vapor YVe into the dilute solution YSw whose concentration has been reduced. Absorber Y10 The heat necessary for increasing the concentration of the concentrated solution YSw by heating the diluted solution YSw introduced by introducing the diluted solution YSw from the heat absorption section Y10 and separating the refrigerant YVg from the diluted solution YSw to increase the concentration, A part of the heat increase target fluid branched from the heat increase target fluid TA before being introduced into the heat increase condensation part Y40 and the heat increase absorption part Y10, which has the heat increase regeneration part Y30 deprived of the driving heat source fluid HP The low-temperature heat source fluid GP is configured to be introduced into the heat buildup evaporation unit Y20; the heat generation driving heat source fluid HP that has been deprived of heat by the heat buildup regeneration unit Y30 flows out from the heat buildup absorption unit Y10 and the heat buildup condensation unit Y40. It is comprised so that it may join to the heat-generation object fluid TS.

このように構成すると、増熱蒸発部から流出した低温熱源流体の温度を低くすることができ、増熱吸収ヒートポンプの出力を増大させることができる。   According to this structure, the temperature of the low-temperature heat source fluid flowing out of the heat-increasing evaporator can be lowered, and the output of the heat-accumulation heat pump can be increased.

また、本発明の第9の態様に係る吸収式熱交換システムは、例えば図12に示すように、上記本発明の第1の態様乃至第7の態様のいずれか1つの態様に係る吸収式熱交換システムにおいて、増熱吸収ヒートポンプY2は、冷媒の蒸気YVgが凝縮して冷媒の液YVfとなる際に放出した凝縮熱によって増熱対象流体TSを加熱する増熱凝縮部Y40と、増熱凝縮部Y40から冷媒の液YVfを導入し、導入した冷媒の液YVfが蒸発して冷媒の蒸気YVeとなる際に必要な蒸発潜熱を低温熱源流体GPから奪う増熱蒸発部Y20と、増熱蒸発部Y20から冷媒の蒸気YVeを導入し、導入した冷媒の蒸気YVeを吸収液が吸収して濃度が低下した希溶液YSwとなる際に放出した吸収熱によって増熱対象流体TSを加熱する増熱吸収部Y10と、増熱吸収部Y10から希溶液YSwを導入し、導入した希溶液YSwを加熱し希溶液YSwから冷媒YVgを離脱させて濃度が上昇した濃溶液YSaとするのに必要な熱を、増熱駆動熱源流体HPから奪う増熱再生部Y30と、増熱吸収部Y10及び増熱凝縮部Y40から流出した増熱対象流体TSと、増熱再生部Y30で熱を奪われた増熱駆動熱源流体HPと、で熱交換させる増熱熱交換器Y72とを有し、増熱熱交換器Y72を流出した増熱駆動熱源流体HPを低温熱源流体GPとして増熱蒸発部Y20に導入するように構成されている。   The absorption heat exchange system according to the ninth aspect of the present invention is, for example, as shown in FIG. 12, an absorption heat according to any one of the first to seventh aspects of the present invention. In the heat exchange system, the heat buildup absorption heat pump Y2 is a heat buildup condensation unit Y40 that heats the fluid to be heat-increased by condensation heat released when the refrigerant vapor YVg condenses and becomes the liquid YVf of the refrigerant; The heat transfer evaporation part Y20 which deprives the low temperature heat source fluid GP of the latent heat of vaporization necessary when the liquid YVf of the refrigerant is introduced from the part Y40 and the introduced liquid YVf of the refrigerant evaporates to become the refrigerant vapor YVe Heat transfer to heat the fluid to be heated TS by absorbing heat released by introducing the refrigerant vapor YVe from the part Y20 and absorbing the absorbed refrigerant vapor YVe into the dilute solution YSw whose concentration has been reduced. Absorber Y1 Then, the dilute solution YSw is introduced from the heat buildup absorbing portion Y10, and the introduced dilute solution YSw is heated to separate the refrigerant YVg from the dilute solution YSw to increase the heat necessary to obtain the concentrated solution YSa having an increased concentration. Heat-generating heat source heat sink deprived of heat by the heat-increase regenerating part Y30, the heat-increase target fluid TS flowing out of the heat-increased heat regenerating part Y30 which is deprived from the heat-driven heat source fluid HP A heat transfer heat exchanger Y72 for exchanging heat with the fluid HP, and the heat generation driving heat source fluid HP flowing out from the heat transfer heat exchanger Y72 is introduced as a low temperature heat source fluid GP into the heat transfer evaporation section Y20. It is configured.

このように構成すると、増熱吸収ヒートポンプに導入した昇温対象流体が保有する熱を有効利用して熱消費装置に熱を供給することができる。   According to this structure, it is possible to supply heat to the heat consuming apparatus by effectively using the heat held by the fluid to be heated which is introduced into the heat buildup absorption heat pump.

また、本発明の第10の態様に係る吸収式熱交換システムは、例えば図4に示すように、上記本発明の第1の態様乃至第9の態様のいずれか1つの態様に係る吸収式熱交換システム2において、増熱吸収ヒートポンプY1は、第1の熱消費部HCF1に向けて増熱対象流体TAを流出する第1の増熱吸収ヒートポンプY1Aと、第1の熱消費部HCF1とは別の第2の熱消費部HCF2に向けて増熱対象流体TAを流出する第2の増熱吸収ヒートポンプY1Bとを含んで構成されている。   The absorption heat exchange system according to the tenth aspect of the present invention is, for example, as shown in FIG. 4, an absorption heat according to any one of the first to ninth aspects of the present invention. In the exchange system 2, the heat absorption absorption heat pump Y1 is different from the first heat absorption absorption heat pump Y1A for flowing out the fluid to be heated TA toward the first heat consumption unit HCF1, and the first heat consumption unit HCF1 And a second heat-absorption absorption heat pump Y1B for flowing out the fluid to be heated TA toward the second heat-consuming part HCF2.

このように構成すると、複数の熱消費部に増熱対象流体を供給することができる。   According to this configuration, it is possible to supply the heat-increase target fluid to the plurality of heat consuming units.

また、本発明の第11の態様に係る吸収式熱交換システムは、例えば図5に示すように、上記本発明の第8の態様又は第9の態様に係る吸収式熱交換システム3において、増熱吸収ヒートポンプY1Cは、増熱再生部Y30から流出した増熱駆動熱源流体HPを、熱を消費する第1の追加熱消費部HCFAに向けて増熱吸収ヒートポンプY1Cの外に一旦流出する第1の増熱駆動熱源流体流出部Y39aと、増熱駆動熱源流体HPが保有する熱が第1の追加消費部HCFAで消費された増熱駆動熱源流体HPを導入する第1の増熱駆動熱源流体導入部Y39bとを有する。   The absorption heat exchange system according to the eleventh aspect of the present invention is, for example, as shown in FIG. 5, in the absorption heat exchange system 3 according to the eighth aspect or the ninth aspect of the present invention. The heat absorption heat pump Y1C temporarily discharges the heat generation driving heat source fluid HP flowing out from the heat generation regeneration unit Y30 out of the heat absorption absorption heat pump Y1C toward the first additional heat consuming unit HCFA that consumes heat. The first heat-generation driving heat source fluid for introducing the heat-generation driving heat source fluid HP in which the heat possessed by the heat generation driving heat source fluid outflow portion Y39a and the heat generation driving heat source fluid HP is consumed by the first additional consumption portion HCFA And an introductory portion Y39b.

このように構成すると、熱消費部の特性に応じて熱を効率よく消費することができる。   With this configuration, heat can be efficiently consumed according to the characteristics of the heat consuming unit.

また、本発明の第12の態様に係る吸収式熱交換システムは、例えば図6に示すように、上記本発明の第8の態様又は第9の態様に係る吸収式熱交換システム4において、増熱吸収ヒートポンプY1は、増熱再生部Y30に導入される前の増熱駆動熱源流体HPから分岐された一部の増熱駆動熱源流体HPを、熱を消費する第2の追加熱消費部HCFAに向けて増熱吸収ヒートポンプY1の外に一旦流出する第2の増熱駆動熱源流体流出部487と、増熱駆動熱源流体HPが保有する熱が第2の追加消費部HCFAで消費された増熱駆動熱源流体HPを導入する第2の増熱駆動熱源流体導入部488とを有する。   The absorption heat exchange system according to the twelfth aspect of the present invention is, for example, as shown in FIG. 6, an increase in the absorption heat exchange system 4 according to the eighth aspect or the ninth aspect of the present invention. The heat absorption heat pump Y1 is a second additional heat consuming part HCFA that consumes heat from a part of the heat generation driving heat source fluid HP branched from the heat generation driving heat source fluid HP before being introduced to the heat generation regeneration part Y30. The second heat-accumulation drive heat-source fluid outflow portion 487, which temporarily flows out of the heat-accumulation absorption heat pump Y1, and the heat held by the heat-accumulation drive heat-source fluid HP is consumed by the second additional consumer HCFA And a second heat generation driving heat source fluid introducing portion 488 for introducing the heat driving heat source fluid HP.

このように構成すると、熱消費部の特性に応じて熱を効率よく消費することができる。   With this configuration, heat can be efficiently consumed according to the characteristics of the heat consuming unit.

また、本発明の第13の態様に係る吸収式熱交換システムは、例えば図7に示すように、上記本発明の第1の態様乃至第12の態様のいずれか1つの態様に係る吸収式熱交換システム5において、昇温吸収ヒートポンプX1に導入される前の低温熱源流体GPから分岐された一部の低温熱源流体GPを第1の副熱源ASで加熱する第1の副熱装置61を備え;第1の副熱装置61で加熱された低温熱源流体GPを昇温対象流体RPに合流させるように構成されている。   In addition, as shown in FIG. 7, for example, as shown in FIG. 7, the absorption heat exchange system according to the thirteenth aspect of the present invention is the absorption heat according to any one of the first to twelfth aspects of the present invention. The exchange system 5 includes a first secondary heat device 61 that heats a part of the low temperature heat source fluid GP branched from the low temperature heat source fluid GP before being introduced into the temperature rising absorption heat pump X1 with a first secondary heat source AS. The low temperature heat source fluid GP heated by the first auxiliary heat device 61 is joined to the temperature raising target fluid RP.

このように構成すると、第1の副熱装置から熱を回収することができ、省エネルギーとなる。   With this configuration, heat can be recovered from the first auxiliary heat device, which results in energy saving.

また、本発明の第14の態様に係る吸収式熱交換システムは、例えば図8に示すように、上記本発明の第1の態様乃至第13の態様のいずれか1つの態様に係る吸収式熱交換システム6において、昇温吸収ヒートポンプX1で加熱された昇温対象流体RPを第2の副熱源ASで加熱する第2の副熱装置61を備える。   The absorption heat exchange system according to the fourteenth aspect of the present invention is, for example, as shown in FIG. 8, an absorption heat according to any one of the first to thirteenth aspects of the present invention. The exchange system 6 includes a second auxiliary heat device 61 that heats the temperature raising target fluid RP heated by the temperature rising absorption heat pump X1 with the second auxiliary heat source AS.

このように構成すると、第2の副熱装置から熱を回収することができ、昇温対象流体が放熱により失った温度を回復することができる。   With this configuration, heat can be recovered from the second auxiliary heat device, and the temperature-raising target fluid can recover the temperature lost due to heat radiation.

また、本発明の第15の態様に係る吸収式熱交換システムは、例えば図9に示すように、上記本発明の第1の態様乃至第14の態様のいずれか1つの態様に係る吸収式熱交換システム7において、昇温吸収ヒートポンプX1は、第1の熱供給部HSF1から昇温駆動熱源流体RAを導入する第1の昇温吸収ヒートポンプX1Aと、第1の熱供給部HSF1とは別の第2の熱供給部HSF2から昇温駆動熱源流体RAを導入する第2の昇温吸収ヒートポンプX1Bとを含んで構成されている。   The absorption heat exchange system according to the fifteenth aspect of the present invention is, for example, as shown in FIG. 9, an absorption heat according to any one of the first to fourteenth aspects of the present invention. In the exchange system 7, the temperature rising absorption heat pump X1 is different from the first temperature rising absorption heat pump X1A for introducing the temperature rising drive heat source fluid RA from the first heat supply portion HSF1 and the first heat supply portion HSF1. And a second temperature rising absorption heat pump X1B for introducing a temperature rising drive heat source fluid RA from the second heat supply unit HSF2.

このように構成すると、複数の熱供給部から熱を回収することができる。   With this configuration, heat can be recovered from the plurality of heat supply units.

本発明によれば、昇温吸収ヒートポンプに導入される昇温駆動熱源流体よりも温度を上昇させた昇温対象流体が保有する熱によって増熱された増熱対象流体を熱消費部に供給することができ、熱消費部と熱供給部とが離れている場合に昇温対象流体と低温熱源流体との温度差を大きくし両者の流量を少なくして流体搬送に要するエネルギーを削減することができる。   According to the present invention, the fluid to be heated which is heated by the heat held by the fluid to be heated which is raised in temperature than the temperature rising drive heat source fluid introduced into the temperature rising absorption heat pump is supplied to the heat consuming portion When the heat consuming part and the heat supplying part are separated, the temperature difference between the fluid to be heated and the low temperature heat source fluid is increased, the flow rate of both is reduced, and the energy required for fluid transportation is reduced. it can.

本発明の第1の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of an absorption-type heat exchange system concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る吸収式熱交換システムが備える昇温吸収ヒートポンプの模式的系統図である。It is a typical systematic diagram of a temperature rising absorption heat pump with which an absorption-type heat exchange system concerning a 1st embodiment of the present invention is provided. 本発明の第1の実施の形態に係る吸収式熱交換システムが備える増熱吸収ヒートポンプの模式的系統図である。It is a typical systematic diagram of a heat buildup absorption heat pump with which an absorption type heat exchange system concerning a 1st embodiment of the present invention is provided. 本発明の第2の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of an absorption-type heat exchange system concerning a 2nd embodiment of the present invention. 本発明の第3の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption-type heat exchange system concerning a 3rd embodiment of the present invention. 本発明の第4の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of an absorption-type heat exchange system concerning a 4th embodiment of the present invention. 本発明の第5の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption-type heat exchange system concerning a 5th embodiment of the present invention. 本発明の第6の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of an absorption-type heat exchange system concerning a 6th embodiment of the present invention. 本発明の第7の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption type heat exchange system concerning a 7th embodiment of the present invention. 本発明の第1の実施の形態の変形例に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption type heat exchange system concerning the modification of the 1st embodiment of the present invention. 本発明の第1の実施の形態の変形例に係る吸収式熱交換システムが備える昇温吸収ヒートポンプの模式的系統図である。It is a typical systematic diagram of a temperature rising absorption heat pump with which an absorption-type heat exchange system concerning a modification of a 1st embodiment of the present invention is provided. 本発明の第1の実施の形態の変形例に係る吸収式熱交換システムが備える増熱吸収ヒートポンプの模式的系統図である。It is a typical systematic diagram of a heat-accumulation absorption heat pump with which the absorption type heat exchange system concerning the modification of the 1st embodiment of the present invention is provided. 本発明の第1の実施の形態の変形例に係る吸収式熱交換システムが備える昇温吸収ヒートポンプの変形例の模式的系統図である。It is a typical systematic diagram of the modification of the temperature rising absorption heat pump with which the absorption type heat exchange system concerning the modification of a 1st embodiment of the present invention is provided.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the drawings, the same or corresponding members are denoted by the same or similar reference numerals, and the redundant description will be omitted.

まず図1を参照して、本発明の第1の実施の形態に係る吸収式熱交換システム1を説明する。図1は、吸収式熱交換システム1の模式的系統図である。吸収式熱交換システム1は、熱源設備HSFで回収した熱を、この熱を保有する熱媒体を昇温及び増熱したうえで、熱利用設備HCFで利用するためのシステムである。熱源設備HSFは、例えば製鉄所や発電所等からの排熱を回収する設備であり、熱供給部に相当する。熱利用設備HCFは、例えば導入した熱を暖房に利用する設備であり、熱消費部に相当する。吸収式熱交換システム1は、熱源設備HSFで回収した熱を保有する熱媒体を昇温する昇温吸収ヒートポンプX1と、昇温吸収ヒートポンプX1で昇温された熱媒体を増熱する増熱吸収ヒートポンプY1と、昇温吸収ヒートポンプX1と増熱吸収ヒートポンプY1との間で流体を連絡する昇温流体管81及び低温熱源管82とを備えている。   First, an absorption heat exchange system 1 according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption type heat exchange system 1. The absorption type heat exchange system 1 is a system for utilizing the heat recovered by the heat source equipment HSF in a heat utilization equipment HCF after raising the temperature and raising the temperature of the heat medium holding the heat. The heat source equipment HSF is equipment that recovers the exhaust heat from, for example, a steel mill or a power plant, and corresponds to a heat supply unit. The heat utilization facility HCF is, for example, a facility that uses the introduced heat for heating, and corresponds to a heat consuming unit. The absorption type heat exchange system 1 is a temperature rising absorption heat pump X1 for raising the temperature of the heat medium holding heat recovered by the heat source equipment HSF, and a heat absorption absorption for raising the temperature of the heat medium raised by the temperature rising absorption heat pump X1. A heat pump Y1, and a temperature increasing fluid pipe 81 and a low temperature heat source pipe 82 that communicate fluid between the temperature rising absorption heat pump X1 and the heat absorption absorption heat pump Y1 are provided.

昇温吸収ヒートポンプX1は、吸収液と冷媒との吸収ヒートポンプサイクルによって作動し、冷媒の蒸発圧力が凝縮圧力よりも高い熱源機器である。昇温吸収ヒートポンプX1の構成は後述する。昇温吸収ヒートポンプX1は、熱源流体流入口X56と、昇温流体流出口X18と、低温熱源導入口X17と、熱源流体流出口X58とを有している。熱源流体流入口X56は、熱源設備HSFで加熱された合流熱源流体RAを導入する部位であり、昇温駆動熱源流体流入部に相当する。昇温流体流出口X18は、昇温吸収ヒートポンプX1で昇温された昇温対象流体RPを流出する部位である。低温熱源導入口X17は、増熱吸収ヒートポンプY1から流出した低温熱源流体GPを導入する部位である。熱源流体流出口X58は、熱源流体流入口X56から導入したものよりも温度が低い合流熱源流体RAを流出する部位であり、昇温駆動熱源流体流出部に相当する。本実施の形態では、熱源流体流入口X56と熱源設備HSFとが合流熱源往管84で接続されている。また、熱源流体流出口X58と熱源設備HSFとが合流熱源還管85で接続されている。合流熱源還管85には、合流熱源流体RAを流動させる合流熱源ポンプ93が配設されている。   The temperature-rising absorption heat pump X1 is a heat source device that operates by an absorption heat pump cycle of an absorption liquid and a refrigerant, and the evaporation pressure of the refrigerant is higher than the condensation pressure. The configuration of the temperature rising absorption heat pump X1 will be described later. The temperature rising absorption heat pump X1 has a heat source fluid inlet X56, a temperature rising fluid outlet X18, a low temperature heat source inlet X17, and a heat source fluid outlet X58. The heat source fluid inlet X56 is a part for introducing the combined heat source fluid RA heated by the heat source equipment HSF, and corresponds to a temperature rising driving heat source fluid inlet. The temperature rising fluid outlet X18 is a portion from which the temperature raising target fluid RP heated by the temperature rising absorption heat pump X1 flows out. The low temperature heat source introduction port X17 is a portion for introducing the low temperature heat source fluid GP which has flowed out of the heat buildup absorption heat pump Y1. The heat source fluid outlet X58 is a part that flows out the combined heat source fluid RA whose temperature is lower than that introduced from the heat source fluid inlet X56, and corresponds to a temperature rising driving heat source fluid outlet. In the present embodiment, the heat source fluid inlet X56 and the heat source facility HSF are connected by a combined heat source outward pipe 84. The heat source fluid outlet X58 and the heat source equipment HSF are connected by a combined heat source return pipe 85. The combined heat source return pipe 85 is provided with a combined heat source pump 93 for flowing the combined heat source fluid RA.

増熱吸収ヒートポンプY1は、吸収液と冷媒との吸収ヒートポンプサイクルによって作動し、冷媒の蒸発圧力が凝縮圧力よりも低い熱源機器である。増熱吸収ヒートポンプY1の構成は後述する。増熱吸収ヒートポンプY1は、高温熱源導入口Y27と、混合流体流出口Y58と、混合流体流入口Y56と、低温熱源流出口Y28とを有している。高温熱源導入口Y27は、昇温吸収ヒートポンプX1から流出した昇温対象流体RPを高温熱源流体HPとして導入する部位である。混合流体流出口Y58は、増熱吸収ヒートポンプY1で増熱された混合流体TAを流出する部位であり、増熱対象流体流出部に相当する。混合流体流入口Y56は、熱利用設備HCFで温度が低下した混合流体TAを導入する部位であり、増熱対象流体導入部に相当する。低温熱源流出口Y28は、増熱吸収ヒートポンプY1で熱が利用された低温熱源流体GPを流出する部位である。本実施の形態では、混合流体流出口Y58と熱利用設備HCFとが混合熱源往管87で接続されている。また、混合流体流入口Y56と熱利用設備HCFとが混合熱源還管88で接続されている。混合熱源還管88には、混合流体TAを流動させる混合流体ポンプ92が配設されている。混合流体ポンプ92は、第2のポンプに相当する。   The heat buildup absorption heat pump Y1 is a heat source device that operates by an absorption heat pump cycle of an absorption liquid and a refrigerant, and the evaporation pressure of the refrigerant is lower than the condensation pressure. The configuration of the heat buildup absorption heat pump Y1 will be described later. The heat buildup absorption heat pump Y1 has a high temperature heat source inlet Y27, a mixed fluid outlet Y58, a mixed fluid inlet Y56, and a low temperature source outlet Y28. The high temperature heat source inlet Y27 is a part for introducing the temperature raising target fluid RP flowing out of the temperature rising absorption heat pump X1 as the high temperature heat source fluid HP. The mixed fluid outlet Y58 is a portion from which the mixed fluid TA heated by the heat buildup absorption heat pump Y1 flows out, and corresponds to a fluid outlet to be heated. The mixed fluid inlet Y56 is a part for introducing the mixed fluid TA whose temperature has been lowered by the heat utilization facility HCF, and corresponds to a fluid introduction target for increasing heat. The low temperature heat source outlet Y28 is a portion from which the low temperature heat source fluid GP whose heat has been used in the heat buildup absorption heat pump Y1 flows out. In the present embodiment, the mixed fluid outlet Y 58 and the heat utilization facility HCF are connected by the mixed heat source transfer pipe 87. The mixed fluid inlet Y56 and the heat utilization facility HCF are connected by a mixed heat source return pipe 88. The mixed heat source return pipe 88 is provided with a mixed fluid pump 92 that causes the mixed fluid TA to flow. The mixed fluid pump 92 corresponds to a second pump.

昇温流体管81は、昇温吸収ヒートポンプX1の昇温流体流出口X18と増熱吸収ヒートポンプY1の高温熱源導入口Y27とを連絡している。昇温流体管81は、昇温吸収ヒートポンプX1で加熱された昇温対象流体RPを増熱吸収ヒートポンプY1に導く流路を構成する管であり、昇温対象流体流路に相当する。低温熱源管82は、増熱吸収ヒートポンプY1の低温熱源流出口Y28と昇温吸収ヒートポンプX1の低温熱源導入口X17とを連絡している。低温熱源管82は、増熱吸収ヒートポンプY1で利用されて増熱吸収ヒートポンプY1から流出した低温熱源流体GPを、昇温吸収ヒートポンプX1に導く流路を構成する管であり、低温熱源流体流路に相当する。低温熱源管82には、低温熱源流体GPを流動させる低温熱源ポンプ91が配設されている。低温熱源ポンプ91は、第1のポンプに相当する。各ポンプ91、92、93は、キャビテーション防止の観点から、各系統で温度が最も低くなる位置に配置するのが好ましい。この観点から、昇温流体管81内を流れる昇温対象流体RPの温度よりも低い温度の低温熱源流体GPが流れる低温熱源管82に低温熱源ポンプ91を設け、混合熱源往管87を流れる混合流体TAの温度よりも低い温度の混合流体TAが流れる混合熱源還管88に混合流体ポンプ92を設け、合流熱源往管84を流れる合流熱源流体RAの温度よりも低い温度の合流熱源流体RAが流れる合流熱源還管85に合流熱源ポンプ93を設けている。さらに、各ポンプ91、92、93は、各配管の中で高さが低い位置に設けられているとよい。また、本実施の形態では、低温熱源管82に、膨張タンク98が接続されている。吸収式熱交換システム1では、温度変化のある昇温対象流体RP等の被加熱流体及び駆動熱源流体RS等の加熱源流体が全体として連通しているので、膨張タンク98は1つ設ければ足りるが、複数設けてもよい。本実施の形態では、膨張タンク98は、循環系統の中で管内を流れる流体の温度が低く、圧力も低くなる、低温熱源ポンプ91の吸い込み部に設けられて、連通している配管の全体の圧力を調整している。膨張タンク98は、状況に応じて、密閉式又は開放式の適切な方を用いることができる。引き続き、吸収式熱交換システム1を構成する昇温吸収ヒートポンプX1及び増熱吸収ヒートポンプY1の詳細な構成を説明する。   The temperature rising fluid pipe 81 connects the temperature rising fluid outlet X18 of the temperature rising absorption heat pump X1 and the high temperature heat source inlet Y27 of the heat buildup absorption heat pump Y1. The temperature rising fluid pipe 81 is a pipe that constitutes a flow path for leading the temperature rising target fluid RP heated by the temperature rising absorption heat pump X1 to the heat buildup absorption heat pump Y1, and corresponds to the temperature rising target fluid flow path. The low temperature heat source pipe 82 connects the low temperature source outlet Y28 of the heat buildup absorption heat pump Y1 and the low temperature source inlet X17 of the temperature rising absorption heat pump X1. The low temperature heat source pipe 82 is a pipe that constitutes a flow path for leading the low temperature heat source fluid GP used in the heat buildup absorption heat pump Y1 and flowing out from the heat buildup absorption heat pump Y1 to the temperature rising absorption heat pump X1. It corresponds to The low temperature heat source pipe 82 is provided with a low temperature heat source pump 91 for flowing the low temperature heat source fluid GP. The low temperature heat source pump 91 corresponds to a first pump. Each of the pumps 91, 92, 93 is preferably disposed at a position where the temperature is the lowest in each system from the viewpoint of preventing cavitation. From this point of view, the low temperature heat source pump 91 is provided in the low temperature heat source pipe 82 through which the low temperature heat source fluid GP having a temperature lower than the temperature of the temperature raising target fluid RP flowing in the temperature raising fluid pipe 81 is mixed. A mixed fluid pump 92 is provided in the mixed heat source return pipe 88 through which the mixed fluid TA having a temperature lower than the temperature of the fluid TA, and the combined heat source fluid RA having a temperature lower than the temperature of the combined heat source fluid RA flowing through the combined heat source forward pipe 84 A combined heat source pump 93 is provided in the flowing combined heat source return pipe 85. Further, each of the pumps 91, 92, 93 may be provided at a lower position in each of the pipes. Further, in the present embodiment, the low temperature heat source pipe 82 is connected to the expansion tank 98. In the absorption type heat exchange system 1, since the heated fluid such as the temperature rising target fluid RP having a temperature change and the heating source fluid such as the driving heat source fluid RS communicate as a whole, one expansion tank 98 should be provided. Although it is sufficient, a plurality may be provided. In the present embodiment, the expansion tank 98 is provided at the suction portion of the low temperature heat source pump 91 where the temperature of the fluid flowing through the pipe in the circulation system is low and the pressure is also low. I'm adjusting the pressure. The expansion tank 98 can be either closed or open, as appropriate. Subsequently, detailed configurations of the temperature-rising absorption heat pump X1 and the heat-accumulation absorption heat pump Y1 constituting the absorption-type heat exchange system 1 will be described.

図2は、昇温吸収ヒートポンプX1の模式的系統図である。昇温吸収ヒートポンプX1は、吸収液XS(XSa、XSw)と冷媒XV(XVe、XVg、XVf)との吸収ヒートポンプサイクルが行われる主要機器を構成する吸収器X10、蒸発器X20、再生器X30、凝縮器X40を備えている。吸収器X10、蒸発器X20、再生器X30、凝縮器X40は、それぞれ、昇温吸収部、昇温蒸発部、昇温再生部、昇温凝縮部に相当する。   FIG. 2 is a schematic diagram of the temperature rising absorption heat pump X1. The temperature rising absorption heat pump X1 is an absorber X10, an evaporator X20, a regenerator X30, and the like, which constitute the main equipment in which the absorption heat pump cycle of the absorption liquid XS (XSa, XSw) and the refrigerant XV (XVe, XVg, XVf) is performed. A condenser X40 is provided. The absorber X10, the evaporator X20, the regenerator X30, and the condenser X40 correspond to a temperature rising absorption portion, a temperature rising evaporation portion, a temperature rising reproduction portion, and a temperature rising condensation portion, respectively.

本明細書においては、昇温吸収ヒートポンプX1における吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液XSw」や「濃溶液XSa」等と呼称するが、性状等を不問にするときは総称して「吸収液XS」ということとする。同様に、昇温吸収ヒートポンプX1における冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気XVe」、「再生器冷媒蒸気XVg」、「冷媒液XVf」等と呼称するが、性状等を不問にするときは総称して「冷媒XV」ということとする。本実施の形態では、吸収液XS(吸収剤と冷媒XVとの混合物)としてLiBr水溶液が用いられており、冷媒XVとして水(HO)が用いられている。 In the present specification, the absorption liquid in the temperature rising absorption heat pump X1 may be “diluted solution XSw”, “concentrated solution XSa”, etc. according to the property or the position on the heat pump cycle to facilitate distinction on the heat pump cycle. However, when properties and the like are not questioned, they are collectively referred to as “absorbent liquid XS”. Similarly, with regard to the refrigerant in the temperature rising absorption heat pump X1, “evaporator refrigerant vapor XVe”, “regenerator refrigerant vapor XVg”, according to the property or the position on the heat pump cycle, in order to facilitate distinction on the heat pump cycle. It is referred to as "refrigerant liquid XVf" etc., but when the property etc. are unquestioned, they are collectively referred to as "refrigerant XV". In the present embodiment, an LiBr aqueous solution is used as the absorbent XS (a mixture of an absorbent and a refrigerant XV), and water (H 2 O) is used as the refrigerant XV.

吸収器X10は、昇温対象流体RPの流路を構成する伝熱管X12と、濃溶液XSaを伝熱管X12の表面に供給する濃溶液供給装置X13とを内部に有している。伝熱管X12は、一端に昇温流体導入管X51が接続され、他端に昇温流体流出管X19が接続されている。昇温流体導入管X51は、昇温対象流体RPを伝熱管X12に導く流路を構成する管である。昇温流体導入管X51には、内部を流れる昇温対象流体RPの流量を調節する昇温流体弁X51vが設けられている。昇温流体流出管X19は、吸収器X10で加熱された昇温対象流体RPを流す流路を構成する管である。昇温流体流出管X19の他端は、昇温流体流出口X18となっている。吸収器X10は、濃溶液供給装置X13から濃溶液XSaが伝熱管X12の表面に供給され、濃溶液XSaが蒸発器冷媒蒸気XVeを吸収して希溶液XSwとなる際に吸収熱を発生させる。この吸収熱を、伝熱管X12を流れる昇温対象流体RPが受熱して、昇温対象流体RPが加熱されるように構成されている。   The absorber X10 internally includes a heat transfer pipe X12 that configures a flow path of the temperature raising target fluid RP, and a concentrated solution supply device X13 that supplies the concentrated solution XSa to the surface of the heat transfer pipe X12. The heat transfer pipe X12 has one end connected to the temperature increasing fluid introduction pipe X51, and the other end connected to the temperature increasing fluid outflow pipe X19. The temperature raising fluid introduction pipe X51 is a pipe that constitutes a flow path for leading the temperature raising target fluid RP to the heat transfer pipe X12. The temperature raising fluid introduction pipe X51 is provided with a temperature raising fluid valve X51v for adjusting the flow rate of the temperature raising target fluid RP flowing inside. The temperature rising fluid outflow pipe X19 is a pipe that constitutes a flow path through which the temperature raising target fluid RP heated by the absorber X10 flows. The other end of the heating fluid outlet pipe X19 is a heating fluid outlet X18. The absorber X10 generates the heat of absorption when the concentrated solution XSa is supplied from the concentrated solution supply device X13 to the surface of the heat transfer tube X12 and the concentrated solution XSa absorbs the evaporator refrigerant vapor XVe and becomes the dilute solution XSw. The absorption heat is received by the temperature raising target fluid RP flowing through the heat transfer pipe X12, and the temperature raising target fluid RP is heated.

蒸発器X20は、駆動熱源流体RSの流路を構成する熱源管X22を、蒸発器缶胴X21の内部に有している。蒸発器X20は、蒸発器缶胴X21の内部に冷媒液XVfを散布するノズルを有していない。このため、熱源管X22は、蒸発器缶胴X21内に貯留された冷媒液XVfに浸かるように配設されている(満液式蒸発器)。熱源管X22の一端には、駆動熱源導入管X52が接続されている。駆動熱源導入管X52は、駆動熱源流体RSを熱源管X22に導く流路を構成する管である。駆動熱源導入管X52には、内部を流れる駆動熱源流体RSの流量を調節する駆動熱源弁X52vが設けられている。駆動熱源導入管X52の他端は、昇温流体導入管X51の他端と共に、熱源流体流入管X55に接続されている。熱源流体流入管X55は、合流熱源流体RAが流れる流路を構成する管である。熱源流体流入管X55の他端は、熱源流体流入口X56となっている。熱源流体流入管X55を流れる合流熱源流体RAは、分流して、昇温流体導入管X51と駆動熱源導入管X52とに流入するように構成されている。つまり、昇温対象流体RPは、合流熱源流体RAのうちの昇温流体導入管X51に流入したものであり、駆動熱源流体RSは、合流熱源流体RAのうちの駆動熱源導入管X52に流入したものである。蒸発器X20は、熱源管X22周辺の冷媒液XVfが熱源管X22内を流れる駆動熱源流体RSの熱で蒸発して蒸発器冷媒蒸気XVeが発生するように構成されている。蒸発器缶胴X21には、蒸発器缶胴X21内に冷媒液XVfを供給する冷媒液管X45が接続されている。   The evaporator X20 has a heat source pipe X22 forming a flow path of the drive heat source fluid RS inside the evaporator can and barrel X21. The evaporator X20 does not have a nozzle for dispersing the refrigerant liquid XVf inside the evaporator can barrel X21. For this reason, the heat source tube X22 is disposed so as to be immersed in the refrigerant liquid XVf stored in the evaporator can and barrel X21 (full liquid type evaporator). A drive heat source introduction pipe X52 is connected to one end of the heat source pipe X22. The driving heat source introduction pipe X52 is a pipe that constitutes a flow path for leading the driving heat source fluid RS to the heat source pipe X22. The drive heat source introduction pipe X52 is provided with a drive heat source valve X52v for adjusting the flow rate of the drive heat source fluid RS flowing inside. The other end of the driving heat source introduction pipe X52 is connected to the heat source fluid inflow pipe X55 together with the other end of the temperature increasing fluid introduction pipe X51. The heat source fluid inflow pipe X55 is a pipe that constitutes a flow path through which the combined heat source fluid RA flows. The other end of the heat source fluid inflow pipe X55 is a heat source fluid inlet X56. The combined heat source fluid RA flowing through the heat source fluid inflow pipe X55 is branched and flows into the temperature raising fluid introduction pipe X51 and the drive heat source introduction pipe X52. That is, the temperature raising target fluid RP flows into the temperature rising fluid introduction pipe X51 of the combined heat source fluid RA, and the driving heat source fluid RS flows into the driving heat source introducing pipe X52 of the combined heat source fluid RA It is a thing. The evaporator X20 is configured such that the refrigerant liquid XVf around the heat source pipe X22 evaporates with the heat of the drive heat source fluid RS flowing in the heat source pipe X22 to generate the evaporator refrigerant vapor XVe. A refrigerant liquid pipe X45 for supplying the refrigerant liquid XVf into the evaporator can barrel X21 is connected to the evaporator can barrel X21.

吸収器X10と蒸発器X20とは、相互に連通している。吸収器X10と蒸発器X20とが連通することにより、蒸発器X20で発生した蒸発器冷媒蒸気XVeを吸収器X10に供給することができるように構成されている。   The absorber X10 and the evaporator X20 communicate with each other. By communication between the absorber X10 and the evaporator X20, the evaporator refrigerant vapor XVe generated in the evaporator X20 can be supplied to the absorber X10.

再生器X30は、希溶液XSwを加熱する駆動熱源流体RSを内部に流す熱源管X32と、希溶液XSwを熱源管X32の表面に供給する希溶液供給装置X33とを有している。熱源管X32内を流れる駆動熱源流体RSは、蒸発器X20の熱源管X22内を流れた後の駆動熱源流体RSとなっている。蒸発器X20の熱源管X22と再生器X30の熱源管X32とは、駆動熱源流体RSを流す駆動熱源連絡管X25で接続されている。再生器X30の熱源管X32の駆動熱源連絡管X25が接続された端部とは反対側の端部には、駆動熱源流出管X39が接続されている。駆動熱源流出管X39は、駆動熱源流体RSを再生器X30の外へ導く流路を構成する管である。再生器X30は、希溶液供給装置X33から供給された希溶液XSwが駆動熱源流体RSに加熱されることにより、希溶液XSwから冷媒XVが蒸発して濃度が上昇した濃溶液XSaが生成されるように構成されている。希溶液XSwから蒸発した冷媒XVは再生器冷媒蒸気XVgとして凝縮器X40に移動するように構成されている。   The regenerator X30 has a heat source pipe X32 for flowing therein a drive heat source fluid RS for heating the dilute solution XSw, and a dilute solution supply device X33 for supplying the dilute solution XSw to the surface of the heat source pipe X32. The driving heat source fluid RS flowing in the heat source pipe X32 is the driving heat source fluid RS after flowing in the heat source pipe X22 of the evaporator X20. The heat source pipe X22 of the evaporator X20 and the heat source pipe X32 of the regenerator X30 are connected by a drive heat source communication pipe X25 in which the drive heat source fluid RS flows. A drive heat source outflow pipe X39 is connected to an end opposite to the end to which the drive heat source communication pipe X25 of the heat source pipe X32 of the regenerator X30 is connected. The driving heat source outflow pipe X39 is a pipe that constitutes a flow path for leading the driving heat source fluid RS to the outside of the regenerator X30. In the regenerator X30, the dilute solution XSw supplied from the dilute solution supply device X33 is heated to the driving heat source fluid RS, whereby the refrigerant XV evaporates from the dilute solution XSw to generate a concentrated solution XSa having an increased concentration. Is configured as. The refrigerant XV evaporated from the dilute solution XSw is configured to move to the condenser X40 as a regenerator refrigerant vapor XVg.

凝縮器X40は、低温熱源流体GPが流れる伝熱管X42を凝縮器缶胴X41の内部に有している。伝熱管X42の一端には、低温熱源流体GPを伝熱管X42に導く流路を構成する低温熱源導入管X57が接続されている。低温熱源導入管X57の他端は、低温熱源導入口X17となっている。伝熱管X42の他端には、凝縮器X40から流出した低温熱源流体GPを流す流路を構成する低温熱源流出管X49の一端が接続されている。低温熱源流出管X49の他端は、駆動熱源流出管X39の他端と共に、熱源流体流出管X59に接続されている。熱源流体流出管X59は、駆動熱源流出管X39を流れる駆動熱源流体RSと、低温熱源流出管X49を流れる低温熱源流体GPと、が合流した合流熱源流体RAが流れる流路を構成する管である。熱源流体流出管X59の他端は、熱源流体流出口X58となっている。凝縮器X40は、再生器X30で発生した再生器冷媒蒸気XVgを導入し、これが凝縮して冷媒液XVfとなる際に放出した凝縮熱を、伝熱管X42内を流れる低温熱源流体GPが受熱して、低温熱源流体GPが加熱されるように構成されている。再生器X30と凝縮器X40とは、相互に連通するように、再生器X30の缶胴と凝縮器缶胴X41とが一体に形成されている。再生器X30と凝縮器X40とが連通することにより、再生器X30で発生した再生器冷媒蒸気XVgを凝縮器X40に供給することができるように構成されている。   The condenser X40 has a heat transfer pipe X42 in which the low temperature heat source fluid GP flows, inside the condenser can barrel X41. At one end of the heat transfer pipe X42, a low temperature heat source introduction pipe X57 that constitutes a flow path for guiding the low temperature heat source fluid GP to the heat transfer pipe X42 is connected. The other end of the low temperature heat source introduction pipe X57 is a low temperature heat source introduction port X17. The other end of the heat transfer pipe X42 is connected to one end of a low temperature heat source outflow pipe X49 that constitutes a flow path through which the low temperature heat source fluid GP flowing out of the condenser X40 flows. The other end of the low temperature heat source outflow pipe X49 is connected to the heat source fluid outflow pipe X59 together with the other end of the drive heat source outflow pipe X39. The heat source fluid outflow pipe X59 is a pipe constituting a flow path through which the combined heat source fluid RA in which the drive heat source fluid RS flowing through the drive heat source outflow pipe X39 and the low temperature heat source fluid GP flowing through the low temperature heat source outflow pipe X49 join . The other end of the heat source fluid outflow pipe X59 is a heat source fluid outlet X58. The condenser X40 introduces the regenerator refrigerant vapor XVg generated by the regenerator X30, and the low temperature heat source fluid GP flowing in the heat transfer pipe X42 receives the condensation heat released when the refrigerant condenses and becomes the refrigerant liquid XVf. Thus, the low temperature heat source fluid GP is configured to be heated. The regenerator X30 and the condenser X40 are integrally formed with the can barrel of the regenerator X30 and the condenser can barrel X41 so as to communicate with each other. By connecting the regenerator X30 and the condenser X40, the regenerator refrigerant vapor XVg generated by the regenerator X30 can be supplied to the condenser X40.

再生器X30の濃溶液XSaが貯留される部分と吸収器X10の濃溶液供給装置X13とは、濃溶液XSaを流す濃溶液管X35で接続されている。濃溶液管X35には、濃溶液XSaを圧送する溶液ポンプX35pが配設されている。吸収器X10の希溶液XSwが貯留される部分と希溶液供給装置X33とは、希溶液XSwを流す希溶液管X36で接続されている。濃溶液管X35及び希溶液管X36には、濃溶液XSaと希溶液XSwとの間で熱交換を行わせる溶液熱交換器X38が配設されている。凝縮器X40の冷媒液XVfが貯留される部分と蒸発器缶胴X21とは、冷媒液XVfを流す冷媒液管X45で接続されている。冷媒液管X45には、冷媒液XVfを圧送する冷媒ポンプX46が配設されている。   The portion of the regenerator X30 where the concentrated solution XSa is stored and the concentrated solution supply device X13 of the absorber X10 are connected by a concentrated solution pipe X35 in which the concentrated solution XSa flows. The concentrated solution tube X35 is provided with a solution pump X35p for pumping the concentrated solution XSa. The portion of the absorber X10 where the dilute solution XSw is stored and the dilute solution supply device X33 are connected by a dilute solution pipe X36 in which the dilute solution XSw flows. The concentrated solution pipe X35 and the diluted solution pipe X36 are provided with a solution heat exchanger X38 for performing heat exchange between the concentrated solution XSa and the diluted solution XSw. The portion of the condenser X40 where the refrigerant liquid XVf is stored and the evaporator can and barrel X21 are connected by a refrigerant liquid pipe X45 through which the refrigerant liquid XVf flows. The refrigerant liquid pipe X45 is provided with a refrigerant pump X46 for pressure-feeding the refrigerant liquid XVf.

昇温吸収ヒートポンプX1は、定常運転中、吸収器X10の内部の圧力及び温度は再生器X30の内部の圧力及び温度よりも高くなり、蒸発器X20の内部の圧力及び温度は凝縮器X40の内部の圧力及び温度よりも高くなる。したがって、前述のように、冷媒XVの蒸発圧力が凝縮圧力よりも高くなる。昇温吸収ヒートポンプX1は、吸収器X10、蒸発器X20、再生器X30、凝縮器X40が、第2種吸収ヒートポンプの構成となっている。   In steady-state operation of the temperature-rising absorption heat pump X1, the pressure and temperature inside the absorber X10 become higher than the pressure and temperature inside the regenerator X30, and the pressure and temperature inside the evaporator X20 are inside the condenser X40 Pressure and temperature. Therefore, as described above, the evaporation pressure of the refrigerant XV becomes higher than the condensation pressure. In the temperature rising absorption heat pump X1, an absorber X10, an evaporator X20, a regenerator X30, and a condenser X40 constitute a type 2 absorption heat pump.

次に図3を参照して、増熱吸収ヒートポンプY1の詳細な構成を説明する。図3は、増熱吸収ヒートポンプY1の模式的系統図である。増熱吸収ヒートポンプY1は、吸収液YS(YSa、YSw)と冷媒YV(YVe、YVg、YVf)との吸収ヒートポンプサイクルが行われる主要機器を構成する吸収器Y10、蒸発器Y20、再生器Y30、及び凝縮器Y40を備えている。吸収器Y10、蒸発器Y20、再生器Y30、凝縮器Y40は、それぞれ、増熱吸収部、増熱蒸発部、増熱再生部、増熱凝縮部に相当する。   Next, with reference to FIG. 3, the detailed configuration of the heat absorption absorption heat pump Y1 will be described. FIG. 3 is a schematic system diagram of the heat buildup absorption heat pump Y1. The heat-accumulation absorption heat pump Y1 includes an absorber Y10, an evaporator Y20, a regenerator Y30, and the like, which constitute the main devices in which the absorption heat pump cycle of the absorption liquid YS (YSa, YSw) and the refrigerant YV (YVe, YVg, YVf) is performed. And a condenser Y40. The absorber Y10, the evaporator Y20, the regenerator Y30, and the condenser Y40 correspond to a heat buildup absorption unit, a heat buildup evaporation unit, a heat buildup regeneration unit, and a heat buildup condensation unit, respectively.

本明細書においては、増熱吸収ヒートポンプY1における吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液YSw」や「濃溶液YSa」等と呼称するが、性状等を不問にするときは総称して「吸収液YS」ということとする。同様に、増熱吸収ヒートポンプY1における冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気YVe」、「再生器冷媒蒸気YVg」、「冷媒液YVf」等と呼称するが、性状等を不問にするときは総称して「冷媒YV」ということとする。本実施の形態では、吸収液YS(吸収剤と冷媒YVとの混合物)としてLiBr水溶液が用いられており、冷媒YVとして水(HO)が用いられている。 In the present specification, with regard to the absorption liquid in the heat-accumulation absorption heat pump Y1, in order to facilitate distinction on the heat pump cycle, “dilute solution YSw”, “concentrated solution YSa”, etc. according to the property or the position on the heat pump cycle. However, when properties and the like are not questioned, they are collectively referred to as “absorbent YS”. Similarly, with regard to the refrigerant in the heat buildup absorption heat pump Y1, “evaporator refrigerant vapor YVe”, “regenerator refrigerant vapor YVg”, according to the property or the position on the heat pump cycle, in order to facilitate discrimination on the heat pump cycle. It is referred to as "refrigerant liquid YVf" etc., but when the property etc. are unquestioned, it is collectively referred to as "refrigerant YV". In the present embodiment, a LiBr aqueous solution is used as the absorbent YS (a mixture of an absorbent and a refrigerant YV), and water (H 2 O) is used as the refrigerant YV.

吸収器Y10は、増熱対象流体TSの流路を構成する伝熱管Y12と、濃溶液YSaを伝熱管Y12の表面に供給する濃溶液供給装置Y13とを内部に有している。伝熱管Y12は、一端に増熱流体導入管Y51が接続され、他端に増熱流体連絡管Y15が接続されている。増熱流体導入管Y51は、増熱対象流体TSを伝熱管Y12に導く流路を構成する管である。増熱流体導入管Y51には、内部を流れる増熱対象流体TSの流量を調節する増熱流体弁Y51vが設けられている。増熱流体連絡管Y15は、吸収器Y10で加熱された増熱対象流体TSを凝縮器Y40へ導く流路を構成する管である。吸収器Y10は、濃溶液供給装置Y13から濃溶液YSaが伝熱管Y12の表面に供給され、濃溶液YSaが蒸発器冷媒蒸気YVeを吸収して希溶液YSwとなる際に吸収熱を発生させる。この吸収熱を、伝熱管Y12を流れる増熱対象流体TSが受熱して、増熱対象流体TSが加熱されるように構成されている。   The absorber Y10 internally includes a heat transfer tube Y12 that configures a flow path of the fluid to be heated TS, and a concentrated solution supply device Y13 that supplies the concentrated solution YSa to the surface of the heat transfer tube Y12. The heat transfer pipe Y12 has one end connected to the heat transfer fluid introduction pipe Y51 and the other end connected to the heat transfer fluid communication pipe Y15. The heat transfer fluid introduction pipe Y51 is a pipe that constitutes a flow path for leading the heat transfer target fluid TS to the heat transfer pipe Y12. The heat increasing fluid introduction pipe Y51 is provided with a heat increasing fluid valve Y51v for adjusting the flow rate of the heat enhancement target fluid TS flowing inside. The heat transfer fluid communication pipe Y15 is a pipe that constitutes a flow path for leading the heat-increase target fluid TS heated by the absorber Y10 to the condenser Y40. The absorber Y10 generates the heat of absorption when the concentrated solution YSa is supplied from the concentrated solution supply device Y13 to the surface of the heat transfer tube Y12 and the concentrated solution YSa absorbs the evaporator refrigerant vapor YVe and becomes a dilute solution YSw. The heat to be heated TS flowing through the heat transfer tube Y12 receives this absorbed heat, and the fluid to be heat-increased TS is heated.

蒸発器Y20は、低温熱源流体GPの流路を構成する熱源管Y22と、冷媒液YVfを熱源管Y22の表面に供給する冷媒液供給装置Y23とを、蒸発器缶胴Y21の内部に有している。熱源管Y22の一端には、低温熱源流入管Y52が接続されている。低温熱源流入管Y52は、低温熱源流体GPを熱源管Y22に導く流路を構成する管である。低温熱源流入管Y52には、内部を流れる低温熱源流体GPの流量を調節する低温熱源弁Y52vが設けられている。低温熱源流入管Y52の他端は、増熱流体導入管Y51の他端と共に、混合流体流入管Y55に接続されている。混合流体流入管Y55は、混合流体TAが流れる流路を構成する管である。混合流体流入管Y55の他端は、混合流体流入口Y56となっている。混合流体流入管Y55を流れる混合流体TAは、分流して、増熱流体導入管Y51と低温熱源流入管Y52とに流入するように構成されている。つまり、増熱対象流体TSは、混合流体TAのうちの増熱流体導入管Y51に流入したものであり、低温熱源流体GPは、混合流体TAのうちの低温熱源流入管Y52に流入したものである。熱源管Y22の低温熱源流入管Y52が接続された端部とは反対側の端部には、低温熱源流出管Y29が接続されている。低温熱源流出管Y29は、低温熱源流体GPを蒸発器Y20の外へ導く流路を構成する管である。低温熱源流出管Y29の他端は、低温熱源流出口Y28となっている。蒸発器Y20は、冷媒液供給装置Y23から冷媒液YVfが熱源管Y22の表面に供給され、熱源管Y22周辺の冷媒液YVfが熱源管Y22内を流れる低温熱源流体GPの熱で蒸発して蒸発器冷媒蒸気YVeが発生するように構成されている。   The evaporator Y20 has a heat source pipe Y22 constituting a flow path of the low temperature heat source fluid GP and a refrigerant liquid supply device Y23 for supplying the refrigerant liquid YVf to the surface of the heat source pipe Y22 inside the evaporator can barrel Y21. ing. A low temperature heat source inflow pipe Y52 is connected to one end of the heat source pipe Y22. The low temperature heat source inflow pipe Y52 is a pipe that constitutes a flow path for leading the low temperature heat source fluid GP to the heat source pipe Y22. The low temperature heat source inflow pipe Y52 is provided with a low temperature heat source valve Y52v for adjusting the flow rate of the low temperature heat source fluid GP flowing therein. The other end of the low temperature heat source inflow pipe Y52 is connected to the mixed fluid inflow pipe Y55 together with the other end of the heat transfer fluid introduction pipe Y51. The mixed fluid inflow pipe Y55 is a pipe that constitutes a flow path through which the mixed fluid TA flows. The other end of the mixed fluid inflow pipe Y55 is a mixed fluid inlet Y56. The mixed fluid TA flowing through the mixed fluid inflow pipe Y55 is divided and flows into the heat-increasing fluid introduction pipe Y51 and the low temperature heat source inflow pipe Y52. That is, the heat-increase target fluid TS flows into the heat-up fluid introduction pipe Y51 of the mixed fluid TA, and the low-temperature heat source fluid GP flows into the low-temperature heat source inflow pipe Y52 of the mixed fluid TA. is there. A low temperature heat source outflow pipe Y29 is connected to an end of the heat source pipe Y22 opposite to the end to which the low temperature heat source inflow pipe Y52 is connected. The low temperature heat source outflow pipe Y29 is a pipe constituting a flow path for leading the low temperature heat source fluid GP to the outside of the evaporator Y20. The other end of the low temperature heat source outflow pipe Y29 is a low temperature heat source outlet Y28. In the evaporator Y20, the refrigerant liquid YVf is supplied from the refrigerant liquid supply device Y23 to the surface of the heat source pipe Y22, and the refrigerant liquid YVf around the heat source pipe Y22 is evaporated and evaporated by the heat of the low temperature heat source fluid GP flowing in the heat source pipe Y22. Is configured to generate a refrigerant vapor YVe.

吸収器Y10と蒸発器Y20とは、相互に連通している。吸収器Y10と蒸発器Y20とが連通することにより、蒸発器Y20で発生した蒸発器冷媒蒸気YVeを吸収器Y10に供給することができるように構成されている。   The absorber Y10 and the evaporator Y20 communicate with each other. By communicating the absorber Y10 with the evaporator Y20, the evaporator refrigerant vapor YVe generated in the evaporator Y20 can be supplied to the absorber Y10.

再生器Y30は、希溶液YSwを加熱する高温熱源流体HPを内部に流す熱源管Y32と、希溶液YSwを熱源管Y32の表面に供給する希溶液供給装置Y33とを有している。熱源管Y32の一端には、高温熱源流体HPを熱源管Y32に導く流路を構成する高温熱源導入管Y57が接続されている。高温熱源導入管Y57の他端は、高温熱源導入口Y27となっている。熱源管Y32の他端には、再生器Y30から流出した高温熱源流体HPを流す流路を構成する高温熱源流出管Y39の一端が接続されている。再生器Y30は、希溶液供給装置Y33から供給された希溶液YSwが高温熱源流体HPに加熱されることにより、希溶液YSwから冷媒YVが蒸発して濃度が上昇した濃溶液YSaが生成されるように構成されている。希溶液YSwから蒸発した冷媒YVは再生器冷媒蒸気YVgとして凝縮器Y40に移動するように構成されている。   The regenerator Y30 has a heat source pipe Y32 through which a high-temperature heat source fluid HP for heating the dilute solution YSw flows, and a dilute solution supply device Y33 which supplies the dilute solution YSw to the surface of the heat source tube Y32. At one end of the heat source pipe Y32, a high temperature heat source introduction pipe Y57 that configures a flow path for leading the high temperature heat source fluid HP to the heat source pipe Y32 is connected. The other end of the high temperature heat source introduction pipe Y57 is a high temperature heat source introduction port Y27. The other end of the heat source pipe Y32 is connected to one end of a high temperature heat source outflow pipe Y39 which constitutes a flow path through which the high temperature heat source fluid HP flowing out of the regenerator Y30 flows. In the regenerator Y30, the dilute solution YSw supplied from the dilute solution supply device Y33 is heated to the high-temperature heat source fluid HP to evaporate the refrigerant YV from the dilute solution YSw to generate a concentrated solution YSa having an increased concentration. Is configured as. The refrigerant YV evaporated from the dilute solution YSw is configured to move to the condenser Y40 as a regenerator refrigerant vapor YVg.

凝縮器Y40は、増熱対象流体TSが流れる伝熱管Y42を凝縮器缶胴Y41の内部に有している。伝熱管Y42を流れる増熱対象流体TSは、吸収器Y10の伝熱管Y12を流れた後の増熱対象流体TSとなっている。吸収器Y10の伝熱管Y12と凝縮器Y40の伝熱管Y42とは、増熱対象流体TSを流す増熱流体連絡管Y15で接続されている。凝縮器Y40の伝熱管Y42の増熱流体連絡管Y15が接続された端部とは反対側の端部には、増熱流体流出管Y49が接続されている。増熱流体流出管Y49は、増熱対象流体TSを凝縮器Y40の外へ導く流路を構成する管である。増熱流体流出管Y49の他端は、高温熱源流出管Y39の他端と共に、混合流体流出管Y59に接続されている。混合流体流出管Y59は、高温熱源流出管Y39を流れる高温熱源流体HPと、増熱流体流出管Y49を流れる増熱対象流体TSと、が合流した混合流体TAが流れる流路を構成する管である。混合流体流出管Y59の他端は、混合流体流出口Y58となっている。凝縮器Y40は、再生器Y30で発生した再生器冷媒蒸気YVgを導入し、これが凝縮して冷媒液YVfとなる際に放出した凝縮熱を、伝熱管Y42内を流れる増熱対象流体TSが受熱して、増熱対象流体TSが加熱されるように構成されている。再生器Y30と凝縮器Y40とは、相互に連通するように、再生器Y30の缶胴と凝縮器缶胴Y41とが一体に形成されている。再生器Y30と凝縮器Y40とが連通することにより、再生器Y30で発生した再生器冷媒蒸気YVgを凝縮器Y40に供給することができるように構成されている。   The condenser Y40 includes a heat transfer pipe Y42 through which the fluid to be heated is flowing, inside the condenser can barrel Y41. The heat enhancement target fluid TS flowing through the heat transfer tube Y42 is the heat enhancement target fluid TS after flowing through the heat transfer tube Y12 of the absorber Y10. The heat transfer pipe Y12 of the absorber Y10 and the heat transfer pipe Y42 of the condenser Y40 are connected by a heat increasing fluid communication pipe Y15 in which the heat-increase target fluid TS flows. A heat transfer fluid discharge pipe Y49 is connected to an end of the heat transfer pipe Y42 of the condenser Y40 opposite to the end to which the heat transfer fluid communication pipe Y15 is connected. The heat transfer fluid discharge pipe Y49 is a pipe that constitutes a flow path for leading the heat increase target fluid TS to the outside of the condenser Y40. The other end of the heat transfer fluid outflow pipe Y49 is connected to the mixed fluid outflow pipe Y59 together with the other end of the high temperature heat source outflow pipe Y39. The mixed fluid outflow pipe Y59 is a pipe constituting a flow path in which the mixed fluid TA in which the high temperature heat source fluid HP flowing in the high temperature heat source outflow pipe Y39 and the fluid to be heated TS flowing in the heat increasing fluid outflow pipe Y49 join is there. The other end of the mixed fluid outflow pipe Y59 is a mixed fluid outlet Y58. The condenser Y40 introduces the regenerator refrigerant vapor YVg generated by the regenerator Y30, and condenses the heat of condensation released when the refrigerant condenses and becomes the refrigerant liquid YVf. Then, the fluid TS to be heated is configured to be heated. The regenerator Y30 and the condenser Y40 are integrally formed with the regenerator Y30 so as to communicate with each other. By connecting the regenerator Y30 and the condenser Y40, the regenerator refrigerant vapor YVg generated by the regenerator Y30 can be supplied to the condenser Y40.

再生器Y30の濃溶液YSaが貯留される部分と吸収器Y10の濃溶液供給装置Y13とは、濃溶液YSaを流す濃溶液管Y35で接続されている。吸収器Y10の希溶液YSwが貯留される部分と希溶液供給装置Y33とは、希溶液YSwを流す希溶液管Y36で接続されている。希溶液管Y36には、希溶液YSwを圧送する溶液ポンプY36pが配設されている。濃溶液管Y35及び希溶液管Y36には、濃溶液YSaと希溶液YSwとの間で熱交換を行わせる溶液熱交換器Y38が配設されている。凝縮器Y40の冷媒液YVfが貯留される部分と冷媒液供給装置Y23とは、冷媒液YVfを流す冷媒液管Y45で接続されている。   The portion of the regenerator Y30 where the concentrated solution YSa is stored and the concentrated solution supply device Y13 of the absorber Y10 are connected by a concentrated solution pipe Y35 in which the concentrated solution YSa flows. The portion of the absorber Y10 where the dilute solution YSw is stored and the dilute solution supply device Y33 are connected by a dilute solution pipe Y36 in which the dilute solution YSw flows. The dilute solution pipe Y36 is provided with a solution pump Y36p for pressure-feeding the dilute solution YSw. The concentrated solution pipe Y35 and the diluted solution pipe Y36 are provided with a solution heat exchanger Y38 for performing heat exchange between the concentrated solution YSa and the diluted solution YSw. The portion of the condenser Y40 where the refrigerant liquid YVf is stored and the refrigerant liquid supply device Y23 are connected by a refrigerant liquid pipe Y45 through which the refrigerant liquid YVf flows.

増熱吸収ヒートポンプY1は、定常運転中、吸収器Y10の内部の圧力及び温度は再生器Y30の内部の圧力及び温度よりも低くなり、蒸発器Y20の内部の圧力及び温度は凝縮器Y40の内部の圧力及び温度よりも低くなる。したがって、前述のように、冷媒XVの蒸発圧力が凝縮圧力よりも低くなる。増熱吸収ヒートポンプY1は、吸収器Y10、蒸発器Y20、再生器Y30、凝縮器Y40が、第1種吸収ヒートポンプの構成となっている。   In the heat absorption absorption heat pump Y1, the pressure and temperature inside the absorber Y10 are lower than the pressure and temperature inside the regenerator Y30 during steady operation, and the pressure and temperature inside the evaporator Y20 is inside the condenser Y40 Lower than the pressure and temperature of Therefore, as described above, the evaporation pressure of the refrigerant XV is lower than the condensation pressure. In the heat-accumulation absorption heat pump Y1, the absorber Y10, the evaporator Y20, the regenerator Y30, and the condenser Y40 constitute a first-type absorption heat pump.

また、図1乃至図3を参照して補足すると、凝縮器X40の伝熱管X42、熱源設備HSF、吸収器X10の伝熱管X12、再生器Y30の熱源管Y32、熱利用設備HCF、蒸発器Y20の熱源管Y22は第1の循環経路を構成し、低温熱源ポンプ91は、第1の循環経路に低温熱源流体GP又は合流熱源流体RA又は昇温対象流体RP又は高温熱源流体HP又は混合流体TAを循環させるポンプである。吸収器Y10の伝熱管Y12、凝縮器Y40の伝熱管Y42、熱利用設備HCFは第2の循環経路を構成し、混合流体ポンプ92は、第2の循環経路に増熱対象流体TS又は混合流体TAを循環させるポンプである。熱源設備HSF、蒸発器X20の熱源管X22、再生器X30の熱源管X32は第3の循環経路を構成し、合流熱源ポンプ93は、合流熱源流体RA又は駆動熱源流体RSを第3の循環経路に循環させるポンプである。第1の循環経路、第2の循環経路、第3の循環経路は、適宜合流及び分流することにより全体として1つの循環経路を構成している。このことから、本実施の形態では、吸収式熱交換システム1全体で少なくとも1つの膨張タンク98を設けることで足りることが分かる。なお、本実施の形態では、膨張タンク98の取付位置を、低温熱源管82としているが、低温熱源管82に代えて又は低温熱源管82と共に、昇温流体管81、混合熱源往管87、混合熱源還管88、合流熱源往管84、合流熱源還管85のいずれか又は複数としてもよい。   Further, referring additionally to FIGS. 1 to 3, the heat transfer pipe X42 of the condenser X40, the heat source equipment HSF, the heat transfer pipe X12 of the absorber X10, the heat source pipe Y32 of the regenerator Y30, the heat utilization equipment HCF, and the evaporator Y20. The heat source pipe Y22 of the second embodiment constitutes a first circulation path, and the low temperature heat source pump 91 is connected to the low temperature heat source fluid GP or the combined heat source fluid RA or the temperature raising target fluid RP or the high temperature heat source fluid HP or the mixed fluid TA in the first circulation path. It is a pump that circulates The heat transfer pipe Y12 of the absorber Y10, the heat transfer pipe Y42 of the condenser Y40, and the heat utilization facility HCF constitute a second circulation path, and the mixed fluid pump 92 generates a fluid TS to be heated or a mixed fluid in the second circulation path. It is a pump that circulates TA. The heat source equipment HSF, the heat source pipe X22 of the evaporator X20, and the heat source pipe X32 of the regenerator X30 form a third circulation path, and the combined heat source pump 93 generates a third circulation path of the combined heat source fluid RA or the driving heat source fluid RS. It is a pump to circulate. The first circulation path, the second circulation path, and the third circulation path constitute one circulation path as a whole by combining and branching appropriately. From this, it can be understood that in the present embodiment, it is sufficient to provide at least one expansion tank 98 in the entire absorptive heat exchange system 1. In the present embodiment, the low temperature heat source pipe 82 is used as the expansion tank 98 at a mounting position, but instead of the low temperature heat source pipe 82 or together with the low temperature heat source pipe 82, One or more of the mixed heat source return pipe 88, the combined heat source return pipe 84, and the combined heat source return pipe 85 may be used.

引き続き図1乃至図3を参照して、吸収式熱交換システム1の作用を説明する。先に、図1及び図2を参照して昇温吸収ヒートポンプX1まわりの作用を説明すると、合流熱源ポンプ93の起動によって流動する合流熱源流体RAは、熱源設備HSFにおいて、排熱を回収して温度が上昇し、合流熱源往管84を介して、熱源流体流入口X56から昇温吸収ヒートポンプX1に流入する。昇温吸収ヒートポンプX1に流入した合流熱源流体RAは、熱源流体流入管X55を流れた後、昇温流体導入管X51に入る昇温対象流体RPと、駆動熱源導入管X52に入る駆動熱源流体RSとに分流する。昇温流体導入管X51を流れる昇温対象流体RPは、吸収器X10の伝熱管X12に流入し、濃溶液XSaが蒸発器冷媒蒸気XVeを吸収した際に発生した吸収熱を得て温度が上昇した後、昇温流体流出管X19を流れ、昇温流体流出口X18から昇温吸収ヒートポンプX1を流出して、昇温流体管81に至る。昇温吸収ヒートポンプX1には、昇温流体流出口X18から流出した昇温対象流体RPの流量と同じ流量の低温熱源流体GPが、低温熱源管82から低温熱源導入口X17を経て低温熱源導入管X57に流入する。低温熱源管82から低温熱源導入管X57に流入する低温熱源流体GPは、低温熱源ポンプ91の起動によって流動する。低温熱源導入管X57を流れる低温熱源流体GPは、凝縮器X40の伝熱管X42に流入し、再生器冷媒蒸気XVgが凝縮する際に放出した凝縮熱を得て温度が上昇した後、低温熱源流出管X49を流れる。   With continuing reference to FIGS. 1 to 3, the operation of the absorptive heat exchange system 1 will be described. First, the operation around the temperature rising absorption heat pump X1 will be described with reference to FIG. 1 and FIG. 2. The combined heat source fluid RA flowing by the start of the combined heat source pump 93 recovers exhaust heat in the heat source facility HSF. The temperature rises, and flows into the temperature rising absorption heat pump X1 from the heat source fluid inlet X56 via the combined heat source forward pipe 84. The combined heat source fluid RA flowing into the temperature rising absorption heat pump X1 flows through the heat source fluid inflow pipe X55, and then the temperature raising target fluid RP entering the temperature raising fluid introduction pipe X51 and the driving heat source fluid RS entering the driving heat source introduction pipe X52 It divides into and. The temperature raising target fluid RP flowing through the temperature raising fluid introduction pipe X51 flows into the heat transfer pipe X12 of the absorber X10, and the temperature rises by obtaining the absorption heat generated when the concentrated solution XSa absorbs the evaporator refrigerant vapor XVe Then, it flows through the temperature rising fluid outlet pipe X19, and the temperature rising absorption heat pump X1 flows out from the temperature rising fluid outlet X18 and reaches the temperature rising fluid pipe 81. In the temperature rising absorption heat pump X1, the low temperature heat source fluid GP having the same flow rate as the flow rate of the temperature rising target fluid RP flowing out from the temperature rising fluid outlet X18 passes from the low temperature heat source pipe 82 through the low temperature heat source inlet X17 It flows into X57. The low temperature heat source fluid GP flowing from the low temperature heat source pipe 82 into the low temperature heat source introduction pipe X57 flows when the low temperature heat source pump 91 is activated. The low temperature heat source fluid GP flowing through the low temperature heat source introduction pipe X57 flows into the heat transfer pipe X42 of the condenser X40, obtains condensation heat released when the regenerator refrigerant vapor XVg condenses, and the temperature rises after the temperature rises. Flow through tube X49.

他方、熱源設備HSFから昇温吸収ヒートポンプX1に流入した合流熱源流体RAから分流した駆動熱源流体RSは、駆動熱源導入管X52を流れて蒸発器X20の熱源管X22に流入し、冷媒液XVfが蒸発器冷媒蒸気XVeとなるのに必要な蒸発潜熱を奪われて温度が低下した後、駆動熱源連絡管X25に至る。駆動熱源連絡管X25を流れる駆動熱源流体RSは、再生器X30の熱源管X32に流入し、希溶液XSwから再生器冷媒蒸気XVgを離脱させるのに必要な熱が奪われて温度が低下した後、駆動熱源流出管X39に至る。駆動熱源流出管X39を流れる駆動熱源流体RSは、前述の低温熱源流出管X49を流れる低温熱源流体GPと合流して合流熱源流体RAとなる。合流熱源流体RAは、熱源流体流出管X59を流れ、熱源流体流出口X58から昇温吸収ヒートポンプX1を流出して、合流熱源還管85に至る。合流熱源還管85に流入した合流熱源流体RAは、熱源設備HSFに流入して排熱を回収して温度が上昇した後に合流熱源往管84に至り、以降、上述の作用を繰り返す。以下に、主として図2を参照して、昇温対象流体RP、低温熱源流体GP、及び駆動熱源流体RSの温度変化をもたらす吸収液XSと冷媒XVとの吸収ヒートポンプサイクルを説明する。   On the other hand, the drive heat source fluid RS branched from the combined heat source fluid RA flowing from the heat source equipment HSF into the temperature rising absorption heat pump X1 flows through the drive heat source introduction pipe X52 and flows into the heat source pipe X22 of the evaporator X20, and the refrigerant liquid XVf After the latent heat of vaporization necessary for becoming the evaporator refrigerant vapor XVe is deprived and the temperature decreases, it reaches the driving heat source communication pipe X25. The driving heat source fluid RS flowing through the driving heat source communication pipe X25 flows into the heat source pipe X32 of the regenerator X30, and the temperature is lowered after the heat necessary for separating the regenerator refrigerant vapor XVg is removed from the dilute solution XSw , Driving heat source outflow pipe X39. The driving heat source fluid RS flowing through the driving heat source outflow pipe X39 merges with the low temperature heat source fluid GP flowing through the above-described low temperature heat source outflow pipe X49 to form a merged heat source fluid RA. The combined heat source fluid RA flows through the heat source fluid outlet pipe X59, and flows out from the heat source fluid outlet X58 to the temperature rising absorption heat pump X1 and reaches the combined heat source return pipe 85. The combined heat source fluid RA that has flowed into the combined heat source return pipe 85 flows into the heat source equipment HSF and recovers the exhaust heat to rise in temperature, and then reaches the combined heat source forward pipe 84. Thereafter, the above-described operation is repeated. Hereinafter, absorption heat pump cycles of the absorbent XS and the refrigerant XV that bring about temperature changes of the temperature raising target fluid RP, the low temperature heat source fluid GP, and the driving heat source fluid RS will be described mainly with reference to FIG.

まず、冷媒側の吸収ヒートポンプサイクルを説明する。凝縮器X40では、再生器X30で蒸発した再生器冷媒蒸気XVgを受け入れて、伝熱管X42を流れる流体(本実施の形態では低温熱源流体GP)によって再生器冷媒蒸気XVgが冷却されて凝縮し、冷媒液XVfとなる。このとき、伝熱管X42を流れる流体(本実施の形態では低温熱源流体GP)は、再生器冷媒蒸気XVgが凝縮する際に放出した凝縮熱によって温度が上昇する。凝縮した冷媒液XVfは、冷媒ポンプX46で蒸発器缶胴X21に送られる。蒸発器缶胴X21に送られた冷媒液XVfは、熱源管X22内を流れる駆動熱源流体RSによって加熱され、蒸発して蒸発器冷媒蒸気XVeとなる。このとき、駆動熱源流体RSは、冷媒液XVfに熱を奪われて温度が低下する。蒸発器X20で発生した蒸発器冷媒蒸気XVeは、蒸発器X20と連通する吸収器X10へと移動する。   First, the absorption heat pump cycle on the refrigerant side will be described. In the condenser X40, the regenerator refrigerant vapor XVg evaporated in the regenerator X30 is received, the regenerator refrigerant vapor XVg is cooled and condensed by the fluid flowing through the heat transfer pipe X42 (in the present embodiment, the low temperature heat source fluid GP). It becomes the refrigerant liquid XVf. At this time, the temperature of the fluid flowing through the heat transfer pipe X42 (in the present embodiment, the low temperature heat source fluid GP) rises due to the condensation heat released when the regenerator refrigerant vapor XVg condenses. The condensed refrigerant liquid XVf is sent to the evaporator can and barrel X21 by the refrigerant pump X46. The refrigerant liquid XVf sent to the evaporator can and barrel X21 is heated by the drive heat source fluid RS flowing in the heat source pipe X22, and evaporates to be the evaporator refrigerant vapor XVe. At this time, the heat source fluid RS is deprived of heat by the refrigerant liquid XVf and the temperature thereof is lowered. The evaporator refrigerant vapor XVe generated in the evaporator X20 moves to an absorber X10 in communication with the evaporator X20.

次に溶液側の吸収ヒートポンプサイクルを説明する。吸収器X10では、濃溶液XSaが濃溶液供給装置X13から供給され、この供給された濃溶液XSaが蒸発器X20から移動してきた蒸発器冷媒蒸気XVeを吸収する。蒸発器冷媒蒸気XVeを吸収した濃溶液XSaは、濃度が低下して希溶液XSwとなる。吸収器X10では、濃溶液XSaが蒸発器冷媒蒸気XVeを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管X12を流れる昇温対象流体RPは、加熱されて温度が上昇する。本実施の形態では、伝熱管X12を流れる昇温対象流体RPは、元は、蒸発器X20の熱源管X22に導入される駆動熱源流体RSの元と同じ合流熱源流体RAである。したがって、昇温流体流出管X19を流れる昇温対象流体RPは、吸収器X10で加熱された分だけ、蒸発器X20及び再生器X30に流入する駆動熱源流体RSよりも温度が高くなる。吸収器X10で蒸発器冷媒蒸気XVeを吸収した濃溶液XSaは、濃度が低下して希溶液XSwとなり、吸収器X10の下部に貯留される。貯留された希溶液XSwは、吸収器X10と再生器X30との内圧の差により再生器X30に向かって希溶液管X36を流れ、溶液熱交換器X38で濃溶液XSaと熱交換して温度が低下して、再生器X30に至る。   The solution side absorption heat pump cycle will now be described. In the absorber X10, the concentrated solution XSa is supplied from the concentrated solution supply device X13, and the supplied concentrated solution XSa absorbs the evaporator refrigerant vapor XVe transferred from the evaporator X20. The concentrated solution XSa that has absorbed the evaporator refrigerant vapor XVe is reduced in concentration to become a dilute solution XSw. In the absorber X10, absorption heat is generated when the concentrated solution XSa absorbs the evaporator refrigerant vapor XVe. Due to this absorbed heat, the temperature raising target fluid RP flowing through the heat transfer tube X12 is heated and the temperature rises. In the present embodiment, the temperature raising target fluid RP flowing through the heat transfer tube X12 is originally the same combined heat source fluid RA as the source of the driving heat source fluid RS introduced into the heat source tube X22 of the evaporator X20. Therefore, the temperature-rising target fluid RP flowing through the temperature-rising fluid outlet pipe X19 has a temperature higher than that of the driving heat source fluid RS flowing into the evaporator X20 and the regenerator X30 by the amount heated by the absorber X10. The concentrated solution XSa having absorbed the evaporator refrigerant vapor XVe by the absorber X10 is reduced in concentration to be a dilute solution XSw, and is stored in the lower part of the absorber X10. The stored dilute solution XSw flows through the dilute solution pipe X36 toward the regenerator X30 due to the difference in internal pressure between the absorber X10 and the regenerator X30 and exchanges heat with the concentrated solution XSa in the solution heat exchanger X38 to obtain a temperature It falls to the regenerator X30.

再生器X30に送られた希溶液XSwは、希溶液供給装置X33から供給され、熱源管X32を流れる駆動熱源流体RSによって加熱され、供給された希溶液XSw中の冷媒が蒸発して濃溶液XSaとなり、再生器X30の下部に貯留される。このとき、駆動熱源流体RSは、希溶液XSwに熱を奪われて温度が低下する。熱源管X32を流れる駆動熱源流体RSは、蒸発器X20の熱源管X22を通過してきたものである。希溶液XSwから蒸発した冷媒XVは、再生器冷媒蒸気XVgとして凝縮器X40へと移動する。再生器X30の下部に貯留された濃溶液XSaは、溶液ポンプX35pにより、濃溶液管X35を介して吸収器X10の濃溶液供給装置X13に圧送される。濃溶液管X35を流れる濃溶液XSaは、溶液熱交換器X38で希溶液XSwと熱交換して温度が上昇してから吸収器X10に流入し、濃溶液供給装置X13から供給されて、以降、同様のサイクルを繰り返す。   The dilute solution XSw sent to the regenerator X30 is supplied from the dilute solution supply device X33, is heated by the driving heat source fluid RS flowing through the heat source pipe X32, and the refrigerant in the supplied dilute solution XSw evaporates and the concentrated solution XSa And stored in the lower part of the regenerator X30. At this time, the heat source fluid RS is deprived of heat by the dilute solution XSw and the temperature is lowered. The driving heat source fluid RS flowing through the heat source pipe X32 has passed through the heat source pipe X22 of the evaporator X20. The refrigerant XV evaporated from the dilute solution XSw moves to the condenser X40 as a regenerator refrigerant vapor XVg. The concentrated solution XSa stored in the lower part of the regenerator X30 is pressure-fed by the solution pump X35p to the concentrated solution supply device X13 of the absorber X10 via the concentrated solution pipe X35. The concentrated solution XSa flowing in the concentrated solution pipe X35 exchanges heat with the dilute solution XSw in the solution heat exchanger X38 and rises in temperature, and then flows into the absorber X10 to be supplied from the concentrated solution supply device X13 and thereafter Repeat the same cycle.

次に図1及び図3を参照して増熱吸収ヒートポンプY1の作用を説明すると、昇温流体管81を流れる昇温対象流体RPは、高温熱源導入口Y27から、高温熱源流体HPとして増熱吸収ヒートポンプY1に流入する。高温熱源導入口Y27の前後の昇温対象流体RPと高温熱源流体HPとは、同じものであるが、説明の便宜上、昇温吸収ヒートポンプX1におけるものと増熱吸収ヒートポンプY1におけるものとを区別するために、呼称を変えたものである。増熱吸収ヒートポンプY1に流入した高温熱源流体HPは、高温熱源導入管Y57を流れ、再生器Y30の熱源管Y32に流入し、希溶液YSwから再生器冷媒蒸気YVgを離脱させるのに必要な熱が奪われて温度が低下した後、高温熱源流出管Y39に至る。高温熱源流出管Y39を流れる高温熱源流体HPは、増熱流体流出管Y49を流れてきた増熱対象流体TSと合流して混合流体TAとなる。混合流体TAは、混合流体流出管Y59を流れ、混合流体流出口Y58から増熱吸収ヒートポンプY1を流出して、混合熱源往管87に至る。   Next, the operation of the heat-accumulation absorption heat pump Y1 will be described with reference to FIG. 1 and FIG. 3. The temperature raising target fluid RP flowing through the temperature raising fluid pipe 81 is heated from the high temperature heat source inlet Y27 as the high temperature heat source fluid HP. It flows into absorption heat pump Y1. Although the temperature raising target fluid RP and the high temperature heat source fluid HP before and after the high temperature heat source inlet Y27 are the same, for convenience of explanation, the one in the temperature rising absorption heat pump X1 and the one in the heat buildup absorption heat pump Y1 are distinguished In order to change the name. The high temperature heat source fluid HP flowing into the heat buildup absorption heat pump Y1 flows through the high temperature heat source introduction pipe Y57, flows into the heat source pipe Y32 of the regenerator Y30, and the heat necessary to separate the regenerator refrigerant vapor YVg from the dilute solution YSw After the temperature is lowered, it reaches the high temperature heat source outflow pipe Y39. The high-temperature heat source fluid HP flowing through the high-temperature heat source outlet pipe Y39 joins the heat-increase target fluid TS flowing through the heat-up fluid outlet pipe Y49 to form a mixed fluid TA. The mixed fluid TA flows through the mixed fluid outlet pipe Y59 and flows out of the heat buildup absorption heat pump Y1 from the mixed fluid outlet Y58 to the mixed heat source transfer pipe 87.

混合熱源往管87を流れる混合流体TAは、熱利用設備HCFに流入し、熱が利用されて温度が低下した後に、混合熱源還管88に至る。混合熱源還管88の混合流体TAは、混合流体流入口Y56から増熱吸収ヒートポンプY1内の混合流体流入管Y55に流入する。混合熱源還管88から混合流体流入管Y55に流入する混合流体TAは、混合流体ポンプ92の起動によって流動する。混合流体流入管Y55を流れる混合流体TAは、増熱流体導入管Y51に入る増熱対象流体TSと、低温熱源流入管Y52に入る低温熱源流体GPとに分流する。増熱流体導入管Y51を流れる増熱対象流体TSは、吸収器Y10の伝熱管Y12に流入し、濃溶液YSaが蒸発器冷媒蒸気YVeを吸収した際に発生した吸収熱を得て温度が上昇した後、増熱流体連絡管Y15に至る。増熱流体連絡管Y15を流れる増熱対象流体TSは、凝縮器Y40の伝熱管Y42に流入し、再生器冷媒蒸気YVgが凝縮する際に放出した凝縮熱を得て温度が上昇した後、増熱流体流出管Y49を流れる。増熱流体流出管Y49を流れる増熱対象流体TSは、前述の高温熱源流出管Y39を流れる高温熱源流体HPと混合して混合流体TAとなって混合流体流出管Y59を流れ、前述のように熱利用設備HCFに向かう。   The mixed fluid TA flowing through the mixed heat source forward pipe 87 flows into the heat utilization facility HCF, reaches the mixed heat source return pipe 88 after the heat is utilized and the temperature drops. The mixed fluid TA of the mixed heat source return pipe 88 flows from the mixed fluid inlet Y56 into the mixed fluid inflow pipe Y55 in the heat buildup absorption heat pump Y1. The mixed fluid TA flowing from the mixed heat source return pipe 88 into the mixed fluid inflow pipe Y 55 flows by activation of the mixed fluid pump 92. The mixed fluid TA flowing through the mixed fluid inflow pipe Y55 is divided into the heat increase target fluid TS entering the heat increasing fluid introduction pipe Y51 and the low temperature heat source fluid GP entering the low temperature heat source inflow pipe Y52. The fluid to be heated TS flowing through the heat transfer fluid introduction pipe Y51 flows into the heat transfer pipe Y12 of the absorber Y10, and the temperature rises by obtaining the absorption heat generated when the concentrated solution YSa absorbs the evaporator refrigerant vapor YVe Then, the heat transfer fluid communication pipe Y15 is reached. The fluid to be heated TS flowing through the heat transfer fluid communication tube Y15 flows into the heat transfer tube Y42 of the condenser Y40, obtains condensation heat released when the regenerator refrigerant vapor YVg condenses, and increases after the temperature rises. It flows through the thermal fluid outflow pipe Y49. The heat enhancement target fluid TS flowing through the heat transfer fluid outlet pipe Y49 is mixed with the high temperature heat source fluid HP flowing through the above-mentioned high temperature heat source outlet pipe Y39 to form a mixed fluid TA and flows through the mixed fluid outlet pipe Y59 as described above Head towards the heat utilization facility HCF.

他方、熱利用設備HCFから増熱吸収ヒートポンプY1に流入した混合流体TAから分流した低温熱源流体GPは、低温熱源流入管Y52を流れて蒸発器Y20の熱源管Y22に流入し、冷媒液YVfが蒸発器冷媒蒸気YVeとなるのに必要な蒸発潜熱を奪われて温度が低下した後、低温熱源流出管Y29を流れる。低温熱源流出管Y29を流れる低温熱源流体GPは、低温熱源流出口Y28から増熱吸収ヒートポンプY1を流出して低温熱源管82に至る。低温熱源管82の低温熱源流体GPは、前述のように低温熱源ポンプ91の起動によって流動し、昇温吸収ヒートポンプX1に向かう。以下に、主として図3を参照して、高温熱源流体HP、増熱対象流体TS、及び低温熱源流体GPの温度変化をもたらす吸収液YSと冷媒YVとの吸収ヒートポンプサイクルを説明する。   On the other hand, the low temperature heat source fluid GP branched from the mixed fluid TA flowing from the heat utilization facility HCF into the heat buildup absorption heat pump Y1 flows through the low temperature heat source inflow pipe Y52 and flows into the heat source pipe Y22 of the evaporator Y20, and the refrigerant liquid YVf After the latent heat of vaporization necessary for becoming the evaporator refrigerant vapor YVe is taken and the temperature decreases, it flows through the low temperature heat source outflow pipe Y29. The low temperature heat source fluid GP flowing through the low temperature heat source outflow pipe Y29 flows out from the low temperature heat source outflow Y28 to the low temperature heat source pipe 82 through the heat buildup absorption heat pump Y1. The low temperature heat source fluid GP of the low temperature heat source pipe 82 flows as the low temperature heat source pump 91 is activated as described above, and travels to the temperature rising absorption heat pump X1. Hereinafter, absorption heat pump cycles of the absorbent YS and the refrigerant YV that bring about temperature changes of the high temperature heat source fluid HP, the heat increase target fluid TS, and the low temperature heat source fluid GP will be described mainly with reference to FIG.

まず、溶液側の吸収ヒートポンプサイクルを説明する。吸収器Y10では、濃溶液YSaが濃溶液供給装置Y13から供給され、この供給された濃溶液YSaが蒸発器Y20から移動してきた蒸発器冷媒蒸気YVeを吸収する。蒸発器冷媒蒸気YVeを吸収した濃溶液YSaは、濃度が低下して希溶液YSwとなる。吸収器Y10では、濃溶液YSaが蒸発器冷媒蒸気YVeを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管Y12を流れる増熱対象流体TSが加熱され、増熱対象流体TSの温度が上昇する。吸収器Y10で蒸発器冷媒蒸気YVeを吸収した濃溶液YSaは、濃度が低下して希溶液YSwとなり、吸収器Y10の下部に貯留される。貯留された希溶液YSwは、溶液ポンプY36pに圧送されて再生器Y30に向かって希溶液管Y36を流れ、溶液熱交換器Y38で濃溶液YSaと熱交換して温度が上昇して、再生器Y30に至る。   First, the absorption heat pump cycle on the solution side will be described. In the absorber Y10, the concentrated solution YSa is supplied from the concentrated solution supply device Y13, and the supplied concentrated solution YSa absorbs the evaporator refrigerant vapor YVe transferred from the evaporator Y20. The concentrated solution YSa that has absorbed the evaporator refrigerant vapor YVe has a reduced concentration and becomes a dilute solution YSw. In the absorber Y10, absorption heat is generated when the concentrated solution YSa absorbs the evaporator refrigerant vapor YVe. The heat to be heated TS flowing through the heat transfer tube Y12 is heated by the absorbed heat, and the temperature of the heat increasing target fluid TS rises. The concentrated solution YSa having absorbed the evaporator refrigerant vapor YVe by the absorber Y10 is reduced in concentration to be a dilute solution YSw, and is stored in the lower part of the absorber Y10. The stored dilute solution YSw is pressure-fed to the solution pump Y36p, flows through the dilute solution pipe Y36 toward the regenerator Y30, exchanges heat with the concentrated solution YSa in the solution heat exchanger Y38, and the temperature rises. It reaches to Y30.

再生器Y30に送られた希溶液YSwは、希溶液供給装置Y33から供給され、熱源管Y32を流れる高温熱源流体HPによって加熱され、供給された希溶液YSw中の冷媒が蒸発して濃溶液YSaとなり、再生器Y30の下部に貯留される。このとき、高温熱源流体HPは、希溶液YSwに熱を奪われて温度が低下する。希溶液YSwから蒸発した冷媒YVは、再生器冷媒蒸気YVgとして凝縮器Y40へと移動する。再生器Y30の下部に貯留された濃溶液YSaは、再生器Y30と吸収器Y10との内圧の差により、濃溶液管Y35を介して吸収器Y10の濃溶液供給装置Y13に至る。濃溶液管Y35を流れる濃溶液YSaは、溶液熱交換器Y38で希溶液YSwと熱交換して温度が低下してから吸収器Y10に流入し、濃溶液供給装置Y13から供給され、以降、上述の吸収液YSのサイクルを繰り返す。   The dilute solution YSw sent to the regenerator Y30 is supplied from the dilute solution supply device Y33, is heated by the high-temperature heat source fluid HP flowing through the heat source pipe Y32, and the refrigerant in the supplied dilute solution YSw evaporates and the concentrated solution YSa And stored in the lower part of the regenerator Y30. At this time, the high-temperature heat source fluid HP loses its heat by the dilute solution YSw and its temperature decreases. The refrigerant YV evaporated from the dilute solution YSw moves to the condenser Y40 as a regenerator refrigerant vapor YVg. The concentrated solution YSa stored in the lower part of the regenerator Y30 reaches the concentrated solution supply device Y13 of the absorber Y10 through the concentrated solution pipe Y35 due to the difference in internal pressure between the regenerator Y30 and the absorber Y10. The concentrated solution YSa flowing in the concentrated solution pipe Y35 exchanges heat with the dilute solution YSw in the solution heat exchanger Y38, and then the temperature is lowered before it flows into the absorber Y10 and is supplied from the concentrated solution supply device Y13. Repeat the cycle of the absorbent YS.

次に冷媒側の吸収ヒートポンプサイクルを説明する。凝縮器Y40では、再生器Y30で蒸発した再生器冷媒蒸気YVgを受け入れて、伝熱管Y42を流れる増熱対象流体TSによって再生器冷媒蒸気YVgが冷却されて凝縮し、冷媒液YVfとなる。このとき、増熱対象流体TSは、再生器冷媒蒸気YVgが凝縮する際に放出した凝縮熱によって温度が上昇する。伝熱管Y42を流れる増熱対象流体TSは、吸収器Y10の伝熱管Y12を通過してきたものである。凝縮した冷媒液YVfは、凝縮器Y40と蒸発器Y20との内圧の差により冷媒液管Y45を流れて蒸発器Y20に至る。蒸発器Y20に送られた冷媒液YVfは、冷媒液供給装置Y23から供給され、熱源管Y22内を流れる低温熱源流体GPによって加熱され、蒸発して蒸発器冷媒蒸気YVeとなる。このとき、熱源管Y22を流れる低温熱源流体GPは、冷媒液YVfに熱を奪われて温度が低下する。蒸発器Y20で発生した蒸発器冷媒蒸気YVeは、蒸発器Y20と連通する吸収器Y10へと移動し、以降、同様のサイクルを繰り返す。   Next, the absorption heat pump cycle on the refrigerant side will be described. In the condenser Y40, the regenerator refrigerant vapor YVg evaporated in the regenerator Y30 is received, the regenerator refrigerant vapor YVg is cooled and condensed by the heat-increase target fluid TS flowing through the heat transfer pipe Y42, and becomes refrigerant liquid YVf. At this time, the temperature of the heat-increase target fluid TS rises due to the heat of condensation released when the regenerator refrigerant vapor YVg condenses. The fluid to be heated TS flowing through the heat transfer tube Y42 has passed through the heat transfer tube Y12 of the absorber Y10. The condensed refrigerant liquid YVf flows through the refrigerant liquid pipe Y45 to reach the evaporator Y20 due to the difference in internal pressure between the condenser Y40 and the evaporator Y20. The refrigerant liquid YVf sent to the evaporator Y20 is supplied from the refrigerant liquid supply device Y23, is heated by the low-temperature heat source fluid GP flowing in the heat source pipe Y22, and evaporates to become the evaporator refrigerant vapor YVe. At this time, the low temperature heat source fluid GP flowing through the heat source pipe Y22 is deprived of heat by the refrigerant liquid YVf and the temperature is lowered. The evaporator refrigerant vapor YVe generated by the evaporator Y20 moves to the absorber Y10 in communication with the evaporator Y20, and the same cycle is repeated thereafter.

再び図1を主に参照して、上述のような作用を行う吸収式熱交換システム1における、昇温吸収ヒートポンプX1、増熱吸収ヒートポンプY1、熱源設備HSF、熱利用設備HCFを循環する流体の温度及び流量の変化を、具体例を挙げて説明する。熱源設備HSFから流出して昇温吸収ヒートポンプX1に流入し、熱源流体流入管X55を流れる合流熱源流体RAは、温度が95℃で流量が60t/hであるとする。熱源流体流入管X55から昇温流体導入管X51及び駆動熱源導入管X52に分流した昇温対象流体RP及び駆動熱源流体RSは、それぞれ、温度が95℃で流量が30t/hとなる。駆動熱源導入管X52を流れる95℃、30t/hの駆動熱源流体RSは、蒸発器X20の熱源管X22を流れた際に冷媒液XVfに熱を奪われて、駆動熱源連絡管X25に至ると88℃に温度が低下する。その後、駆動熱源連絡管X25を流れる駆動熱源流体RSは、再生器X30の熱源管X32を流れた際に希溶液XSwに熱を奪われて、駆動熱源流出管X39に至ると80℃に温度が低下する。駆動熱源流出管X39に至った駆動熱源流体RSの流量は30t/hのままである。   Again referring to FIG. 1 mainly, of the fluid circulating through the temperature rising absorption heat pump X1, the heat absorption absorption heat pump Y1, the heat source equipment HSF, and the heat utilization equipment HCF in the absorption type heat exchange system 1 performing the above-described function. The changes in temperature and flow rate will be described using specific examples. The combined heat source fluid RA flowing out of the heat source equipment HSF and flowing into the temperature rising absorption heat pump X1 and flowing through the heat source fluid inflow pipe X55 has a temperature of 95 ° C. and a flow rate of 60 t / h. The temperature raising target fluid RP and the driving heat source fluid RS which are branched from the heat source fluid inflow pipe X55 to the heating fluid introducing pipe X51 and the driving heat source introducing pipe X52 have a temperature of 95 ° C. and a flow rate of 30 t / h. When the driving heat source fluid RS of 95 ° C. and 30 t / h flowing through the driving heat source introduction pipe X52 flows through the heat source pipe X22 of the evaporator X20, heat is taken away by the refrigerant liquid XVf and reaches the driving heat source communication pipe X25 The temperature drops to 88 ° C. Thereafter, when the driving heat source fluid RS flowing through the driving heat source communication pipe X25 flows through the heat source pipe X32 of the regenerator X30, heat is taken away by the dilute solution XSw, and the temperature reaches 80 ° C. when it reaches the driving heat source outflow pipe X39. descend. The flow rate of the drive heat source fluid RS reaching the drive heat source outflow pipe X39 remains at 30 t / h.

他方、昇温流体導入管X51を流れる温度が95℃で流量が30t/hの昇温対象流体RPは、吸収器X10の伝熱管X12を流れた際に、濃溶液XSaが蒸発器冷媒蒸気XVeを吸収して発生した吸収熱を得て、昇温流体流出管X19に至ると100℃に温度が上昇する。昇温流体流出管X19に至った昇温対象流体RPの流量は30t/hのままである。昇温流体流出管X19を流れる100℃、30t/hの昇温対象流体RPは、昇温吸収ヒートポンプX1を流出し、昇温流体管81を流れ、概ね温度及び流量が変わらずに、高温熱源流体HPとして増熱吸収ヒートポンプY1に流入する。なお、厳密にいえば、昇温流体管81を流れる際の放熱によって、増熱吸収ヒートポンプY1に流入した高温熱源流体HPの温度は100℃よりも低下しているが、説明の便宜上、熱ロスがないものと仮定して、増熱吸収ヒートポンプY1に流入した高温熱源流体HPの温度は100℃であるものとする。   On the other hand, when the temperature-raising target fluid RP having a temperature of 95 ° C. and a flow rate of 30 t / h flowing through the temperature-rising fluid introduction pipe X51 flows through the heat transfer pipe X12 of the absorber X10, the concentrated solution XSa is the evaporator refrigerant vapor XVe The temperature rises to 100.degree. C. when it reaches the temperature rising fluid outlet pipe X19. The flow rate of the temperature raising target fluid RP reaching the temperature rising fluid outlet pipe X19 remains at 30 t / h. The temperature increase target fluid RP of 100 ° C. and 30 t / h flowing through the temperature rising fluid outflow pipe X19 flows out of the temperature rising absorption heat pump X1, flows through the temperature rising fluid pipe 81, and the temperature and flow rate substantially remain unchanged. It flows into the heat buildup absorption heat pump Y1 as a fluid HP. Strictly speaking, the temperature of the high-temperature heat source fluid HP that has flowed into the heat-accumulation absorption heat pump Y1 is lower than 100 ° C. due to heat dissipation when flowing through the temperature-rising fluid pipe 81. It is assumed that the temperature of the high-temperature heat source fluid HP flowing into the heat-accumulation absorption heat pump Y1 is 100.degree.

増熱吸収ヒートポンプY1に流入し、高温熱源導入管Y57を流れる温度が100℃で流量が30t/hの高温熱源流体HPは、再生器Y30の熱源管Y32を流れた際に希溶液YSwに熱を奪われて、高温熱源流出管Y39に至ると90℃に温度が低下する。高温熱源流出管Y39を流れる90℃の高温熱源流体HPは、増熱流体流出管Y49を流れる温度が48℃で流量が75t/hの増熱対象流体TSと混合し、60℃、105t/hの混合流体TAとなって混合流体流出管Y59を流れる。混合流体流出管Y59を流れる60℃、105t/hの混合流体TAは、増熱吸収ヒートポンプY1から流出し、熱利用設備HCFに流入して熱が利用されて温度が低下する。熱利用設備HCFで温度が低下して増熱吸収ヒートポンプY1に流入した混合流体TAは、温度が40℃で流量が105t/hであるとする。増熱吸収ヒートポンプY1に流入して混合流体流入管Y55を流れる40℃、105t/hの混合流体TAは、分流して、40℃、75t/hの増熱対象流体TSが増熱流体導入管Y51に流入し、40℃、30t/hの低温熱源流体GPが低温熱源流入管Y52に流入する。増熱流体導入管Y51を流れる40℃、75t/hの増熱対象流体TSは、吸収器Y10の伝熱管Y12を流れた際に、濃溶液YSaが蒸発器冷媒蒸気YVeを吸収して発生した吸収熱を得て、増熱流体連絡管Y15に至ると44℃に温度が上昇する。その後、増熱流体連絡管Y15を流れる増熱対象流体TSは、凝縮器Y40の伝熱管Y42を流れた際に、再生器冷媒蒸気YVgが凝縮して冷媒液YVfとなる際に放出した凝縮熱を得て、増熱流体流出管Y49に至ると48℃に温度が上昇する。増熱流体流出管Y49に至った増熱対象流体TSの流量は75t/hのままである。増熱流体流出管Y49を流れる48℃、75t/h増熱対象流体TSは、上述のように、高温熱源流出管Y39を流れる90℃、30t/hの高温熱源流体HPと合流して、60℃、105t/hの混合流体TAとなって混合流体流出管Y59を流れる。   The high temperature heat source fluid HP flowing into the heat buildup absorption heat pump Y1 and flowing through the high temperature heat source introduction pipe Y57 at a temperature of 100 ° C. and having a flow rate of 30 t / h flows into the heat source pipe Y32 of the regenerator Y30, and heats the diluted solution YSw. The temperature drops to 90 ° C. when reaching the high temperature heat source outflow pipe Y39. The high temperature heat source fluid HP of 90 ° C. flowing through the high temperature heat source outlet pipe Y 39 is mixed with the fluid to be heated TS with a flow rate of 75 t / h at a temperature of 48 ° C. flowing through the heat transfer fluid outlet pipe Y 49, 60 t C, 105 t / h The mixed fluid TA flows in the mixed fluid outlet pipe Y59. The mixed fluid TA at 60 ° C. and 105 t / h flowing through the mixed fluid outflow pipe Y59 flows out from the heat-accumulating absorption heat pump Y1 and flows into the heat utilization facility HCF to utilize heat to reduce the temperature. It is assumed that the temperature of the mixed fluid TA flowing into the heat buildup absorption heat pump Y1 decreases at the heat utilization facility HCF and the flow rate is 105 t / h at 40 ° C. The mixed fluid TA of 40 ° C. and 105 t / h flowing into the mixed heat inflow pipe Y 55 flowing into the heat absorption and absorption heat pump Y1 is branched, and the 40 ° C. and 75 t / h heat transfer target fluid TS is a heat increasing fluid introduction pipe It flows into Y51, and the low temperature heat source fluid GP of 40 ° C. and 30 t / h flows into the low temperature heat source inflow pipe Y52. The concentrated solution YSa was generated by absorbing the evaporator refrigerant vapor YVe when flowing through the heat transfer tube Y12 of the absorber Y10 at 40 ° C. and 75 t / h of the heat increase target fluid TS flowing through the heat increase fluid introduction tube Y51. The heat of absorption is obtained, and the temperature rises to 44 ° C. when reaching the heat transfer fluid communication pipe Y15. Thereafter, when the fluid to be heated TS flowing through the heat transfer fluid communication pipe Y15 flows through the heat transfer pipe Y42 of the condenser Y40, the condensation heat released when the regenerator refrigerant vapor YVg condenses and becomes the refrigerant liquid YVf The temperature rises to 48 ° C. when reaching the heat-up fluid outlet pipe Y49. The flow rate of the heat-increase target fluid TS reaching the heat-accumulation fluid discharge pipe Y49 remains at 75 t / h. As described above, the 48 ° C., 75 t / h heat-up target fluid TS flowing through the heat-up fluid outflow pipe Y49 joins the 90 ° C., 30 t / h high-temperature heat source fluid HP flowing through the high-temperature heat source outflow pipe Y39 The mixed fluid TA of 105 t / h is allowed to flow through the mixed fluid outlet pipe Y59.

他方、低温熱源流入管Y52を流れる40℃、30t/hの低温熱源流体GPは、蒸発器Y20の熱源管Y22を流れた際に冷媒液YVfに熱を奪われて、低温熱源流出管Y29に至ると30℃に温度が低下する。低温熱源流出管Y29に至った増熱対象流体TSの流量は30t/hのままである。低温熱源流出管Y29を流れる30℃、30t/hの低温熱源流体GPは、増熱吸収ヒートポンプY1を流出し、低温熱源管82を流れ、概ね温度及び流量が変わらずに、昇温吸収ヒートポンプX1に流入する。なお、厳密にいえば、低温熱源管82を流れる際の放熱によって、昇温吸収ヒートポンプX1に流入した低温熱源流体GPの温度は30℃よりも低下しているが、説明の便宜上、熱ロスがないものと仮定して、昇温吸収ヒートポンプX1に流入した低温熱源流体GPの温度は30℃であるものとする。   On the other hand, when the low temperature heat source fluid GP of 40 ° C. and 30 t / h flowing through the low temperature heat source inflow pipe Y52 flows through the heat source pipe Y22 of the evaporator Y20, heat is taken away by the refrigerant liquid YVf and the low temperature heat source outflow pipe Y29 The temperature drops to 30 ° C. The flow rate of the heat-increase target fluid TS reaching the low temperature heat source outflow pipe Y29 remains at 30 t / h. The low temperature heat source fluid GP at 30 ° C. and 30 t / h flowing in the low temperature heat source outflow pipe Y 29 flows out the heat buildup absorption heat pump Y 1 and flows in the low temperature heat source pipe 82. Flow into Strictly speaking, the temperature of the low-temperature heat source fluid GP that has flowed into the temperature-rising absorption heat pump X1 is lower than 30 ° C. due to heat radiation when flowing through the low-temperature heat source pipe 82. It is assumed that the temperature of the low temperature heat source fluid GP which has flowed into the temperature rising absorption heat pump X1 is 30 ° C., assuming that it is not present.

昇温吸収ヒートポンプX1に流入し、低温熱源導入管X57を流れる温度が30℃で流量が30t/hの低温熱源流体GPは、凝縮器X40の伝熱管X42を流れた際に、再生器冷媒蒸気XVgが凝縮して冷媒液XVfとなる際に放出した凝縮熱を得て、低温熱源流出管X49に至ると40℃に温度が上昇する。低温熱源流出管X49に至った低温熱源流体GPの流量は30t/hのままである。低温熱源流出管X49を流れる40℃、30t/hの低温熱源流体GPは、駆動熱源流出管X39を流れる80℃、30t/hの駆動熱源流体RSに合流し、60℃、60t/hの合流熱源流体RAとなって熱源流体流出管X59を流れ、昇温吸収ヒートポンプX1から流出する。昇温吸収ヒートポンプX1から流出した60℃、60t/hの合流熱源流体RAは、合流熱源還管85を流れて熱源設備HSFに流入し、排熱を回収して温度が上昇する。熱利用設備HCFで温度が上昇した合流熱源流体RAは、95℃、60t/hで昇温吸収ヒートポンプX1に流入し、以降、上述の流れを繰り返す。   The low temperature heat source fluid GP which flows into the temperature rising absorption heat pump X1 and flows through the low temperature heat source introduction pipe X57 at a temperature of 30 ° C. and a flow rate of 30 t / h flows through the heat transfer pipe X42 of the condenser X40. The heat of condensation obtained when XVg condenses and becomes refrigerant liquid XVf is obtained, and the temperature rises to 40 ° C. when it reaches the low temperature heat source outflow pipe X49. The flow rate of the low temperature heat source fluid GP that has reached the low temperature heat source outflow pipe X49 remains at 30 t / h. The low temperature heat source fluid GP at 40 ° C. and 30 t / h flowing through the low temperature heat source outflow pipe X49 merges with the 80 ° C. and 30 t / h driving heat source fluid RS flowing through the driving heat source outflow pipe X39 and merges at 60 ° C. and 60 t / h It becomes the heat source fluid RA, flows through the heat source fluid outflow pipe X59, and flows out from the temperature rising absorption heat pump X1. The 60 ° C., 60 t / h combined heat source fluid RA flowing out of the temperature rising absorption heat pump X1 flows through the combined heat source return pipe 85 and flows into the heat source facility HSF, recovers the exhaust heat, and the temperature rises. The combined heat source fluid RA whose temperature has risen in the heat utilization facility HCF flows into the temperature rising absorption heat pump X1 at 95 ° C. and 60 t / h, and the above flow is repeated thereafter.

これまで説明した吸収式熱交換システム1の熱の流れを概観すると次のように見ることができる。熱源設備HSFは合流熱源流体RAに熱を与えて合流熱源流体RAを加熱し、合流熱源流体RAは加熱されて得た熱量を昇温吸収ヒートポンプX1に与えている。昇温吸収ヒートポンプX1においては、合流熱源流体RAから分流した駆動熱源流体RSが、吸収液と冷媒との吸収ヒートポンプサイクルを介して低温熱源流体GPと昇温対象流体RPとに熱を与えて低温熱源流体GP及び昇温対象流体RPを加熱している。このとき、凝縮器X40を流出した低温熱源流体GPは、合流熱源流体RAの一部として上述のように熱源設備HSFで加熱された後に昇温対象流体RPとして吸収器X10に流入している。そこで、昇温吸収ヒートポンプX1に対する入出熱量をみると、昇温吸収ヒートポンプX1への入熱量は、流入する温度が高い合流熱源流体RAが持ち込む熱量から、流出する温度を下げた合流熱源流体RAが持ち出す熱量を差し引いた熱量とみることができる。昇温吸収ヒートポンプX1からの出熱量は、凝縮器X40で低温熱源流体GPに与えられる熱量と、凝縮器X40を流出した低温熱源流体GPが吸収器X10へ流入する昇温対象流体RPになるまでに加熱されて与えられる熱量と、吸収器X10で昇温対象流体RPに与えられる熱量との合計となり、換言すると、凝縮器X40に流入する低温熱源流体GPが持ち込む熱量を、吸収器X10から流出した昇温対象流体RPが持ち出す熱量から差し引いた熱量とみることができる。すなわち、昇温吸収ヒートポンプX1は、合流熱源流体RAから与えられた熱量を低温熱源流体GPに与えて低温熱源流体GPを加熱することで、低温熱源流体GPを昇温対象流体RPにしている。昇温対象流体RPは、昇温吸収ヒートポンプX1で加熱されて得た熱量を増熱吸収ヒートポンプY1に与えている。増熱吸収ヒートポンプY1においては、昇温対象流体RPから呼称を変えた高温熱源流体HPと、低温熱源流体GPとが、吸収液と冷媒との吸収ヒートポンプサイクルを介して増熱対象流体TSに熱を与えて増熱対象流体TSを加熱している。このとき、再生器Y30を流出した高温熱源流体HPは、混合流体TAの一部として熱利用設備HCFで熱が奪われた後に低温熱源流体GPとして蒸発器Y20に流入している。そこで、増熱吸収ヒートポンプY1に対する入出熱量をみると、増熱吸収ヒートポンプY1への入熱量は、再生器Y30で高温熱源流体HPから奪われる熱量と、再生器Y30を流出した高温熱源流体HPが蒸発器Y20に流入する低温熱源流体GPとなるまでに冷却されて奪われる熱量と、蒸発器Y20で低温熱源流体GPが奪われる熱量との合計となり、換言すると、再生器Y30に流入する温度が高い昇温対象流体RPが持ち込む熱量から、蒸発器Y20から流出した温度を下げた低温熱源流体GPが持ち出す熱量を差し引いた熱量とみることができる。増熱吸収ヒートポンプY1からの出熱量は、流出する温度が高い混合流体TAが持ち出す熱量から、流入する温度が低い混合流体TAが持ち込む熱量を差し引いた熱量とみることができる。すなわち、増熱吸収ヒートポンプY1は、昇温対象流体RPから呼称を変えた高温熱源流体HPが低温熱源流体GPになることで与えられた熱量を、混合流体TAに与えて混合流体TAを加熱している。混合流体TAは加熱されて得た熱量を熱利用設備HCFに与えている。すなわち、吸収式熱交換システム1では、熱源設備HSFが合流熱源流体RAに与えた熱量を混合流体TAが熱利用設備HCFに与えている。このように、吸収式熱交換システム1は、熱源設備HSFから熱利用設備HCFに熱を輸送するシステムを構成している。   An overview of the heat flow of the absorption heat exchange system 1 described above can be seen as follows. The heat source equipment HSF applies heat to the combined heat source fluid RA to heat the combined heat source fluid RA, and the combined heat source fluid RA supplies the amount of heat obtained by heating to the temperature rising absorption heat pump X1. In the temperature-rising absorption heat pump X1, the driving heat-source fluid RS branched from the combined heat-source fluid RA gives heat to the low-temperature heat source fluid GP and the temperature-rising fluid RP via the absorption heat pump cycle The heat source fluid GP and the temperature raising target fluid RP are heated. At this time, the low temperature heat source fluid GP that has flowed out of the condenser X40 flows into the absorber X10 as a temperature raising target fluid RP after being heated by the heat source facility HSF as described above as a part of the combined heat source fluid RA. Therefore, looking at the amount of heat input and output to the temperature rising absorption heat pump X1, the amount of heat input to the temperature rising absorption heat pump X1 is the combined heat source fluid RA whose temperature flowing out is reduced from the amount of heat brought in It can be regarded as the amount of heat deducted from the amount of heat carried away. The heat output from the temperature rising absorption heat pump X1 is the amount of heat given to the low temperature heat source fluid GP by the condenser X40, and the low temperature heat source fluid GP flowing out of the condenser X40 becomes the temperature rising target fluid RP flowing into the absorber X10. The amount of heat given by heating to the amount of heat given to the temperature raising target fluid RP by the absorber X10, in other words, the amount of heat carried by the low-temperature heat source fluid GP flowing into the condenser X40, flows out from the absorber X10 It can be regarded as the amount of heat deducted from the amount of heat carried out by the temperature raising target fluid RP. That is, the temperature-rising absorption heat pump X1 converts the low-temperature heat source fluid GP into the temperature-rising target fluid RP by applying the amount of heat given from the combined heat source fluid RA to the low-temperature heat source fluid GP to heat the low-temperature heat source fluid GP. The temperature raising target fluid RP gives the heat amount obtained by being heated by the temperature rising absorption heat pump X1 to the heat buildup absorption heat pump Y1. In the heat-accumulation absorption heat pump Y1, the high-temperature heat source fluid HP whose name is changed from the temperature raising target fluid RP and the low-temperature heat source fluid GP heat the heat-increase target fluid TS via the absorption heat pump cycle of the absorbing liquid and the refrigerant. To heat the fluid TS to be heated. At this time, the high temperature heat source fluid HP that has flowed out of the regenerator Y30 flows into the evaporator Y20 as a low temperature heat source fluid GP after heat is taken away by the heat utilization facility HCF as a part of the mixed fluid TA. Therefore, looking at the amount of heat input and output to the heat buildup absorption heat pump Y1, the heat input to the heat buildup absorption heat pump Y1 is the amount of heat taken from the high temperature heat source fluid HP by the regenerator Y30 and the high temperature heat source fluid HP that has flowed out It is the sum of the amount of heat removed and cooled by the low temperature heat source fluid GP flowing into the evaporator Y20 and the amount of heat removed by the low temperature heat source fluid GP by the evaporator Y20, in other words, the temperature flowing into the regenerator Y30 is It can be considered as the amount of heat obtained by subtracting the amount of heat carried out by the low temperature heat source fluid GP obtained by lowering the temperature flowing out of the evaporator Y20 from the amount of heat carried by the high temperature raising target fluid RP. The heat output from the heat-increasing absorption heat pump Y1 can be regarded as the heat obtained by subtracting the heat carried by the mixed fluid TA having a low temperature flowing from the heat carried by the mixed fluid TA having a high temperature flowing out. That is, the heat-accumulation absorption heat pump Y1 provides the mixed fluid TA with the heat amount given by the high-temperature heat source fluid HP whose name is changed from the temperature raising target fluid RP changing to the low-temperature heat source fluid GP to heat the mixed fluid TA. ing. The mixed fluid TA gives the heat amount obtained by heating to the heat utilization facility HCF. That is, in the absorption type heat exchange system 1, the mixed fluid TA gives the heat utilization facility HCF the amount of heat that the heat source facility HSF has given to the combined heat source fluid RA. Thus, the absorption-type heat exchange system 1 constitutes a system for transporting heat from the heat source equipment HSF to the heat utilization equipment HCF.

以上で説明したように、本実施の形態に係る吸収式熱交換システム1によれば、熱源設備HSFに対して流入出する合流熱源流体RAの温度差(本実施の形態では35℃)よりも、昇温吸収ヒートポンプX1から流出する昇温対象流体RPと流入する低温熱源流体GPとの温度差(本実施の形態では70℃)を大きくすることができるので、昇温流体管81を流れる昇温対象流体RP及び低温熱源管82を流れる低温熱源流体GPの流量を少なくして流体搬送に要するエネルギーを削減することができる。このことは、昇温吸収ヒートポンプX1と増熱吸収ヒートポンプY1との距離が離れているほど効果が顕著である。また、昇温吸収ヒートポンプX1内の被加熱流体(昇温対象流体RP、低温熱源流体GP)及び加熱源流体(合流熱源流体RA、駆動熱源流体RS)と、増熱吸収ヒートポンプY1内の被加熱流体(混合流体TA、増熱対象流体TS)及び加熱源流体(高温熱源流体HP、低温熱源流体GP)と、昇温吸収ヒートポンプX1と増熱吸収ヒートポンプY1との間の昇温対象流体RP及び低温熱源流体GPと、昇温吸収ヒートポンプX1と熱源設備HSFとの間の合流熱源流体RAと、増熱吸収ヒートポンプY1と熱利用設備HCFとの間の混合流体TAとが、全体として連絡して1つの循環経路を構成しているので、吸収式熱交換システム1全体で少なくとも1つの膨張タンク98を設けるだけで、流路内の圧力変動を適切に緩和させることができる。また、各流路が連絡して1つの循環経路を構成していることで、各流路内の流体の性状や保有量の管理対象が1つの流体だけになって管理が容易になる。なお、昇温吸収ヒートポンプX1と増熱吸収ヒートポンプY1とが離れていて低温熱源管82が長距離に及ぶ場合、低温熱源管82に所定間隔をおいて複数の低温熱源ポンプ91を設けて低温熱源流体GPを圧送してもよいし、複数の低温熱源ポンプ91を直列に接続して吐出圧力を高くして低温熱源流体GPを圧送してもよい。あるいは、低温熱源管82に設ける低温熱源ポンプ91と同様に、温度が高い流体に対応したポンプを昇温流体管81に設けてもよい。   As described above, according to the absorption type heat exchange system 1 according to the present embodiment, the temperature difference (in the present embodiment, 35 ° C.) of the combined heat source fluid RA flowing into and out of the heat source facility HSF Since the temperature difference (70 ° C. in the present embodiment) between the temperature-rising target fluid RP flowing out of the temperature-raising absorption heat pump X1 and the low-temperature heat source fluid GP flowing in can be increased, The flow rates of the heat target fluid RP and the low temperature heat source fluid GP flowing through the low temperature heat source pipe 82 can be reduced to reduce the energy required for fluid transportation. The effect is more remarkable as the distance between the temperature-rising absorption heat pump X1 and the heat-accumulation absorption heat pump Y1 increases. Further, the fluid to be heated (the fluid to be heated RP, the low temperature heat source fluid GP) and the heating source fluid (combined heat source fluid RA, the driving heat source fluid RS) in the temperature rising absorption heat pump X1, and the heat in the heat buildup absorption heat pump Y1 A fluid RP to be heated between the fluid (mixed fluid TA, fluid to be heated up TS) and the heating source fluid (high temperature heat source fluid HP, low temperature heat source fluid GP), the temperature rising absorption heat pump X1 and the heat absorption rising heat pump Y1 The low temperature heat source fluid GP, the combined heat source fluid RA between the temperature rising absorption heat pump X1 and the heat source equipment HSF, and the mixed fluid TA between the heat absorption absorption heat pump Y1 and the heat utilization equipment HCF communicate as a whole. Since one circulation path is configured, the pressure fluctuation in the flow path can be appropriately alleviated by providing at least one expansion tank 98 throughout the absorption heat exchange system 1. Kill. Further, since the flow paths communicate with each other to configure one circulation path, the control target of the properties and the amount of the fluid in each flow path is only one fluid, and management becomes easy. When the low temperature heat source pipe 82 extends a long distance since the temperature rising absorption heat pump X1 and the heat buildup absorption heat pump Y1 are separated, the low temperature heat source pipe 82 is provided with a plurality of low temperature heat source pumps 91 at predetermined intervals The fluid GP may be pumped, or the low temperature heat source fluid 91 may be pumped by connecting a plurality of low temperature heat source pumps 91 in series to increase the discharge pressure. Alternatively, similarly to the low temperature heat source pump 91 provided in the low temperature heat source pipe 82, a pump corresponding to a fluid having a high temperature may be provided in the temperature raising fluid pipe 81.

次に図4を参照して、本発明の第2の実施の形態に係る吸収式熱交換システム2を説明する。図2は、吸収式熱交換システム2の模式的系統図である。以下の説明において、昇温吸収ヒートポンプX1の構成に言及しているときは適宜図2を参照し、増熱吸収ヒートポンプY1の構成に言及しているときは適宜図3を参照することとする。吸収式熱交換システム2は、以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム2では、2つの熱利用設備HCF1、HCF2それぞれに60℃、105t/hの混合流体TAを供給することができるように、2台の増熱吸収ヒートポンプY1A、Y1Bを備えている。2台の増熱吸収ヒートポンプY1A、Y1Bは、共に増熱吸収ヒートポンプY1(図3参照)と同じ構成になっている。昇温流体管81は、昇温流体流出口X18の反対側で第1昇温流体管81Aと第2昇温流体管81Bとに分岐しており、第1昇温流体管81Aの他端は増熱吸収ヒートポンプY1Aの高温熱源導入口Y27に接続されており、第2昇温流体管81Bの他端は増熱吸収ヒートポンプY1Bの高温熱源導入口Y27に接続されている。低温熱源管82は、低温熱源導入口X17の反対側で第1低温熱源管82Aと第2低温熱源管82Bとに分岐しており、第1低温熱源管82Aの他端は増熱吸収ヒートポンプY1Aの低温熱源流出口Y28に接続されており、第2低温熱源管82Bの他端は増熱吸収ヒートポンプY1Bの低温熱源流出口Y28に接続されている。第1低温熱源管82Aには、内部の流体を流動させる第1低温熱源ポンプ91Aが配設されており、第2低温熱源管82Bには、内部の流体を流動させる第2低温熱源ポンプ91Bが配設されている。第1低温熱源ポンプ91Aは、凝縮器X40の伝熱管X42、熱源設備HSF、吸収器X10の伝熱管X12、増熱吸収ヒートポンプY1Aの再生器Y30の熱源管Y32、熱利用設備HCF1、増熱吸収ヒートポンプY1Aの蒸発器Y20の熱源管Y22に低温熱源流体GP又は合流熱源流体RA又は昇温対象流体RP又は高温熱源流体HP又は混合流体TAを循環させるポンプである。第2低温熱源ポンプ91Bは、凝縮器X40の伝熱管X42、熱源設備HSF、吸収器X10の伝熱管X12、増熱吸収ヒートポンプY1Bの再生器Y30の熱源管Y32、熱利用設備HCF2、増熱吸収ヒートポンプY1Bの蒸発器Y20の熱源管Y22に低温熱源流体GP又は合流熱源流体RA又は昇温対象流体RP又は高温熱源流体HP又は混合流体TAを循環させるポンプである。第1低温熱源管82Aと第2低温熱源管82Bとの接続部よりも下流側の低温熱源管82には、吸収式熱交換システム1(図1参照)と同様に低温熱源ポンプ91が配設されている。低温熱源ポンプ91は、第1低温熱源ポンプ91A及び第2低温熱源ポンプ91Bを合わせた作用をする。膨張タンク98は、本実施の形態では第1低温熱源ポンプ91Aよりも上流側の第1低温熱源管82Aに接続されているが、これと連絡している管のどこに接続されていてもよい。増熱吸収ヒートポンプY1Aと熱利用設備HCF1とは、第1混合熱源往管87A及び第1混合熱源還管88Aで接続されている。増熱吸収ヒートポンプY1Aは第1の増熱吸収ヒートポンプに相当し、熱利用設備HCF1は第1の熱消費部に相当する。第1混合熱源還管88Aには、第1混合流体ポンプ92Aが配設されている。増熱吸収ヒートポンプY1Bと熱利用設備HCF2とは、第2混合熱源往管87B及び第2混合熱源還管88Bで接続されている。増熱吸収ヒートポンプY1Bは第2の増熱吸収ヒートポンプに相当し、熱利用設備HCF2は第2の熱消費部に相当する。第2混合熱源還管88Bには、第2混合流体ポンプ92Bが配設されている。上記以外の吸収式熱交換システム2の構成は、吸収式熱交換システム1(図1参照)と同様である。   Next, with reference to FIG. 4, an absorption heat exchange system 2 according to a second embodiment of the present invention will be described. FIG. 2 is a schematic system diagram of the absorption type heat exchange system 2. In the following description, FIG. 2 is appropriately referred to when the configuration of the temperature-rising absorption heat pump X1 is referred to, and FIG. 3 is appropriately referred to when the configuration of the heat-accumulation absorption heat pump Y1 is referred to. The absorption-type heat exchange system 2 differs from the absorption-type heat exchange system 1 (see FIG. 1) in the following points. In the absorption type heat exchange system 2, two heat transfer absorption heat pumps Y1A and Y1B are provided so that the mixed fluid TA of 60 ° C. and 105 t / h can be supplied to the two heat utilization facilities HCF1 and HCF2, respectively. There is. The two heat buildup absorption heat pumps Y1A and Y1B both have the same configuration as the heat buildup absorption heat pump Y1 (see FIG. 3). The temperature raising fluid pipe 81 is branched into a first temperature raising fluid pipe 81A and a second temperature raising fluid pipe 81B on the opposite side of the temperature raising fluid outlet X18, and the other end of the first temperature raising fluid pipe 81A is The other end of the second temperature-rising fluid pipe 81B is connected to the high-temperature heat source inlet Y27 of the heat-accumulating absorption heat pump Y1B. The low temperature heat source pipe 82 is branched to a first low temperature heat source pipe 82A and a second low temperature heat source pipe 82B on the opposite side of the low temperature heat source inlet X17, and the other end of the first low temperature heat source pipe 82A is The other end of the second low temperature heat source pipe 82B is connected to the low temperature source outlet Y28 of the heat buildup absorption heat pump Y1B. The first low temperature heat source pipe 82A is provided with a first low temperature heat source pump 91A for flowing the internal fluid, and the second low temperature heat source pipe 82B is provided with a second low temperature heat source pump 91B for flowing the internal fluid. It is arranged. The first low-temperature heat source pump 91A includes a heat transfer pipe X42 of a condenser X40, a heat source equipment HSF, a heat transfer pipe X12 of an absorber X10, a heat source pipe Y32 of a regenerator Y30 of a heat buildup heat pump Y1A, a heat utilization plant HCF1, The heat source pipe Y22 of the evaporator Y20 of the heat pump Y1A is a pump for circulating the low temperature heat source fluid GP or the combined heat source fluid RA or the temperature raising target fluid RP or the high temperature heat source fluid HP or the mixed fluid TA. The second low-temperature heat source pump 91B includes the heat transfer pipe X42 of the condenser X40, the heat source equipment HSF, the heat transfer pipe X12 of the absorber X10, the heat source pipe Y32 of the regenerator Y30 of the heat absorption absorption heat pump Y1B, and the heat utilization equipment HCF2 The heat source pipe Y22 of the evaporator Y20 of the heat pump Y1B is a pump for circulating the low temperature heat source fluid GP or the combined heat source fluid RA or the temperature raising target fluid RP or the high temperature heat source fluid HP or the mixed fluid TA. A low temperature heat source pump 91 is disposed in the low temperature heat source pipe 82 on the downstream side of the connection portion between the first low temperature heat source pipe 82A and the second low temperature heat source pipe 82B as in the absorption heat exchange system 1 (see FIG. 1). It is done. The low temperature heat source pump 91 functions as a combination of the first low temperature heat source pump 91A and the second low temperature heat source pump 91B. The expansion tank 98 is connected to the first low temperature heat source pipe 82A on the upstream side of the first low temperature heat source pump 91A in the present embodiment, but may be connected to any pipe in communication therewith. The heat buildup absorption heat pump Y1A and the heat utilization equipment HCF1 are connected by a first mixed heat source forward pipe 87A and a first mixed heat source return pipe 88A. The heat absorption absorption heat pump Y1A corresponds to a first heat absorption absorption heat pump, and the heat utilization facility HCF1 corresponds to a first heat consuming unit. A first mixed fluid pump 92A is disposed in the first mixed heat source return pipe 88A. The heat buildup absorption heat pump Y1B and the heat utilization equipment HCF2 are connected by a second mixed heat source forward pipe 87B and a second mixed heat source return pipe 88B. The heat absorption absorption heat pump Y1B corresponds to a second heat absorption absorption heat pump, and the heat utilization facility HCF2 corresponds to a second heat consumption unit. A second mixed fluid pump 92B is disposed in the second mixed heat source return pipe 88B. The configuration of the absorption heat exchange system 2 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム2では、熱源設備HSFから流出して昇温吸収ヒートポンプX1に流入し、熱源流体流入管X55を流れる合流熱源流体RAは、温度が95℃で流量が120t/hであるとする。熱源流体流入管X55から昇温流体導入管X51及び駆動熱源導入管X52に分流した昇温対象流体RP及び駆動熱源流体RSは、それぞれ、温度が95℃で流量が60t/hとなる。駆動熱源導入管X52から、蒸発器X20の熱源管X22、駆動熱源連絡管X25、再生器X30の熱源管X32、駆動熱源流出管X39と順に流れる駆動熱源流体RSは、温度の変化は吸収式熱交換システム1(図1参照)の昇温吸収ヒートポンプX1における場合と同様で、流量は60t/hのままである。他方、昇温流体導入管X51を流れる温度が95℃で流量が60t/hの昇温対象流体RPは、吸収器X10の伝熱管X12を流れて100℃に温度が上昇した後、昇温流体流出管X19を介して、100℃、60t/hで昇温吸収ヒートポンプX1を流出し、昇温流体管81を流れる。   In the absorption type heat exchange system 2 configured as described above, the combined heat source fluid RA flowing out of the heat source equipment HSF and flowing into the temperature rising absorption heat pump X1 and flowing through the heat source fluid inflow pipe X55 has a temperature of 95 ° C. Is 120 t / h. The temperature raising target fluid RP and the driving heat source fluid RS which are branched from the heat source fluid inflow pipe X55 to the temperature increasing fluid introducing pipe X51 and the driving heat source introducing pipe X52 have a temperature of 95 ° C. and a flow rate of 60 t / h. The drive heat source fluid RS flowing from the drive heat source introduction pipe X52 to the heat source pipe X22 of the evaporator X20, the drive heat source communication pipe X25, the heat source pipe X32 of the regenerator X30, and the drive heat source outflow pipe X39 in this order As in the case of the temperature rising absorption heat pump X1 of the replacement system 1 (see FIG. 1), the flow rate remains at 60 t / h. On the other hand, the temperature raising target fluid RP having a temperature of 95 ° C. and a flow rate of 60 t / h flowing through the temperature raising fluid introduction pipe X51 flows through the heat transfer pipe X12 of the absorber X10 and the temperature rises to 100 ° C. Through the outflow pipe X19, the temperature rising absorption heat pump X1 flows out at 100 ° C., 60 t / h, and flows through the temperature rising fluid pipe 81.

昇温流体管81を流れる100℃、60t/hの昇温対象流体RPは、分流し、第1昇温流体管81A及び第2昇温流体管81Bのそれぞれに、100℃、30t/hの昇温対象流体RPが流入する。第1昇温流体管81Aを流れる100℃、30t/hの昇温対象流体RPは、高温熱源流体HPとして増熱吸収ヒートポンプY1Aに流入し、第2昇温流体管81Bを流れる100℃、30t/hの昇温対象流体RPは、高温熱源流体HPとして増熱吸収ヒートポンプY1Bに流入する。増熱吸収ヒートポンプY1A及び熱利用設備HCF1、増熱吸収ヒートポンプY1B及び熱利用設備HCF2、それぞれにおける、高温熱源流体HP、増熱対象流体TS、混合流体TA、低温熱源流体GPの温度及び流量の変化は、吸収式熱交換システム1(図1参照)の増熱吸収ヒートポンプY1における場合と同様である。したがって、増熱吸収ヒートポンプY1Aから第1低温熱源管82Aに流出した低温熱源流体GP、増熱吸収ヒートポンプY1Bから第2低温熱源管82Bに流出した低温熱源流体GPのそれぞれは、温度が30℃で流量が30t/hである。第1低温熱源管82Aを流れる30℃、30t/hの低温熱源流体GPと第2低温熱源管82Bを流れる30℃、30t/hの低温熱源流体GPとは、合流し、30℃、60t/hの低温熱源流体GPとなって低温熱源管82を流れ、昇温吸収ヒートポンプX1に流入する。   The temperature raising target fluid RP of 100.degree. C. and 60 t / h flowing through the temperature raising fluid pipe 81 is divided into 100.degree. C. and 30 t / h for the first temperature raising fluid pipe 81A and the second temperature raising fluid pipe 81B respectively. The temperature raising target fluid RP flows in. The temperature raising target fluid RP of 100 ° C. and 30 t / h flowing in the first temperature raising fluid pipe 81A flows into the heat buildup absorption heat pump Y1A as the high temperature heat source fluid HP, and flows at 100 ° C. and 30 t flowing in the second temperature raising fluid pipe 81B. The temperature raising target fluid RP of / h flows into the heat-accumulation absorption heat pump Y1B as the high-temperature heat source fluid HP. Changes in the temperature and flow rate of the high-temperature heat source fluid HP, the heat-increase target fluid TS, the mixed fluid TA, and the low-temperature heat source fluid GP in each of the heat absorption absorption heat pump Y1A and the heat utilization equipment HCF1, the heat absorption absorption heat pump Y1B and the heat utilization equipment HCF2 Is the same as in the case of the heat absorption absorption heat pump Y1 of the absorption heat exchange system 1 (see FIG. 1). Therefore, each of the low temperature heat source fluid GP that has flowed out of the heat buildup absorption heat pump Y1A to the first low temperature heat source pipe 82A and the low temperature heat source fluid GP that has flowed out of the heat buildup absorption heat pump Y1B to the second low temperature heat source pipe 82B is 30 ° C. The flow rate is 30 t / h. The low temperature heat source fluid GP of 30 ° C. and 30 t / h flowing through the first low temperature heat source pipe 82A and the low temperature heat source fluid GP of 30 ° C. and 30 t / h flowing through the second low temperature heat source pipe 82B merge to 30 ° C. and 60 t / h. The low temperature heat source fluid GP as h is flowed through the low temperature heat source pipe 82 and flows into the temperature rising absorption heat pump X1.

昇温吸収ヒートポンプX1に流入し、低温熱源導入管X57を流れる温度が30℃、60t/hの低温熱源流体GPは、凝縮器X40の伝熱管X42を流れて40℃に温度が上昇した後、低温熱源流出管X49を流れ、駆動熱源流出管X39を流れる80℃、60t/hの駆動熱源流体RSに合流し、60℃、120t/hの合流熱源流体RAとなって熱源流体流出管X59を流れ、昇温吸収ヒートポンプX1から流出する。昇温吸収ヒートポンプX1から流出した60℃、120t/hの合流熱源流体RAは、合流熱源還管85を流れて熱源設備HSFに流入し、排熱を回収して温度が上昇し、95℃、120t/hで昇温吸収ヒートポンプX1に流入して、以降、上述の流れを繰り返す。このように作用する吸収式熱交換システム2は、例えば、大容量の熱源(熱源設備HSF)から、2つの住居暖房用の温水供給設備(熱利用設備HCF1、HCF2)に2次温水(混合流体TA)を供給する場合に好適である。なお、第1低温熱源ポンプ91Aがなくとも、低温熱源流体GPが所定の流量を確保して第1低温熱源管82Aを流れ、昇温対象流体RPが所定の流量を確保して第1昇温流体管81Aを流れる場合には、第1低温熱源ポンプ91Aはなくてもよい。同様に、第2低温熱源ポンプ91Bがなくとも、低温熱源流体GPが所定の流量を確保して第2低温熱源管82Bを流れ、昇温対象流体RPが所定の流量を確保して第2昇温流体管81Bを流れる場合には、第2低温熱源ポンプ91Bはなくてもよい。あるいは、低温熱源ポンプ91がなくとも、低温熱源流体GPが所定の流量を確保して低温熱源管82を流れ、昇温対象流体RPが所定の流量を確保して昇温流体管81を流れる場合には、低温熱源ポンプ91はなくてもよい。また、吸収式熱交換システム2では、熱利用設備HCF1に送る混合流体TAの温度と熱利用設備HCF2に送る混合流体TAの温度は同じとしたが、異なっていてもよい。また、熱利用設備HCFと増熱吸収ヒートポンプY1はそれぞれ3台以上であってもよい。   The low temperature heat source fluid GP which flows into the temperature rising absorption heat pump X1 and flows through the low temperature heat source introduction pipe X57 at 30 ° C. and 60 t / h flows through the heat transfer pipe X42 of the condenser X40 and rises in temperature to 40 ° C., The low temperature heat source outflow pipe X49 flows, and the driving heat source outflow pipe X39 flows at 80 ° C. and joins with the 60 t / h driving heat source fluid RS to become 60 ° C. and 120 t / h combined heat source fluid RA. It flows out of the temperature rising absorption heat pump X1. The combined heat source fluid RA of 60 ° C. and 120 t / h flowing out of the temperature rising absorption heat pump X1 flows through the combined heat source return pipe 85 and flows into the heat source facility HSF, recovers the exhaust heat and raises the temperature, 95 ° C., After flowing into the temperature rising absorption heat pump X1 at 120 t / h, the above-mentioned flow is repeated. The absorption-type heat exchange system 2 acting in this way is, for example, a secondary hot water (mixed fluid) from a large-capacity heat source (heat source facility HSF) to two hot water supply facilities (heat utilization facilities HCF1 and HCF2) for home heating. It is suitable when supplying TA). Even if the first low temperature heat source pump 91A is not provided, the low temperature heat source fluid GP secures a predetermined flow rate and flows through the first low temperature heat source pipe 82A, and the temperature raising target fluid RP secures a predetermined flow rate to achieve the first temperature rise When flowing through the fluid pipe 81A, the first low temperature heat source pump 91A may not be provided. Similarly, even without the second low temperature heat source pump 91B, the low temperature heat source fluid GP secures a predetermined flow rate and flows through the second low temperature heat source pipe 82B, and the temperature raising target fluid RP secures a predetermined flow rate to raise the second temperature When flowing through the warm fluid pipe 81B, the second low temperature heat source pump 91B may be omitted. Alternatively, even if the low temperature heat source pump 91 is not provided, the low temperature heat source fluid GP secures a predetermined flow rate and flows through the low temperature heat source pipe 82, and the temperature raising fluid RP secures a predetermined flow rate and flows through the temperature rising fluid pipe 81 , The low temperature heat source pump 91 may not be necessary. Further, in the absorption type heat exchange system 2, the temperature of the mixed fluid TA sent to the heat utilization facility HCF1 and the temperature of the mixed fluid TA sent to the heat utilization facility HCF2 are the same, but may be different. In addition, the heat utilization facility HCF and the heat-accumulation absorption heat pump Y1 may each be three or more.

次に図5を参照して、本発明の第3の実施の形態に係る吸収式熱交換システム3を説明する。図5は、吸収式熱交換システム3の模式的系統図である。以下の説明において、昇温吸収ヒートポンプX1の構成に言及しているときは適宜図2を参照し、増熱吸収ヒートポンプY1の構成に言及しているときは適宜図3を参照することとする。吸収式熱交換システム3は、以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム3では、増熱吸収ヒートポンプY1Cが、増熱吸収ヒートポンプY1(図1参照)に代えて設けられている。増熱吸収ヒートポンプY1Cは、高温熱源流出管39を流れる高温熱源流体HPが、一旦増熱吸収ヒートポンプY1Cの外に流出した後に再び流入するように構成されている。吸収式熱交換システム3では、増熱吸収ヒートポンプY1Cの外に一旦流出した高温熱源流体HPは、第1の追加熱消費部としての追加熱利用設備HCFAで熱が利用された後に、再び増熱吸収ヒートポンプY1Cに流入するようになっている。高温熱源流出管Y39は、流路の途中に、高温熱源流体HPを増熱吸収ヒートポンプY1Cの外に流出する中間流出口Y39aと、高温熱源流体HPが増熱吸収ヒートポンプY1Cの外から流入する中間流入口Y39bとが設けられている。中間流出口Y39aは第1の増熱駆動熱源流体流出部に相当し、中間流入口Y39bは第1の増熱駆動熱源流体導入部に相当する。中間流出口Y39aと追加熱利用設備HCFAとは、高温流出往管387で接続されている。追加熱利用設備HCFAと中間流入口Y39bとは、高温流出還管388で接続されている。高温流出還管388には、内部の高温熱源流体HPを流動させる高温流出ポンプ392が配設されている。上記以外の吸収式熱交換システム3の構成は、吸収式熱交換システム1(図1参照)と同様である。   Next, with reference to FIG. 5, an absorption heat exchange system 3 according to a third embodiment of the present invention will be described. FIG. 5 is a schematic system diagram of the absorption type heat exchange system 3. In the following description, FIG. 2 is appropriately referred to when the configuration of the temperature-rising absorption heat pump X1 is referred to, and FIG. 3 is appropriately referred to when the configuration of the heat-accumulation absorption heat pump Y1 is referred to. The absorption heat exchange system 3 differs from the absorption heat exchange system 1 (see FIG. 1) in the following points. In the absorption type heat exchange system 3, the heat buildup absorption heat pump Y1C is provided instead of the heat buildup absorption heat pump Y1 (see FIG. 1). The heat buildup absorption heat pump Y1C is configured such that the high temperature heat source fluid HP flowing through the high temperature heat source discharge pipe 39 flows out of the heat buildup absorption heat pump Y1C and then flows in again. In the absorption type heat exchange system 3, the high temperature heat source fluid HP that has flowed out of the heat absorption absorption heat pump Y1C is heated again after the heat is utilized in the additional heat utilization facility HCFA as a first additional heat consumption unit. It is designed to flow into absorption heat pump Y1C. The high temperature heat source outflow pipe Y39 has an intermediate outlet Y39a for flowing the high temperature heat source fluid HP out of the heat buildup absorption heat pump Y1C, and an intermediate for the high temperature heat source fluid HP to flow from outside the heat buildup absorption heat pump Y1C An inlet Y39b is provided. The middle outlet Y39a corresponds to a first heat generation driving heat source fluid outflow portion, and the middle inlet Y39b corresponds to a first heat generation driving heat source fluid introduction portion. The middle outlet Y 39 a and the additional heat utilization facility HCFA are connected by a high temperature outlet pipe 387. The additional heat utilization facility HCFA and the intermediate inlet Y 39 b are connected by a high temperature outflow return pipe 388. The high temperature outflow return pipe 388 is provided with a high temperature outflow pump 392 for flowing the high temperature heat source fluid HP therein. The configuration of the absorption heat exchange system 3 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム3では、合流熱源流体RAに関し、昇温吸収ヒートポンプX1から流出して熱源設備HSFに流入し、熱源設備HSFで温度が上昇した後に熱源設備HSFから流出して昇温吸収ヒートポンプX1に流入する際の温度変化及び流量は、吸収式熱交換システム1(図1参照)と同様である。また、昇温吸収ヒートポンプX1内における、合流熱源流体RA、昇温対象流体RP、駆動熱源流体RS、低温熱源流体GPの温度変化及び流量変化は、吸収式熱交換システム1(図1参照)における昇温吸収ヒートポンプX1の場合と同様である。100℃、30t/hで昇温吸収ヒートポンプX1を流出した昇温対象流体RPは、昇温流体管81を介して、高温熱源流体HPとして増熱吸収ヒートポンプY1Cに流入する。増熱吸収ヒートポンプY1Cに流入した高温熱源流体HPに関し、再生器Y30を流れて高温熱源流出管Y39に至るまでの温度及び流量の変化は、増熱吸収ヒートポンプY1(図1参照)の場合と同様である。その後、増熱吸収ヒートポンプY1Cでは、高温熱源流出管Y39に至った90℃、30t/hの高温熱源流体HPは、中間流出口39aから増熱吸収ヒートポンプY1Cを一旦流出し、高温流出往管387を介して追加熱利用設備HCFAに流入する。追加熱利用設備HCFAに流入した高温熱源流体HPは、熱が利用されて温度が60℃に低下し、高温流出還管388から増熱吸収ヒートポンプY1Cに再度流入する。   In the absorption type heat exchange system 3 configured as described above, the combined heat source fluid RA flows out from the temperature rising absorption heat pump X1 and flows into the heat source facility HSF, and after the temperature rises in the heat source facility HSF, from the heat source facility HSF The temperature change and the flow rate at the time of flowing out and flowing into the temperature rising absorption heat pump X1 are the same as in the absorption type heat exchange system 1 (see FIG. 1). Further, the temperature change and the flow rate change of the combined heat source fluid RA, the temperature raising target fluid RP, the driving heat source fluid RS, and the low temperature heat source fluid GP in the temperature rising absorption heat pump X1 are in the absorption heat exchange system 1 (see FIG. 1). The same as in the case of the temperature rising absorption heat pump X1. The temperature raising target fluid RP that has flowed out the temperature rising absorption heat pump X1 at 100 ° C. and 30 t / h flows into the heat buildup absorption heat pump Y1C as the high temperature heat source fluid HP via the temperature rising fluid pipe 81. Regarding the high-temperature heat source fluid HP that has flowed into the heat-accumulation absorption heat pump Y1C, the changes in temperature and flow rate through the regenerator Y30 to the high-temperature heat source outflow pipe Y39 are the same as in the case of the heat-absorption absorption heat pump Y1 (see FIG. 1) It is. Thereafter, in the heat absorption absorption heat pump Y1C, the high temperature heat source fluid HP reaching 90 ° C. and 30 t / h that has reached the high temperature heat source discharge pipe Y39 temporarily flows out the heat absorption absorption heat pump Y1C from the intermediate outlet 39a, and the high temperature outflow pipe 387 Through the additional heat utilization facility HCFA. The high temperature heat source fluid HP that has flowed into the additional heat utilization facility HCFA uses heat to lower the temperature to 60 ° C., and flows again from the high temperature outflow return pipe 388 to the heat absorption absorption heat pump Y1C.

増熱吸収ヒートポンプY1C内の高温熱源流出管Y39に戻った60℃、30t/hの高温熱源流体HPは、増熱流体流出管Y49を流れる温度が48℃で流量が75t/hの増熱対象流体TSと混合し、51.5℃、105t/hの混合流体TAとなって混合流体流出管Y59を流れる。混合流体流出管Y59を流れる51.5℃、105t/hの混合流体TAは、増熱吸収ヒートポンプY1Cから流出し、熱利用設備HCFに流入して熱が利用されて温度が低下する。熱利用設備HCFで温度が低下して増熱吸収ヒートポンプY1Cに流入した混合流体TAは、吸収式熱交換システム1(図1参照)と同様、温度が40℃で流量が105t/hであるとする。その後の、増熱吸収ヒートポンプY1C内における、増熱対象流体TS及び低温熱源流体GPの温度変化及び流量変化は、増熱吸収ヒートポンプY1(図1参照)の場合と同様である。増熱吸収ヒートポンプY1Cを流出した30℃、30t/hの低温熱源流体GPは、低温熱源管82を介して昇温吸収ヒートポンプX1に流入し、以降、上述の流れを繰り返す。このように作用する吸収式熱交換システム3は、追加熱利用設備HCFAで取り出す熱利用側の温度を、熱利用設備HCFで取り出す熱利用側の温度よりも高くすることができる。また、追加熱利用設備HCFAから流出した高温熱源流体HPの温度が凝縮器Y40から流出した増熱対象流体TSの温度と同じかより高い場合には、追加熱利用設備HCFAから流出した高温熱源流体HPと増熱対象流体TSとが混合した混合流体TAの温度を、混合前の増熱対象流体TSの温度と同じかより高くすることにより、熱利用設備HCFにおいて、高温熱源流体HPから間接的にさらに熱を奪うことができる。また、高温流出ポンプ392がなくとも、高温熱源流体HPが所定の流量を確保して高温流出往管387と高温流出還管388を流れる場合には、高温流出ポンプ392はなくてもよい。   60 ° C, 30t / h high temperature heat source fluid HP returned to high temperature heat source outflow pipe Y39 in heat buildup absorption heat pump Y1C, temperature flowing at heat increaser fluid outflow pipe Y49 is 48 ° C and heat flow target is 75t / h The fluid TS is mixed with the fluid TS to form a mixed fluid TA of 51.5 ° C. and 105 t / h, which flows through the mixed fluid outflow pipe Y59. The mixed fluid TA of 51.5 ° C. and 105 t / h flowing through the mixed fluid outflow pipe Y59 flows out of the heat-accumulating absorption heat pump Y1C and flows into the heat utilization facility HCF to utilize the heat and reduce the temperature. The temperature of the mixed fluid TA flowing into the heat absorption absorption heat pump Y1C at the heat utilization facility HCF and flowing into the heat absorption absorption heat pump Y1C is 40 ° C. and the flow rate is 105 t / h, as in the absorption heat exchange system 1 (see FIG. 1) Do. The subsequent temperature change and flow rate change of the fluid to be heat-increased TS and the low-temperature heat source fluid GP in the heat-up absorption heat pump Y1C are the same as in the case of the heat-up absorption heat pump Y1 (see FIG. 1). The low-temperature heat source fluid GP having a temperature of 30 ° C. and 30 t / h that has flowed out of the heat-accumulation absorption heat pump Y1C flows into the temperature-rising absorption heat pump X1 via the low-temperature heat source pipe 82, and repeats the above flow. The absorption type heat exchange system 3 acting in this way can make the temperature on the heat utilization side taken out by the additional heat utilization equipment HCFA higher than the temperature on the heat utilization side taken out by the heat utilization equipment HCF. Also, when the temperature of the high temperature heat source fluid HP that has flowed out of the additional heat utilization facility HCFA is the same as or higher than the temperature of the fluid to be heated TS that has flowed out of the condenser Y40, the high temperature heat source fluid that has flowed out of the additional heat utilization facility HCFA By setting the temperature of the mixed fluid TA in which HP and target fluid TS are mixed to be equal to or higher than the temperature of target fluid TS before mixing, in the heat utilization facility HCF, indirectly from the high temperature heat source fluid HP Can take more heat. Further, even if the high temperature outflow pump 392 is not provided, the high temperature outflow pump 392 may be omitted if the high temperature heat source fluid HP secures a predetermined flow rate and flows through the high temperature outflow forward pipe 387 and the high temperature outflow return pipe 388.

次に図6を参照して、本発明の第4の実施の形態に係る吸収式熱交換システム4を説明する。図6は、吸収式熱交換システム4の模式的系統図である。以下の説明において、昇温吸収ヒートポンプX1の構成に言及しているときは適宜図2を参照し、増熱吸収ヒートポンプY1の構成に言及しているときは適宜図3を参照することとする。吸収式熱交換システム4は、以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム4では、増熱吸収ヒートポンプY1の増熱再生器30に導入される前の高温熱源流体HPの一部を分岐して増熱吸収ヒートポンプY1から一旦流出させ、第2の追加熱消費部としての追加熱利用設備HCFAで熱が利用された後に、混合流体TAに混合させるようになっている。吸収式熱交換システム4は、増熱吸収ヒートポンプY1の高温熱源導入管Y57に、分岐流出往管487の一端が接続されており、分岐流出往管487の他端は追加熱利用設備HCFAに接続されている。分岐流出往管487は、再生器Y30に流入する前の高温熱源流体HPを、増熱吸収ヒートポンプY1の外の追加熱利用設備HCFAに導く流路を構成する管であり、第2の増熱駆動熱源流体流出部に相当する。分岐流出往管487の一端は、高温熱源導入管Y57に代えて、昇温流体管81に接続されていてもよい。また、増熱吸収ヒートポンプY1の混合流体流出管Y59には分岐流出還管488の一端が接続されており、分岐流出還管488の他端は追加熱利用設備HCFAに接続されている。分岐流出還管488は、追加熱利用設備HCFAで熱が利用されて温度が低下した一部の高温熱源流体HPを、混合流体流出管Y59に導く流路を構成する管であり、第2の増熱駆動熱源流体導入部に相当する。分岐流出還管488の一端は、混合流体流出管Y59に代えて、混合熱源往管87に接続されていてもよい。分岐流出還管488には、内部の高温熱源流体HPを流動させる分岐流出ポンプ492が配設されている。上記以外の吸収式熱交換システム4の構成は、吸収式熱交換システム1(図1参照)と同様である。   Next, an absorption heat exchange system 4 according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic system diagram of the absorption type heat exchange system 4. In the following description, FIG. 2 is appropriately referred to when the configuration of the temperature-rising absorption heat pump X1 is referred to, and FIG. 3 is appropriately referred to when the configuration of the heat-accumulation absorption heat pump Y1 is referred to. The absorption heat exchange system 4 differs from the absorption heat exchange system 1 (see FIG. 1) in the following points. In the absorption type heat exchange system 4, a part of the high temperature heat source fluid HP before being introduced into the heat buildup regenerator 30 of the heat buildup absorption heat pump Y1 is branched and temporarily flow out of the heat buildup absorption heat pump Y1, and the second addition After the heat is utilized in the additional heat utilization facility HCFA as a heat consuming part, it is mixed with the mixed fluid TA. In the absorption type heat exchange system 4, one end of the branch outflow pipe 487 is connected to the high temperature heat source introduction pipe Y57 of the heat absorption absorption heat pump Y1, and the other end of the branch outflow pipe 487 is connected to the additional heat utilization facility HCFA It is done. The branch outflow forward pipe 487 is a pipe constituting a flow path for leading the high-temperature heat source fluid HP before flowing into the regenerator Y30 to the additional heat utilization facility HCFA outside the heat-accumulation absorption heat pump Y1, and the second heat-up It corresponds to a driving heat source fluid outlet. One end of the branched outflow pipe 487 may be connected to the temperature raising fluid pipe 81 instead of the high temperature heat source introduction pipe Y57. Further, one end of a branch outflow return pipe 488 is connected to the mixed fluid outflow pipe Y59 of the heat buildup absorption heat pump Y1, and the other end of the branch outflow return pipe 488 is connected to the additional heat utilization facility HCFA. The branch outflow return pipe 488 is a pipe constituting a flow path for leading a part of the high-temperature heat source fluid HP whose temperature has been reduced by the use of heat in the additional heat utilization facility HCFA to the mixed fluid outflow pipe Y59. It corresponds to a heat generation driving heat source fluid introduction unit. One end of the branched outflow return pipe 488 may be connected to the mixed heat source outward pipe 87 instead of the mixed fluid outflow pipe Y59. The branch outflow return pipe 488 is provided with a branch outflow pump 492 that causes the high temperature heat source fluid HP inside to flow. The structure of the absorption heat exchange system 4 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム4では、昇温吸収ヒートポンプX1及び熱源設備HSFまわりの作用は、被加熱流体及び加熱源流体の温度及び流量の変化を含めて、吸収式熱交換システム1(図1参照)、3(図5参照)と同様である。100℃、30t/hで昇温吸収ヒートポンプX1を流出した昇温対象流体RPは、昇温流体管81を介して、高温熱源流体HPとして増熱吸収ヒートポンプY1に流入する。増熱吸収ヒートポンプY1に高温熱源導入口Y27から流入した高温熱源流体HPは、一部(本実施の形態では5t/h)が分岐流出往管487に流入し、残り(本実施の形態では25t/h)が引き続き高温熱源導入管Y57を流れる。高温熱源導入管Y57を流れる100℃、25t/hの高温熱源流体HPは、再生器Y30で温度が低下して、高温熱源流出管Y39に至ると89℃に温度が低下する。他方、分岐流出往管487に流入した100℃、5t/hの高温熱源流体HPは、増熱吸収ヒートポンプY1の外に一旦流出して追加熱利用設備HCFAに流入し、この追加熱利用設備HCFAで熱が利用されて温度が60℃に低下し、増熱吸収ヒートポンプY1の混合流体流出管Y59に向けて分岐流出還管488を流れる。高温熱源流出管Y39を流れる89℃、25t/hの高温熱源流体HPと、分岐流出還管488を流れる60℃、5t/hの高温熱源流体HPと、増熱流体流出管Y49を流れる49℃、65t/hの増熱対象流体TSとは、合流して、60℃、95t/hの混合流体TAとなって混合流体流出管Y59を流れる。その後の、熱利用設備HCFにおける混合流体TA並びに増熱吸収ヒートポンプY1内における増熱対象流体TS及び低温熱源流体GPの温度変化及び流量変化は、増熱対象流体TSが49℃、65t/hになっている点を除き、吸収式熱交換システム1(図1参照)、3(図5参照)と同様である。増熱吸収ヒートポンプY1を流出した30℃、30t/hの低温熱源流体GPは、低温熱源管82を介して昇温吸収ヒートポンプX1に流入し、以降、上述の流れを繰り返す。このように作用する吸収式熱交換システム4は、追加熱利用設備HCFAで取り出す熱利用側の温度を、熱利用設備HCFで取り出す熱利用側の温度よりも高くすることができる。なお、図6では、追加熱利用設備HCFAにおける加熱源流体である高温熱源流体HPの温度が、図5における追加熱利用設備HCFAにおける加熱源流体である高温熱源流体HPの温度より高いことから、図6における追加熱利用設備HCFAで取り出す被加熱媒体の温度を、図5の場合よりも高くすることができる。また、高温流出ポンプ492がなくとも、高温熱源流体HPが所定の流量を確保して分岐流出往管487及び分岐流出還管488を流れる場合には、高温流出ポンプ492はなくてもよい。   In the absorption type heat exchange system 4 configured as described above, the actions around the temperature rising absorption heat pump X1 and the heat source equipment HSF include absorption heat exchange including changes in the temperature and flow rate of the heated fluid and the heating source fluid It is similar to the systems 1 (see FIG. 1) and 3 (see FIG. 5). The temperature raising target fluid RP that has flowed out the temperature rising absorption heat pump X1 at 100 ° C. and 30 t / h flows into the heat buildup absorption heat pump Y1 as the high temperature heat source fluid HP via the temperature rising fluid pipe 81. A part (5 t / h in the present embodiment) of the high-temperature heat source fluid HP flowing into the heat-accumulation absorption heat pump Y1 from the high-temperature heat source inlet Y27 flows into the branch outflow pipe 487, and the rest (25 t in the present embodiment) / H) continues to flow through the high temperature heat source introduction pipe Y57. The temperature of the high-temperature heat source fluid HP flowing through the high-temperature heat source introduction pipe Y57 at 100 ° C. and 25 t / h decreases at the regenerator Y30 and drops to 89 ° C. when reaching the high-temperature heat source outflow pipe Y39. On the other hand, the high temperature heat source fluid HP of 100 ° C. and 5 t / h which has flowed into the branch outflow pipe 487 temporarily flows out of the heat buildup absorption heat pump Y1 and flows into the additional heat utilization facility HCFA, and this additional heat utilization facility HCFA The heat is utilized to reduce the temperature to 60.degree. C., and flows through the branch outflow return pipe 488 toward the mixed fluid outflow pipe Y59 of the heat absorption absorption heat pump Y1. 89 ° C., 25 t / h high temperature heat source fluid HP flowing through high temperature heat source outflow pipe Y 39, 60 ° C. 5 t / h high temperature heat source fluid HP flowing through branch outflow return pipe 488, 49 ° C. flowing through heat transfer fluid outflow pipe Y 49 And 65 t / h of the heat-increased target fluid TS join together to form a mixed fluid TA at 60 ° C. and 95 t / h and flow through the mixed fluid outflow pipe Y59. Thereafter, the temperature change and the flow rate change of the heat-increase target fluid TS and the low-temperature heat source fluid GP in the heat utilization facility HCF and the heat-increase absorption heat pump Y1 are 49 t C and 65 t / h, respectively. Except for this point, it is the same as the absorption heat exchange systems 1 (see FIG. 1) and 3 (see FIG. 5). The low temperature heat source fluid GP at 30 ° C. and 30 t / h that has flowed out the heat buildup absorption heat pump Y1 flows into the temperature rising absorption heat pump X1 via the low temperature heat source pipe 82, and the above flow is repeated thereafter. The absorption type heat exchange system 4 acting in this way can make the temperature on the heat utilization side taken out by the additional heat utilization equipment HCFA higher than the temperature on the heat utilization side taken out by the heat utilization equipment HCF. In FIG. 6, the temperature of the high temperature heat source fluid HP which is the heating source fluid in the additional heat utilization facility HCFA is higher than the temperature of the high temperature heat source fluid HP which is the heating source fluid in the additional heat utilization facility HCFA in FIG. The temperature of the medium to be heated taken out by the additional heat utilization facility HCFA in FIG. 6 can be made higher than in the case of FIG. 5. Further, even if the high temperature outflow pump 492 is not provided, the high temperature outflow pump 492 may be omitted if the high temperature heat source fluid HP ensures a predetermined flow rate and flows through the branched outflow pipe 487 and the branched outflow return pipe 488.

次に図7を参照して、本発明の第5の実施の形態に係る吸収式熱交換システム5を説明する。図7は、吸収式熱交換システム5の模式的系統図である。以下の説明において、昇温吸収ヒートポンプX1の構成に言及しているときは適宜図2を参照し、増熱吸収ヒートポンプY1の構成に言及しているときは適宜図3を参照することとする。吸収式熱交換システム5は、以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム5では、熱源設備HSFとは別の熱源である副熱源AS(第1の副熱源に相当)から熱を回収する副熱装置61を備えており、低温熱源管82を流れる低温熱源流体GPの一部を、昇温吸収ヒートポンプX1及び熱源設備HSFをバイパスして、副熱装置61で加熱した後に昇温流体管81に合流させるようになっている。副熱装置61は、低温熱源流体GPの一部と副熱源ASとで熱交換を行わせる装置であり、第1の副熱装置に相当する。副熱源ASとして、温水等の高温液体や排ガス等の高温気体を用いることができる。低温熱源ポンプ91よりも下流側の低温熱源管82にはバイパス往管62の一端が接続されており、バイパス往管62の他端は副熱装置61の被加熱流体流入口61aに接続されている。バイパス往管62は、低温熱源管82を流れる低温熱源流体GPの一部を副熱装置61に導く流路を構成する管である。バイパス往管62には、内部の低温熱源流体GPを流動させる低温バイパスポンプ66が配設されている。副熱装置61の被加熱流体流出口61bにはバイパス還管63の一端が接続されており、バイパス還管63の他端は昇温流体管81に接続されている。バイパス還管63は、副熱装置61から流出した流体を昇温流体管81に導く流路を構成する管である。このほか、低温熱源流体GPの副熱装置61への流入を迂回させる副熱バイパス管64が設けられている。副熱バイパス管64は、一端が低温バイパスポンプ66よりも下流側のバイパス往管62に接続されており、他端がバイパス還管63に接続されている。副熱バイパス管64の両端の間のバイパス往管62及び/又はバイパス還管63並びに副熱バイパス管64にはそれぞれバルブが設けられており、低温熱源流体GPが副熱装置61を流れるのと副熱バイパス管64を流れるのとを切り替えることができるように構成されている。上記以外の吸収式熱交換システム5の構成は、吸収式熱交換システム1(図1参照)と同様である。   Next, with reference to FIG. 7, an absorption heat exchange system 5 according to a fifth embodiment of the present invention will be described. FIG. 7 is a schematic system diagram of the absorption type heat exchange system 5. In the following description, FIG. 2 is appropriately referred to when the configuration of the temperature-rising absorption heat pump X1 is referred to, and FIG. 3 is appropriately referred to when the configuration of the heat-accumulation absorption heat pump Y1 is referred to. The absorption heat exchange system 5 differs from the absorption heat exchange system 1 (see FIG. 1) in the following points. The absorption type heat exchange system 5 includes a secondary heat device 61 for recovering heat from a secondary heat source AS (corresponding to a first secondary heat source) which is a heat source different from the heat source equipment HSF, and flows through the low temperature heat source pipe 82 A part of the low temperature heat source fluid GP bypasses the temperature rising absorption heat pump X1 and the heat source equipment HSF, is heated by the auxiliary heating device 61, and then merges with the temperature rising fluid pipe 81. The secondary heat device 61 is a device for performing heat exchange between part of the low temperature heat source fluid GP and the secondary heat source AS, and corresponds to a first secondary heat device. A high temperature liquid such as warm water or a high temperature gas such as an exhaust gas can be used as the auxiliary heat source AS. One end of a bypass forward pipe 62 is connected to the low temperature heat source pipe 82 on the downstream side of the low temperature heat source pump 91, and the other end of the bypass forward pipe 62 is connected to the heated fluid inlet 61 a of the secondary heat device 61 There is. The bypass forward pipe 62 is a pipe constituting a flow path for guiding a part of the low temperature heat source fluid GP flowing through the low temperature heat source pipe 82 to the sub-heat device 61. The bypass forward pipe 62 is provided with a low temperature bypass pump 66 for flowing the low temperature heat source fluid GP therein. One end of a bypass return pipe 63 is connected to the heated fluid outlet 61 b of the auxiliary heating device 61, and the other end of the bypass return pipe 63 is connected to the temperature increasing fluid pipe 81. The bypass return pipe 63 is a pipe that constitutes a flow path for leading the fluid flowing out of the auxiliary heating device 61 to the temperature raising fluid pipe 81. In addition, a secondary heat bypass pipe 64 is provided to bypass the flow of the low temperature heat source fluid GP into the secondary heat device 61. One end of the secondary heat bypass pipe 64 is connected to the bypass forward pipe 62 downstream of the low temperature bypass pump 66, and the other end is connected to the bypass return pipe 63. The bypass heat pipe 62 and / or the bypass return pipe 63 between the both ends of the auxiliary heat bypass pipe 64 and the auxiliary heat bypass pipe 64 are each provided with a valve so that the low temperature heat source fluid GP flows through the auxiliary heat device 61. It is configured to be able to switch between flowing through the auxiliary heat bypass pipe 64. The configuration of the absorption-type heat exchange system 5 other than the above is the same as that of the absorption-type heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム5では、増熱吸収ヒートポンプY1及び熱利用設備HCFまわりの作用は、被加熱流体及び加熱源流体の温度及び流量以外は、被加熱流体及び加熱源流体の流れ(合流や分流を含む)並びに吸収ヒートポンプサイクル等を含めて吸収式熱交換システム1(図1参照)と同様である。吸収式熱交換システム5では、増熱吸収ヒートポンプY1から、30℃、33t/hの低温熱源流体GPが低温熱源管82に流出する。低温熱源管82を流れる30℃、33t/hの低温熱源流体GPは、一部(本実施の形態では3t/h)がバイパス往管62に流入し、残り(本実施の形態では30t/h)が引き続き低温熱源管82を流れる。引き続き低温熱源管82を流れる低温熱源流体GPは、30℃、30t/hで昇温吸収ヒートポンプX1に流入し、以降の昇温吸収ヒートポンプX1及び熱源設備HSFまわりの作用は、被加熱流体及び加熱源流体の温度及び流量の変化を含めて、吸収式熱交換システム1(図1参照)と同様である。したがって、昇温吸収ヒートポンプX1からは、100℃、30t/hの昇温対象流体RPが昇温流体管81に流出する。少し戻って、バイパス往管62に流入した30℃、3t/hの低温熱源流体GPは、副熱装置61に流入し、この副熱装置61で副熱源ASから受熱して温度が100℃に上昇した後、バイパス還管63を流れて昇温流体管81に流入する。これにより、バイパス還管63との接続部よりも下流側の昇温流体管81には、100℃、33t/hの昇温対象流体RPが流れることとなる。この100℃、33t/hの昇温対象流体RPは、高温熱源流体HPとして増熱吸収ヒートポンプY1に流入する。   In the absorption type heat exchange system 5 configured as described above, the functions of the heat buildup absorption heat pump Y1 and the heat utilization facility HCF are the same as those of the heated fluid and the heat source fluid except for the temperature and flow rate of the heated fluid and the heat source fluid. It is the same as the absorption type heat exchange system 1 (see FIG. 1), including fluid flow (including merging and branching), absorption heat pump cycle and the like. In the absorption type heat exchange system 5, the low temperature heat source fluid GP at 30 ° C. and 33 t / h flows out to the low temperature heat source pipe 82 from the heat absorption absorption heat pump Y 1. A portion (3 t / h in this embodiment) of the low temperature heat source fluid GP flowing through the low temperature heat source pipe 82 at 30 ° C. and 33 t / h flows into the bypass forward pipe 62, and the rest (30 t / h in this embodiment) ) Continue to flow through the low temperature heat source pipe 82. Subsequently, the low temperature heat source fluid GP flowing through the low temperature heat source pipe 82 flows into the temperature rising absorption heat pump X1 at 30 ° C., 30 t / h, and the subsequent operation around the temperature rising absorption heat pump X1 and the heat source equipment HSF is the fluid to be heated and heating Similar to the absorption heat exchange system 1 (see FIG. 1), including changes in temperature and flow rate of the source fluid. Therefore, the temperature raising target fluid RP of 100 ° C. and 30 t / h flows out to the temperature rising fluid pipe 81 from the temperature rising absorption heat pump X1. Returning a little, the low temperature heat source fluid GP of 30 ° C. and 3 t / h which has flowed into the bypass forward pipe 62 flows into the sub-heater 61, receives heat from the sub-heat source AS in the sub-heater 61, and the temperature becomes 100 ° C. After rising, it flows through the bypass return pipe 63 and flows into the temperature raising fluid pipe 81. As a result, the temperature raising target fluid RP of 100 ° C. and 33 t / h flows in the temperature raising fluid pipe 81 on the downstream side of the connection with the bypass return pipe 63. The temperature raising target fluid RP of 100.degree. C. and 33 t / h flows into the heat buildup absorption heat pump Y1 as the high temperature heat source fluid HP.

増熱吸収ヒートポンプY1に流入した100℃、33t/hの高温熱源流体HPは、再生器Y30を通過した際に温度が低下し、90℃となる。高温熱源流出管Y39を流れる90℃、33t/hの高温熱源流体HPは、増熱流体流出管Y49を流れる48.5℃、77t/hの増熱対象流体TSと混合し、61℃、110t/hの混合流体TAとなって混合流体流出管Y59を流れる。混合流体流出管Y59を流れる61℃、110t/hの混合流体TAは、増熱吸収ヒートポンプY1から流出し、熱利用設備HCFで熱が利用されて温度が40℃に低下して、増熱吸収ヒートポンプY1に流入する。増熱吸収ヒートポンプY1に流入して混合流体流入管Y55を流れる40℃、110t/hの混合流体TAは、分流して、40℃、77t/hの増熱対象流体TSが増熱流体導入管Y51に流入し、40℃、33t/hの低温熱源流体GPが低温熱源流入管Y52に流入する。増熱流体導入管Y51を流れる40℃、77t/hの増熱対象流体TSは、吸収器Y10及び凝縮器Y40を通過した際にそれぞれで温度が上昇し、48.5℃となって増熱流体流出管Y49に至る。増熱流体流出管Y49を流れる48.5℃、77t/h増熱対象流体TSの流量は、上述のように、高温熱源流出管Y39を流れる90℃、33t/hの高温熱源流体HPと合流して、61℃、110t/hの混合流体TAとなって混合流体流出管Y59を流れる。他方、低温熱源流入管Y52を流れる40℃、33t/hの低温熱源流体GPは、蒸発器Y20を通過した際に温度が30℃に低下し、低温熱源流出管Y29を経て増熱吸収ヒートポンプY1から流出し、30℃、33t/hの低温熱源流体GPとして低温熱源管82を流れ、途中で一部がバイパス往管62に流入し、以降、上述の流れを繰り返す。このように作用する吸収式熱交換システム5は、複数の熱源を有効利用することができる。なお、副熱装置61の副熱源ASの温度が、昇温吸収ヒートポンプX1から流出する昇温対象流体RPの温度より高い場合には、バイパス還管63を流れる低温熱源流体GPの温度を、昇温吸収ヒートポンプX1から流出した昇温対象流体RPの温度より高くできて、副熱装置61から流出した低温熱源流体GPと合流した後の昇温対象流体RPの温度を、合流前の昇温対象流体RPの温度より高くできてよい。また、低温バイパスポンプ66がなくとも、低温熱源流体GPが所定の流量を確保してバイパス往管62とバイパス還管63を流れる場合には、低温バイパスポンプ66はなくてもよい。副熱源ASは温水等の高温液体の他、排ガス等の高温気体であってもよい。また、副熱装置61は複数あってもよい。   The temperature of the high-temperature heat source fluid HP flowing into the heat-accumulation absorption heat pump Y1 at 100 ° C. and 33 t / h decreases to 90 ° C. when passing through the regenerator Y30. The high temperature heat source fluid HP at 90 ° C. and 33 t / h flowing through the high temperature heat source outflow pipe Y39 is mixed with the 48.5 ° C. and 77 t / h heat enhancement target fluid TS flowing through the heat transfer fluid outflow pipe Y49, 61 ° C. and 110 t / H mixed fluid TA and flows in the mixed fluid outflow pipe Y59. The mixed fluid TA at 61 ° C. and 110 t / h flowing in the mixed fluid outflow pipe Y59 flows out from the heat absorption absorption heat pump Y1, and heat is utilized in the heat utilization facility HCF to reduce the temperature to 40 ° C. It flows into heat pump Y1. The mixed fluid TA at 40 ° C. and 110 t / h flowing through the mixed fluid inflow pipe Y 55 flowing into the heat absorption and absorption heat pump Y1 is branched, and the temperature-increased target fluid TS at 40 ° C. 77 t / h It flows into Y51, and the low temperature heat source fluid GP of 40 ° C. and 33 t / h flows into the low temperature heat source inflow pipe Y52. The temperature increase of 40 ° C. and 77 t / h of the heat-up target fluid TS flowing through the heat-up fluid introducing pipe Y51 when it passes through the absorber Y10 and the condenser Y40 increases to 48.5 ° C. It leads to the fluid outflow pipe Y49. The flow rate of the 48.5 ° C., 77 t / h heat-up target fluid TS flowing through the heat-up fluid outflow pipe Y49 merges with the 90 ° C., 33 t / h high-temperature heat source fluid HP flowing through the high-temperature heat source outflow pipe Y39 as described above. Then, it becomes a mixed fluid TA of 61 ° C. and 110 t / h and flows through the mixed fluid outlet pipe Y59. On the other hand, the temperature of the low temperature heat source fluid GP flowing through the low temperature heat source inflow pipe Y52 at 40 ° C. and 33 t / h drops to 30 ° C. when passing through the evaporator Y20 and passes through the low temperature heat source outflow pipe Y29 Flows out as the low temperature heat source fluid GP at 30 ° C. and 33 t / h, and a part thereof flows into the bypass forward pipe 62 halfway through, and the above flow is repeated thereafter. The absorption type heat exchange system 5 acting in this manner can effectively use a plurality of heat sources. When the temperature of the secondary heat source AS of the secondary heat device 61 is higher than the temperature of the temperature rising target fluid RP flowing out of the temperature rising absorption heat pump X1, the temperature of the low temperature heat source fluid GP flowing through the bypass return pipe 63 is increased. The temperature of the temperature-rising fluid RP after joining with the low-temperature heat source fluid GP that can be higher than the temperature of the temperature-rising fluid RP flowing out of the heat absorption heat pump X1 and merged with the low-temperature heat source fluid GP It may be higher than the temperature of the fluid RP. Further, even if the low temperature bypass pump 66 is not provided, the low temperature bypass pump 66 may be omitted if the low temperature heat source fluid GP secures a predetermined flow rate and flows through the bypass forward pipe 62 and the bypass return pipe 63. The secondary heat source AS may be a high temperature gas such as an exhaust gas, as well as a high temperature liquid such as warm water. Also, there may be a plurality of secondary heat devices 61.

次に図8を参照して、本発明の第6の実施の形態に係る吸収式熱交換システム6を説明する。図8は、吸収式熱交換システム6の模式的系統図である。以下の説明において、昇温吸収ヒートポンプX1の構成に言及しているときは適宜図2を参照し、増熱吸収ヒートポンプY1の構成に言及しているときは適宜図3を参照することとする。吸収式熱交換システム6は、以下の点で吸収式熱交換システム5(図7参照)と異なっている。吸収式熱交換システム6では、副熱装置61に導入する流体が、昇温吸収ヒートポンプX1に導入される前の低温熱源流体GPの一部ではなく、昇温吸収ヒートポンプX1で加熱された昇温対象流体RPの一部としている。この構成の相違に伴い、吸収式熱交換システム5(図7参照)におけるバイパス往管62(図7参照)に代えて、分岐迂回往管65が、被加熱流体流入口61aに接続されている。分岐迂回往管65の他端は、バイパス還管63との接続部よりも上流側の昇温流体管81に接続されている。分岐迂回往管65には、内部の昇温対象流体RPを流動させる分岐バイパスポンプ67が配設されている。なお、吸収式熱交換システム6において、副熱装置61は第2の副熱装置に相当し、副熱源ASは第2の副熱源に相当する。上記以外の吸収式熱交換システム6の構成は、吸収式熱交換システム5(図7参照)と同様である。   Next, an absorption heat exchange system 6 according to a sixth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic system diagram of the absorption type heat exchange system 6. In the following description, FIG. 2 is appropriately referred to when the configuration of the temperature-rising absorption heat pump X1 is referred to, and FIG. 3 is appropriately referred to when the configuration of the heat-accumulation absorption heat pump Y1 is referred to. The absorption heat exchange system 6 differs from the absorption heat exchange system 5 (see FIG. 7) in the following points. In the absorption type heat exchange system 6, the fluid introduced into the auxiliary heat device 61 is not a part of the low temperature heat source fluid GP before being introduced into the temperature rising absorption heat pump X1, and the temperature rise heated by the temperature rising absorption heat pump X1 It is part of the target fluid RP. Due to the difference in the configuration, a branch bypass outward pipe 65 is connected to the heated fluid inflow port 61a instead of the bypass outward pipe 62 (see FIG. 7) in the absorption heat exchange system 5 (see FIG. 7) . The other end of the branch bypass forward pipe 65 is connected to the temperature raising fluid pipe 81 on the upstream side of the connection with the bypass return pipe 63. A branch bypass pump 67 for flowing the temperature raising target fluid RP inside is disposed in the branch bypassing return pipe 65. In addition, in the absorption type heat exchange system 6, the secondary heat device 61 corresponds to a second secondary heat device, and the secondary heat source AS corresponds to a second secondary heat source. The structure of the absorption heat exchange system 6 other than the above is the same as that of the absorption heat exchange system 5 (see FIG. 7).

上述のように構成された吸収式熱交換システム6では、増熱吸収ヒートポンプY1及び熱利用設備HCFまわりの作用は、被加熱流体及び加熱源流体の温度及び流量以外は、被加熱流体及び加熱源流体の流れ(合流や分流を含む)並びに吸収ヒートポンプサイクル等を含めて吸収式熱交換システム5(図7参照)と同様である。吸収式熱交換システム6では、増熱吸収ヒートポンプY1から、30℃、30t/hの低温熱源流体GPが低温熱源管82に流出し、昇温吸収ヒートポンプX1に流入する。昇温吸収ヒートポンプX1及び熱源設備HSFまわりの作用は、被加熱流体及び加熱源流体の温度及び流量の変化を含めて、吸収式熱交換システム5(図7参照)と同様である。したがって、昇温吸収ヒートポンプX1からは、100℃、30t/hの昇温対象流体RPが昇温流体管81に流出する。昇温流体管81に流出した昇温対象流体RPは、一部(本実施の形態では5t/h)が分岐迂回往管65に流入し、残り(本実施の形態では25t/h)が引き続き昇温流体管81を流れる。分岐迂回往管65に流入した100℃、5t/hの昇温対象流体RPは、副熱装置61に流入し、この副熱装置61で副熱源ASから受熱して温度が118℃に上昇した後、バイパス還管63を流れて昇温流体管81に流入する。これにより、バイパス還管63との接続部よりも下流側の昇温流体管81には、103℃、30t/hの昇温対象流体RPが流れることとなる。この103℃、30t/hの昇温対象流体RPは、高温熱源流体HPとして増熱吸収ヒートポンプY1に流入する。   In the absorption type heat exchange system 6 configured as described above, the functions of the heat buildup absorption heat pump Y1 and the heat utilization facility HCF are the same as the temperatures and flow rates of the fluid to be heated and the heat source fluid. It is the same as the absorption type heat exchange system 5 (see FIG. 7) including fluid flow (including merging and branching), absorption heat pump cycle and the like. In the absorption type heat exchange system 6, the low temperature heat source fluid GP of 30 ° C. and 30 t / h flows out to the low temperature heat source pipe 82 from the heat buildup absorption heat pump Y1, and flows into the temperature rising absorption heat pump X1. The operation around the temperature rising absorption heat pump X1 and the heat source equipment HSF is the same as that of the absorption heat exchange system 5 (see FIG. 7), including changes in the temperature and flow rate of the heated fluid and the heating source fluid. Therefore, the temperature raising target fluid RP of 100 ° C. and 30 t / h flows out to the temperature rising fluid pipe 81 from the temperature rising absorption heat pump X1. A part (5 t / h in the present embodiment) of the temperature raising target fluid RP that has flowed out to the temperature raising fluid pipe 81 flows into the branch bypass return pipe 65, and the remaining (25 t / h in the present embodiment) continues. It flows through the temperature raising fluid pipe 81. The temperature rising target fluid RP of 100 ° C. and 5 t / h flowing into the branch bypass forward pipe 65 flows into the sub-heater 61, receives heat from the sub-heat source AS in the sub-heater 61, and the temperature rises to 118 ° C. Then, it flows through the bypass return pipe 63 and flows into the temperature raising fluid pipe 81. As a result, the temperature raising target fluid RP of 103 ° C. and 30 t / h flows in the temperature raising fluid pipe 81 on the downstream side of the connection with the bypass return pipe 63. The temperature raising target fluid RP of 103 ° C. and 30 t / h flows into the heat buildup absorption heat pump Y1 as the high temperature heat source fluid HP.

増熱吸収ヒートポンプY1に流入した103℃、30t/hの高温熱源流体HPは、再生器Y30を通過した際に温度が低下し、92℃となる。高温熱源流出管Y39を流れる92℃、30t/hの高温熱源流体HPは、増熱流体流出管Y49を流れる48.5℃、74.3t/hの増熱対象流体TSと混合し、61℃、104.3t/hの混合流体TAとなって混合流体流出管Y59を流れる。混合流体流出管Y59を流れる61℃、104.3t/hの混合流体TAは、増熱吸収ヒートポンプY1から流出し、熱利用設備HCFで熱が利用されて温度が40℃に低下して、増熱吸収ヒートポンプY1に流入する。増熱吸収ヒートポンプY1に流入して混合流体流入管Y55を流れる40℃、104.3t/hの混合流体TAは、分流して、40℃、74.3t/hの増熱対象流体TSが増熱流体導入管Y51に流入し、40℃、30t/hの低温熱源流体GPが低温熱源流入管Y52に流入する。増熱流体導入管Y51を流れる40℃、74.3t/hの増熱対象流体TSは、吸収器Y10及び凝縮器Y40を通過した際にそれぞれで温度が上昇し、48.5℃となって増熱流体流出管Y49に至る。増熱流体流出管Y49を流れる48.5℃、74.3t/hの増熱対象流体TSの流量は、上述のように、高温熱源流出管Y39を流れる92℃、30t/hの高温熱源流体HPと合流して、61℃、104.3t/hの混合流体TAとなって混合流体流出管Y59を流れる。他方、低温熱源流入管Y52を流れる40℃、30t/hの低温熱源流体GPは、蒸発器Y20を通過した際に温度が30℃に低下し、低温熱源流出管Y29を経て増熱吸収ヒートポンプY1から流出し、30℃、30t/hの低温熱源流体GPとして低温熱源管82を流れ、以降、上述の流れを繰り返す。このように、副熱装置61の副熱源ASの温度が昇温吸収ヒートポンプX1から流出する昇温対象流体RPの温度より高い場合には、バイパス還管63を流れる昇温対象流体RPの温度を、分岐迂回往管65に分流する前の昇温対象流体RPの温度より高くして、副熱装置61を通過して加熱された一部の昇温対象流体RPと分岐迂回往管65に流入しなかった残りの昇温対象流体RPとが合流する昇温対象流体RPの温度を、合流前の昇温対象流体RPの温度より高くできてよい。このように作用する吸収式熱交換システム6は、昇温流体管81の全長が長いために増熱吸収ヒートポンプY1に流入するまでに昇温対象流体RPが放熱によって温度が低下する場合に、昇温対象流体RPを加熱することにより、放熱によって失った温度を回復することができる。昇温流体管81が長距離に及ぶ場合には、昇温対象流体RPが放熱で失う温度を補うために、昇温対象流体RPの温度が低下する所定の距離をおいて、副熱装置61を複数設けるとよい。図8では、副熱装置61を昇温流体管81に対してバイパス回路(分岐迂回往管65及びバイパス還管63)を設けて並列に配置したが、分岐迂回往管65が昇温流体管81と接続する部位とバイパス還管63が昇温流体管81と接続する部位との間の昇温流体管81を除去して、副熱装置61を昇温流体管81流路に直列に組み込んでもよい。また、分岐バイパスポンプ67がなくとも、昇温対象流体RPが所定の流量を確保して分岐迂回往管65及びバイパス還管63を流れる場合には、分岐バイパスポンプ67はなくてもよい。また、本実施の形態の場合も、副熱源ASは温水等の高温液体の他、排ガス等の高温気体であってもよい。   The high-temperature heat source fluid HP flowing into the heat-accumulation absorption heat pump Y1 at 103 ° C. and 30 t / h lowers in temperature when passing through the regenerator Y30, and reaches 92 ° C. The high temperature heat source fluid HP at 92 ° C. and 30 t / h flowing through the high temperature heat source outflow pipe Y 39 is mixed with the 48.5 ° C. and 74.3 t / h heat increasing target fluid TS flowing through the heat transfer fluid outflow pipe Y 49, 61 ° C. , 104.3 t / h of the mixed fluid TA and flows through the mixed fluid outlet pipe Y59. The mixed fluid TA of 104.3 t / h flowing through the mixed fluid outflow pipe Y59 flows out from the heat absorption absorption heat pump Y1, and the heat is utilized in the heat utilization facility HCF to lower the temperature to 40 ° C. and increase it. It flows into the heat absorption heat pump Y1. The mixed fluid TA at 40 ° C. and 104.3 t / h flowing into the mixed heat inflow pipe Y 55 flowing into the heat absorption and absorption heat pump Y1 is branched, and the temperature-increased target fluid TS at 40 ° C. and 74.3 t / h increases. The low temperature heat source fluid GP having a temperature of 40 ° C. and 30 t / h flows into the low temperature heat source inflow pipe Y52. The temperature increase of 40.degree. C. and 74.3 t / h of the heat-increased fluid TS flowing through the heat-up fluid introducing pipe Y51 respectively reaches 48.5.degree. C. when passing through the absorber Y10 and the condenser Y40. It leads to the heat transfer fluid outflow pipe Y49. As described above, the flow rate of 48.5 ° C., 74.3 t / h heat-increase target fluid TS flowing through the heat-up fluid outflow pipe Y49 is 92 ° C., 30 t / h high-temperature heat source fluid flowing through the high-temperature heat source outflow pipe Y39. It flows into the mixed fluid outflow pipe Y59 as a mixed fluid TA at 61 ° C. and 104.3 t / h in combination with the HP. On the other hand, the temperature of the low temperature heat source fluid GP flowing through the low temperature heat source inflow pipe Y52 at 40 ° C. and 30 t / h drops to 30 ° C. when passing through the evaporator Y20 and passes through the low temperature heat source outflow pipe Y29 Flows out of the low temperature heat source pipe 82 as a low temperature heat source fluid GP of 30.degree. C. and 30 t / h, and the above flow is repeated thereafter. Thus, when the temperature of the auxiliary heat source AS of the auxiliary heat device 61 is higher than the temperature of the temperature rising target fluid RP flowing out of the temperature rising absorption heat pump X1, the temperature of the temperature rising target fluid RP flowing through the bypass return pipe 63 The temperature of the temperature raising target fluid RP before being branched to the branch bypassing return pipe 65, and flows into the partial temperature rising target fluid RP heated through the auxiliary heating device 61 and flows into the branch bypass bypassing pipe 65 The temperature of the temperature raising target fluid RP where the remaining temperature raising target fluid RP which has not been joined may be made higher than the temperature of the temperature rising target fluid RP before the joining. In the absorption type heat exchange system 6 that acts in this way, when the temperature of the temperature raising target fluid RP falls due to heat dissipation before flowing into the heat buildup absorption heat pump Y1 because the entire length of the temperature raising fluid pipe 81 is long, By heating the warm target fluid RP, it is possible to recover the temperature lost due to heat radiation. When the temperature raising fluid pipe 81 extends over a long distance, the auxiliary heating device 61 is disposed at a predetermined distance at which the temperature of the temperature raising fluid RP decreases to compensate for the temperature lost by the temperature raising fluid RP due to heat dissipation. It is good to provide more than one. In FIG. 8, the secondary heat device 61 is disposed in parallel with the temperature raising fluid pipe 81 by providing a bypass circuit (branch bypass bypass pipe 65 and bypass return pipe 63), but the branch bypass bypass pipe 65 is the temperature raising fluid pipe The temperature increasing fluid pipe 81 between the portion connected to 81 and the portion where the bypass return pipe 63 is connected to the temperature increasing fluid pipe 81 is removed, and the auxiliary heating device 61 is incorporated in series in the flow path of the temperature increasing fluid pipe 81 May be. Further, even if the branch bypass pump 67 is not provided, the branch bypass pump 67 may be omitted if the temperature raising target fluid RP secures a predetermined flow rate and flows through the branch bypass forward pipe 65 and the bypass return pipe 63. Also in the case of the present embodiment, the auxiliary heat source AS may be a high temperature gas such as an exhaust gas as well as a high temperature liquid such as warm water.

次に図9を参照して、本発明の第7の実施の形態に係る吸収式熱交換システム7を説明する。図9は、吸収式熱交換システム7の模式的系統図である。以下の説明において、昇温吸収ヒートポンプX1の構成に言及しているときは適宜図2を参照し、増熱吸収ヒートポンプY1の構成に言及しているときは適宜図3を参照することとする。吸収式熱交換システム7は、以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム7では、2つの熱源設備HSF1、HSF2から熱を回収した合流熱源流体RAのそれぞれを昇温することができるように、2台の昇温吸収ヒートポンプX1A、X1Bを備えている。2台の昇温吸収ヒートポンプX1A、X1Bは、共に昇温吸収ヒートポンプX1(図2参照)と同じ構成になっている。昇温吸収ヒートポンプX1Aと熱源設備HSF1とは、合流熱源往管84Aと、合流熱源ポンプ93Aが配設された合流熱源還管85Aとで接続されている。昇温吸収ヒートポンプX1Aは第1の昇温吸収ヒートポンプに相当し、熱源設備HSF1は第1の熱供給部に相当する。昇温吸収ヒートポンプX1Bと熱源設備HSF2とは、合流熱源往管84Bと、合流熱源ポンプ93Bが配設された合流熱源還管85Bとで接続されている。昇温吸収ヒートポンプX1Bは第2の昇温吸収ヒートポンプに相当し、熱源設備HSF2は第2の熱供給部に相当する。   Next, with reference to FIG. 9, an absorption heat exchange system 7 according to a seventh embodiment of the present invention will be described. FIG. 9 is a schematic system diagram of the absorptive heat exchange system 7. In the following description, FIG. 2 is appropriately referred to when the configuration of the temperature-rising absorption heat pump X1 is referred to, and FIG. 3 is appropriately referred to when the configuration of the heat-accumulation absorption heat pump Y1 is referred to. The absorption heat exchange system 7 differs from the absorption heat exchange system 1 (see FIG. 1) in the following points. The absorption type heat exchange system 7 includes two temperature rising absorption heat pumps X1A and X1B so that each of the combined heat source fluid RA whose heat is recovered from the two heat source equipment HSF1 and HSF2 can be heated. . The two temperature rising absorption heat pumps X1A and X1B both have the same configuration as the temperature rising absorption heat pump X1 (see FIG. 2). The temperature rising absorption heat pump X1A and the heat source equipment HSF1 are connected by a combined heat source forward pipe 84A and a combined heat source return pipe 85A in which a combined heat source pump 93A is disposed. The temperature rising absorption heat pump X1A corresponds to a first temperature rising absorption heat pump, and the heat source equipment HSF1 corresponds to a first heat supply unit. The temperature rising absorption heat pump X1B and the heat source equipment HSF2 are connected by a combined heat source outward pipe 84B and a combined heat source return pipe 85B in which a combined heat source pump 93B is disposed. The temperature rising absorption heat pump X1B corresponds to a second temperature rising absorption heat pump, and the heat source equipment HSF2 corresponds to a second heat supply unit.

昇温流体管81は、高温熱源導入口Y27の反対側で第1昇温流体管81Aと第2昇温流体管81Bとに分岐しており、第1昇温流体管81Aの他端は昇温吸収ヒートポンプX1Aの昇温流体流出口X18に接続されており、第2昇温流体管81Bの他端は昇温吸収ヒートポンプX1Bの昇温流体流出口X18に接続されている。低温熱源管82は、低温熱源流出口Y28の反対側で第1低温熱源管82Aと第2低温熱源管82Bとに分岐しており、第1低温熱源管82Aの他端は昇温吸収ヒートポンプX1Aの低温熱源導入口X17に接続されており、第2低温熱源管82Bの他端は昇温吸収ヒートポンプX1Bの低温熱源導入口X17に接続されている。第1低温熱源管82Aには、内部の流体を流動させる第1低温熱源ポンプ91Aが配設されている。第2低温熱源管82Bには、内部の流体を流動させる第2低温熱源ポンプ91Bが配設されている。低温熱源管82には、吸収式熱交換システム1(図1参照)と同様に低温熱源ポンプ91及び膨張タンク98が配設されている。上記以外の吸収式熱交換システム7の構成は、吸収式熱交換システム1(図1参照)と同様である。   The temperature raising fluid pipe 81 is branched into a first temperature raising fluid pipe 81A and a second temperature raising fluid pipe 81B on the opposite side of the high temperature heat source inlet Y27, and the other end of the first temperature raising fluid pipe 81A is raised. The other end of the second temperature rising fluid pipe 81B is connected to the temperature rising fluid outlet X18 of the temperature rising absorption heat pump X1B. The low temperature heat source pipe 82 is branched into a first low temperature heat source pipe 82A and a second low temperature heat source pipe 82B on the opposite side of the low temperature heat source outlet Y28, and the other end of the first low temperature heat source pipe 82A is a temperature rising absorption heat pump X1A The other end of the second low temperature heat source pipe 82B is connected to the low temperature heat source inlet X17 of the temperature rising absorption heat pump X1B. The first low temperature heat source pipe 82A is provided with a first low temperature heat source pump 91A that causes the fluid inside to flow. The second low temperature heat source pipe 82B is provided with a second low temperature heat source pump 91B that causes the fluid inside to flow. In the low temperature heat source pipe 82, a low temperature heat source pump 91 and an expansion tank 98 are disposed similarly to the absorption type heat exchange system 1 (see FIG. 1). The structure of the absorption heat exchange system 7 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム7では、増熱吸収ヒートポンプY1及び熱利用設備HCFまわりの作用は、被加熱流体及び加熱源流体の温度及び流量以外は、被加熱流体及び加熱源流体の流れ(合流や分流を含む)並びに吸収ヒートポンプサイクル等を含めて吸収式熱交換システム1(図1参照)と同様である。吸収式熱交換システム7では、増熱吸収ヒートポンプY1から、30℃、42.9t/hの低温熱源流体GPが低温熱源管82に流出する。低温熱源管82を流れる30℃、42.9t/hの低温熱源流体GPは、分流し、本実施の形態では、第1低温熱源管82Aに12.9t/hが流入し、第2低温熱源管82Bに30t/hが流入することとする。第1低温熱源管82Aに流入した30℃、12.9t/hの低温熱源流体GPは、昇温吸収ヒートポンプX1Aに流入し、凝縮器X40を通過した際に温度が33.5℃に上昇し、低温熱源流出管X49に至る。低温熱源流出管X49を流れる33.5℃、12.9t/hの低温熱源流体GPは、駆動熱源流出管X39を流れる80℃、17.1t/hの駆動熱源流体RSに合流し、60℃、30t/hの合流熱源流体RAとなって熱源流体流出管X59を流れ、昇温吸収ヒートポンプX1Aから流出する。その後、合流熱源流体RAは、熱源設備HSF1を通過した際に加熱されて90℃に温度が上昇し、昇温吸収ヒートポンプX1Aに流入する。昇温吸収ヒートポンプX1Aの熱源流体流入管X55を流れる90℃、30t/hの合流熱源流体RAは、昇温流体導入管X51に流入する90℃、12.9t/hの昇温対象流体RPと、駆動熱源導入管X52に流入する90℃、17.1t/hの駆動熱源流体RSとに分流する。昇温流体導入管X51を流れる90℃、12.9t/hの昇温対象流体RPは、昇温吸収器10を通過した際に温度が100℃に上昇し、昇温流体流出管X19を介して昇温吸収ヒートポンプX1Aから流出し、第1昇温流体管81Aを流れる。駆動熱源導入管X52を流れる90℃、17.1t/hの駆動熱源流体RSは、蒸発器X20及び再生器X30を通過した際に温度が80℃に低下し、駆動熱源流出管X39に至る。駆動熱源流出管X39を流れる80℃、17.1t/hの駆動熱源流体RSは、上述のように低温熱源流出管X49を流れる33.5℃、12.9t/hの低温熱源流体GPが合流し、60℃、30t/hの合流熱源流体RAとなって熱源流体流出管X59を流れ、以降、上述の流れを繰り返す。   In the absorption-type heat exchange system 7 configured as described above, the functions of the heat buildup absorption heat pump Y1 and the heat utilization facility HCF are the same as those of the heated fluid and the heat source fluid except for the temperature and flow rate of the heated fluid and the heat source fluid. It is the same as the absorption type heat exchange system 1 (see FIG. 1), including fluid flow (including merging and branching), absorption heat pump cycle and the like. In the absorption type heat exchange system 7, the low temperature heat source fluid GP at 30 ° C. and 42.9 t / h flows out to the low temperature heat source pipe 82 from the heat buildup absorption heat pump Y 1. The low temperature heat source fluid GP having a temperature of 30 ° C. and 42.9 t / h flowing through the low temperature heat source pipe 82 is divided, and in the present embodiment, 12.9 t / h flows into the first low temperature heat source pipe 82A. It is assumed that 30 t / h flows into the pipe 82B. The 30.degree. C., 12.9 t / h low temperature heat source fluid GP flowing into the first low temperature heat source pipe 82A flows into the temperature rising absorption heat pump X1A, and the temperature rises to 33.5.degree. C. when passing through the condenser X40. , Low temperature heat source outlet pipe X49. 33.5 ° C. and 12.9 t / h low-temperature heat source fluid GP flowing through low-temperature heat source outflow pipe X49 merges with 80 ° C. and 17.1 t / h driving heat source fluid RS flowing through driven heat source outflow pipe X39, 60 ° C. , 30 t / h of the combined heat source fluid RA and flows through the heat source fluid outflow pipe X59 and flows out of the temperature rising absorption heat pump X1A. Thereafter, the combined heat source fluid RA is heated when passing through the heat source equipment HSF1, and its temperature rises to 90 ° C., and flows into the temperature rising absorption heat pump X1A. The combined heat source fluid RA of 90 ° C. and 30 t / h flowing through the heat source fluid inflow pipe X55 of the temperature rising absorption heat pump X1A is 90 ° C. and 12.9 t / h of the temperature raising target fluid RP flowing into the temperature rising fluid introduction pipe X51. , 90.degree. C. flowing into the driving heat source introduction pipe X52, and 17.1 t / h of the driving heat source fluid RS. When passing through the temperature rising absorber 10, the temperature rising target fluid RP of 90 ° C. and 12.9 t / h flowing through the temperature rising fluid introduction pipe X51 rises to 100 ° C., and passes through the temperature rising fluid outflow pipe X19. Flows out from the temperature rising absorption heat pump X1A and flows through the first temperature rising fluid pipe 81A. At 90 ° C. and 17.1 t / h of the drive heat source fluid RS flowing through the drive heat source introduction pipe X52, the temperature drops to 80 ° C. when passing through the evaporator X20 and the regenerator X30, and reaches the drive heat source outflow pipe X39. The 80.degree. C., 17.1 t / h driving heat source fluid RS flowing through the driving heat source outflow pipe X39 combines the 33.5.degree. C., 12.9 t / h low temperature heat source fluid GP flowing through the low temperature heat source outflow pipe X49 as described above Then, it becomes a combined heat source fluid RA at 60 ° C. and 30 t / h, and flows through the heat source fluid outlet pipe X59, and the above flow is repeated thereafter.

他方、第2低温熱源管82Bに流入した30℃、30t/hの低温熱源流体GPは、昇温吸収ヒートポンプX1Bに流入する。昇温吸収ヒートポンプX1B及び熱源設備HSF2まわりの作用は、被加熱流体及び加熱源流体の温度及び流量の変化を含めて、吸収式熱交換システム1(図1参照)における昇温吸収ヒートポンプX1及び熱源設備HSFまわりの作用と同様である。したがって、昇温吸収ヒートポンプX1Bからは、100℃、30t/hの昇温対象流体RPが第2昇温流体管81Bに流出する。第2昇温流体管81Bを流れる100℃、30t/hの昇温対象流体RPは、上述の第1昇温流体管81Aを流れる100℃、12.9t/hの昇温対象流体RPと合流し、100℃、42.9t/hの昇温対象流体RPとなって昇温流体管81を流れ、増熱吸収ヒートポンプY1に流入し、以降、上述の流れを繰り返す。このように作用する吸収式熱交換システム7は、2つの熱源設備HSF1、HSF2から回収した熱を媒介する昇温対象流体RPの温度を高くすることができ、増熱吸収ヒートポンプY1に搬送する昇温対象流体RPの流量を少なくすることができて、搬送動力を抑制することができる。特に、温度及び/又は流量が異なる2つの熱源から昇温対象流体RPを取り出す場合には好適である。図9に示す例では、昇温吸収ヒートポンプX1Aに流入する合流熱源流体RAは90℃、昇温吸収ヒートポンプX1Bに流入する合流熱源流体RAは95℃であるが、昇温吸収ヒートポンプX1Aから流出する昇温対象流体RPの温度と昇温吸収ヒートポンプX1Bから流出する昇温対象流体RPの温度は共に100℃である。図9に示す例では、熱源(熱源設備HSF)を2つとしたが、3つ以上の熱源の場合も熱源の数に応じて昇温吸収ヒートポンプX1を増設するとよい。また、第1低温熱源ポンプ91Aがなくとも、低温熱源流体GPが所定の流量を確保して第1低温熱源管82Aを流れ、昇温対象流体RPが所定の流量を確保して第1昇温流体管81Aを流れる場合には、第1低温熱源ポンプ91Aはなくてもよい。同様に、第2低温熱源ポンプ91Bがなくとも、低温熱源流体GPが所定の流量を確保して第2低温熱源管82Bを流れ、昇温対象流体RPが所定の流量を確保して第2昇温流体管81Bを流れる場合には、第2低温熱源ポンプ91Bはなくてもよい。また、低温熱源ポンプ91がなくとも、低温熱源流体GPが所定の流量を確保して低温熱源管82を流れ、昇温対象流体RPが所定の流量を確保して昇温流体管81を流れる場合には、低温熱源ポンプ91はなくてもよい。   On the other hand, the low temperature heat source fluid GP at 30 ° C. and 30 t / h that has flowed into the second low temperature heat source pipe 82B flows into the temperature rising absorption heat pump X1B. The actions around the temperature rising absorption heat pump X1B and the heat source equipment HSF2 include changes in the temperature and flow rate of the fluid to be heated and the heating source fluid, and the temperature rising absorption heat pump X1 and the heat source in the absorption heat exchange system 1 (see FIG. 1) It is similar to the operation around the facility HSF. Therefore, from the temperature rising absorption heat pump X1B, the temperature rising target fluid RP of 100 ° C. and 30 t / h flows out to the second temperature rising fluid pipe 81B. The temperature raising target fluid RP of 100 ° C. and 30 t / h flowing through the second temperature raising fluid pipe 81B merges with the temperature raising target fluid RP of 12.9 t / h and 100 ° C. flowing through the first temperature raising fluid pipe 81A described above. Then, it becomes a temperature raising target fluid RP of 100 ° C. and 42.9 t / h, flows through the temperature rising fluid pipe 81, flows into the heat-accumulation absorption heat pump Y1, and thereafter repeats the above-mentioned flow. The absorption type heat exchange system 7 acting in this manner can raise the temperature of the temperature rising target fluid RP that mediates the heat recovered from the two heat source equipment HSF1 and HSF2, and transfers it to the heat absorption absorption heat pump Y1. The flow rate of the warm target fluid RP can be reduced, and the transfer power can be suppressed. In particular, it is suitable in the case where the temperature raising target fluid RP is taken out from two heat sources having different temperatures and / or flow rates. In the example shown in FIG. 9, the combined heat source fluid RA flowing into the temperature rising absorption heat pump X1A is 90 ° C., and the combined heat source fluid RA flowing into the temperature rising absorption heat pump X1B is 95 ° C., but flows out from the temperature rising absorption heat pump X1A The temperature of the temperature rising target fluid RP and the temperature of the temperature rising target fluid RP flowing out of the temperature rising absorption heat pump X1B are both 100.degree. Although two heat sources (heat source equipment HSF) are provided in the example illustrated in FIG. 9, it is preferable to expand the temperature-rising absorption heat pump X1 according to the number of heat sources also in the case of three or more heat sources. Further, even without the first low temperature heat source pump 91A, the low temperature heat source fluid GP secures a predetermined flow rate and flows through the first low temperature heat source pipe 82A, and the temperature raising target fluid RP secures a predetermined flow rate to perform the first temperature rise When flowing through the fluid pipe 81A, the first low temperature heat source pump 91A may not be provided. Similarly, even without the second low temperature heat source pump 91B, the low temperature heat source fluid GP secures a predetermined flow rate and flows through the second low temperature heat source pipe 82B, and the temperature raising target fluid RP secures a predetermined flow rate to raise the second temperature When flowing through the warm fluid pipe 81B, the second low temperature heat source pump 91B may be omitted. Further, even if the low temperature heat source pump 91 is not provided, the low temperature heat source fluid GP secures a predetermined flow rate and flows through the low temperature heat source pipe 82, and the temperature raising fluid RP secures a predetermined flow rate and flows through the temperature rising fluid pipe 81 , The low temperature heat source pump 91 may not be necessary.

次に図10を参照して、本発明の第1の実施の形態の変形例に係る吸収式熱交換システム1Aを説明する。図10は、吸収式熱交換システム1Aの模式的系統図である。吸収式熱交換システム1Aは、昇温吸収ヒートポンプX2が昇温吸収ヒートポンプX1(図2参照)に代えて設けられ、増熱吸収ヒートポンプY2が増熱吸収ヒートポンプY1(図3参照)に代えて設けられている点で、吸収式熱交換システム1(図1参照)と異なっている。昇温吸収ヒートポンプX2は昇温対象流体RP及び低温熱源流体GPと駆動熱源流体RSとが合流及び分流をせずに両者の縁が切れており、増熱吸収ヒートポンプY2は増熱対象流体TSと高温熱源流体HP及び低温熱源流体GPとが合流及び分流をせずに両者の縁が切れている。この構成に伴い、吸収式熱交換システム1Aでは、低温熱源管82に設けられた膨張タンク98のほか、合流熱源ポンプ93よりも上流側の合流熱源還管85に膨張タンク97が設けられ、混合流体ポンプ92よりも上流側の混合熱源還管88に膨張タンク99が設けられている。各系統には少なくとも1つの膨張タンクを設けるのが好ましく、各系統に複数の膨張タンクを設けてもよい。吸収式熱交換システム1Aの上記以外の構成は、昇温吸収ヒートポンプX2と増熱吸収ヒートポンプY2とを接続する昇温流体管81及び低温熱源管82を備えている点、昇温吸収ヒートポンプX2と熱源設備HSFとを接続する合流熱源往管84及び合流熱源還管85を備えている点、増熱吸収ヒートポンプY2と熱利用設備HCFとを接続する混合熱源往管87及び混合熱源還管88を備えている点等を含めて、吸収式熱交換システム1(図1参照)と同様である。以下に、昇温吸収ヒートポンプX2及び増熱吸収ヒートポンプY2の詳細な構成を説明する。   Next, with reference to FIG. 10, an absorption-type heat exchange system 1A according to a modification of the first embodiment of the present invention will be described. FIG. 10 is a schematic diagram of the absorption-type heat exchange system 1A. In the absorption type heat exchange system 1A, a temperature rising absorption heat pump X2 is provided instead of the temperature rising absorption heat pump X1 (see FIG. 2), and a heat buildup absorption heat pump Y2 is provided instead of the heat buildup absorption heat pump Y1 (see FIG. 3) Differs from the absorption heat exchange system 1 (see FIG. 1) in that In the temperature-rising absorption heat pump X2, the edges of the temperature-rising target fluid RP, the low-temperature heat source fluid GP, and the driving heat-source fluid RS are not joined but divided and the heat transfer heat pump Y2 is The edges of the high temperature heat source fluid HP and the low temperature heat source fluid GP are disconnected without merging or branching. With this configuration, in the absorption type heat exchange system 1A, in addition to the expansion tank 98 provided in the low temperature heat source pipe 82, an expansion tank 97 is provided in the combined heat source return pipe 85 on the upstream side of the combined heat source pump 93 An expansion tank 99 is provided in the mixed heat source return pipe 88 on the upstream side of the fluid pump 92. Each system is preferably provided with at least one expansion tank, and each system may be provided with a plurality of expansion tanks. The configuration other than the above of the absorption type heat exchange system 1A includes a temperature rising fluid pipe 81 connecting the temperature rising absorption heat pump X2 and the heat absorption absorption heat pump Y2 and a low temperature heat source pipe 82, a temperature rising absorption heat pump X2 and A combined heat source forward pipe 84 and a combined heat source return pipe 85 for connecting the heat source equipment HSF, a mixed heat source forward pipe 87 and a mixed heat source return pipe 88 for connecting the heat buildup heat pump Y2 to the heat utilization facility HCF It is the same as the absorption type heat exchange system 1 (see FIG. 1), including the included points. The detailed configurations of the temperature-rising absorption heat pump X2 and the heat-accumulation absorption heat pump Y2 will be described below.

図11は、昇温吸収ヒートポンプX2の模式的系統図である。昇温吸収ヒートポンプX2は、以下の点で昇温吸収ヒートポンプX1(図2参照)と異なっている。昇温吸収ヒートポンプX2では、昇温流体導入管X51(図2参照)に代えて、熱源流体バイパス管X53の一端が、熱源流体流入管X55と駆動熱源導入管X52との接続部に接続されている。熱源流体バイパス管X53の他端は、駆動熱源流出管X39と熱源流体流出管X59との接続部に接続されている。なお、低温熱源流出管X49(図2参照)は、昇温吸収ヒートポンプX2では設けられていない。熱源流体バイパス管X53は、熱源流体流入管X55を流れる合流熱源流体RAから分岐された一部である分岐熱源流体RQを、蒸発器X20及び再生器X30をバイパスして、駆動熱源流出管X39を流れる駆動熱源流体RSに合流させる流路を構成する管であり、昇温駆動熱源流体バイパス流路に相当する。熱源流体バイパス管X53には、流路を遮断可能な熱源流体バイパス弁X53vが配設されている。また、昇温吸収ヒートポンプX2では、凝縮器X40の伝熱管X42の低温熱源導入管X57が接続された側とは反対側の端部と、吸収器X10の伝熱管X12の昇温流体流出管X19が接続された側とは反対側の端部とが、昇温流体連絡管X15で接続されている。昇温流体連絡管X15及び熱源流体バイパス管X53には、低温熱源流体GPと分岐熱源流体RQとで熱交換を行わせる昇温熱交換器X71が設けられている。昇温吸収ヒートポンプX2では、昇温熱交換器X71を流出した低温熱源流体GPを昇温対象流体RPということとしており、昇温熱交換器X71で加熱された低温熱源流体GPを昇温対象流体RPとして吸収器X10に導入するように構成されている。昇温吸収ヒートポンプX2の上記以外の構成は、昇温吸収ヒートポンプX1(図2参照)と同様である。   FIG. 11 is a schematic diagram of the temperature rising absorption heat pump X2. The temperature rising absorption heat pump X2 is different from the temperature rising absorption heat pump X1 (see FIG. 2) in the following points. In the temperature rising absorption heat pump X2, instead of the temperature rising fluid introduction pipe X51 (see FIG. 2), one end of the heat source fluid bypass pipe X53 is connected to the connecting portion between the heat source fluid inflow pipe X55 and the driving heat source introduction pipe X52 There is. The other end of the heat source fluid bypass pipe X53 is connected to the connection portion between the driving heat source outflow pipe X39 and the heat source fluid outflow pipe X59. The low temperature heat source outflow pipe X49 (see FIG. 2) is not provided in the temperature rising absorption heat pump X2. The heat source fluid bypass pipe X53 bypasses the evaporator X20 and the regenerator X30 to be a drive heat source outflow pipe X39 by bypassing the branch heat source fluid RQ which is a part branched from the combined heat source fluid RA flowing through the heat source fluid inflow pipe X55. It is a pipe | tube which comprises the flow path made to merge with flowing drive heat-source fluid RS, and is corresponded to a temperature rising drive heat-source fluid bypass flow path. The heat source fluid bypass pipe X53 is provided with a heat source fluid bypass valve X53v capable of blocking the flow path. Further, in the temperature rising absorption heat pump X2, the end of the heat transfer pipe X42 of the condenser X40 opposite to the end connected to the low temperature heat source introduction pipe X57, and the temperature rising fluid outflow pipe X19 of the heat transfer pipe X12 of the absorber X10. And the end opposite to the connected side are connected by the heating fluid communication pipe X15. The temperature rising heat exchange pipe X15 and the heat source fluid bypass pipe X53 are provided with a temperature rising heat exchanger X71 for performing heat exchange between the low temperature heat source fluid GP and the branch heat source fluid RQ. In the temperature rising absorption heat pump X2, the low temperature heat source fluid GP that has flowed out the temperature rising heat exchanger X71 is referred to as the temperature rising target fluid RP, and the low temperature heat source fluid GP heated by the temperature rising heat exchanger X71 is used as the temperature rising target fluid RP. It is comprised so that it may introduce into absorber X10. The configuration other than the above of the temperature rising absorption heat pump X2 is the same as the temperature rising absorption heat pump X1 (see FIG. 2).

次に図12を参照して、増熱吸収ヒートポンプY2の詳細な構成を説明する。図12は、増熱吸収ヒートポンプY2の模式的系統図である。増熱吸収ヒートポンプY2は、以下の点で増熱吸収ヒートポンプY1(図3参照)と異なっている。増熱吸収ヒートポンプY2では、増熱流体導入管Y51(図3参照)及び低温熱源流入管Y52(図3参照)が設けられておらず、混合流体流入管Y55が、吸収器Y10の伝熱管Y12の増熱流体連絡管Y15が接続された側とは反対側の端部に接続されている。また、増熱吸収ヒートポンプY2は、増熱流体流出管Y49(図3参照)が設けられておらず、混合流体流出管Y59が、凝縮器Y40の伝熱管Y42の増熱流体連絡管Y15が接続された側とは反対側の端部に接続されている。なお、増熱吸収ヒートポンプY2では、混合流体流入管Y55及び混合流体流出管Y59を流れるのは混合流体TA(図3参照)ではなく増熱対象流体TSになるが、増熱吸収ヒートポンプY1(図3参照)の構成との対比の便宜上、混合流体流入管Y55及び混合流体流出管Y59という呼称を用いている。また、増熱吸収ヒートポンプY2では、高温熱源流出管Y39の他端が、混合流体流出管Y59の一端ではなく、蒸発器Y20の熱源管Y22の低温熱源流出管Y29が接続された側とは反対側の端部に接続されている。高温熱源流出管Y39及び混合流体流出管Y59には、高温熱源流体HPと増熱対象流体TSとで熱交換を行わせる増熱熱交換器Y72が設けられている。増熱吸収ヒートポンプY2では、増熱熱交換器Y72を流出した高温熱源流体HPを低温熱源流体GPということとしており、増熱熱交換器Y72を流出した高温熱源流体HPを低温熱源流体GPとして蒸発器Y20に導入するように構成されている。増熱吸収ヒートポンプY2の上記以外の構成は、増熱吸収ヒートポンプY1(図3参照)と同様である。   Next, with reference to FIG. 12, the detailed configuration of the heat buildup absorption heat pump Y2 will be described. FIG. 12 is a schematic system diagram of the heat buildup absorption heat pump Y2. The heat buildup absorption heat pump Y2 is different from the heat buildup absorption heat pump Y1 (see FIG. 3) in the following points. In the heat absorption absorption heat pump Y2, the heat transfer fluid inlet pipe Y51 (see FIG. 3) and the low temperature heat source inlet pipe Y52 (see FIG. 3) are not provided, and the mixed fluid inlet pipe Y55 is a heat transfer tube Y12 of the absorber Y10. The heat transfer fluid communication pipe Y15 is connected to the end opposite to the connected side. In addition, the heat-accumulation absorption heat pump Y2 is not provided with the heat-accumulation fluid outflow pipe Y49 (see FIG. 3), and the mixed fluid outflow pipe Y59 is connected to the heat transfer fluid communication pipe Y15 of the heat transfer pipe Y42 of the condenser Y40. It is connected to the end opposite to the side where it was made. In the heat absorption absorption heat pump Y2, it is the mixed fluid inflow pipe Y55 and the mixed fluid outflow pipe Y59 that is not the mixed fluid TA (see FIG. 3) but the heat increase target fluid TS, but the heat absorption absorption heat pump Y1 (figure For convenience of comparison with the configuration of 3), the designations "mixed fluid inflow pipe Y55" and "mixed fluid outflow pipe Y59" are used. Further, in the heat buildup absorption heat pump Y2, the other end of the high temperature heat source outflow pipe Y39 is not one end of the mixed fluid outflow pipe Y59, but opposite to the side of the heat source pipe Y22 of the evaporator Y20 to which the low temperature heat source outflow pipe Y29 is connected Connected to the end of the side. The high-temperature heat source outflow pipe Y39 and the mixed fluid outflow pipe Y59 are provided with a heat-increase heat exchanger Y72 that performs heat exchange between the high-temperature heat source fluid HP and the heat-increase target fluid TS. In the heat buildup absorption heat pump Y2, the high temperature heat source fluid HP that has flowed out the heat transfer heat exchanger Y72 is referred to as the low temperature heat source fluid GP, and the high temperature heat source fluid HP that has flowed out the heat buildup heat exchanger Y72 is evaporated as the low temperature heat source fluid GP. It is comprised so that it may introduce into container Y20. The configuration other than the above of the heat buildup absorption heat pump Y2 is the same as that of the heat buildup absorption heat pump Y1 (see FIG. 3).

また、図10乃至図12を参照して補足すると、凝縮器X40の伝熱管X42、昇温流体連絡管X15、吸収器X10の伝熱管X12、再生器Y30の熱源管Y32、高温熱源流出管Y39、蒸発器Y20の熱源管Y22は第1の循環経路を構成し、低温熱源ポンプ91は、第1の循環経路に低温熱源流体GP又は昇温対象流体RP又は高温熱源流体HPを循環させるポンプである。吸収器Y10の伝熱管Y12、凝縮器Y40の伝熱管Y42、増熱流体連絡管Y15、熱利用設備HCFは第2の循環経路を構成し、混合流体ポンプ92は、第2の循環経路に増熱対象流体TSを循環させるポンプである。熱源設備HSF、蒸発器X20の熱源管X22、再生器X30の熱源管X32、駆動熱源連絡管X25、熱源流体バイパス管X53は第3の循環経路を構成し、合流熱源ポンプ93は、合流熱源流体RA又は駆動熱源流体RS又は分岐熱源流体RQを第3の循環経路に循環させるポンプである。第1の循環経路、第2の循環経路、第3の循環経路は合流も分流もしない独立した循環経路である。   10 to 12, the heat transfer pipe X42 of the condenser X40, the heating fluid communication pipe X15, the heat transfer pipe X12 of the absorber X10, the heat source pipe Y32 of the regenerator Y30, and the high temperature heat source outflow pipe Y39. The heat source pipe Y22 of the evaporator Y20 constitutes a first circulation path, and the low temperature heat source pump 91 is a pump for circulating the low temperature heat source fluid GP or the temperature raising target fluid RP or the high temperature heat source fluid HP in the first circulation path. is there. The heat transfer pipe Y12 of the absorber Y10, the heat transfer pipe Y42 of the condenser Y40, the heat transfer fluid communication pipe Y15, and the heat utilization facility HCF constitute a second circulation path, and the mixed fluid pump 92 is increased to the second circulation path. It is a pump for circulating the heat target fluid TS. The heat source equipment HSF, the heat source pipe X22 of the evaporator X20, the heat source pipe X32 of the regenerator X30, the drive heat source communication pipe X25, and the heat source fluid bypass pipe X53 constitute a third circulation path, and the combined heat source pump 93 is a combined heat source fluid It is a pump which circulates RA or driving heat-source fluid RS or branch heat-source fluid RQ to a 3rd circulation path. The first circulation path, the second circulation path, and the third circulation path are independent circulation paths that are neither joined nor branched.

引き続き図10乃至図12を参照して、吸収式熱交換システム1Aの作用を説明する。先に、図10及び図11を参照して昇温吸収ヒートポンプX2まわりの作用を説明すると、合流熱源ポンプ93の起動によって流動する合流熱源流体RAは、熱源設備HSFにおいて、排熱を回収して温度が上昇し、合流熱源往管84を介して、熱源流体流入口X56から昇温吸収ヒートポンプX2に流入する。昇温吸収ヒートポンプX2に流入した合流熱源流体RAは、熱源流体流入管X55を流れた後、駆動熱源導入管X52に入る駆動熱源流体RSと、熱源流体バイパス管X53に入る分岐熱源流体RQと、に分流する。駆動熱源導入管X52を流れる駆動熱源流体RSは、蒸発器X20の熱源管X22に流入し、冷媒液XVfが蒸発器冷媒蒸気XVeとなるのに必要な蒸発潜熱を奪われて温度が低下した後、駆動熱源連絡管X25に至る。駆動熱源連絡管X25を流れる駆動熱源流体RSは、再生器X30の熱源管X32に流入し、希溶液XSwから再生器冷媒蒸気XVgを離脱させるのに必要な熱が奪われて温度が低下した後、駆動熱源流出管X39に至る。他方、合流熱源流体RAから分流した分岐熱源流体RQは、熱源流体バイパス管X53を流れ、昇温熱交換器X71で低温熱源流体GPと熱交換して温度が低下した後に、駆動熱源流出管X39を流れる駆動熱源流体RSと合流する。合流した駆動熱源流体RSと分岐熱源流体RQとは、合流熱源流体RAとなって熱源流体流出管X59を流れ、熱源流体流出口X58から昇温吸収ヒートポンプX1を流出して、合流熱源還管85に至る。合流熱源還管85に流入した合流熱源流体RAは、熱源設備HSFに流入して排熱を回収して温度が上昇した後に合流熱源往管84に至り、以降、上述の作用を繰り返す。   Continuing to refer to FIGS. 10-12, the operation of the absorptive heat exchange system 1A will be described. First, the operation around the temperature rising absorption heat pump X2 will be described with reference to FIG. 10 and FIG. 11. The combined heat source fluid RA flowing by activation of the combined heat source pump 93 recovers exhaust heat in the heat source facility HSF. The temperature rises and flows into the temperature rising absorption heat pump X2 from the heat source fluid inlet X56 via the combined heat source forward pipe 84. The combined heat source fluid RA that has flowed into the temperature rising absorption heat pump X2 flows through the heat source fluid inflow pipe X55 and then enters the drive heat source introduction pipe X52, the drive heat source fluid RS, and the branch heat source fluid RQ that enters the heat source fluid bypass pipe X53; Diverted to The driving heat source fluid RS flowing through the driving heat source introduction pipe X52 flows into the heat source pipe X22 of the evaporator X20, and the temperature drops after the refrigerant liquid XVf loses the evaporation latent heat necessary for becoming the evaporator refrigerant vapor XVe , Driving heat source communication pipe X25. The driving heat source fluid RS flowing through the driving heat source communication pipe X25 flows into the heat source pipe X32 of the regenerator X30, and the temperature is lowered after the heat necessary for separating the regenerator refrigerant vapor XVg is removed from the dilute solution XSw , Driving heat source outflow pipe X39. On the other hand, the branched heat source fluid RQ branched from the combined heat source fluid RA flows through the heat source fluid bypass pipe X53 and exchanges heat with the low temperature heat source fluid GP in the temperature rising heat exchanger X71 to lower the temperature. It joins with the flowing driving heat source fluid RS. The combined drive heat source fluid RS and the branch heat source fluid RQ become combined heat source fluid RA and flow through the heat source fluid outlet pipe X59, and flow out the temperature rising absorption heat pump X1 from the heat source fluid outlet X58. Lead to The combined heat source fluid RA that has flowed into the combined heat source return pipe 85 flows into the heat source equipment HSF and recovers the exhaust heat to rise in temperature, and then reaches the combined heat source forward pipe 84. Thereafter, the above-described operation is repeated.

他方、昇温吸収ヒートポンプX2には、低温熱源管82を流れる低温熱源流体GPが、低温熱源導入口X17を経て低温熱源導入管X57に流入する。低温熱源管82から低温熱源導入管X57に流入する低温熱源流体GPは、低温熱源ポンプ91の起動によって流動する。低温熱源導入管X57を流れる低温熱源流体GPは、凝縮器X40の伝熱管X42に流入し、再生器冷媒蒸気XVgが凝縮する際に放出した凝縮熱を得て温度が上昇した後、昇温流体連絡管X15に至る。昇温流体連絡管X15を流れる低温熱源流体GPは、昇温熱交換器X71で分岐熱源流体RQと熱交換して温度が上昇した後に、昇温対象流体RPとして吸収器X10の伝熱管X12に流入し、濃溶液XSaが蒸発器冷媒蒸気XVeを吸収した際に発生した吸収熱を得て温度が上昇した後、昇温流体流出管X19を流れ、昇温流体流出口X18から昇温吸収ヒートポンプX1を流出して、昇温流体管81に至る。昇温吸収ヒートポンプX2において、上述のような、駆動熱源流体RS並びに低温熱源流体GP及び昇温対象流体RPの温度変化をもたらす吸収液XSと冷媒XVとの吸収ヒートポンプサイクルは、昇温吸収ヒートポンプX1(図2参照)における吸収ヒートポンプサイクルと同様である。   On the other hand, the low temperature heat source fluid GP flowing through the low temperature heat source pipe 82 flows into the low temperature heat source inlet pipe X57 through the low temperature source inlet X17 in the temperature rising absorption heat pump X2. The low temperature heat source fluid GP flowing from the low temperature heat source pipe 82 into the low temperature heat source introduction pipe X57 flows when the low temperature heat source pump 91 is activated. The low temperature heat source fluid GP flowing through the low temperature heat source introduction pipe X57 flows into the heat transfer pipe X42 of the condenser X40, obtains condensation heat released when the regenerator refrigerant vapor XVg condenses, and the temperature rises after the temperature rises It leads to the communication pipe X15. The low temperature heat source fluid GP flowing through the temperature rising fluid communication pipe X15 exchanges heat with the branch heat source fluid RQ in the temperature rising heat exchanger X71 and rises in temperature, and then flows into the heat transfer pipe X12 of the absorber X10 as a temperature rising target fluid RP. The temperature rises by obtaining the absorption heat generated when the concentrated solution XSa absorbs the evaporator refrigerant vapor XVe, and then flows through the temperature rising fluid outflow pipe X19, and the temperature rising absorption heat pump X1 from the temperature rising fluid outlet X18 To the temperature raising fluid pipe 81. In the temperature rising absorption heat pump X2, the absorption heat pump cycle of the absorption liquid XS and the refrigerant XV that brings about temperature changes of the driving heat source fluid RS and the low temperature heat source fluid GP and the temperature rising target fluid RP as described above is the temperature rising absorption heat pump X1. It is similar to the absorption heat pump cycle in (see FIG. 2).

次に図10及び図12を参照して増熱吸収ヒートポンプY2の作用を説明すると、昇温流体管81を流れる昇温対象流体RPは、高温熱源導入口Y27から、高温熱源流体HPとして増熱吸収ヒートポンプY2に流入する。増熱吸収ヒートポンプY2に流入した高温熱源流体HPは、高温熱源導入管Y57を流れ、再生器Y30の熱源管Y32に流入し、希溶液YSwから再生器冷媒蒸気YVgを離脱させるのに必要な熱が奪われて温度が低下した後、高温熱源流出管Y39に至る。高温熱源流出管Y39を流れる高温熱源流体HPは、増熱熱交換器X72で増熱対象流体TSと熱交換して温度が低下した後に、低温熱源流体GPとして蒸発器Y20の熱源管Y22に流入し、冷媒液YVfが蒸発器冷媒蒸気YVeとなるのに必要な蒸発潜熱を奪われて温度が低下した後、低温熱源流出管Y29を流れる。低温熱源流出管Y29を流れる低温熱源流体GPは、低温熱源流出口Y28から増熱吸収ヒートポンプY2を流出して低温熱源管82に至る。低温熱源管82の低温熱源流体GPは、前述のように低温熱源ポンプ91の起動によって流動し、昇温吸収ヒートポンプX2に向かう。   Next, the operation of the heat-accumulation absorption heat pump Y2 will be described with reference to FIG. 10 and FIG. 12. The temperature raising target fluid RP flowing through the temperature raising fluid pipe 81 is heated as the high temperature heat source fluid HP from the high temperature heat source inlet Y27. It flows into absorption heat pump Y2. The high-temperature heat source fluid HP flowing into the heat-accumulation absorption heat pump Y2 flows through the high-temperature heat source inlet pipe Y57, flows into the heat source pipe Y32 of the regenerator Y30, and heat necessary to separate the regenerator refrigerant vapor YVg from the dilute solution YSw After the temperature is lowered, it reaches the high temperature heat source outflow pipe Y39. The high-temperature heat source fluid HP flowing through the high-temperature heat source outflow pipe Y39 exchanges heat with the heat-increase target fluid TS in the heat-up heat exchanger X72 and drops in temperature, and then flows into the heat source pipe Y22 of the evaporator Y20 as a low-temperature heat source fluid GP. The refrigerant liquid YVf loses its latent heat of vaporization necessary for becoming the evaporator refrigerant vapor YVe, and after the temperature drops, it flows through the low temperature heat source outflow pipe Y29. The low temperature heat source fluid GP flowing through the low temperature heat source outflow pipe Y29 flows out the heat buildup absorption heat pump Y2 from the low temperature heat source outflow port Y28 and reaches the low temperature heat source pipe 82. The low temperature heat source fluid GP of the low temperature heat source pipe 82 flows as the low temperature heat source pump 91 is activated as described above, and travels to the temperature rising absorption heat pump X2.

一方で、吸収器Y10の伝熱管Y12には、熱利用設備HCFから流出した増熱対象流体TSが、混合熱源還管88及び混合流体流入管Y55を介して流入する。混合熱源還管88から混合流体流入管Y55に流入する増熱対象流体TSは、混合流体ポンプ92の起動によって流動する。吸収器Y10の伝熱管Y12に流入した増熱対象流体TSは、濃溶液YSaが蒸発器冷媒蒸気YVeを吸収した際に発生した吸収熱を得て温度が上昇した後、増熱流体連絡管Y15に至る。増熱流体連絡管Y15を流れる増熱対象流体TSは、凝縮器Y40の伝熱管Y42に流入し、再生器冷媒蒸気YVgが凝縮する際に放出した凝縮熱を得てさらに温度が上昇した後、混合流体流出管Y59を流れる。混合流体流出管Y59を流れる増熱対象流体TSは、増熱熱交換器X72で高温熱源流体HPと熱交換して温度が上昇した後に、混合流体流出口Y58から増熱吸収ヒートポンプY2を流出して、混合熱源往管87を流れ、熱利用設備HCFに流入し、熱が利用されて温度が低下した後に熱利用設備HCFから流出して混合熱源還管88を流れ、以降、上述の作用を繰り返す。増熱吸収ヒートポンプY2において、上述のような、高温熱源流体HP及び低温熱源流体GP並びに増熱対象流体TSの温度変化をもたらす吸収液YSと冷媒YVとの吸収ヒートポンプサイクルは、増熱吸収ヒートポンプY1(図3参照)における吸収ヒートポンプサイクルと同様である。   On the other hand, the fluid to be heated TS that has flowed out of the heat utilization facility HCF flows into the heat transfer pipe Y12 of the absorber Y10 via the mixed heat source return pipe 88 and the mixed fluid inflow pipe Y55. The heat-increase target fluid TS flowing from the mixed heat source return pipe 88 into the mixed fluid inflow pipe Y 55 flows by activation of the mixed fluid pump 92. The temperature-increasing fluid communication pipe Y15 receives the heat of absorption generated when the concentrated solution YSa absorbs the evaporator refrigerant vapor YVe and the temperature rises, as the heat-increase target fluid TS that has flowed into the heat transfer pipe Y12 of the absorber Y10 Lead to The fluid to be heated TS flowing through the heat transfer fluid communication tube Y15 flows into the heat transfer tube Y42 of the condenser Y40, obtains the condensation heat released when the regenerator refrigerant vapor YVg condenses, and further rises in temperature, It flows through the mixed fluid outflow pipe Y59. The fluid to be heated TS flowing through the mixed fluid outflow pipe Y59 exchanges heat with the high temperature heat source fluid HP in the heat transfer heat exchanger X72 and rises in temperature, and then the heat absorbing absorption heat pump Y2 flows out from the mixed fluid outlet Y58. Flow through the mixed heat source forward pipe 87 and into the heat utilization facility HCF, the heat is utilized and the temperature drops, and then the heat utilization facility HCF flows out from the heat utilization facility HCF and flows through the mixed heat source return pipe 88. repeat. In the heat absorption absorption heat pump Y2, as described above, the absorption heat pump cycle of the absorption liquid YS and the refrigerant YV that brings about temperature change of the high temperature heat source fluid HP and the low temperature heat source fluid GP and the heat increase target fluid TS It is similar to the absorption heat pump cycle in (see FIG. 3).

再び図10を主に参照して、上述のような作用を行う吸収式熱交換システム1Aにおける、昇温吸収ヒートポンプX2、増熱吸収ヒートポンプY2、熱源設備HSF、熱利用設備HCFを循環する流体の温度及び流量について、具体例を挙げて説明する。吸収式熱交換システム1Aでは、昇温吸収ヒートポンプX2内において、昇温対象流体RP及び低温熱源流体GPと、駆動熱源流体RSと、が混合することなくそれぞれ独立した系統となっており、増熱吸収ヒートポンプY2内において、高温熱源流体HP及び低温熱源流体GPと、増熱対象流体TSと、が混合することなくそれぞれ独立した系統となっている。吸収式熱交換システム1Aでは、駆動熱源流体RSは、流量が60t/hで昇温吸収ヒートポンプX2と熱源設備HSFとの間を循環し、温度は、95℃で熱源設備HSFから流出して昇温吸収ヒートポンプX2に流入し、60℃で昇温吸収ヒートポンプX2から流出して熱源設備HSFに流入する。また、昇温対象流体RP及び低温熱源流体GPは、流量が30t/hで昇温吸収ヒートポンプX2と増熱吸収ヒートポンプY2との間を循環し(増熱吸収ヒートポンプY内では高温熱源流体HPという呼称になっているが実体は昇温対象流体RPである)、100℃で昇温吸収ヒートポンプX2から流出して増熱吸収ヒートポンプY2に流入し、30℃で増熱吸収ヒートポンプY2から流出して昇温吸収ヒートポンプX2に流入する。また、増熱対象流体TSは、流量が105t/hで増熱吸収ヒートポンプY2と熱利用設備HCFとの間を循環し、60℃で増熱吸収ヒートポンプY2から流出して熱利用設備HCFに流入し、40℃で熱利用設備HCFから流出して増熱吸収ヒートポンプY2に流入する。   Referring again to FIG. 10, mainly of the fluid circulating through the temperature rising absorption heat pump X2, the heat absorption absorption heat pump Y2, the heat source equipment HSF, and the heat utilization equipment HCF in the absorption heat exchange system 1A performing the above-described function. The temperature and flow rate will be described by way of specific examples. In the absorption type heat exchange system 1A, in the temperature rising absorption heat pump X2, the temperature raising target fluid RP and the low temperature heat source fluid GP, and the driving heat source fluid RS become a system independent of each other without mixing, In the absorption heat pump Y2, the high-temperature heat source fluid HP and the low-temperature heat source fluid GP and the heat-increase target fluid TS do not mix, and are independent systems. In the absorption type heat exchange system 1A, the driving heat source fluid RS circulates between the temperature rising absorption heat pump X2 and the heat source facility HSF at a flow rate of 60 t / h, and the temperature flows out of the heat source facility HSF at 95 ° C. and rises. It flows into the heat absorption heat pump X2, flows out from the temperature rising absorption heat pump X2 at 60 ° C., and flows into the heat source equipment HSF. Further, the temperature raising target fluid RP and the low temperature heat source fluid GP circulate at a flow rate of 30 t / h between the temperature rising absorption heat pump X2 and the heat buildup absorption heat pump Y2 (in the heat buildup absorption heat pump Y, the high temperature heat source fluid HP is called Although it is called, the substance is the fluid to be heated (RP), flows out from the temperature rising absorption heat pump X2 at 100 ° C, flows into the heat absorption absorption heat pump Y2, flows out from the heat expansion absorption heat pump Y2 at 30 ° C It flows into the temperature rising absorption heat pump X2. The fluid TS to be heated circulates between the heat absorption absorption heat pump Y2 and the heat utilization facility HCF at a flow rate of 105 t / h, flows out from the heat absorption absorption heat pump Y2 at 60 ° C, and flows into the heat utilization equipment HCF. It flows out from the heat utilization facility HCF at 40 ° C. and flows into the heat absorption absorption heat pump Y2.

上述のように作用する吸収式熱交換システム1Aによれば、熱源設備HSFに対して流入出する合流熱源流体RAの温度差(本実施の形態では35℃)よりも、昇温吸収ヒートポンプX2に対して流入出する低温熱源流体GP及び昇温対象流体RPの温度差(本実施の形態では70℃)を大きくすることができるので、昇温流体管81及び低温熱源管82を流れる昇温対象流体RP及び低温熱源流体GPの流量を少なくして流体搬送に要するエネルギーを削減することができる。このことは、昇温吸収ヒートポンプX2と増熱吸収ヒートポンプY2との距離が離れているほど効果が顕著である。   According to the absorption type heat exchange system 1A which acts as described above, the temperature rising absorption heat pump X2 is used as the temperature difference (35.degree. C. in this embodiment) of the combined heat source fluid RA flowing into and out of the heat source equipment HSF. Since the temperature difference (70 ° C. in this embodiment) of the low temperature heat source fluid GP and the temperature raising target fluid RP flowing in and out can be increased, the temperature raising target flowing through the temperature rising fluid pipe 81 and the low temperature heat source pipe 82 The flow rates of the fluid RP and the low temperature heat source fluid GP can be reduced to reduce the energy required for fluid transportation. The effect is more remarkable as the distance between the temperature-rising absorption heat pump X2 and the heat-accumulation absorption heat pump Y2 increases.

なお、図13に示す、変形例に係る昇温吸収ヒートポンプX2Aを、吸収式熱交換システム1A(図10参照)において昇温吸収ヒートポンプX2(図11参照)に代えて設けることとしてもよい。図13は、昇温吸収ヒートポンプX2Aの模式的系統図である。昇温吸収ヒートポンプX2Aは、以下の点で昇温吸収ヒートポンプX2(図11参照)と異なっている。昇温吸収ヒートポンプX2Aでは、熱源流体バイパス管X53(図11参照)が設けられておらず、熱源流体流入管X55を流れる合流熱源流体RAのすべてが駆動熱源流体RSとして駆動熱源導入管X52に流入するようになっている。また、昇温吸収ヒートポンプX2Aでは、昇温熱交換器X71が、昇温流体連絡管X15及び熱源流体バイパス管X53(図11参照)に代えて、昇温流体連絡管X15及び駆動熱源流出管X39に設けられている。昇温熱交換器X71を流出して駆動熱源流出管X39を流れる駆動熱源流体RSは、すべてが合流熱源流体RAとして熱源流体流出管X59を流れるように構成されている。なお、昇温吸収ヒートポンプX2Aでは、熱源流体流入管X55を流れる合流熱源流体RAは駆動熱源導入管X52を流れる駆動熱源流体RSと同じものであり、熱源流体流出管X59を流れる合流熱源流体RAは駆動熱源流出管X39を流れる駆動熱源流体RSと同じものであるが、昇温吸収ヒートポンプX2(図11参照)の構成との対比の便宜上、熱源流体流入管X55及び熱源流体流出管X59を流れる流体に合流熱源流体RAという呼称を用いている。昇温吸収ヒートポンプX2Aの上記以外の構成は、昇温吸収ヒートポンプX2(図11参照)と同様である。このように構成された昇温吸収ヒートポンプX2Aにおいても、駆動熱源流体RSは、流量が60t/hで昇温吸収ヒートポンプX2Aと熱源設備HSFとの間を循環させ、温度は、95℃で熱源設備HSFから流出して昇温吸収ヒートポンプX2Aに流入し、60℃で昇温吸収ヒートポンプX2Aから流出して熱源設備HSFに流入するようにできる。また、昇温対象流体RP及び低温熱源流体GPは、流量が30t/hで昇温吸収ヒートポンプX2Aと増熱吸収ヒートポンプY2との間を循環させ、100℃で昇温吸収ヒートポンプX2Aから流出して増熱吸収ヒートポンプY2に流入し、30℃で増熱吸収ヒートポンプY2から流出して昇温吸収ヒートポンプX2Aに流入するようにできる。   A temperature rising absorption heat pump X2A according to a modification shown in FIG. 13 may be provided instead of the temperature rising absorption heat pump X2 (see FIG. 11) in the absorption type heat exchange system 1A (see FIG. 10). FIG. 13 is a schematic diagram of the temperature rising absorption heat pump X2A. The temperature rising absorption heat pump X2A differs from the temperature rising absorption heat pump X2 (see FIG. 11) in the following points. In the temperature rising absorption heat pump X2A, the heat source fluid bypass pipe X53 (see FIG. 11) is not provided, and all of the combined heat source fluid RA flowing through the heat source fluid inflow pipe X55 flows into the driving heat source introduction pipe X52 as the driving heat source fluid RS. It is supposed to Further, in the temperature rising absorption heat pump X2A, the temperature rising heat exchanger X71 is replaced by the temperature rising fluid communication pipe X15 and the heat source fluid bypass pipe X53 (see FIG. 11), and It is provided. The driving heat source fluid RS flowing out of the temperature rising heat exchanger X71 and flowing through the driving heat source outflow pipe X39 is all configured to flow through the heat source fluid outflow pipe X59 as a combined heat source fluid RA. In the temperature rising absorption heat pump X2A, the combined heat source fluid RA flowing through the heat source fluid inflow pipe X55 is the same as the driving heat source fluid RS flowing through the driving heat source introduction pipe X52, and the combined heat source fluid RA flowing through the heat source fluid outflow pipe X59 is The same as the driving heat source fluid RS flowing through the driving heat source outflow pipe X39, but the fluid flowing through the heat source fluid inflow pipe X55 and the heat source fluid outflow pipe X59 for the sake of comparison with the configuration of the temperature rising absorption heat pump X2 (see FIG. 11). The term “combined heat source fluid RA” is used. The configuration other than the above of the temperature rising absorption heat pump X2A is the same as that of the temperature rising absorption heat pump X2 (see FIG. 11). Also in the temperature rising absorption heat pump X2A configured in this way, the driving heat source fluid RS circulates between the temperature rising absorption heat pump X2A and the heat source equipment HSF at a flow rate of 60 t / h, and the temperature is 95 ° C. It can flow out of the HSF and flow into the temperature rising absorption heat pump X2A, and flow out of the temperature rising absorption heat pump X2A at 60 ° C. and flow into the heat source equipment HSF. Further, the temperature raising target fluid RP and the low temperature heat source fluid GP are circulated at a flow rate of 30 t / h between the temperature rising absorption heat pump X2A and the heat buildup absorption heat pump Y2, and flow out from the temperature rising absorption heat pump X2A at 100 ° C. It can flow into the heat buildup absorption heat pump Y2, flow out of the heat buildup absorption heat pump Y2 at 30 ° C., and flow into the temperature rising absorption heat pump X2A.

吸収式熱交換システム1A(図10参照)における昇温吸収ヒートポンプX2(図11参照)及び増熱吸収ヒートポンプY2(図12参照)は、それぞれ、吸収式熱交換システム2(図4参照)乃至吸収式熱交換システム7(図9参照)において、昇温吸収ヒートポンプX1(図2参照)及び増熱吸収ヒートポンプY1(図3参照)に代えて適用することができる。また、昇温吸収ヒートポンプX2(図11参照)に代えて昇温吸収ヒートポンプX2A(図13参照)を適用することもできる。吸収式熱交換システム2(図4参照)乃至吸収式熱交換システム7(図9参照)において、昇温吸収ヒートポンプX1(図2参照)を昇温吸収ヒートポンプX2(図11参照)あるいは昇温吸収ヒートポンプX2A(図13参照)に置き換え、増熱吸収ヒートポンプY1(図3参照)を増熱吸収ヒートポンプY2(図12参照)に置き換えるとき、吸収式熱交換システム1(図1参照)における昇温吸収ヒートポンプX1及び増熱吸収ヒートポンプY1を昇温吸収ヒートポンプX2及び増熱吸収ヒートポンプY2に置き換えて吸収式熱交換システム1A(図10参照)を構成したのに倣って適用するとよい。   The temperature rising absorption heat pump X2 (see FIG. 11) and the heat absorption absorption heat pump Y2 (see FIG. 12) in the absorption heat exchange system 1A (see FIG. 10) respectively include the absorption heat exchange system 2 (see FIG. 4) In the heat exchange system 7 (see FIG. 9), the heat-up absorption heat pump X1 (see FIG. 2) and the heat-accumulation absorption heat pump Y1 (see FIG. 3) can be used instead. Moreover, it can replace with temperature rising absorption heat pump X2 (refer FIG. 11), and temperature rising absorption heat pump X2A (refer FIG. 13) can also be applied. In the absorption heat exchange system 2 (see FIG. 4) to the absorption heat exchange system 7 (see FIG. 9), the temperature rising absorption heat pump X1 (see FIG. 2) is a temperature rising absorption heat pump X2 (see FIG. 11) When replacing with the heat pump X2A (see FIG. 13) and replacing the heat-accumulation absorption heat pump Y1 (see FIG. 3) with the heat-absorption absorption heat pump Y2 (see FIG. 12), temperature rising absorption in the absorption heat exchange system 1 (see FIG. 1) The heat pump X1 and the heat-accumulation absorption heat pump Y1 may be replaced by a temperature-rising absorption heat pump X2 and a heat-accumulation absorption heat pump Y2 to construct an absorption type heat exchange system 1A (see FIG. 10).

また、吸収式熱交換システム1(図1参照)乃至吸収式熱交換システム7(図9参照)において、昇温吸収ヒートポンプX1を代えずに増熱吸収ヒートポンプY1を増熱吸収ヒートポンプY2(図12参照)に代えることとしてもよく、あるいは、増熱吸収ヒートポンプY1を代えずに昇温吸収ヒートポンプX1を昇温吸収ヒートポンプX2(図11参照)あるいは昇温吸収ヒートポンプX2A(図13参照)に代えることとしてもよい。   Further, in the absorption heat exchange system 1 (see FIG. 1) to the absorption heat exchange system 7 (see FIG. 9), the heat absorption absorption heat pump Y1 is used as the heat absorption absorption heat pump Y2 (FIG. 12) without replacing the temperature rising absorption heat pump X1. (Refer to the reference), or replacing the temperature rising absorption heat pump X1 with the temperature rising absorption heat pump X2 (see FIG. 11) or the temperature rising absorption heat pump X2A (see FIG. 13) without replacing the heat absorption absorption heat pump Y1. It may be

以上で説明した吸収式熱交換システム1Aにおいて、熱源設備HSFと昇温吸収ヒートポンプX2(又は昇温吸収ヒートポンプX2A)とを循環する合流熱源流体RA、昇温吸収ヒートポンプX2(X2A)と増熱吸収ヒートポンプY2とを循環する昇温対象流体RP及び低温熱源流体GP、増熱吸収ヒートポンプY2と熱利用設備HCFとを循環する増熱対象流体TSには、水の他に水より沸点が高い液体を適用してもよい。水より沸点が高い液体を適用すると、沸騰抑制のために昇温対象流体RPを加圧する必要がなくてよい。特に、吸収式熱交換システム1Aでは、熱源設備HSFと昇温吸収ヒートポンプX2(X2A)とを循環する合流熱源流体RA、昇温吸収ヒートポンプX2(X2A)と増熱吸収ヒートポンプY2とを循環する昇温対象流体RP及び低温熱源流体GP、増熱吸収ヒートポンプY2と熱利用設備HCFとを循環する増熱対象流体TSがそれぞれ混合することのない独立した循環経路を構成している。そこで、合流熱源流体RA及び増熱対象流体TSには一般的な水を使い、温度が高くなる昇温対象流体RP等には水より沸点が高い液体を適用すると、沸騰抑制のために昇温対象流体RPを加圧する必要がなく、沸点の高い液体を使う量も少なくなって設備のコストを抑制することができる。このように、各循環流路を流れる流体の温度が水の大気圧における沸点(100℃)より高くなる流体には、使用温度に応じて水より沸点が高い熱媒液又は化学液体を適用するとい。また、工場の製造プロセスで使っている流体を合流熱源流体RAにそのまま導入して熱利用してもよい。   In the absorption type heat exchange system 1A described above, a combined heat source fluid RA circulating the heat source equipment HSF and the temperature rising absorption heat pump X2 (or the temperature rising absorption heat pump X2A), the temperature rising absorption heat pump X2 (X2A) and the heat absorption The heat-up target fluid RP circulating through the heat pump Y2 and the low-temperature heat source fluid GP, and the heat-up target fluid TS circulating through the heat buildup absorption heat pump Y2 and the heat utilization facility HCF It may apply. When a liquid having a boiling point higher than that of water is applied, it is not necessary to pressurize the temperature-raising target fluid RP to suppress boiling. In particular, in the absorption type heat exchange system 1A, the combined heat source fluid RA circulating the heat source equipment HSF and the temperature rising absorption heat pump X2 (X2A), the temperature rising absorption heat pump X2 (X2A) and the heat absorption absorption heat pump Y2 circulating The heat target fluid RP and the low temperature heat source fluid GP, and the heat enhancement target fluid TS circulating in the heat buildup absorption heat pump Y2 and the heat utilization facility HCF constitute independent circulation paths that are not mixed with each other. Therefore, if general water is used for the combined heat source fluid RA and the fluid to be heated TS, and if a liquid having a boiling point higher than that of the water is applied to the temperature rising fluid RP etc. whose temperature is high, the temperature is raised to suppress boiling. It is not necessary to pressurize the target fluid RP, and the amount of use of a liquid having a high boiling point can be reduced, so that the cost of equipment can be suppressed. As described above, a heat transfer fluid or chemical liquid having a boiling point higher than that of water is applied to the fluid in which the temperature of the fluid flowing through each circulation flow path is higher than the boiling point (100 ° C.) of water at atmospheric pressure. Say. Also, the fluid used in the factory manufacturing process may be introduced into the combined heat source fluid RA as it is for heat utilization.

以上の説明では、吸収式熱交換システム7(図9参照)を除き、熱源設備HSFが1つの熱源から構成されているように示されているが、温度の異なる複数の熱源から構成されていてもよい。例えば、製鉄所や発電所等には、温度が異なる種々の熱源がある場合が少なくなく、このような場合に適用することができる。この場合、熱源設備HSFを通過する合流熱源流体RAは、低い温度の熱源から高い温度の熱源に、順に通過するように構成するとよい。   In the above description, the heat source equipment HSF is shown to be composed of one heat source except for the absorption type heat exchange system 7 (see FIG. 9), but it is composed of a plurality of heat sources different in temperature It is also good. For example, there are many cases where there are various heat sources having different temperatures in steelworks, power plants and the like, and such a case can be applied. In this case, the combined heat source fluid RA passing through the heat source equipment HSF may be configured to sequentially pass from the low temperature heat source to the high temperature heat source.

以上の説明では、合流熱源還管85を流れる合流熱源流体RAは、熱源設備HSFに導入されることとしたが、熱源設備HSFに導入されずに系外に排出されることとしてもよい。この場合、熱源設備HSFで回収される熱の媒体となる合流熱源流体RAは、系外から別途導入されることとなる。また、以上の説明では、混合熱源還管88を流れる混合流体TAあるいは増熱対象流体TSは、熱利用設備HCFから流出したものであることとしたが、系外から導入した流体を混合熱源還管88に流入させ、熱利用設備HCFで熱が利用された後の温度が低下した混合流体TAあるいは増熱対象流体TSを系外に排出することとしてもよい。なお、吸収式熱交システム1、1A、2−7において、昇温流体管81を流れる昇温対象流体RPの流量と低温熱源管82を流れる低温熱源流体GPの流量とを同じにして流量のバランスを維持し、昇温吸収ヒートポンプX1(X2、X2A)から増熱吸収ヒートポンプY1(Y2)へと熱輸送を行っている。   In the above description, the combined heat source fluid RA flowing through the combined heat source return pipe 85 is introduced into the heat source facility HSF, but may be discharged out of the system without being introduced into the heat source facility HSF. In this case, the combined heat source fluid RA, which is a medium of heat recovered by the heat source equipment HSF, is separately introduced from outside the system. Further, in the above description, the mixed fluid TA flowing through the mixed heat source return pipe 88 or the fluid to be heated up is the one that has flowed out of the heat utilization facility HCF. It may be made to flow into the pipe 88, and the mixed fluid TA or the fluid T for heat increase whose temperature has decreased after heat utilization in the heat utilization facility HCF may be discharged out of the system. In the absorption heat exchange systems 1, 1A and 2-7, the flow rate of the temperature raising target fluid RP flowing through the temperature raising fluid pipe 81 and the flow rate of the low temperature heat source fluid GP flowing through the low temperature heat source pipe 82 are the same. The balance is maintained, and heat transfer is performed from the temperature rising absorption heat pump X1 (X2, X2A) to the heat absorption absorption heat pump Y1 (Y2).

以上の説明では、昇温吸収ヒートポンプX1、X2、X2Aにおいて、駆動熱源流体RSが、蒸発器X20から再生器X30に直列に流れることとしたが、流れの方向を逆にして再生器X30から蒸発器X20に直列に流れることとしてもよく、蒸発器X20及び再生器X30に並列に流れることとしてもよい。   In the above description, in the temperature rising absorption heat pumps X1, X2, X2A, the driving heat source fluid RS flows in series from the evaporator X20 to the regenerator X30, but the flow direction is reversed and evaporation from the regenerator X30 It may flow in series to the vessel X20, or may flow in parallel to the evaporator X20 and the regenerator X30.

以上の説明では、昇温吸収ヒートポンプX1、X2、X2Aにおいて、蒸発器X20が満液式であるとしたが、流下液膜式であってもよい。蒸発器を流下液膜式とする場合は、蒸発器缶胴X21内の上部に冷媒液XVfを供給する冷媒液供給装置を設け、満液式の場合に蒸発器缶胴X21に接続することとしていた冷媒液管X45の端部を、冷媒液供給装置に接続すればよい。また、蒸発器缶胴X21の下部の冷媒液XVfを冷媒液供給装置に供給する配管及びポンプを設けてもよい。   In the above description, in the temperature rising absorption heat pumps X1, X2 and X2A, the evaporator X20 is full liquid type, but it may be falling liquid film type. When the evaporator is a falling liquid film type, a refrigerant liquid supply device for supplying the refrigerant liquid XVf is provided in the upper part in the evaporator can barrel X21, and in the case of full liquid type, it is connected to the evaporator can barrel X21 The end portion of the refrigerant liquid pipe X45 may be connected to the refrigerant liquid supply device. Moreover, you may provide piping and a pump which supply the refrigerant liquid XVf of the lower part of evaporator can-cylinder X21 to a refrigerant liquid supply apparatus.

1、1A、2、3、4、5、6、7 吸収式熱交換システム
X1、X1A、X1B、X2、X2A 昇温吸収ヒートポンプ
X10 吸収器
X20 蒸発器
X30 再生器
X40 凝縮器
X53 熱源流体バイパス管
X56 熱源流体流入口
X58 熱源流体流出口
X71 昇温熱交換器
Y1、Y1A、Y1B、Y1C、Y2 増熱吸収ヒートポンプ
Y10 吸収器
Y20 蒸発器
Y30 再生器
Y39a 中間流出口
Y39b 中間流入口
Y40 凝縮器
Y56 混合流体流入口
Y58 混合流体流出口
Y72 増熱熱交換器
61 副熱装置
81 昇温流体管
82 低温熱源管
91 低温熱源ポンプ
92 混合流体ポンプ
98 膨張タンク
487 分岐流出往管
488 分岐流出還管
AS 副熱源
GP 低温熱源流体
HCF 熱利用設備
HSF 熱源設備
HP 高温熱源流体
RP 昇温対象流体
RS 駆動熱源流体
RQ 分岐熱源流体
TA 混合流体
TS 増熱対象流体
XSa、YSa 濃溶液
XSw、YSw 希溶液
XVe、YVe 蒸発器冷媒蒸気
XVf、YVf 冷媒液
XVg、YVg 再生器冷媒蒸気
1, 1 A, 2, 3, 4, 5, 6, 7 absorption heat exchange system X1, X1 A, X1 B, X2, X2 A temperature rising absorption heat pump X10 absorber X20 evaporator X30 regenerator X40 condenser X53 heat source fluid bypass pipe X56 Heat source fluid inlet X58 Heat source fluid outlet X71 Temperature rising heat exchanger Y1, Y1A, Y1B, Y1C, Y2 Heat absorption absorption heat pump Y10 Absorber Y20 Evaporator Y30 Regenerator Y39a Intermediate outlet Y39b Intermediate inlet Y40 Condenser Y56 Mixing Fluid inlet Y 58 Mixed fluid outlet Y 72 Heat transfer heat exchanger 61 Secondary heating device 81 Heating fluid pipe 82 Low temperature heat source pipe 91 Low temperature heat source pump 92 Mixed fluid pump 98 Expansion tank 487 Branch outflow pipe 488 Branch outflow return pipe AS Heat source GP Low temperature heat source fluid HCF Heat utilization equipment HSF Heat source equipment HP High temperature heat source fluid RP Body RS Drive heat source fluid RQ Branch heat source fluid TA Mixed fluid TS Heat up target fluid XSa, YSa Concentrated solution XSw, YSw Dilute solution XVe, YVe Evaporator refrigerant vapor XVf, YVf refrigerant liquid XVg, YVg Regenerator refrigerant vapor

Claims (15)

吸収液と冷媒との吸収ヒートポンプサイクルによって作動し、前記冷媒の蒸発圧力が前記冷媒の凝縮圧力よりも高い昇温吸収ヒートポンプと;
吸収液と冷媒との吸収ヒートポンプサイクルによって作動し、前記冷媒の蒸発圧力が前記冷媒の凝縮圧力よりも低い増熱吸収ヒートポンプと;
前記昇温吸収ヒートポンプで加熱された昇温対象流体を前記増熱吸収ヒートポンプに導く昇温対象流体流路と;
前記増熱吸収ヒートポンプから流出した低温熱源流体を前記昇温吸収ヒートポンプに導く低温熱源流体流路とを備え;
前記増熱吸収ヒートポンプは、前記増熱吸収ヒートポンプで加熱する増熱対象流体を導入する増熱対象流体導入部と、前記増熱吸収ヒートポンプで加熱された前記増熱対象流体を、熱を消費する熱消費部に向けて流出する増熱対象流体流出部と、を有し;
前記昇温吸収ヒートポンプは、前記昇温吸収ヒートポンプにおいて前記吸収ヒートポンプサイクルを駆動する昇温駆動熱源流体を、熱を供給する熱供給部から導入する昇温駆動熱源流体流入部と、前記昇温吸収ヒートポンプにおいて前記吸収ヒートポンプサイクルを駆動した前記昇温駆動熱源流体を流出する昇温駆動熱源流体流出部と、を有する;
吸収式熱交換システム。
A temperature rising absorption heat pump which is operated by an absorption heat pump cycle of an absorption liquid and a refrigerant, and the evaporation pressure of the refrigerant is higher than the condensation pressure of the refrigerant;
A heat-accumulation absorption heat pump which is operated by an absorption heat pump cycle of an absorbing liquid and a refrigerant, and the evaporation pressure of the refrigerant is lower than the condensation pressure of the refrigerant;
A temperature increase target fluid flow path for guiding the temperature increase target fluid heated by the temperature increase absorption heat pump to the heat buildup absorption heat pump;
A low temperature heat source fluid channel for leading a low temperature heat source fluid flowing out of the heat buildup absorption heat pump to the temperature rising absorption heat pump;
The heat-accumulation absorption heat pump consumes heat as a heat-increasing fluid introduction portion for introducing a heat-increased target fluid to be heated by the heat-accumulation absorption heat pump, and the fluid to be heat-increased by the heat-absorption absorption heat pump A fluid outlet to be heated which flows out toward the heat consumer;
The temperature rising absorption heat pump includes a temperature rising driving heat source fluid inflow portion for introducing a temperature rising driving heat source fluid that drives the absorption heat pump cycle in the temperature rising absorption heat pump from a heat supply portion that supplies heat; A temperature rising drive heat source fluid outflow portion for flowing out the temperature rise driving heat source fluid that has driven the absorption heat pump cycle in a heat pump;
Absorption heat exchange system.
前記昇温対象流体流路は、前記増熱吸収ヒートポンプにおいて前記吸収ヒートポンプサイクルを駆動する増熱駆動熱源流体を流す部位に前記昇温対象流体を供給するように前記増熱吸収ヒートポンプに接続され;
前記低温熱源流体流路は、前記昇温吸収ヒートポンプにおける低温熱源流体を流す部位に接続された;
請求項1に記載の吸収式熱交換システム。
The temperature rising target fluid flow path is connected to the heat rising absorption heat pump so as to supply the temperature rising target fluid to a portion where the heat generation driving heat source fluid driving the absorption heat pump cycle flows in the heat rising absorption heat pump;
The low temperature heat source fluid flow path is connected to a portion of the temperature rising absorption heat pump where the low temperature heat source fluid flows.
The absorption heat exchange system according to claim 1.
前記低温熱源流体を直接又は間接的に流動させる第1のポンプと;
前記増熱対象流体を直接又は間接的に流動させる第2のポンプとを備える;
請求項1又は請求項2に記載の吸収式熱交換システム。
A first pump that causes the low temperature heat source fluid to flow directly or indirectly;
And a second pump that causes the fluid to be heated to flow directly or indirectly;
The absorption heat exchange system according to claim 1 or 2.
前記低温熱源流体流路又は前記低温熱源流体流路と連通している流路に接続された膨張タンクを備える;
請求項1乃至請求項3のいずれか1項に記載の吸収式熱交換システム。
An expansion tank connected to the low temperature heat source fluid flow channel or a flow channel in communication with the low temperature heat source fluid flow channel;
The absorption-type heat exchange system according to any one of claims 1 to 3.
前記昇温吸収ヒートポンプは、
前記冷媒の液が蒸発して前記冷媒の蒸気となる際に必要な蒸発潜熱を、前記昇温駆動熱源流体から奪う昇温蒸発部と、
前記冷媒を吸収して濃度が低下した前記吸収液である希溶液を加熱し前記希溶液から前記冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を前記昇温駆動熱源流体から奪う昇温再生部と、
前記濃溶液を導入し、前記昇温蒸発部で発生した前記冷媒の蒸気を前記濃溶液が吸収して前記希溶液となる際に放出した吸収熱によって、前記昇温蒸発部及び前記昇温再生部に導入される前の前記昇温駆動熱源流体から分岐された一部の前記昇温駆動熱源流体を前記昇温対象流体として導入して前記昇温対象流体を加熱する昇温吸収部と、
前記冷媒の蒸気が凝縮して前記冷媒の液となる際に放出した凝縮熱によって前記低温熱源流体を加熱する昇温凝縮部とを有し、
前記昇温凝縮部で加熱された前記低温熱源流体が、前記昇温蒸発部及び前記昇温再生部から流出した前記昇温駆動熱源流体に合流するように構成された;
請求項1乃至請求項4のいずれか1項に記載の吸収式熱交換システム。
The temperature rising absorption heat pump is
A temperature rising evaporation section which deprives the temperature rising drive heat source fluid of the latent heat of vaporization necessary when the liquid of the refrigerant evaporates to become the vapor of the refrigerant;
The temperature rising driving heat source fluid is heat necessary for heating the dilute solution which is the absorption liquid which has absorbed the refrigerant and having lowered the concentration to separate the refrigerant from the dilute solution to form the concentrated solution having the increased concentration. With temperature rise reproduction department which deprives from,
The concentrated solution is introduced, the heat of evaporation generated when the concentrated solution absorbs the vapor of the refrigerant generated in the temperature-rising evaporation unit, and is released when the concentrated solution becomes the temperature-rising evaporation unit and the temperature-raising regeneration A temperature rising and absorbing section for introducing a part of the temperature rising driving heat source fluid branched from the temperature rising driving heat source fluid before being introduced into the section as the temperature rising target fluid and heating the temperature rising target fluid;
And a temperature raising / condensing portion that heats the low temperature heat source fluid by condensation heat released when the vapor of the refrigerant condenses and becomes liquid of the refrigerant,
The low-temperature heat source fluid heated by the temperature rising and condensing unit is configured to merge with the temperature rising driving heat source fluid that has flowed out from the temperature rising and evaporating unit and the temperature rising and reproducing unit;
The absorption-type heat exchange system according to any one of claims 1 to 4.
前記昇温吸収ヒートポンプは、
前記冷媒の液が蒸発して前記冷媒の蒸気となる際に必要な蒸発潜熱を、前記昇温駆動熱源流体から奪う昇温蒸発部と、
前記冷媒を吸収して濃度が低下した前記吸収液である希溶液を加熱し前記希溶液から前記冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を前記昇温駆動熱源流体から奪う昇温再生部と、
前記昇温蒸発部及び前記昇温再生部に導入される前の前記昇温駆動熱源流体から分岐された一部の前記昇温駆動熱源流体を、前記昇温蒸発部及び前記昇温再生部をバイパスして、前記昇温蒸発部及び前記昇温再生部から流出した後の前記昇温駆動熱源流体に合流させる昇温駆動熱源流体バイパス流路と、
前記冷媒の蒸気が凝縮して前記冷媒の液となる際に放出した凝縮熱によって前記低温熱源流体を加熱する昇温凝縮部と、
前記昇温凝縮部で加熱された前記低温熱源流体と、前記昇温駆動熱源流体バイパス流路を流れる前記昇温駆動熱源流体と、で熱交換させる昇温熱交換器と、
前記濃溶液を導入し、前記昇温蒸発部で発生した前記冷媒の蒸気を前記濃溶液が吸収して前記希溶液となる際に放出した吸収熱によって、前記昇温熱交換器で加熱された前記低温熱源流体を前記昇温対象流体として導入して前記昇温対象流体を加熱する昇温吸収部とを有する;
請求項1乃至請求項4のいずれか1項に記載の吸収式熱交換システム。
The temperature rising absorption heat pump is
A temperature rising evaporation section which deprives the temperature rising drive heat source fluid of the latent heat of vaporization necessary when the liquid of the refrigerant evaporates to become the vapor of the refrigerant;
The temperature rising driving heat source fluid is heat necessary for heating the dilute solution which is the absorption liquid which has absorbed the refrigerant and having lowered the concentration to separate the refrigerant from the dilute solution to form the concentrated solution having the increased concentration. With temperature rise reproduction department which deprives from,
A part of the temperature raising driving heat source fluid branched from the temperature raising driving heat source fluid before being introduced into the temperature raising evaporating part and the temperature raising reproducing part, the temperature raising evaporating part and the temperature raising reproducing part A temperature rising drive heat source fluid bypass flow path for bypassing and joining the temperature rise driving heat source fluid after flowing out from the temperature rising evaporation unit and the temperature rising regeneration unit;
A temperature rising condensation part which heats the low temperature heat source fluid by condensation heat released when the vapor of the refrigerant condenses and becomes liquid of the refrigerant;
A temperature rising heat exchanger that exchanges heat between the low temperature heat source fluid heated by the temperature rising condensation part and the temperature rising driving heat source fluid flowing through the temperature rising driving heat source fluid bypass channel;
The concentrated solution is introduced, and the heat of the temperature rising heat exchanger is generated by the heat of absorption released when the concentrated solution absorbs the vapor of the refrigerant generated in the temperature rising evaporation section and becomes the dilute solution. A temperature rising and absorbing section for introducing a low temperature heat source fluid as the temperature raising fluid to heat the temperature raising fluid;
The absorption-type heat exchange system according to any one of claims 1 to 4.
前記昇温吸収ヒートポンプは、
前記冷媒の液が蒸発して前記冷媒の蒸気となる際に必要な蒸発潜熱を、前記昇温駆動熱源流体から奪う昇温蒸発部と、
前記冷媒を吸収して濃度が低下した前記吸収液である希溶液を加熱し前記希溶液から前記冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を前記昇温駆動熱源流体から奪う昇温再生部と、
前記冷媒の蒸気が凝縮して前記冷媒の液となる際に放出した凝縮熱によって前記低温熱源流体を加熱する昇温凝縮部と、
前記昇温凝縮部で加熱された前記低温熱源流体と、前記昇温蒸発部及び前記昇温再生部を流出した前記昇温駆動熱源流体と、で熱交換させる昇温熱交換器と、
前記濃溶液を導入し、前記昇温蒸発部で発生した前記冷媒の蒸気を前記濃溶液が吸収して前記希溶液となる際に放出した吸収熱によって、前記昇温熱交換器で加熱された前記低温熱源流体を前記昇温対象流体として導入して前記昇温対象流体を加熱する昇温吸収部とを有する;
請求項1乃至請求項4のいずれか1項に記載の吸収式熱交換システム。
The temperature rising absorption heat pump is
A temperature rising evaporation section which deprives the temperature rising drive heat source fluid of the latent heat of vaporization necessary when the liquid of the refrigerant evaporates to become the vapor of the refrigerant;
The temperature rising driving heat source fluid is heat necessary for heating the dilute solution which is the absorption liquid which has absorbed the refrigerant and having lowered the concentration to separate the refrigerant from the dilute solution to form the concentrated solution having the increased concentration. With temperature rise reproduction department which deprives from,
A temperature rising condensation part which heats the low temperature heat source fluid by condensation heat released when the vapor of the refrigerant condenses and becomes liquid of the refrigerant;
A temperature rising heat exchanger that exchanges heat between the low temperature heat source fluid heated by the temperature rising condensation section and the temperature rising driving heat source fluid that has flowed out to the temperature rising evaporation section and the temperature rising regeneration section;
The concentrated solution is introduced, and the heat of the temperature rising heat exchanger is generated by the heat of absorption released when the concentrated solution absorbs the vapor of the refrigerant generated in the temperature rising evaporation section and becomes the dilute solution. A temperature rising and absorbing section for introducing a low temperature heat source fluid as the temperature raising fluid to heat the temperature raising fluid;
The absorption-type heat exchange system according to any one of claims 1 to 4.
前記増熱吸収ヒートポンプは、
前記冷媒の蒸気が凝縮して前記冷媒の液となる際に放出した凝縮熱によって前記増熱対象流体を加熱する増熱凝縮部と、
前記増熱凝縮部から前記冷媒の液を導入し、導入した前記冷媒の液が蒸発して前記冷媒の蒸気となる際に必要な蒸発潜熱を前記低温熱源流体から奪う増熱蒸発部と、
前記増熱蒸発部から前記冷媒の蒸気を導入し、導入した前記冷媒の蒸気を前記吸収液が吸収して濃度が低下した希溶液となる際に放出した吸収熱によって前記増熱対象流体を加熱する増熱吸収部と、
前記増熱吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を、増熱駆動熱源流体から奪う増熱再生部とを有し、
前記増熱凝縮部及び前記増熱吸収部に導入される前の前記増熱対象流体から分岐された一部の前記増熱対象流体を前記低温熱源流体として前記増熱蒸発部に導入するように構成され;
前記増熱再生部で熱を奪われた前記増熱駆動熱源流体が、前記増熱吸収部及び前記増熱凝縮部から流出した前記増熱対象流体に合流するように構成された;
請求項1乃至請求項7のいずれか1項に記載の吸収式熱交換システム。
The heat absorption absorption heat pump is
A heat buildup condenser that heats the fluid to be heated by the heat of condensation released when the vapor of the refrigerant condenses to become a liquid of the refrigerant;
A heat-increasing evaporation section which introduces the liquid of the refrigerant from the heat-accumulating condensation section and deprives the low-temperature heat source fluid of the latent heat of vaporization necessary when the introduced liquid of the refrigerant evaporates to become the vapor of the refrigerant;
The vapor of the refrigerant is introduced from the heat buildup evaporation section, and the absorption liquid releases the introduced refrigerant vapor to heat the fluid to be heated by the absorption heat released when it becomes a dilute solution whose concentration is reduced. Heat absorption section,
The heat necessary for introducing the dilute solution from the heat buildup absorbing part, heating the introduced dilute solution, and leaving the refrigerant from the dilute solution to form a concentrated solution having an increased concentration And a heat recovery unit to take away from it,
A part of the heat-increase target fluid branched from the heat-increase target fluid before being introduced into the heat-accumulation portion and the heat-increase absorption portion is introduced into the heat-increase evaporation portion as the low-temperature heat source fluid Configured;
The heat generation driving heat source fluid deprived of heat in the heat generation regeneration unit is configured to join the heat generation target fluid flowing out from the heat generation absorption unit and the heat generation condensation unit;
The absorption heat exchange system according to any one of claims 1 to 7.
前記増熱吸収ヒートポンプは、
前記冷媒の蒸気が凝縮して前記冷媒の液となる際に放出した凝縮熱によって前記増熱対象流体を加熱する増熱凝縮部と、
前記増熱凝縮部から前記冷媒の液を導入し、導入した前記冷媒の液が蒸発して前記冷媒の蒸気となる際に必要な蒸発潜熱を前記低温熱源流体から奪う増熱蒸発部と、
前記増熱蒸発部から前記冷媒の蒸気を導入し、導入した前記冷媒の蒸気を前記吸収液が吸収して濃度が低下した希溶液となる際に放出した吸収熱によって前記増熱対象流体を加熱する増熱吸収部と、
前記増熱吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を、増熱駆動熱源流体から奪う増熱再生部と、
前記増熱吸収部及び前記増熱凝縮部から流出した前記増熱対象流体と、前記増熱再生部で熱を奪われた前記増熱駆動熱源流体と、で熱交換させる増熱熱交換器とを有し、
前記増熱熱交換器を流出した前記増熱駆動熱源流体を前記低温熱源流体として前記増熱蒸発部に導入するように構成された;
請求項1乃至請求項7のいずれか1項に記載の吸収式熱交換システム。
The heat absorption absorption heat pump is
A heat buildup condenser that heats the fluid to be heated by the heat of condensation released when the vapor of the refrigerant condenses to become a liquid of the refrigerant;
A heat-increasing evaporation section which introduces the liquid of the refrigerant from the heat-accumulating condensation section and deprives the low-temperature heat source fluid of the latent heat of vaporization necessary when the introduced liquid of the refrigerant evaporates to become the vapor of the refrigerant;
The vapor of the refrigerant is introduced from the heat buildup evaporation section, and the absorption liquid releases the introduced refrigerant vapor to heat the fluid to be heated by the absorption heat released when it becomes a dilute solution whose concentration is reduced. Heat absorption section,
The heat necessary for introducing the dilute solution from the heat buildup absorbing part, heating the introduced dilute solution, and leaving the refrigerant from the dilute solution to form a concentrated solution having an increased concentration With the heat recovery section that takes away from the
A heat transfer heat exchanger that exchanges heat between the heat-increasing fluid and the heat-increasing heat source fluid that has been deprived of heat by the heat-up regeneration unit, and the heat-up target fluid that has flowed out from the heat transfer unit Have
The heat-increasing driving heat-source fluid flowing out of the heat-increasing heat exchanger is introduced as the low-temperature heat-source fluid to the heat-increasing evaporator;
The absorption heat exchange system according to any one of claims 1 to 7.
前記増熱吸収ヒートポンプは、第1の熱消費部に向けて前記増熱対象流体を流出する第1の増熱吸収ヒートポンプと、前記第1の熱消費部とは別の第2の熱消費部に向けて前記増熱対象流体を流出する第2の増熱吸収ヒートポンプとを含んで構成された;
請求項1乃至請求項9のいずれか1項に記載の吸収式熱交換システム。
The heat buildup absorption heat pump includes a first heat buildup absorption heat pump for flowing out the fluid to be heated toward the first heat consuming unit, and a second heat consuming unit other than the first heat consuming unit. A second heat absorption absorption heat pump which discharges the fluid to be heated toward the target;
An absorption heat exchange system according to any one of claims 1 to 9.
前記増熱吸収ヒートポンプは、前記増熱再生部から流出した前記増熱駆動熱源流体を、熱を消費する第1の追加熱消費部に向けて前記増熱吸収ヒートポンプの外に一旦流出する第1の増熱駆動熱源流体流出部と、前記増熱駆動熱源流体が保有する熱が前記第1の追加消費部で消費された前記増熱駆動熱源流体を導入する第1の増熱駆動熱源流体導入部とを有する;
請求項8又は請求項9に記載の吸収式熱交換システム。
The heat buildup absorption heat pump temporarily flows out of the heat buildup heat pump toward the first additional heat consuming unit that consumes the heat generation driving heat source fluid that has flowed out of the heat buildup regeneration unit. A heat generation driving heat source fluid outflow portion, and a first heat generation driving heat source fluid introduction for introducing the heat generation driving heat source fluid in which the heat held by the heat generation driving heat source fluid is consumed by the first additional consumption portion Have a department;
The absorption heat exchange system according to claim 8 or 9.
前記増熱吸収ヒートポンプは、前記増熱再生部に導入される前の前記増熱駆動熱源流体から分岐された一部の前記増熱駆動熱源流体を、熱を消費する第2の追加熱消費部に向けて前記増熱吸収ヒートポンプの外に一旦流出する第2の増熱駆動熱源流体流出部と、前記増熱駆動熱源流体が保有する熱が前記第2の追加消費部で消費された前記増熱駆動熱源流体を導入する第2の増熱駆動熱源流体導入部とを有する;
請求項8又は請求項9に記載の吸収式熱交換システム。
The heat-accumulation absorption heat pump is a second additional heat-consuming unit that consumes heat from a part of the heat-production-driven heat source fluid branched from the heat-production-driven heat source fluid before being introduced into the heat generation regeneration unit. A second heat generation driving heat source fluid outflow portion which temporarily flows out to the outside of the heat absorption absorption heat pump, and the heat held by the heat generation driving heat source fluid is consumed by the second additional consumption portion And a second heat generation driving heat source fluid introducing unit for introducing a heat driving heat source fluid;
The absorption heat exchange system according to claim 8 or 9.
前記昇温吸収ヒートポンプに導入される前の前記低温熱源流体から分岐された一部の前記低温熱源流体を第1の副熱源で加熱する第1の副熱装置を備え;
前記第1の副熱装置で加熱された前記低温熱源流体を前記昇温対象流体に合流させるように構成された;
請求項1乃至請求項12のいずれか1項に記載の吸収式熱交換システム。
A first secondary heat device for heating a part of the low temperature heat source fluid branched from the low temperature heat source fluid before being introduced into the temperature rising absorption heat pump with a first auxiliary heat source;
The low temperature heat source fluid heated by the first auxiliary heat device is configured to be merged with the temperature raising fluid;
An absorption heat exchange system according to any one of claims 1 to 12.
前記昇温吸収ヒートポンプで加熱された前記昇温対象流体を第2の副熱源で加熱する第2の副熱装置を備える;
請求項1乃至請求項13のいずれか1項に記載の吸収式熱交換システム。
A second auxiliary heat device for heating the temperature-raising target fluid heated by the temperature-raising absorption heat pump with a second auxiliary heat source;
The absorption-type heat exchange system according to any one of claims 1 to 13.
前記昇温吸収ヒートポンプは、第1の熱供給部から前記昇温駆動熱源流体を導入する第1の昇温吸収ヒートポンプと、前記第1の熱供給部とは別の第2の熱供給部から前記昇温駆動熱源流体を導入する第2の昇温吸収ヒートポンプとを含んで構成された;
請求項1乃至請求項14のいずれか1項に記載の吸収式熱交換システム。
The temperature rising absorption heat pump includes a first temperature rising absorption heat pump for introducing the temperature rising driving heat source fluid from the first heat supply unit, and a second heat supply unit different from the first heat supply unit. And a second temperature rising absorption heat pump for introducing the temperature rising driving heat source fluid;
An absorption heat exchange system according to any one of the preceding claims.
JP2017197952A 2017-10-11 2017-10-11 Absorption type heat exchange system Pending JP2019070506A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017197952A JP2019070506A (en) 2017-10-11 2017-10-11 Absorption type heat exchange system
CN201821632548.8U CN209588452U (en) 2017-10-11 2018-10-09 Absorption type heat exchange system
CN201811172216.0A CN109654767B (en) 2017-10-11 2018-10-09 Absorption heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197952A JP2019070506A (en) 2017-10-11 2017-10-11 Absorption type heat exchange system

Publications (1)

Publication Number Publication Date
JP2019070506A true JP2019070506A (en) 2019-05-09

Family

ID=66109975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197952A Pending JP2019070506A (en) 2017-10-11 2017-10-11 Absorption type heat exchange system

Country Status (2)

Country Link
JP (1) JP2019070506A (en)
CN (2) CN209588452U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070506A (en) * 2017-10-11 2019-05-09 荏原冷熱システム株式会社 Absorption type heat exchange system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832301B2 (en) * 1978-12-25 1983-07-12 工業技術院長 absorption refrigerator
JP4885467B2 (en) * 2005-03-25 2012-02-29 川重冷熱工業株式会社 Absorption heat pump
CN101545692B (en) * 2007-08-27 2011-05-25 李华玉 Heterogeneous composite absorption type heat pump
US20110114284A1 (en) * 2009-11-17 2011-05-19 John Siegenthaler Optimizing the efficiency and energy usage of a geothermal multiple heat pump system
WO2013075260A1 (en) * 2011-11-21 2013-05-30 Li Huayu Second-type absorption heat pump with fractional condensation
KR101434908B1 (en) * 2013-05-23 2014-08-29 포스코에너지 주식회사 System for producing hot heat source or electric power using waste heat, and method for controlling therof
CN105987538B (en) * 2016-04-14 2019-03-08 中国科学院工程热物理研究所 The composite absorption heat pump of middle temperature-heat-source driving dual temperature heat output
CN106196718B (en) * 2016-08-16 2019-04-19 北京联力源科技有限公司 Absorption type heat pump system and its round-robin method
JP2019070506A (en) * 2017-10-11 2019-05-09 荏原冷熱システム株式会社 Absorption type heat exchange system

Also Published As

Publication number Publication date
CN109654767A (en) 2019-04-19
CN209588452U (en) 2019-11-05
CN109654767B (en) 2022-09-20

Similar Documents

Publication Publication Date Title
Gao et al. An air-source hybrid absorption-compression heat pump with large temperature lift
CN103807932A (en) Forward permeation solution dehumidification regenerating device
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP2019070506A (en) Absorption type heat exchange system
CN107328132B (en) Second-class absorption heat pump
JP2006177570A (en) Absorption heat pump
JP4276992B2 (en) Adsorption heating and hot water supply equipment
CN108180670B (en) Absorption heat exchange system
JP6896968B2 (en) Absorption heat exchange system
JP5514003B2 (en) Absorption heat pump
US20170101900A1 (en) Exhaust heat collecting system
JP7015671B2 (en) Absorption heat exchange system
CN104180555B (en) A kind of cold dual effect type lithium bromide jet suction type cooling cycle system
JP5395502B2 (en) Absorption heat pump
WO2004102085A1 (en) Absorption chiller
JP2017058049A (en) Absorption heat pump system
JP6903852B2 (en) Absorption heat exchange system
JP4148830B2 (en) Single double effect absorption refrigerator
ITMI20090726A1 (en) ABSORPTION HEAT PUMP FOR EXTREME OPERATING CONDITIONS
JP2006207883A (en) Absorption heat pump
CN209431705U (en) Absorption type heat exchange system
CN209801851U (en) Absorption heat exchange system
JP6907438B2 (en) Absorption heat exchange system
JP2017058063A (en) Absorption heat pump system utilizing earth thermal
JP4260099B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211116