JP2019070207A - Low-melting-temperature thermal fusion fiber - Google Patents

Low-melting-temperature thermal fusion fiber Download PDF

Info

Publication number
JP2019070207A
JP2019070207A JP2017196451A JP2017196451A JP2019070207A JP 2019070207 A JP2019070207 A JP 2019070207A JP 2017196451 A JP2017196451 A JP 2017196451A JP 2017196451 A JP2017196451 A JP 2017196451A JP 2019070207 A JP2019070207 A JP 2019070207A
Authority
JP
Japan
Prior art keywords
melting point
fiber
resin
heat
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017196451A
Other languages
Japanese (ja)
Inventor
美咲 尾本
Misaki Omoto
美咲 尾本
純哉 今北
Junya Imakita
純哉 今北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017196451A priority Critical patent/JP2019070207A/en
Publication of JP2019070207A publication Critical patent/JP2019070207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

To provide a low-melting-temperature thermal fusion fiber capable of fusing at a temperature of under 100°C.SOLUTION: The fiber is made from a thermoplastic resin, wherein the fiber is a low-melting-temperature thermal fusion fiber having a peak under 100°C in a DSC curve in a thermal flux DSC of the fiber, the thermoplastic resin contains 50-100 mass% of a low-melting-temperature thermoplastic resin having a melting point of under 100°C, the low-melting-temperature thermoplastic resin is desirably a polyolefin resin, especially, a polyethylene resin, and the fiber is desirably a filament yarn.SELECTED DRAWING: None

Description

本発明は、100℃未満の温度で融着させることができる低融点熱融着性繊維に関する。   The present invention relates to low melting point heat fusible fibers that can be fused at temperatures below 100 ° C.

熱融着性繊維は、現在100℃以上の熱処理温度で融着加工が行われている。しかし、従来の熱融着繊維は、原料樹脂が、低融点ナイロン樹脂、低融点ポリエステル樹脂、低融点ポリウレタン樹脂が主であり、多くは120℃〜160℃の温度で熱処理されている。   The heat-fusible fiber is currently fusion-processed at a heat treatment temperature of 100 ° C. or higher. However, in the conventional heat-fusion fibers, the raw material resins are mainly low-melting point nylon resins, low-melting point polyester resins, and low-melting point polyurethane resins, and most are heat-treated at temperatures of 120 ° C to 160 ° C.

しかしながら、100℃を超える温度での熱処理温度では、設備投資が必要となる上、繊維製品作製後に他素材同士の接着剤として用いることはできない等各工程での制限があった。
そこで、熱処理温度の低温化が求められ、熱融着性繊維自体が低融点で融着しうる低融点融着性繊維が求められている。
However, at heat treatment temperatures above 100 ° C., capital investment is required, and there is a limitation in each process, such as that it can not be used as an adhesive for other materials after the production of fiber products.
Therefore, there is a demand for lowering the heat treatment temperature, and a low melting point fusible fiber in which the heat fusible fiber itself can be fused at a low melting point is required.

低融点熱融着性繊維を得るためには、従来よりいくつかの提案がなされている。例えば、特許文献1には、結晶融点が100℃以上200℃以下であるポリエチレンテレフタレートやポリエチレンナフタレート、及びその共重合体等を使用した熱接着繊維が提案されている。
また、特許文献2には、融点が100℃〜150℃のポリエチレンテレフタレートを使用したポリエステル複合長繊維が提案されている。
また、特許文献3には、融点が100℃以上160℃未満であるポリウレタンモノフィラメントが提案されている。
Several proposals have hitherto been made to obtain low melting point heat fusible fibers. For example, Patent Document 1 proposes a thermoadhesive fiber using polyethylene terephthalate or polyethylene naphthalate having a crystal melting point of 100 ° C. or more and 200 ° C. or less, a copolymer thereof, or the like.
Further, Patent Document 2 proposes a polyester composite long fiber using polyethylene terephthalate having a melting point of 100 ° C to 150 ° C.
Further, Patent Document 3 proposes a polyurethane monofilament having a melting point of 100 ° C. or more and less than 160 ° C.

特開2001−73228号公報JP, 2001-73228, A 特開2009−243028号公報JP, 2009-243028, A 特開2010−47884号公報JP, 2010-47884, A

しかしながら、特許文献1、特許文献2及び特許文献3の技術では、それらの繊維は全て融点が100℃以上であり、100℃未満の温度での熱水処理、例えば沸騰水処理では熱融着性がなく、低融点熱融着性繊維としては、熱処理工程に問題があり、また熱処理設備に制約がある。   However, according to the techniques of Patent Document 1, Patent Document 2 and Patent Document 3, all the fibers have a melting point of 100 ° C. or higher, and the thermal fusion treatment is carried out at a temperature of less than 100 ° C. As the low melting point heat fusible fiber, there is a problem in the heat treatment process, and there is a restriction in the heat treatment equipment.

本発明の目的は、このような従来技術における問題点を解決するため、100℃未満の温度で融着させることのできる低融点熱融着性繊維を提供することにある。   An object of the present invention is to provide a low melting point heat fusible fiber which can be fused at a temperature of less than 100 ° C. in order to solve the problems in the prior art.

本発明の要旨は次のとおりである。
1.熱可塑性樹脂からなる繊維であって、該繊維の熱流束DSCにおけるDSC曲線に100℃未満の融点を示す吸着ピークを少なくとも1つ有し、該ピークの大きさが−0.1cal/g以下である低融点熱融着性繊維。
2.前記熱可塑性樹脂がポリオレフィン系樹脂である前記1に記載の低融点熱融着性繊維。
3.前記ポリオレフィン系樹脂がポリエチレン樹脂である前記2に記載の低融点熱融着性繊維。
4.前記熱融着性繊維が長繊維である前記1〜3のいずれかに記載の低融点熱融着性繊維。
5. 前記熱融着性繊維が、融点が100℃未満の熱可塑性樹脂50〜100質量%と融点が100℃以上の熱可塑性樹脂0〜50質量%を含有する樹脂からなる繊維である前記1〜4のいずれかに記載の低融点熱融着性繊維。
6.融点が100℃未満の熱可塑性樹脂がメタロセン触媒にて重合されたポリオレフィン樹脂である前記5に記載の低融点熱融着性繊維。
7.前記ポリオレフィン系樹脂が、ポリエチレン樹脂である前記6に記載の低融点熱融着性繊維。
8.単繊維強度が1cN/dtex以上であり、単繊維伸度が100%以下である前記1〜7のいずれかに記載の低融点熱融着性繊維。
The gist of the present invention is as follows.
1. A fiber made of a thermoplastic resin, which has at least one adsorption peak showing a melting point of less than 100 ° C. in a DSC curve of the fiber in heat flux DSC, and the size of the peak is -0.1 cal / g or less Some low melting point heat fusible fibers.
2. The low melting point heat fusible fiber according to the above 1, wherein the thermoplastic resin is a polyolefin resin.
3. The low melting point heat fusible fiber according to 2 above, wherein the polyolefin resin is a polyethylene resin.
4. The low melting point heat fusible fiber according to any one of 1 to 3 above, wherein the heat fusible fiber is a long fiber.
5. The heat-fusible fiber is a fiber comprising a resin containing 50 to 100% by mass of a thermoplastic resin having a melting point of less than 100 ° C. and 0 to 50% by mass of a thermoplastic resin having a melting point of 100 ° C. or more. The low melting point heat fusible fiber according to any one of the above.
6. The low melting point heat fusible fiber according to the above 5, wherein the thermoplastic resin having a melting point of less than 100 ° C. is a polyolefin resin polymerized with a metallocene catalyst.
7. The low melting point heat fusible fiber according to the above 6, wherein the polyolefin resin is a polyethylene resin.
8. 11. The low melting point heat-fusible fiber according to any one of the above 1 to 7, wherein the single fiber strength is 1 cN / dtex or more and the single fiber elongation is 100% or less.

本発明によれば、100℃未満の温度で融着させることができる融点が100℃未満の低融点融着性繊維を提供することができ、本発明の繊維は、100℃未満の乾熱または湿熱、例えば常圧の沸騰水での融着加工が可能となるので、新たな熱処理設備投資の必要がなく、また加工エネルギーの効率化や加工コストを低下させることができる。   According to the present invention, low melting point fusible fibers having a melting point of less than 100 ° C. which can be fused at a temperature of less than 100 ° C. can be provided, and the fibers of the present invention have a dry heat of less than 100 ° C. Since it is possible to perform fusion processing with boiling water of wet heat, for example, at normal pressure, there is no need to invest in a new heat treatment facility, and it is possible to improve processing energy efficiency and reduce processing costs.

実施例1で得たポリエチレン繊維のDSC曲線である。5 is a DSC curve of the polyethylene fiber obtained in Example 1. 実施例2で得たポリエチレン繊維のDSC曲線である。5 is a DSC curve of the polyethylene fiber obtained in Example 2. 実施例3で得たポリエチレン繊維のDSC曲線である。FIG. 6 is a DSC curve of the polyethylene fiber obtained in Example 3. FIG. 実施例4で得たポリエチレン繊維のDSC曲線である。5 is a DSC curve of the polyethylene fiber obtained in Example 4. 実施例5で得たポリエチレン繊維のDSC曲線である。FIG. 6 is a DSC curve of the polyethylene fiber obtained in Example 5. FIG. 比較例1で得たポリエチレン繊維のDSC曲線である。It is a DSC curve of the polyethylene fiber obtained in Comparative Example 1.

本発明の低融点熱融着性繊維は、熱可塑性樹脂からなり、該繊維の熱流束DSC(示差走査熱量測定)における曲線(以下、DSC曲線という)に100℃未満の融点を示す吸着ピークを少なくとも1つ有し、該ピークの大きさが−0.1cal/g以下である繊維であり、100℃未満の温度で融着する低融点熱融着性繊維である。本発明の低融点熱融着性繊維のDSC曲線での100℃未満の融点を示す吸着ピークは1つであってもよいし、2つ以上ある吸着ピークのうちの1つであってもよい。
繊維の融点が100℃未満であれば、100℃未満の乾熱、湿熱で融着し、常圧の沸騰水等の熱水での加工も可能であり、熱融着加工の汎用性からも有利である。
この観点から、前記融点は95℃以下であることがより好ましく、90℃以下であることがさらに好ましい。
The low melting point thermally fusible fiber of the present invention is made of a thermoplastic resin, and an adsorption peak showing a melting point of less than 100 ° C. in a curve (hereinafter referred to as DSC curve) in heat flux DSC (differential scanning calorimetry) of the fiber A low melting point heat fusible fiber comprising at least one fiber having a peak size of −0.1 cal / g or less and capable of being fused at a temperature of less than 100 ° C. The adsorption peak showing a melting point of less than 100 ° C. in the DSC curve of the low melting point heat-fusible fiber of the present invention may be one or may be one of two or more adsorption peaks. .
If the melting point of the fiber is less than 100 ° C, it can be fused by dry heat or wet heat of less than 100 ° C, and processing with hot water such as boiling water under normal pressure is also possible. It is advantageous.
From this viewpoint, the melting point is more preferably 95 ° C. or less, and still more preferably 90 ° C. or less.

本発明における低融点熱融着性繊維の融点は、繊維のDSC曲線での吸着ピークの温度に示される。
低融点熱融着性繊維のDSC曲線での100℃未満の融点を示す吸着ピークの大きさは、−0.1cal/g以下であることが必要である。前記吸着ピークの大きさが−0.1cal/g以下であれば、100℃未満の熱水で繊維間同士が融着することができる。
この観点から、前記吸着ピークの大きさは−0.2cal/g以下であることが好ましく、−0.3cal/g以下であることがより好ましい。
The melting point of the low melting point heat fusible fiber in the present invention is indicated by the temperature of the adsorption peak in the DSC curve of the fiber.
The size of the adsorption peak showing a melting point of less than 100 ° C. in the DSC curve of the low melting point heat fusible fiber is required to be −0.1 cal / g or less. If the size of the adsorption peak is -0.1 cal / g or less, the fibers can be fused with hot water of less than 100 ° C.
From this viewpoint, the size of the adsorption peak is preferably −0.2 cal / g or less, and more preferably −0.3 cal / g or less.

本発明の低融点熱融着性繊維は、その構成の熱可塑性樹脂がオレフィン系樹脂であることが好ましい。オレフィン系樹脂は、融点が低いことから、低融点熱融着性繊維が得られ易くなるため好ましい。   In the low melting point heat fusible fiber of the present invention, the thermoplastic resin of the constitution is preferably an olefin resin. The olefin resin is preferable because a low melting point thermally fusible fiber can be easily obtained since the melting point is low.

本発明の低融点熱融着性繊維は、長繊維であることが好ましく、長繊維であれば他繊維との組合せが容易であり製品の多様化の点でも好ましい。   The low melting point heat fusible fiber of the present invention is preferably a long fiber, and if it is a long fiber, it is easy to combine with other fibers and it is preferable from the viewpoint of product diversification.

また、本発明の低融点熱融着性繊維は、融点が100℃未満の熱可塑性樹脂(以下、低融点樹脂という)のみからなる繊維であってもよいし、また低融点樹脂を50〜100質量%と融点が100℃以上の熱可塑性樹脂(以下、高融点樹脂という)を0〜50質量%含有する混合樹脂からなる繊維であってもよい。
混合樹脂においては、低融点樹脂を50質量%以上含有するならば、100℃未満の温度で良好な融着による接着性が得られる。また、熱接着後の繊維製品の強度を高くする場合は、混合樹脂中に50質量%を超えない範囲で高融点樹脂を含有させることができる。
In addition, the low melting point heat fusible fiber of the present invention may be a fiber consisting only of a thermoplastic resin having a melting point of less than 100 ° C. (hereinafter referred to as a low melting point resin). It may be a fiber made of a mixed resin containing 0 to 50% by mass of a thermoplastic resin having a mass% and a melting point of 100 ° C. or higher (hereinafter referred to as a high melting point resin).
In the mixed resin, if the low melting point resin is contained 50% by mass or more, good adhesion by fusion can be obtained at a temperature of less than 100 ° C. In order to increase the strength of the fiber product after heat bonding, a high melting point resin can be contained in the mixed resin in a range not exceeding 50% by mass.

本発明の低融点熱融着性繊維は、その構成の低融点樹脂が、前記したとおり、オレフィン系樹脂であることが好ましいが、オレフィン系樹脂は、メタロセン触媒で重合されたオレフィン系樹脂、とりわけポリエチレン樹脂であることが好ましい。低融点樹脂が特にメタロセン触媒で重合されたポリエチレン樹脂であれば、十分な低融点融着性と軟質性が得られ、特に熱水での融着加工がより容易になる。   In the low melting point heat fusible fiber of the present invention, the low melting point resin of the constitution is preferably an olefin resin as described above, but the olefin resin is an olefin resin polymerized with a metallocene catalyst, in particular, It is preferable that it is a polyethylene resin. If the low melting point resin is a metallocene resin-polymerized polyethylene resin in particular, sufficient low melting point fusion and flexibility can be obtained, and in particular fusion processing with hot water becomes easier.

本発明の低融点熱融着性繊維は、単繊維強度が1cN/dtex以上であり、単繊維伸度が100%以下であることが好ましい。
単繊維強度が1cN/dtex以上であれば、融着加工時の繊維の取扱いが容易となり、また単繊維伸度が100%以下であれば、融着加工時の繊維の取扱いが容易となる。
この観点から、本発明の低融点熱融着性繊維は、単繊維強度が1.3cN/dtex以上、単繊維伸度が90%以下であることがより好ましく、単繊維強度が1.5cN/dtex以上、単繊維伸度が80%以下であることがさらに好ましい。
The low melting point heat-fusible fiber of the present invention preferably has a single fiber strength of 1 cN / dtex or more and a single fiber elongation of 100% or less.
If the single fiber strength is 1 cN / dtex or more, handling of the fiber during fusion bonding is easy, and if the single fiber elongation is 100% or less, handling of the fiber during fusion bonding is easy.
From this viewpoint, the low melting point heat fusible fiber of the present invention preferably has a single fiber strength of 1.3 cN / dtex or more and a single fiber elongation of 90% or less, and a single fiber strength of 1.5 cN / More preferably, the single fiber elongation is 80% or less.

本発明の低融点熱融着性繊維を構成する低融点樹脂、及び前記低融点樹脂に混合する高融点樹脂には、繊維物性に影響しない範囲で各種機能剤が添加され含まれていてもよい。例えば、樹脂に含まれる添加物としては、リン系化合物、含臭素化合物からなる難燃剤、ヒンダードアミン系化合物からなる耐光安定剤、酸化防止剤、マイカ、タルク、チタンカリウム、炭酸カルシウム、シリカ等の有機、無機物等の機能剤が挙げられ、また着色用の顔料及び染料が添加されていてもよい。
また、本発明の低融点熱融着性繊維は、その繊維断面が丸断面、及び三角等の異形断面でもよく、丸断面と異形断面の繊維が混合されていてもよい。さらに繊維繊度も任意に選択できる。
Various functional agents may be added to and contained in the low melting point resin constituting the low melting point heat fusible fiber of the present invention and the high melting point resin mixed with the low melting point resin as long as the fiber physical properties are not affected. . For example, as additives contained in the resin, a phosphorus-based compound, a flame retardant comprising a bromine-containing compound, a light stabilizer comprising a hindered amine-based compound, an antioxidant, mica, talc, titanium potassium, calcium carbonate, an organic compound such as silica And inorganic functional agents, and coloring pigments and dyes may be added.
Further, the low melting point heat-fusible fiber of the present invention may have a cross section with a round cross section or a triangular cross section, or fibers of a round cross section and a cross section with a different cross section may be mixed. Furthermore, the fiber fineness can also be selected arbitrarily.

本発明の低融点熱融着性繊維を構成する低融点樹脂及び高融点樹脂は、そのMFR(メルトフローレイト)値がそれぞれ5〜50g/分であることが好ましい。MFR値が5g/分以上であれば、安定した製糸性が得られる。また、MFR値が50g/分以下であれば、安定した製糸性が得られると共に、得られた繊維の繊維強度の低下を少なくすることができる。
これらの観点から、本発明の低融点熱融着性繊維を構成する低融点樹脂及び高融点樹脂のMFR値は、それぞれ10g/分〜30g/分であることがより好ましい。
The low melting point resin and the high melting point resin constituting the low melting point heat fusible fiber of the present invention preferably have an MFR (melt flow rate) value of 5 to 50 g / min. If the MFR value is 5 g / min or more, stable spinning properties can be obtained. When the MFR value is 50 g / min or less, stable spinning properties can be obtained, and the decrease in fiber strength of the obtained fiber can be reduced.
From these viewpoints, the MFR value of each of the low melting point resin and the high melting point resin constituting the low melting point heat fusible fiber of the present invention is more preferably 10 g / min to 30 g / min.

本発明の低融点熱融着性繊維における高融点樹脂と低融点樹脂は、双方が相溶性のあるポリオレフィン系樹脂であることが好ましく、ポリオレフィン系樹脂であれば、ポリオレフィン系樹脂の種類或いは組合せに特に限定はないが、双方がポリエチレン樹脂であることがより好ましい。   The high melting point resin and the low melting point resin in the low melting point heat fusible fiber of the present invention are preferably both polyolefin resins which are compatible, and in the case of a polyolefin resin, the kind or combination of polyolefin resins There is no particular limitation, but it is more preferable that both be polyethylene resins.

以下、本発明を実施例により具体的に説明する。なお、実施例における各項目の測定は次の方法に拠った。   Hereinafter, the present invention will be specifically described by way of examples. In addition, the measurement of each item in an Example depended on the following method.

(樹脂のMFR測定方法)
MFRの測定はJIS K7210のB法に準じた。
(MFR measurement method of resin)
The measurement of MFR conformed to method B of JIS K7210.

(繊維の熱流束DSC(示差走査熱量測定)方法)
DSCは、DSC装置(リガク社製Thermo plus DSC8230 SMART LOADER)を使用し、JIS K7121(2012)に準じた。
(Fiber heat flux DSC (differential scanning calorimetry) method)
As DSC, a DSC apparatus (Thermo plus DSC 8230 SMART LOADER manufactured by RIGAKU CO., LTD.) Was used, and was in accordance with JIS K 7121 (2012).

(実施例1)
低融点樹脂としてポリエチレン樹脂A(日本ポリエチレン社製、カーネルKS560T、MFR=17g/10分、融点90℃、密度0.89)を準備した。
孔形状が丸形状、孔径が0.8mmの吐出孔を30個有する紡糸口金を用いて、紡糸頭温度205℃で、吐出量39.5g/分で、溶融した前記ポリエチレン樹脂Aを紡出し、紡糸速度が400m/分で巻き取とった。引き続いて、延伸倍率が4.15倍、延伸温度が50℃、熱セット温度が70℃で延伸を行い、巻取速度が300m/分で巻き取り、250dtex/30フィラメント(総繊度250dtex、フィラメント数30本)の熱融着性繊維を得た。得られた繊維の単繊維物性は、引張強度が1.74cN/dTex、引張伸度が68.0%であった。
この熱融着性繊維は、図1のDSC曲線が示すとおり、DSC曲線には融点が89.4℃であることを示す吸熱ピーク1の1つの吸着ピークがあり、吸着ピーク1の大きさが−12.818cal/gであった。
また、この熱融着性繊維を筒編機にて編地を作成し、沸騰水で5分間の熱処理を行った。得られた編地を目視で観察したところ、繊維の全ての交点に融着箇所が確認できた。これらの条件及び結果を表1に示す。
Example 1
As a low melting point resin, polyethylene resin A (manufactured by Nippon Polyethylene Co., Kernel KS 560T, MFR = 17 g / 10 min, melting point 90 ° C., density 0.89) was prepared.
The molten polyethylene resin A is spun at a spinning head temperature of 205 ° C. and a discharge rate of 39.5 g / min using a spinneret having 30 round discharge holes with a round shape and a hole diameter of 0.8 mm. The film was taken up at a spinning speed of 400 m / min. Subsequently, the film is drawn at a draw ratio of 4.15 times, a drawing temperature of 50 ° C., a heat setting temperature of 70 ° C., a winding speed of 300 m / min, 250 dtex / 30 filaments (total denier 250 dtex, number of filaments) 30) heat fusible fibers were obtained. The single fiber physical properties of the obtained fiber were a tensile strength of 1.74 cN / dTex and a tensile elongation of 68.0%.
This heat-fusible fiber has one adsorption peak of endothermic peak 1 indicating that the melting point is 89.4 ° C. in the DSC curve, as shown by the DSC curve in FIG. 1, and the size of adsorption peak 1 is It was −12.818 cal / g.
Further, a knitted fabric was made of this heat-fusible fiber with a tubular knitting machine, and heat treatment was performed for 5 minutes with boiling water. As a result of visual observation of the obtained knitted fabric, fusion-bonded portions could be confirmed at all intersection points of the fibers. These conditions and results are shown in Table 1.

(実施例2)
実施例1にて低融点樹脂として使用したポリエチレン樹脂A90質量%、高融点樹脂としてポリエチレン樹脂B(日本ポリエチレン社製、HE481、MFR=15g/10分、融点134℃、密度0.96)10質量%の混合比で混合した樹脂を準備し、延伸倍率を4.56倍に変えた以外は、実施例1と同条件で、231dtex/30フィラメントの熱融着性繊維を得た。得られた繊維の単繊維物性は、引張強度が1.70cN/dtex、引張伸度が69.0%であった。
この熱融着性繊維は、図2のDSC曲線が示すとおり、DSC曲線には融点が89.5℃であることを示す吸熱ピーク1と融点が125.2℃であることを示す吸熱ピーク2の2つの吸熱ピークがあり、吸着ピーク1の大きさが−9.508cal/gであった。
また、この熱融着性繊維を筒編機にて編地を作成し、沸騰水で5分間の熱処理を行った。得られた編地を目視で観察したところ、繊維の全ての交点に融着箇所が確認できた。これらの条件及び結果を表1に示す。
(Example 2)
90% by mass of polyethylene resin A used as low melting point resin in Example 1, polyethylene resin B as high melting point resin (manufactured by Japan Polyethylene Corporation, HE481, MFR = 15 g / 10 min, melting point 134 ° C., density 0.96) 10 mass A heat-sealable fiber of 231 dtex / 30 filaments was obtained under the same conditions as in Example 1 except that a resin mixed at a mixing ratio of% was prepared and the draw ratio was changed to 4.56 times. The single fiber physical properties of the obtained fiber were 1.70 cN / dtex in tensile strength and 69.0% in tensile elongation.
The heat fusible fiber has an endothermic peak 1 which shows that the melting point is 89.5 ° C. and an endothermic peak 2 which shows that the melting point is 125.2 ° C. as shown by the DSC curve in FIG. There were two endothermic peaks of and the size of adsorption peak 1 was -9.508 cal / g.
Further, a knitted fabric was made of this heat-fusible fiber with a tubular knitting machine, and heat treatment was performed for 5 minutes with boiling water. As a result of visual observation of the obtained knitted fabric, fusion-bonded portions could be confirmed at all intersection points of the fibers. These conditions and results are shown in Table 1.

(実施例3)
実施例2におけるポリエチレン樹脂Aとポリエチレン樹脂Bとの混合樹脂の混合比を、ポリエチレン樹脂A80質量%、ポリエチレン樹脂B20質量%の混合比に変更し、吐出量を24.0g/分、延伸倍率を4.73倍に変えた以外は、実施例1と同条件で、133dtex/30フィラメントの熱融着性繊維を得た。得られた繊維の単繊維物性は、引張強度は1.73cN/dtex、引張伸度は56.0%であった。
この熱融着性繊維は、図3のDSC曲線が示すとおり、DSC曲線には融点が88.2℃であることを示す吸熱ピーク1と融点が126.1℃であることを示す吸熱ピーク2の2つの吸熱ピークがあり、吸着ピーク1の大きさが−7.873cal/gであった。また、この熱融着性繊維を筒編機にて編地を作成し、沸騰水で5分間熱処理を行った。得られた編地を目視で観察したところ、繊維の全ての交点に融着箇所が確認できた。これらの条件及び結果を表1に示す。
(Example 3)
The mixing ratio of the mixed resin of polyethylene resin A and polyethylene resin B in Example 2 is changed to a mixing ratio of 80% by mass of polyethylene resin A and 20% by mass of polyethylene resin B, discharge amount is 24.0 g / min, draw ratio is A heat-fusible fiber of 133 dtex / 30 filaments was obtained under the same conditions as in Example 1 except that it was changed by 4.73 times. With respect to single fiber physical properties of the obtained fiber, the tensile strength was 1.73 cN / dtex, and the tensile elongation was 56.0%.
This heat-fusible fiber has an endothermic peak 1 which shows that the melting point is 88.2 ° C. and an endothermic peak 2 which shows that the melting point is 126.1 ° C. as shown by the DSC curve in FIG. There were two endothermic peaks of and the size of adsorption peak 1 was -7.873 cal / g. In addition, a knitted fabric was made of this heat-fusible fiber with a cylinder knitting machine, and heat treatment was performed with boiling water for 5 minutes. As a result of visual observation of the obtained knitted fabric, fusion-bonded portions could be confirmed at all intersection points of the fibers. These conditions and results are shown in Table 1.

(実施例4)
実施例2におけるポリエチレン樹脂Aとポリエチレン樹脂Bとの混合樹脂の混合比を、ポリエチレン樹脂A70質量%、ポリエチレン樹脂B30質量%の混合比に変更し、吐出量を24.0g/分、延伸倍率を4.90倍に変えた以外は、実施例1と同条件で、138dtex/30フィラメントの熱融着性繊維を得た。得られた繊維の単繊維物性は、引張強度は1.56cN/dtex、引張伸度は38.0%であった。
この熱融着性繊維は、図4のDSC曲線が示すとおり、DSC曲線には融点が90.4℃であることを示す吸熱ピーク1と融点が127.2℃であることを示す吸熱ピーク2の2つの吸熱ピークがあり、吸着ピーク1の大きさが−3.768cal/gであった。
また、この熱融着性繊維を筒編機にて編地を作成し、沸騰水で5分間熱処理を行った。得られた編地を目視で観察したところ、繊維の全ての交点に融着箇所が確認できた。これらの条件及び結果を表1に示す。
(Example 4)
The mixing ratio of the mixed resin of polyethylene resin A and polyethylene resin B in Example 2 is changed to a mixing ratio of 70% by mass of polyethylene resin A and 30% by mass of polyethylene resin B, discharge amount is 24.0 g / min, draw ratio is A thermally fusible fiber of 138 dtex / 30 filaments was obtained under the same conditions as in Example 1 except that the power was changed by 4.90 times. The single fiber physical properties of the obtained fiber were such that the tensile strength was 1.56 cN / dtex and the tensile elongation was 38.0%.
This heat-fusible fiber has an endothermic peak 1 indicating that the melting point is 90.4 ° C. and an endothermic peak 2 indicating that the melting point is 127.2 ° C. in the DSC curve, as shown by the DSC curve in FIG. There were two endothermic peaks of and the size of adsorption peak 1 was −3.768 cal / g.
In addition, a knitted fabric was made of this heat-fusible fiber with a cylinder knitting machine, and heat treatment was performed with boiling water for 5 minutes. As a result of visual observation of the obtained knitted fabric, fusion-bonded portions could be confirmed at all intersection points of the fibers. These conditions and results are shown in Table 1.

(実施例5)
実施例2におけるポリエチレン樹脂Aとポリエチレン樹脂Bとの混合樹脂の混合比を、ポリエチレン樹脂A50質量%、ポリエチレン樹脂B50質量%の混合比に変更し、吐出量を24.0g/分、延伸倍率を4.96倍に変えた以外は、実施例1と同条件で、138dtex/30フィラメントの熱融着性繊維を得た。得られた繊維の単繊維の物性は、引張強度は1.48cN/dtex、引張伸度は33.6%であった。
この熱融着性繊維は、図5のDSC曲線が示すとおり、DSC曲線には融点が91.2℃であることを示す吸着ピーク1と融点が127.6℃であることを示す吸着ピーク2の2つの吸着ピークがあり、吸着ピーク1の大きさが−2.334cal/gであった。また、この熱融着性繊維を筒編機にて編地を作成し、沸騰水で5分間の熱処理を行った。得られた編地を目視で確認したところ、繊維の全ての交点に融着箇所が確認できた。これらの条件及び結果を表1に示す。
(Example 5)
The mixing ratio of the mixed resin of polyethylene resin A and polyethylene resin B in Example 2 is changed to a mixing ratio of 50% by mass of polyethylene resin A and 50% by mass of polyethylene resin B, discharge amount is 24.0 g / min, draw ratio is A thermally fusible fiber of 138 dtex / 30 filaments was obtained under the same conditions as in Example 1 except that it was changed to 4.96 times. The physical properties of the single fiber of the obtained fiber were 1.48 cN / dtex in tensile strength and 33.6% in tensile elongation.
As the DSC curve in FIG. 5 shows, this thermally fusible fiber has an adsorption peak 1 indicating that the melting point is 91.2 ° C. and an adsorption peak 2 indicating that the melting point is 127.6 ° C. in the DSC curve. There were two adsorption peaks of and the size of adsorption peak 1 was -2.334 cal / g. Further, a knitted fabric was made of this heat-fusible fiber with a tubular knitting machine, and heat treatment was performed for 5 minutes with boiling water. When the obtained knitted fabric was visually confirmed, fusion-bonded portions could be confirmed at all intersection points of the fibers. These conditions and results are shown in Table 1.

(比較例1)
実施例2におけるポリエチレン樹脂Aとポリエチレン樹脂Bとの混合樹脂の混合比を、ポリエチレン樹脂A40質量%、ポリエチレン樹脂B60質量%の混合比に変更し、延伸倍率を4.95倍に変えた以外は、実施例1と同条件で、235dtex/30フィラメントの熱融着性繊維を得た。得られた繊維の単繊維物性は、引張強度は1.74cN/dtex、引張伸度は68.0%であった。
この熱融着性繊維は、図6のDSC曲線が示すとおり、DSC曲線には融点が97.2℃であることを示す吸着ピーク1と融点が127.8℃であることを示す吸着ピーク2の2つの吸着ピークがあり、吸着ピーク1の大きさが−0.078cal/gであった。
また、この熱融着性繊維を筒編機にて編地を作成し、沸騰水で5分間の熱処理を行った。得られた編地を目視で確認したところ、繊維の全ての交点に融着箇所は確認できなかった。これらの条件及び結果を表1に示す。
(Comparative example 1)
The mixing ratio of the mixed resin of polyethylene resin A and polyethylene resin B in Example 2 was changed to a mixing ratio of 40% by mass of polyethylene resin A and 60% by mass of polyethylene resin B, and the draw ratio was changed to 4.95. Under the same conditions as in Example 1, heat-sealable fibers of 235 dtex / 30 filaments were obtained. With regard to single fiber physical properties of the obtained fiber, the tensile strength was 1.74 cN / dtex, and the tensile elongation was 68.0%.
As the DSC curve in FIG. 6 shows, this thermally fusible fiber has an adsorption peak 1 indicating that the melting point is 97.2 ° C. and an adsorption peak 2 indicating that the melting point is 127.8 ° C. in the DSC curve. There were two adsorption peaks of and the size of adsorption peak 1 was -0.078 cal / g.
Further, a knitted fabric was made of this heat-fusible fiber with a tubular knitting machine, and heat treatment was performed for 5 minutes with boiling water. When the obtained knitted fabric was visually confirmed, no fused portion could be confirmed at all the intersection points of the fibers. These conditions and results are shown in Table 1.

(比較例2)
実施例2にて高融点樹脂として使用したポリエチレン樹脂Bを準備し、延伸倍率を3.02倍、延伸温度を80℃、熱セット温度を85℃に変えた以外は、実施例1と同条件で、385dtex/30フィラメントの熱融着性繊維を得た。得られた繊維の単繊維物性は、引張強度は1.83cN/dtex、引張伸度は76.1%であった。
この熱融着性繊維を筒編機にて編地を作成し、沸騰水で5分間の熱処理を行った。得られた編地を目視で確認したところ、繊維の全ての交点に融着箇所は確認できなかった。これらの条件及び結果を表1に示す。
なお、この熱融着性繊維の融点については、使用したポリエチレン樹脂Bより、融点が100℃を超えることが明らかであり、繊維の融点は未測定である。
(Comparative example 2)
A polyethylene resin B used as a high melting point resin in Example 2 is prepared, and the conditions are the same as in Example 1 except that the stretching ratio is 3.02, the stretching temperature is 80 ° C., and the heat setting temperature is 85 ° C. Thus, 385 dtex / 30 filaments of heat fusible fiber were obtained. With respect to single fiber physical properties of the obtained fiber, the tensile strength was 1.83 cN / dtex, and the tensile elongation was 76.1%.
The heat fusible fiber was used to make a knitted fabric with a cylinder knitting machine, and heat treatment was performed with boiling water for 5 minutes. When the obtained knitted fabric was visually confirmed, no fused portion could be confirmed at all the intersection points of the fibers. These conditions and results are shown in Table 1.
As for the melting point of the heat-fusible fiber, it is clear from the used polyethylene resin B that the melting point exceeds 100 ° C., and the melting point of the fiber is not measured.

本発明の低融点熱融着性繊維は、100℃未満の温度で融着する融点が100℃未満の熱融着性繊維であることから、常圧の沸騰水での融着加工も可能となり、既存の熱処理設備が利用でき、また加工エネルギーの効率化や加工コストを低下させることができ、その応用範囲を拡大することができる。
The low melting point heat fusible fiber of the present invention is a heat fusible fiber having a melting point of less than 100 ° C. which is fused at a temperature of less than 100 ° C. The existing heat treatment equipment can be used, and the efficiency of processing energy and the processing cost can be reduced, and the range of application can be expanded.

Claims (8)

熱可塑性樹脂からなる繊維であって、該繊維の熱流束DSCにおけるDSC曲線に100℃未満の融点を示す吸着ピークを少なくとも1つ有し、該ピークの大きさが−0.1cal/g以下である低融点熱融着性繊維。   A fiber made of a thermoplastic resin, which has at least one adsorption peak showing a melting point of less than 100 ° C. in a DSC curve of the fiber in heat flux DSC, and the size of the peak is -0.1 cal / g or less Some low melting point heat fusible fibers. 前記熱可塑性樹脂がポリオレフィン系樹脂である請求項1に記載の低融点熱融着性繊維。   The low melting point heat fusible fiber according to claim 1, wherein the thermoplastic resin is a polyolefin resin. 前記ポリオレフィン系樹脂がポリエチレン樹脂である請求項2に記載の低融点熱融着性繊維。   The low melting point heat fusible fiber according to claim 2, wherein the polyolefin resin is a polyethylene resin. 前記熱融着性繊維が長繊維である請求項1〜3のいずれか一項に記載の低融点熱融着性繊維。   The low melting point heat fusible fiber according to any one of claims 1 to 3, wherein the heat fusible fiber is a long fiber. 前記熱融着性繊維が、融点が100℃未満の熱可塑性樹脂50〜100質量%と融点が100℃以上の熱可塑性樹脂0〜50質量%を含有する樹脂からなる繊維である請求項1〜4のいずれか一項に記載の低融点熱融着性繊維。   The heat fusible fiber is a fiber comprising a resin containing 50 to 100% by mass of a thermoplastic resin having a melting point of less than 100 ° C. and 0 to 50% by mass of a thermoplastic resin having a melting point of 100 ° C. or more. The low melting point heat-sealable fiber according to any one of 4. 融点が100℃未満の熱可塑性樹脂がメタロセン触媒にて重合されたポリオレフィン樹脂である請求項5に記載の低融点熱融着性繊維。   The low melting point heat fusible fiber according to claim 5, wherein the thermoplastic resin having a melting point of less than 100 ° C is a metallocene resin-polymerized polyolefin resin. 前記ポリオレフィン系樹脂が、ポリエチレン樹脂である請求項6に記載の低融点熱融着性繊維。   The low melting point heat fusible fiber according to claim 6, wherein the polyolefin resin is a polyethylene resin. 単繊維強度が1cN/dtex以上であり、単繊維伸度が100%以下である請求項1〜7のいずれか一項に記載の低融点熱融着性繊維。   The low melting point heat-fusible fiber according to any one of claims 1 to 7, wherein the single fiber strength is 1 cN / dtex or more and the single fiber elongation is 100% or less.
JP2017196451A 2017-10-06 2017-10-06 Low-melting-temperature thermal fusion fiber Pending JP2019070207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017196451A JP2019070207A (en) 2017-10-06 2017-10-06 Low-melting-temperature thermal fusion fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196451A JP2019070207A (en) 2017-10-06 2017-10-06 Low-melting-temperature thermal fusion fiber

Publications (1)

Publication Number Publication Date
JP2019070207A true JP2019070207A (en) 2019-05-09

Family

ID=66440521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196451A Pending JP2019070207A (en) 2017-10-06 2017-10-06 Low-melting-temperature thermal fusion fiber

Country Status (1)

Country Link
JP (1) JP2019070207A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130991A (en) * 1996-10-31 1998-05-19 Nippon Porikemu Kk Nonwoven fabric or woven or knitted fabric having thermally bonded crossing part of warp and weft and laminate using the same
JPH11140766A (en) * 1997-11-13 1999-05-25 Oji Paper Co Ltd Polyolefin conjugated continuous filament nonwoven fabric
JP2011506778A (en) * 2007-12-14 2011-03-03 Esファイバービジョンズ株式会社 Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130991A (en) * 1996-10-31 1998-05-19 Nippon Porikemu Kk Nonwoven fabric or woven or knitted fabric having thermally bonded crossing part of warp and weft and laminate using the same
JPH11140766A (en) * 1997-11-13 1999-05-25 Oji Paper Co Ltd Polyolefin conjugated continuous filament nonwoven fabric
JP2011506778A (en) * 2007-12-14 2011-03-03 Esファイバービジョンズ株式会社 Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same

Similar Documents

Publication Publication Date Title
JP7281174B2 (en) Sheath-core composite thermoadhesive fiber
JP2011132644A (en) Woven or knitted fabric
JP6345938B2 (en) Thermal adhesive long fiber
JP2015059274A (en) Composite fiber and method for producing the same
JP2019070207A (en) Low-melting-temperature thermal fusion fiber
JPH01156530A (en) Combination of filaments substantially different in meltiog point or decomposition point
JP6836765B2 (en) Method for manufacturing drawn multifilament yarn
CN106917158A (en) A kind of High-strength polypropylene fiber and its manufacture method
JP2009299209A (en) Sheath-core conjugate filament
JP6604583B2 (en) Textile thermoforming method
JP6851613B2 (en) Method of manufacturing fabric reinforcement
JP4914794B2 (en) Method for producing core-sheath type composite fiber containing polycarbonate
JP7411202B2 (en) Weather-resistant thermoformed body and its manufacturing method
JP2014065995A (en) Molten anisotropic aromatic polyester fiber excellent in cut resistance
JP6458873B2 (en) Polyolefin fiber and method for producing the same
JP2015121007A (en) Polymethylpentene-based side-by-side-type composite fiber
JP2018150667A (en) Core-sheath composite thermally fusible yarn and manufacturing method thereof
WO2019131460A1 (en) Modified ethylene-vinyl alcohol copolymer fibers
JP6937719B2 (en) Composite fibers and fabrics made of them
JP2017148473A (en) String for gut
CN106222788A (en) Car belt PP Pipe Compound method of modifying
JP6687201B2 (en) Polyamide fiber
JP7236763B2 (en) Weft for carbon fiber fabric and carbon fiber fabric using this weft
JP7112769B2 (en) METHOD FOR REINFORCING WALL OF RESIN CONTAINER
JP6917218B2 (en) Kaijima type composite fiber and fabric made of it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308