JP2009299209A - Sheath-core conjugate filament - Google Patents

Sheath-core conjugate filament Download PDF

Info

Publication number
JP2009299209A
JP2009299209A JP2008152981A JP2008152981A JP2009299209A JP 2009299209 A JP2009299209 A JP 2009299209A JP 2008152981 A JP2008152981 A JP 2008152981A JP 2008152981 A JP2008152981 A JP 2008152981A JP 2009299209 A JP2009299209 A JP 2009299209A
Authority
JP
Japan
Prior art keywords
core
sheath
polyethylene
strength
type composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152981A
Other languages
Japanese (ja)
Inventor
Shuji Miyazaki
修二 宮崎
Shiro Ishibai
司郎 石灰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Fibers Ltd
Original Assignee
Unitika Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Fibers Ltd filed Critical Unitika Fibers Ltd
Priority to JP2008152981A priority Critical patent/JP2009299209A/en
Publication of JP2009299209A publication Critical patent/JP2009299209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermobondable filament having a high strength and alkali resistance sufficiently usable for industrial materials used in an alkali environment by forming the filament into a sheath-core conjugate filament using a polyester at the core part and a polyethylene at the sheath part. <P>SOLUTION: The sheath-core conjugate filament is formed of the core part comprising a polyethylene terephthalate and the sheath part comprising the polyethylene having a melting point lower than that of the core part, the sheath-core conjugate filament has a breaking strength of not less than 3.5 cN/dtex, and a strength retention after subjected to alkali treatment in 10% sodium hydroxide solution at 70°C for 100 min of 80%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、芯部にポリエチレンテレフタレート、鞘部にポリエチレンを配した複合繊維の長繊維であって、熱処理により鞘部が接着成分となり、耐アルカリ性を必要とするメッシュシートやネット等に用いることが好適な芯鞘型複合長繊維に関するものである。   The present invention is a long fiber of a composite fiber in which polyethylene terephthalate is disposed in the core and polyethylene is disposed in the sheath, and the sheath becomes an adhesive component by heat treatment and can be used for mesh sheets and nets that require alkali resistance. The present invention relates to a suitable core-sheath type composite continuous fiber.

従来、メッシュシート等の交点部の固定やターポリン用布帛等の通水性が重要視される用途では、塩化ビニル樹脂等の樹脂を用いて加工が行われている。しかし、近年、塩化ビニル樹脂等は環境への影響が問題視され、樹脂加工を行わない加工方法が検討されるようになってきた。   2. Description of the Related Art Conventionally, processing is performed using a resin such as a vinyl chloride resin in applications in which fixing of intersections such as mesh sheets and water permeability such as tarpaulin fabrics are important. However, in recent years, vinyl chloride resins and the like have been considered to have a problem of influence on the environment, and processing methods that do not perform resin processing have been studied.

その一つとして、鞘部が低融点成分である芯鞘型の熱接着性長繊維を用いて、製編織した後、熱処理を行って低融点成分を溶融又は軟化させることによって、交点部を固定したメッシュシートや網目形状を固定したネット、更には繊維からなる成型棒等が提案されている(例えば、特許文献1、2、3参照)。   As one of them, core-sheath type heat-bondable long fibers whose sheath part is a low melting point component are used for knitting and weaving, and then heat treatment is performed to melt or soften the low melting point component to fix the intersection part. A mesh sheet, a net with a fixed mesh shape, and a molded rod made of fibers have been proposed (see, for example, Patent Documents 1, 2, and 3).

そして、このような熱接着性長繊維は、寸法安定性や耐候性及び価格の面において、ポリエステルを芯成分及び鞘成分に用いたポリエステル系の熱接着性長繊維が一般的に用いられている。しかしながら、ポリエステル系繊維は耐アルカリ性に劣るという欠点を有していた。   And as for such heat-bondable long fibers, polyester-based heat-bondable long fibers using polyester as a core component and a sheath component are generally used in terms of dimensional stability, weather resistance, and price. . However, polyester fibers have the disadvantage of poor alkali resistance.

したがって、アルカリ環境下でポリエステル系の熱接着性長繊維を用いたメッシュシートやネット等を使用する場合に、加水分解による劣化が速く、長期間の使用に問題があった。   Therefore, when a mesh sheet or net using polyester-based heat-bondable long fibers is used in an alkaline environment, degradation due to hydrolysis is rapid and there is a problem in long-term use.

このようなことから、寸法安定性や耐候性に優れたポリエステル系の繊維でありながら、耐アルカリ性に優れた熱接着性長繊維が要望視されるようになってきた。
特開2001−271245号公報 特開2001−271270号公報 特開2001−214388号公報
For these reasons, there has been a growing demand for heat-bondable long fibers having excellent alkali resistance while being polyester fibers having excellent dimensional stability and weather resistance.
JP 2001-271245 A JP 2001-271270 A JP 2001-214388 A

本発明は、上記の問題点を解決し、芯部にポリエステルを用い、鞘部にポリエチレンを用いた芯鞘型複合繊維とすることで、アルカリ環境下で使用する産業資材用途に十分使用可能な高強度と耐アルカリ性を有する熱接着性長繊維を提供することを技術的な課題とするものである。   The present invention solves the above-described problems, and can be sufficiently used for industrial materials used in an alkaline environment by using a core-sheath type composite fiber using polyester for the core and polyethylene for the sheath. It is a technical problem to provide a heat-bondable long fiber having high strength and alkali resistance.

本発明者らは、上記の課題を解決すべく検討した結果、本発明に到達した。
すなわち、本発明は、芯部がポリエチレンテレフタレート、鞘部が芯部より低融点のポリエチレンで構成された芯鞘型複合繊維の長繊維であって、切断強度が3.5cN/dtex以上、10%水酸化ナトリウム溶液中で70℃、100分間のアルカリ処理を施した後の強力保持率が80%以上であることを特徴とする芯鞘型複合長繊維を要旨とするものである。
The inventors of the present invention have arrived at the present invention as a result of studies to solve the above problems.
That is, the present invention is a long fiber of a core-sheath type composite fiber having a core part made of polyethylene terephthalate and a sheath part made of polyethylene having a melting point lower than that of the core part, and the cutting strength is 3.5 cN / dtex or more, 10% The gist is a core-sheath type composite continuous fiber characterized by having a strength retention of 80% or more after an alkali treatment at 70 ° C. for 100 minutes in a sodium hydroxide solution.

本発明の芯鞘型複合長繊維は、寸法安定性や耐候性に優れたポリエステルを芯部とし、芯部より低融点のポリエチレンを鞘部に配しているため、熱処理により鞘部のポリエチレンは溶融して接着成分となる。熱処理によりポリエチレンが溶融すると、芯部のポリエステルからなる繊維の表面を被覆し、ポリエチレンは耐アルカリ性に優れているため、ポリエステルの加水分解を抑制することが可能となる。したがって、本発明の芯鞘型複合長繊維は、アルカリ環境下で使用する産業資材、例えばメッシュシートやネット等に好適に用いることができる。   The core-sheath type composite continuous fiber of the present invention uses polyester having excellent dimensional stability and weather resistance as a core part, and polyethylene having a melting point lower than that of the core part is arranged in the sheath part. Melts to become an adhesive component. When polyethylene is melted by the heat treatment, the surface of the fiber made of polyester in the core is coated, and since polyethylene is excellent in alkali resistance, hydrolysis of polyester can be suppressed. Therefore, the core-sheath type composite continuous fiber of the present invention can be suitably used for industrial materials used in an alkaline environment, such as mesh sheets and nets.

以下、本発明について詳細に説明する。
本発明の芯鞘型複合長繊維は、マルチフィラメントでもモノフィラメントであってもよいが、単糸を糸長方向に対して垂直に切断した横断面形状において、芯鞘型の複合形状を呈しているものである。芯部は1つでも2〜5個程度の複数個ある多芯型であってもよい。また芯鞘形状は同心円型のものであっても、偏心型のものであってもよい。さらには横断面形状は芯鞘型であれば、丸断面形状のもののみならず、多角形等の異形のものであってもよい。
Hereinafter, the present invention will be described in detail.
The core-sheath type composite continuous fiber of the present invention may be multifilament or monofilament, but exhibits a core-sheath type composite shape in a cross-sectional shape obtained by cutting a single yarn perpendicularly to the yarn length direction. Is. There may be one core part or a multi-core type having about 2 to 5 cores. The core-sheath shape may be concentric or eccentric. Furthermore, as long as the cross-sectional shape is a core-sheath type, it may be not only a round cross-sectional shape but also an irregular shape such as a polygon.

そして、本発明の芯鞘型複合長繊維は、芯部がポリエチレンテレフタレート、鞘部が芯部より低融点のポリエチレンで構成される。芯部をポリエチレンテレフタレート(以下、PETと略称することもある。)で構成させることで、良好な製糸性が得られるとともに、耐候性や寸法安定性、強度に優れるものとなる。   The core-sheath composite long fiber of the present invention is composed of polyethylene terephthalate at the core and polyethylene having a melting point lower than that of the core. By constituting the core portion with polyethylene terephthalate (hereinafter sometimes abbreviated as PET), good yarn-making properties can be obtained, and weather resistance, dimensional stability, and strength are excellent.

芯部のPETには、本発明の目的とする性能を損なわない範囲で、他の成分を含有していてもよく、例えば、各種添加剤や原着繊維とするために着色顔料等、あるいは他の共重合成分を含有するものであってもよい。   The PET in the core may contain other components as long as the intended performance of the present invention is not impaired. For example, various additives or colored pigments for making the original fibers, or others The copolymer component may be contained.

芯部のPETの極限粘度〔η〕は、0.6〜1.1が好ましい。極限粘度〔η〕が0.6より低くなると切断強度が低下しやすくなるため好ましくない。一方、極限粘度が1.1より高くなると、鞘部が低融点であるため延伸時に十分な熱処理が行えないこととなり、熱接着加工時の熱収縮が大きくなり、加工性が低下しやすくなるため好ましくない。   The intrinsic viscosity [η] of the PET at the core is preferably 0.6 to 1.1. If the intrinsic viscosity [η] is lower than 0.6, the cutting strength tends to decrease, which is not preferable. On the other hand, when the intrinsic viscosity is higher than 1.1, since the sheath portion has a low melting point, sufficient heat treatment cannot be performed at the time of stretching, and heat shrinkage at the time of heat bonding processing increases, and the workability tends to be lowered. It is not preferable.

また、鞘部は芯部より低融点のポリエチレンで構成されるものであり、中密度または高密度ポリエチレンを用いることが好ましく、中でも、溶融流動性や冷却の面に優れ、製糸性が良好となるため高密度ポリエチレン(以下、HDPEと略称することもある。)を用いることが好ましい。   Further, the sheath part is composed of polyethylene having a lower melting point than the core part, and it is preferable to use medium density or high density polyethylene. Among them, the melt fluidity and cooling are excellent, and the yarn production is good. Therefore, it is preferable to use high-density polyethylene (hereinafter sometimes abbreviated as HDPE).

ポリエチレンの融点は、鞘部のPETよりも100〜150℃低いことが好ましく、中でも110〜140℃低いことが好ましい。   The melting point of polyethylene is preferably 100 to 150 ° C. lower than that of the sheath PET, and more preferably 110 to 140 ° C. among them.

また、HDPEの密度は0.945〜0.965とすることが好ましい。なおHDPEの密度は、JISK7112 プラスチック−非発泡プラスチックの密度及び比重の測定方法のD法(密度こうばい管)により測定したものである。   The density of HDPE is preferably 0.945 to 0.965. The density of HDPE is measured by the method D (density density tube) for measuring the density and specific gravity of JISK7112 plastic-non-foamed plastic.

さらに、HDPEのメルトインデックス値(以下、MI値と略称することもある。)はASTMのD−1238(E)の方法で測定して5〜30g/10分の範囲のものが好ましい。この範囲を超えると強度低下を起こすことがあり、一方、MI値が5g/10分未満になると溶融粘性が高くなるため、熱接着加工時に溶融流動性が悪くなり、接着斑をおこすようになるため好ましくない。   Further, the melt index value of HDPE (hereinafter sometimes abbreviated as MI value) is preferably in the range of 5 to 30 g / 10 min as measured by the method of ASTM D-1238 (E). If this range is exceeded, strength may be reduced. On the other hand, if the MI value is less than 5 g / 10 min, the melt viscosity becomes high, resulting in poor melt fluidity during thermal bonding processing, resulting in adhesion spots. Therefore, it is not preferable.

また、鞘部のポリエチレンには本発明の目的とする性能を損なわない範囲で、着色顔料や各種添加剤が添加されていてもよい。   In addition, a color pigment and various additives may be added to the polyethylene of the sheath within a range that does not impair the target performance of the present invention.

次に、本発明の芯鞘型複合長繊維は、切断強度が3.5cN/dtex以上であることが必要であり、中でも3.8dtex以上であることが好ましい。切断強度が3.5cN/dtex未満であると、一般的な産業資材用途として使用するには強度が不足し、使用する用途が限られるようになる。   Next, the core-sheath type composite continuous fiber of the present invention is required to have a cutting strength of 3.5 cN / dtex or more, and preferably 3.8 dtex or more. When the cutting strength is less than 3.5 cN / dtex, the strength is insufficient for use as a general industrial material application, and the use application is limited.

そして、本発明の芯鞘型複合長繊維における芯鞘複合比(芯:鞘の質量比率)は、1:1〜5:1であることが好ましく、芯部がこの範囲より大きくなると複合形態が単糸間で不均一になりやすく、延伸性が劣るようになるため好ましくない。一方、芯部がこの範囲より小さくなると切断強度が低下し、好ましくない。   And the core-sheath composite ratio (core: sheath mass ratio) in the core-sheath-type composite long fiber of the present invention is preferably 1: 1 to 5: 1. When the core part is larger than this range, the composite form is obtained. This is not preferable because the yarn tends to be nonuniform between the single yarns and the drawability becomes poor. On the other hand, if the core is smaller than this range, the cutting strength is lowered, which is not preferable.

さらに、本発明の芯鞘型複合長繊維は耐アルカリ性に優れるものであり、その指標として、10%水酸化ナトリウム溶液中で70℃、100分間のアルカリ処理を施した後の強力保持率が80%以上であることが必要であり、中でも85%以上であることが好ましい。   Furthermore, the core-sheath type composite continuous fiber of the present invention is excellent in alkali resistance, and its index is 80% strength retention after being subjected to alkali treatment in 10% sodium hydroxide solution at 70 ° C. for 100 minutes. % Or more, and more preferably 85% or more.

本発明における強力保持率は、アルカリ処理前の切断強力をAとし、試料を長さ25cmの枠に固定した状態で、10%水酸化ナトリウム溶液中で70℃、100分間のアルカリ処理を施し、自然乾燥した後、枠から外して測定した切断強力をBとして、下記の式により強力保持率を算出するものである。
強力保持率(%)=(B/A)×100
The strength retention in the present invention is that the cutting strength before alkali treatment is A, and the sample is fixed to a frame of 25 cm in length, and subjected to alkali treatment in 10% sodium hydroxide solution at 70 ° C. for 100 minutes, After natural drying, the strength retention is calculated by the following equation, where B is the cutting strength measured by removing it from the frame.
Strength retention (%) = (B / A) × 100

強力保持率が80%以上であることにより、耐アルカリ性が必要とされる用途に長期間使用することが可能となる。一方、強力保持率がこれよりも低いと、長期間使用しないうちにメッシュシートやネット等が破断し、耐久性に劣るようになる。   When the strength retention is 80% or more, it can be used for a long period of time in applications requiring alkali resistance. On the other hand, if the strength retention is lower than this, the mesh sheet or net breaks before use for a long period of time, resulting in poor durability.

また、本発明の芯鞘型複合繊維は、寸法安定性や配向結晶化の向上のため切断伸度は15〜30%とすることが好ましい。   Further, the core-sheath type composite fiber of the present invention preferably has a cutting elongation of 15 to 30% in order to improve dimensional stability and orientation crystallization.

なお、本発明における切断強度、切断強力、切断伸度は、JIS L−1013引張り強さ及び伸び率の標準時試験に従い、島津製作所製オートグラフDSS−500を用い、つかみ間隔25cm、引っ張り速度30cm/分で測定するものである。   The cutting strength, cutting strength, and cutting elongation in the present invention were measured according to JIS L-1013 tensile strength and elongation test using an autograph DSS-500 manufactured by Shimadzu Corporation, with a grip interval of 25 cm and a pulling speed of 30 cm / It is measured in minutes.

本発明の芯鞘型複合長繊維を構成する単糸数、単糸繊度も特に限定するものではないが、マルチフィラメントの場合は、単糸数20〜300本、単糸繊度が5〜30dtexの範囲とすることが好ましく、モノフィラメントの場合は、繊度が200〜2000dtexの範囲とすることが好ましい。   The number of single yarns and single yarn fineness constituting the core-sheath type composite continuous fiber of the present invention are not particularly limited, but in the case of multifilament, the number of single yarns is 20 to 300, and the single yarn fineness is in the range of 5 to 30 dtex. In the case of a monofilament, the fineness is preferably in the range of 200 to 2000 dtex.

次に、本発明の芯鞘型複合長繊維(マルチフィラメント)の製造方法について説明する。まず、芯部と鞘部のチップをそれぞれ供給して常用の複合紡糸装置を用いて溶融紡糸する。そして、未延伸糸を一旦巻き取り、その後延伸を行う2工程法でもよいが、一旦巻き取らずに連続して延伸を行うスピンドロー法が生産性やコスト面において好ましい。延伸方法は加熱ローラのみで行うローラ延伸又は加熱ローラ間にスチーム熱処理装置を設けて行う方法を採用することができる。巻き取り速度は2000〜4000m/分程度が好ましく、巻き取り速度がこの範囲より遅いと生産性が劣り、速いと高強度が得られ難くなったり、延伸性が劣るようになる。   Next, the manufacturing method of the core-sheath-type composite long fiber (multifilament) of this invention is demonstrated. First, the core and sheath chips are respectively supplied and melt-spun using a conventional compound spinning apparatus. Further, a two-step method in which the undrawn yarn is wound once and then drawn may be used, but the spin draw method in which drawing is performed continuously without winding is preferable in terms of productivity and cost. As the stretching method, it is possible to employ a roller stretching performed only with a heating roller or a method performed by providing a steam heat treatment apparatus between the heating rollers. The winding speed is preferably about 2000 to 4000 m / min. If the winding speed is slower than this range, the productivity is inferior.

次に、本発明を実施例によって具体的に説明する。なお、実施例における各物性値は、次の方法で測定した。
(a)ポリエステルの極限粘度
フェノールと四塩化エタンとの等重量混合物を溶媒とし、濃度0.5g/dl、温度20℃で測定した。
(b)切断強度、切断強力、切断伸度、強力保持率
前記の方法で測定、算出した。
(c)融点
パーキンエルマー社製の示差走査熱量計DSC−7型を使用し、昇温速度20℃/分で測定した。
Next, the present invention will be specifically described with reference to examples. In addition, each physical-property value in an Example was measured with the following method.
(A) Intrinsic Viscosity of Polyester Measured at a concentration of 0.5 g / dl and a temperature of 20 ° C. using a mixture of equal weight of phenol and ethane tetrachloride as a solvent.
(B) Cutting strength, cutting strength, cutting elongation, strength retention rate Measured and calculated by the method described above.
(C) Melting point It measured using the differential scanning calorimeter DSC-7 type | mold by Perkin Elmer, Inc., and the temperature increase rate was 20 degree-C / min.

実施例1
芯部を構成するPETとして、極限粘度〔η〕0.70、融点255℃のPETを用いた。鞘部を構成するポリエチレンとしては、密度が0.951g/cm、MI値〔ASTMのD−1238(E)の方法で測定〕が10g/10分、融点が130℃のHDPEを用いた。
常用の複合溶融紡糸装置に孔径が0.5mm、ホール数が48個の芯鞘型複合紡糸口金を装着し、口金温度280℃、芯鞘質量比(芯:鞘)1:1にして紡出した。紡糸口金直下に設けた温度200℃、長さ15cmの加熱筒内を通過させた後、長さ40cmの環状吹き付け装置で、冷却風温度15℃、速度0.7m/秒で冷却した。
次に、油剤を付与して非加熱の1ローラに引き取り、連続して温度90℃の2ローラで1.02倍の引き揃えを行い、その後、温度110℃の3ローラで4.8倍の延伸を行い、温度100℃の4ローラで2%の弛緩熱処理を行って、1%のリラックスを掛けて速度3000m/分のワインダーに巻き取り、円形断面形状(芯部と鞘部が同心円に配置された)の550dtex/48フィラメントの芯鞘型複合長繊維を得た。
Example 1
As the PET constituting the core, PET having an intrinsic viscosity [η] of 0.70 and a melting point of 255 ° C. was used. As the polyethylene constituting the sheath, HDPE having a density of 0.951 g / cm 3 , an MI value (measured by the method of ASTM D-1238 (E)) of 10 g / 10 min, and a melting point of 130 ° C. was used.
A conventional compound melt spinning apparatus is equipped with a core-sheath type compound spinneret having a hole diameter of 0.5 mm and 48 holes, and is spun at a base temperature of 280 ° C. and a core-sheath mass ratio (core: sheath) of 1: 1. did. After passing through a heating cylinder having a temperature of 200 ° C. and a length of 15 cm provided immediately below the spinneret, it was cooled at a cooling air temperature of 15 ° C. and a speed of 0.7 m / sec with an annular spraying device having a length of 40 cm.
Next, the oil agent is applied and taken up by one unheated roller, continuously aligned by 1.02 times with two rollers at a temperature of 90 ° C., and then 4.8 times with three rollers at a temperature of 110 ° C. Stretching, performing 2% relaxation heat treatment with 4 rollers at a temperature of 100 ° C, winding 1% with a winder with a speed of 3000m / min, circular cross-sectional shape (core and sheath are arranged concentrically) Of 550 dtex / 48 filament core-sheath type composite continuous fiber.

実施例2
芯鞘質量比(芯:鞘)芯鞘質量比を3:1に変更した以外は実施例1と同様に行った。
Example 2
Core-sheath mass ratio (core: sheath) The same as Example 1 except that the core-sheath mass ratio was changed to 3: 1.

比較例1
芯鞘質量比(芯:鞘)芯鞘質量比を1:2に変更した以外は実施例1と同様に行った。
Comparative Example 1
Core-sheath mass ratio (core: sheath) The same as Example 1 except that the core-sheath mass ratio was changed to 1: 2.

比較例2
鞘部のポリエチレンを芯部に用いたPETに変更した以外は実施例1と同様に行った。
Comparative Example 2
The same procedure as in Example 1 was performed except that the polyethylene of the sheath was changed to PET using the core.

実施例1〜2、比較例1〜2で得られた繊維の特性値を測定した結果を表1に示す。   Table 1 shows the results of measuring the characteristic values of the fibers obtained in Examples 1-2 and Comparative Examples 1-2.

表1から明らかなように、実施例1〜2の芯鞘型複合長繊維は切断強度、切断伸度及びアルカリ処理後の強力保持率とも優れていた。
一方、比較例1の芯鞘型複合長繊維は、芯部の質量比率が小さいために切断強度に劣るものであった。また、比較例2の芯鞘型複合長繊維は、鞘部にポリエチレンを用いずPETを用いたものであったので、アルカリ処理後の強力保持率に劣るものであった。
As is apparent from Table 1, the core-sheath type composite continuous fibers of Examples 1 and 2 were excellent in cutting strength, cutting elongation, and strength retention after alkali treatment.
On the other hand, the core-sheath type composite continuous fiber of Comparative Example 1 was inferior in cutting strength because the mass ratio of the core part was small. Moreover, since the core-sheath-type composite long fiber of the comparative example 2 used PET instead of polyethylene for the sheath part, it was inferior in the strong retention after alkali treatment.

Claims (1)

芯部がポリエチレンテレフタレート、鞘部が芯部より低融点のポリエチレンで構成された芯鞘型複合繊維の長繊維であって、切断強度が3.5cN/dtex以上、10%水酸化ナトリウム溶液中で70℃、100分間のアルカリ処理を施した後の強力保持率が80%以上であることを特徴とする芯鞘型複合長繊維。
A core-sheath-type composite fiber composed of polyethylene terephthalate in the core and polyethylene having a lower melting point than the core, and having a cutting strength of 3.5 cN / dtex or more in a 10% sodium hydroxide solution A core-sheath type composite continuous fiber characterized by having a strength retention of 80% or more after being subjected to an alkali treatment at 70 ° C. for 100 minutes.
JP2008152981A 2008-06-11 2008-06-11 Sheath-core conjugate filament Pending JP2009299209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152981A JP2009299209A (en) 2008-06-11 2008-06-11 Sheath-core conjugate filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152981A JP2009299209A (en) 2008-06-11 2008-06-11 Sheath-core conjugate filament

Publications (1)

Publication Number Publication Date
JP2009299209A true JP2009299209A (en) 2009-12-24

Family

ID=41546385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152981A Pending JP2009299209A (en) 2008-06-11 2008-06-11 Sheath-core conjugate filament

Country Status (1)

Country Link
JP (1) JP2009299209A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181737A1 (en) 2018-03-19 2019-09-26 ユニチカ株式会社 Method for thermoforming textile product
WO2020067285A1 (en) 2018-09-29 2020-04-02 ユニチカ株式会社 Method for thermal molding of fiber product
US10808342B2 (en) 2017-07-14 2020-10-20 Unitika Ltd. Method for manufacturing fishing net
NO346631B1 (en) * 2017-07-14 2022-11-07 Unitika Ltd Method for manufacturing fishing net

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299470A (en) * 1993-04-15 1994-10-25 Toray Ind Inc Sheet for civil engineering
JP2001214388A (en) * 2000-01-31 2001-08-07 Unitica Fibers Ltd Method of producing formed bar made of fiber
JP2001271270A (en) * 2000-03-23 2001-10-02 Unitica Fibers Ltd Mesh sheet for construction work and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299470A (en) * 1993-04-15 1994-10-25 Toray Ind Inc Sheet for civil engineering
JP2001214388A (en) * 2000-01-31 2001-08-07 Unitica Fibers Ltd Method of producing formed bar made of fiber
JP2001271270A (en) * 2000-03-23 2001-10-02 Unitica Fibers Ltd Mesh sheet for construction work and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808342B2 (en) 2017-07-14 2020-10-20 Unitika Ltd. Method for manufacturing fishing net
NO346631B1 (en) * 2017-07-14 2022-11-07 Unitika Ltd Method for manufacturing fishing net
WO2019181737A1 (en) 2018-03-19 2019-09-26 ユニチカ株式会社 Method for thermoforming textile product
KR20200131245A (en) 2018-03-19 2020-11-23 유니티카 가부시끼가이샤 Thermoforming method of textile products
WO2020067285A1 (en) 2018-09-29 2020-04-02 ユニチカ株式会社 Method for thermal molding of fiber product
KR20210058850A (en) 2018-09-29 2021-05-24 유니티카 가부시끼가이샤 Thermoforming method of textile products

Similar Documents

Publication Publication Date Title
JP2017166110A (en) Liquid crystalline polyester multifilament
JP2009299209A (en) Sheath-core conjugate filament
JP2014210986A (en) Yarn, fabric and textile product
JP2015140504A (en) Heat adhesive continuous glass fiber
WO2020067285A1 (en) Method for thermal molding of fiber product
JP7473946B2 (en) Composite monofilament for fishery materials and method for producing same
JP2005248357A (en) Polyester monofilament for screen gauze
JP2011157647A (en) Wiping cloth
JP2007224448A (en) Electrically conductive conjugate fiber
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JP2010077549A (en) Core-sheath type conjugate filament
JP2005113309A (en) Modified cross-section polytrimethylene terephthalate fiber
JP2004332152A (en) Pigmented thermoadhesive filament fiber
JP5340869B2 (en) Latent crimped fiber
JP2007056382A (en) Method for producing high specific gravity composite fiber
JP2004176205A (en) Recycled polyester fiber for use as industrial material
JP5548896B2 (en) Fishing line and manufacturing method thereof
JPH04327214A (en) Conjugate fiber
JP2008223172A (en) Stainproof spun-dyed fiber
JP2007113156A (en) Heat-bondable filament
JPS5936722A (en) Conjugate spinning
JP4672136B2 (en) Filament with excellent weather resistance
JP6304750B2 (en) High strength hollow polyester multifilament
JP2005350784A (en) Heat-fusible filament yarn
JP2008303494A (en) Method for producing heat-bonding filament and heat-bonding filament

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20091102

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110601

A977 Report on retrieval

Effective date: 20120713

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218