JP2011506778A - Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same - Google Patents

Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same Download PDF

Info

Publication number
JP2011506778A
JP2011506778A JP2010523227A JP2010523227A JP2011506778A JP 2011506778 A JP2011506778 A JP 2011506778A JP 2010523227 A JP2010523227 A JP 2010523227A JP 2010523227 A JP2010523227 A JP 2010523227A JP 2011506778 A JP2011506778 A JP 2011506778A
Authority
JP
Japan
Prior art keywords
fiber
component
nonwoven fabric
composite fiber
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010523227A
Other languages
Japanese (ja)
Other versions
JP5535911B2 (en
Inventor
正人 勝矢
寿克 藤原
博和 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ES FiberVisions Co Ltd
Original Assignee
ES FiberVisions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ES FiberVisions Co Ltd filed Critical ES FiberVisions Co Ltd
Priority to JP2010523227A priority Critical patent/JP5535911B2/en
Publication of JP2011506778A publication Critical patent/JP2011506778A/en
Application granted granted Critical
Publication of JP5535911B2 publication Critical patent/JP5535911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/04Supporting filaments or the like during their treatment
    • D01D10/049Supporting filaments or the like during their treatment as staple fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition

Abstract

低温加工性を有し、かつ収縮が抑制されており、良好な熱接着性を有し、さらに不織布に加工する際のカード通過性の工程性に優れ、嵩高で地合の良好な不織布を得ることができる複合繊維を提供する。また、低温加工性に優れた、嵩高で、風合いの良好な不織布及び成形体を提供する。融点が70〜100℃のエチレン・α−オレフィン共重合体を少なくとも75質量%含む第1成分と、結晶性ポリプロピレンを含む第2成分が、並列型断面を構成してなる複合繊維であって、繊維軸に直角な繊維断面において、第1成分が、繊維外周の55〜90%を占め、第1成分と第2成分との境界線が、第1成分側に向かって凸状に湾曲する曲線を描いており、第1成分と第2成分との面積比率(第1成分/第2成分)が、70/30〜30/70の範囲であることを特徴とする複合繊維;上記複合繊維を不織布化処理して得られた不織布;上記複合繊維を用いて得られた成形体。
【選択図】図1
It has low-temperature processability, shrinkage is suppressed, has good thermal adhesiveness, has excellent card-passing processability when processed into a nonwoven fabric, and obtains a bulky and well-formed nonwoven fabric A composite fiber is provided. In addition, the present invention provides a bulky non-woven fabric and a molded article having excellent low-temperature processability. A first component containing at least 75% by mass of an ethylene / α-olefin copolymer having a melting point of 70 to 100 ° C. and a second component containing crystalline polypropylene are a composite fiber having a parallel section, In the fiber cross section perpendicular to the fiber axis, the first component occupies 55 to 90% of the outer periphery of the fiber, and the boundary line between the first component and the second component curves convexly toward the first component side. A composite fiber, wherein the area ratio of the first component to the second component (first component / second component) is in the range of 70/30 to 30/70; A non-woven fabric obtained by a non-woven fabric treatment; a molded product obtained using the above composite fiber.
[Selection] Figure 1

Description

本発明は、熱加工時における低温加工性を有し、かつ収縮を抑えて良好な熱接着性を有する複合繊維に関する。また、本発明は、当該複合繊維を用いた嵩高性と風合いに優れた不織布及び成形体に関する。   The present invention relates to a composite fiber having low temperature processability during heat processing and having good thermal adhesiveness while suppressing shrinkage. Moreover, this invention relates to the nonwoven fabric and molded object which were excellent in the bulkiness and feel using the said composite fiber.

従来から、低温加工性を有する複合繊維が種々提案されており、複合繊維を構成する成分として、融点を調整しやすいエチレン・α−オレフィン共重合体が使用されている。例えば、90〜125℃の低融点を有するポリエチレン系樹脂と120〜135℃の高融点を有するポリエチレン系樹脂の“混合物”を、複合成分の一成分として用いた、鞘芯型及び並列型の複合繊維が提案されている(例えば、特許文献1参照。)。また、エチレン・α−オレフィン共重合体を含む成分とポリエステル樹脂を含む成分の“それぞれ”を、複合成分の一成分として用いた、潜在捲縮性複合繊維が提案されている(例えば、特許文献2参照。)。   Conventionally, various composite fibers having low-temperature processability have been proposed, and an ethylene / α-olefin copolymer that easily adjusts the melting point is used as a component constituting the composite fiber. For example, a sheath core type and a parallel type composite using a “mixture” of a polyethylene resin having a low melting point of 90 to 125 ° C. and a polyethylene resin having a high melting point of 120 to 135 ° C. as one component of the composite component A fiber has been proposed (see, for example, Patent Document 1). In addition, latent crimpable conjugate fibers using “each” of a component containing an ethylene / α-olefin copolymer and a component containing a polyester resin as one component of a composite component have been proposed (for example, Patent Documents). 2).

しかしながら、従来の低温加工性を有する複合繊維は、実用上なお改善の余地を残すものである。例えば、特許文献1で提案された複合繊維は、90〜125℃の低融点を有するポリエチレン系樹脂を用いながら、生産性安定性のために120〜135℃の高融点を有するポリエチレン系樹脂を実質的に30質量%以上の範囲で“混合”し複合繊維の一成分として用いているために、低温加工性は損なわれて十分なものとは言えない。また、特許文献2は、エチレン・α−オレフィン共重合体を成分とする複合繊維が熱処理時に収縮しやすいという性質を利用した潜在捲縮性の複合繊維に関するものであるが、このような潜在捲縮性の複合繊維は、収縮が抑制された地合の良好な不織布を得るには適さない。
また、このような潜在捲縮性を持った複合繊維は、構成する複数の成分間の収縮性の違いを利用したものであって、そのような成分間では熱処理後に剥離が発生し易く、不織布に加工する際に、溶融する接着性成分と溶融しない他の成分が剥離してしまうと、不織布内においては、接着性成分でできた繊維と、溶融しない他の成分でできた繊維とを混綿した状態に近くなり、不織布強度に寄与しない部分が多く存在することで、不織布の強度が出ないといった不具合が生じる場合がある。
このように、これまでに低温加工性を有する繊維として提案されたものは、低温加工性や不織布の地合や強度の点でさらに改良を要するものであった。
However, conventional conjugate fibers having low-temperature processability still leave room for improvement in practice. For example, the composite fiber proposed in Patent Document 1 substantially uses a polyethylene resin having a high melting point of 120 to 135 ° C. for stability of productivity while using a polyethylene resin having a low melting point of 90 to 125 ° C. In particular, since it is “mixed” in the range of 30% by mass or more and used as one component of the composite fiber, the low-temperature workability is impaired and it cannot be said that it is sufficient. Patent Document 2 relates to a latent crimpable composite fiber that utilizes the property that a composite fiber containing an ethylene / α-olefin copolymer as a component easily contracts during heat treatment. Shrinkable conjugate fibers are not suitable for obtaining a nonwoven fabric with good formation in which shrinkage is suppressed.
In addition, such a conjugate fiber having latent crimping property utilizes a difference in shrinkage between a plurality of constituent components, and such a component easily peels after heat treatment, and is a non-woven fabric. If the adhesive component that melts and other components that do not melt are peeled off during processing, the fibers made of the adhesive component and the fibers made of other components that do not melt are mixed in the nonwoven fabric. When there are many portions that do not contribute to the strength of the nonwoven fabric, there may be a problem that the strength of the nonwoven fabric does not come out.
Thus, what was proposed as a fiber which has low temperature workability until now needed further improvement in the point of low temperature workability, the formation of a nonwoven fabric, and intensity | strength.

国際公開第00/36200号パンフレットInternational Publication No. 00/36200 Pamphlet 特開2006−233381号公報Japanese Patent Laid-Open No. 2006-233381

本発明の目的は、低温加工性を有し、かつ収縮が抑制されており、良好な熱接着性を有し、さらに不織布に加工する際の、特にカード加工を行う場合において、そのカード通過性に優れ、嵩高で地合の良好な不織布を得ることができる複合繊維を提供することにある。本発明の目的はまた、低温加工性に優れた、嵩高で、風合いの良好な不織布及び成形体を提供することにある。   The object of the present invention is to have low-temperature processability and to suppress shrinkage, to have good thermal adhesiveness, and to pass through the card especially when processing into a non-woven fabric, particularly when card processing is performed. An object of the present invention is to provide a composite fiber that can obtain a non-woven fabric that is excellent in bulk, is bulky, and has good texture. Another object of the present invention is to provide a non-woven fabric and a molded article that are excellent in low-temperature processability, are bulky, and have a good texture.

本発明者は、鋭意検討した結果、複合繊維の低温加工性に寄与する成分、即ち、熱処理される際に専ら軟化、溶融する、より低融点の成分として、特定のエチレン・α−オレフィン共重合体を特定量以上含むものとし、これを第1成分とし、かつ結晶性ポリプロピレンを含む成分を第2成分とする特定の並列型の断面を構成する複合繊維によって、上記課題が達成できることを見出した。
したがって、本発明は、融点が70〜100℃のエチレン・α−オレフィン共重合体を少なくとも75質量%含む第1成分と、結晶性ポリプロピレンを含む第2成分が、並列型断面を構成してなる複合繊維であって、繊維軸に直角な繊維断面において、第1成分が、繊維外周の55〜90%を占め、第1成分と第2成分との境界線が、第1成分側に向かって凸状に湾曲する曲線を描いており、第1成分と第2成分との面積比率(第1成分/第2成分)が、70/30〜30/70の範囲であることを特徴とする複合繊維である。
As a result of intensive studies, the inventor has identified a specific ethylene / α-olefin copolymer as a component that contributes to the low-temperature processability of the composite fiber, that is, a component having a lower melting point that is exclusively softened and melted during heat treatment. It has been found that the above-mentioned problems can be achieved by a composite fiber that constitutes a specific parallel-type cross section in which a specific amount or more of a coalescence is included, which is a first component, and a component that includes crystalline polypropylene is a second component.
Accordingly, in the present invention, the first component containing at least 75% by mass of the ethylene / α-olefin copolymer having a melting point of 70 to 100 ° C. and the second component containing crystalline polypropylene constitute a parallel section. In the fiber cross section perpendicular to the fiber axis, the first component occupies 55 to 90% of the outer periphery of the fiber, and the boundary between the first component and the second component is directed toward the first component side. A composite having a convexly curved curve and an area ratio (first component / second component) between the first component and the second component in the range of 70/30 to 30/70 Fiber.

本発明の実施態様において、使用するエチレン・α−オレフィン共重合体として、分子量分布(Mw/Mn)が1.5〜2.5で、密度が0.87〜0.91g/cm3、ASTM D−1238に準じて、温度190℃、荷重21.2Nの条件で測定したメルトインデックス(MI)が10〜35g/10minであるエチレン・α−オレフィン共重合体が挙げられる。
上記複合繊維は、100℃で5分間熱処理したときに50%以下の熱収縮率を示すことができる。
本発明の複合繊維を不織布化処理して、不織布を製造することができ、また、本発明の複合繊維を加工して、又は本発明の複合繊維から得られた不織布を加工して、成形体とすることができる。
従って、本発明はさらに、上記複合繊維を不織布化処理して得られた不織布、上記複合繊維を用いて得られた成形体、及び上記不織布を用いて得られた成形体にも向けられている。
上記不織布化処理の例として、熱風接着法、熱水接着法などが挙げられる。
In the embodiment of the present invention, the ethylene / α-olefin copolymer used has a molecular weight distribution (Mw / Mn) of 1.5 to 2.5, a density of 0.87 to 0.91 g / cm 3 , and ASTM. According to D-1238, an ethylene / α-olefin copolymer having a melt index (MI) of 10 to 35 g / 10 min measured under conditions of a temperature of 190 ° C. and a load of 21.2 N can be mentioned.
The composite fiber can exhibit a heat shrinkage of 50% or less when heat treated at 100 ° C. for 5 minutes.
The composite fiber of the present invention can be processed into a non-woven fabric to produce a non-woven fabric, and the composite fiber of the present invention is processed or the nonwoven fabric obtained from the composite fiber of the present invention is processed to form a molded body. It can be.
Accordingly, the present invention is further directed to a nonwoven fabric obtained by subjecting the composite fiber to a nonwoven fabric treatment, a molded body obtained using the composite fiber, and a molded body obtained using the nonwoven fabric. .
Examples of the non-woven fabric treatment include a hot air bonding method and a hot water bonding method.

本発明の複合繊維は、融点が70〜100℃のエチレン・α−オレフィン共重合体を少なくとも75質量%含む成分を第1成分とし、繊維軸に直角な繊維断面において、この第1成分が、繊維外周の55〜90%を占め、第2成分との境界線が、第1成分側に向かって凸状に湾曲する曲線を描いており、第2成分との面積比率(第1成分/第2成分)が、70/30〜30/70の範囲であるように構成された並列型断面を有するものである。このエチレン・α−オレフィン共重合体を含む第1成分が、主として繊維表面を被覆していることから、100℃以下という熱処理温度で良好な熱接着性を示す。即ち、良好な低温加工性を有する。また、結晶性ポリプロピレンを含む第2成分が繊維表面の一部に露出していることから、エチレン・α−オレフィン共重合体特有の表面摩擦の高さを低減することができ、滑剤等を添加しない若しくは少ない添加量でも、繊維製造工程での安定生産が可能で、特に、カード加工を行う場合に、そのカード工程での繊維通過性が良好となる。   The composite fiber of the present invention has a component containing at least 75% by mass of an ethylene / α-olefin copolymer having a melting point of 70 to 100 ° C. as a first component, and in the fiber cross section perpendicular to the fiber axis, The boundary line with the second component occupies 55 to 90% of the outer periphery of the fiber, and a curve that curves convexly toward the first component side is drawn, and the area ratio with the second component (first component / first component) 2 component) has a parallel section configured to be in the range of 70/30 to 30/70. Since the first component containing this ethylene / α-olefin copolymer mainly covers the fiber surface, it exhibits good thermal adhesion at a heat treatment temperature of 100 ° C. or less. That is, it has good low temperature workability. In addition, since the second component containing crystalline polypropylene is exposed on a part of the fiber surface, the height of surface friction peculiar to ethylene / α-olefin copolymers can be reduced, and a lubricant or the like can be added. Even if it is not added or is added in a small amount, stable production in the fiber production process is possible, and in particular, when card processing is performed, fiber permeability in the card process is good.

半月形状を組み合わせた一般的な2成分並列型の断面形状では、成分間の剥離が懸念される。本発明の複合繊維の並列型断面はエチレン・α−オレフィン共重合体を含む第1成分が周面の長さの55〜90%を占め、第2成分との境界線が、第1成分側に向かって凸状に湾曲する曲線を描き、第2成分との面積比率(第1成分/第2成分)が、70/30〜30/70の範囲であるように構成されることで、成分間の剥離が起こりにくく、特にカード加工を行う場合に、カード工程での繊維通過性や不織布に加工した後の不織布強度を阻害することがなく、好ましい作業性が発揮される。また、半月形状を組み合わせた一般的な2成分並列型の断面形状では、熱処理による収縮が起こり易い点があるが、本発明の複合繊維は、特定のエチレン・α−オレフィン共重合体を第1成分として、特定の繊維断面形状を採用することによって効果的に収縮が抑制されると考えられる。   In a general two-component parallel cross-sectional shape combined with a half-moon shape, there is concern about separation between components. In the parallel section of the composite fiber of the present invention, the first component containing the ethylene / α-olefin copolymer occupies 55 to 90% of the length of the peripheral surface, and the boundary line with the second component is on the first component side. A curve that curves in a convex shape toward the surface and is configured so that the area ratio (first component / second component) to the second component is in the range of 70/30 to 30/70. In particular, when card processing is performed, preferable workability is exhibited without impairing the fiber permeability in the card process and the strength of the nonwoven fabric after processing into a nonwoven fabric. Further, in the general two-component parallel type cross-sectional shape combined with the half-moon shape, there is a point that shrinkage is likely to occur due to heat treatment, but the conjugate fiber of the present invention has a specific ethylene / α-olefin copolymer as the first. It is considered that shrinkage is effectively suppressed by adopting a specific fiber cross-sectional shape as a component.

本発明の複合繊維を用いて得られた不織布は、嵩高で柔らかく、熱処理の際の収縮が少ないため幅入り(不織布の流れ方向に対する幅の減少)がほとんど無く生産性、地合が良好なものである。また、本発明の複合繊維は融点が70〜100℃のエチレン・α−オレフィン共重合体を含む成分を有効成分としているために、100℃以下での熱処理加工が可能となる。従って、本発明の複合繊維の不織布化や成形加工の際に、蒸気や熱水などの媒体も使用することができるようになるため、用途、環境、状況に応じて、幅広い選択肢の中から、適切な不織布化条件や成形加工条件を選択することが可能となる。   The nonwoven fabric obtained by using the conjugate fiber of the present invention is bulky and soft, and has little shrinkage during heat treatment, so there is almost no width (reduction in width with respect to the flow direction of the nonwoven fabric), and productivity and formation are good. It is. Moreover, since the composite fiber of this invention uses the component containing melting | fusing point 70-100 degreeC ethylene / alpha-olefin copolymer as an active ingredient, the heat processing at 100 degrees C or less is attained. Therefore, since it becomes possible to use a medium such as steam or hot water when forming the nonwoven fabric of the conjugate fiber of the present invention or molding processing, depending on the application, environment, and situation, from a wide range of options, Appropriate nonwoven fabric forming conditions and molding process conditions can be selected.

本発明の複合繊維の並列型断面の形状を例示する概略図である。It is the schematic which illustrates the shape of the parallel type cross section of the composite fiber of this invention.

本発明の複合繊維は、エチレン・α−オレフィン共重合体を含む成分を第1成分とする。このエチレン・α−オレフィン共重合体とは、エチレン及びα−オレフィンから成るものである。α−オレフィンとしては、具体的には、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1、ヘプテン−1、オクテン−1などの直鎖状α−オレフィンを挙げることができる。これらのうち、ブテン−1、オクテン−1が好ましく、さらにはオクテン−1がより好ましい。エチレン・α−オレフィン共重合体中のα−オレフィン含有量として好ましくは30モル%以下で、さらに好ましくは20モル%以下である。α−オレフィン含有量は通常1モル%以上である。この場合の含有量は、((α−オレフィン)/(α−オレフィン+エチレン))のモル比百分率を言う。α−オレフィン含有量が多すぎると、繊維製造工程で固化が遅くなり、繊維間融着などを起こして生産性が損なわれる傾向がある。α−オレフィン含有量が30モル%以内であると、繊維の剛性が充分にあって、特に、カード加工をする場合には、カード工程での繊維通過性が良好である。   In the conjugate fiber of the present invention, a component containing an ethylene / α-olefin copolymer is a first component. The ethylene / α-olefin copolymer is composed of ethylene and α-olefin. Specific examples of the α-olefin include linear α-olefins such as propylene, butene-1, pentene-1, hexene-1, heptene-1, and octene-1. Of these, butene-1 and octene-1 are preferable, and octene-1 is more preferable. The α-olefin content in the ethylene / α-olefin copolymer is preferably 30 mol% or less, and more preferably 20 mol% or less. The α-olefin content is usually 1 mol% or more. The content in this case refers to the molar ratio percentage of ((α-olefin) / (α-olefin + ethylene)). If the α-olefin content is too high, solidification is delayed in the fiber production process, and inter-fiber fusion or the like tends to occur and productivity tends to be impaired. When the α-olefin content is within 30 mol%, the fiber has sufficient rigidity, and in particular, when card processing is performed, the fiber permeability in the card process is good.

使用するエチレン・α−オレフィン共重合体の融点は70〜100℃であり、好ましくは、80〜100℃である。70℃以上の融点により、繊維間融着などを防ぐことができ、例えば繊維製造工程で繊維表面に塗布した帯電防止剤等の処理剤を乾燥させる際に、繊維間融着などの不具合が起こりにくくなって、良好な生産性が発揮される。また、融点が100℃以下であることにより、繊維を不織布や成形体に加工する際の加工温度を100℃以下に設定することができ、熱処理の媒体として蒸気や熱水などを使用することが可能となり、比較的低温の媒体を用いる加工方法が選択できる。加えて、繊維を構成する本来溶融させない他の成分への影響を懸念する必要がなく、好ましい。
ここで言う融点とは、エチレン・α−オレフィン共重合体を示差走査熱量計(DSC)で測定した時の溶融ピーク温度である。複数の溶融ピークが確認される場合は、最も大きい溶融ピークの温度を融点とし、複数の大きさが似通った溶融ピークが確認される場合は、より低い側の溶融ピーク温度を融点とする。
The melting point of the ethylene / α-olefin copolymer to be used is 70 to 100 ° C., preferably 80 to 100 ° C. With a melting point of 70 ° C. or higher, interfiber fusion can be prevented. For example, when a treatment agent such as an antistatic agent applied to the fiber surface in the fiber production process is dried, problems such as interfiber fusion occur. It becomes difficult and good productivity is exhibited. Moreover, when the melting point is 100 ° C. or lower, the processing temperature when processing the fiber into a nonwoven fabric or a molded body can be set to 100 ° C. or lower, and steam or hot water can be used as a heat treatment medium. This makes it possible to select a processing method using a relatively low temperature medium. In addition, it is not necessary to be concerned about the influence on other components that are not originally melted constituting the fiber, which is preferable.
The melting point mentioned here is the melting peak temperature when the ethylene / α-olefin copolymer is measured by a differential scanning calorimeter (DSC). When a plurality of melting peaks are confirmed, the temperature of the largest melting peak is taken as the melting point, and when melting peaks having a plurality of similar sizes are found, the lower melting peak temperature is taken as the melting point.

エチレン・α−オレフィン共重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、1.5〜2.5が好ましく、さらに好ましくは、1.7〜2.3である。分子量分布(Mw/Mn)が、1.5〜2.5の範囲内にあれば、繊維製造工程における紡糸性が良好となり、繊維物性面でも充分な強度を持った複合繊維が得られることから、好ましい。   The molecular weight distribution (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the ethylene / α-olefin copolymer, is preferably 1.5 to 2.5, more preferably 1.7-2.3. If the molecular weight distribution (Mw / Mn) is in the range of 1.5 to 2.5, the spinnability in the fiber production process will be good, and a composite fiber having sufficient strength in terms of fiber properties can be obtained. ,preferable.

エチレン・α−オレフィン共重合体の密度は、0.87〜0.91g/cm3が好ましく、特に好ましくは0.88〜0.90g/cm3である。エチレン・α−オレフィン共重合体の密度が0.87g/cm3以上であると、該共重合体を繊維に加工する際の表面粘性が適度であって、繊維製造時に膠着が起こりにくく、繊維の構成成分として主体的に用いるのに適している。一方該密度が0.91g/cm3以下では、エチレン・α−オレフィン共重合体の融点が比較的低く100℃以下であって、本発明で用いるエチレン・α−オレフィン共重合体として適している。 The density of the ethylene / α-olefin copolymer is preferably 0.87 to 0.91 g / cm 3 , particularly preferably 0.88 to 0.90 g / cm 3 . When the density of the ethylene / α-olefin copolymer is 0.87 g / cm 3 or more, the surface viscosity when the copolymer is processed into fibers is moderate, and the fiber is less likely to stick during fiber production. It is suitable to be used as a main constituent of On the other hand, when the density is 0.91 g / cm 3 or less, the melting point of the ethylene / α-olefin copolymer is relatively low and is 100 ° C. or less, which is suitable as the ethylene / α-olefin copolymer used in the present invention. .

エチレン・α−オレフィン共重合体のメルトインデックス(MI)は繊維製造工程での安定生産を考慮すると、10〜35g/10minが好ましく、さらには15〜30g/10minの範囲がより好ましい。ここで言うMIとは、ASTM D−1238に準じて190℃、荷重21.2Nの条件で測定した値である。   The melt index (MI) of the ethylene / α-olefin copolymer is preferably 10 to 35 g / 10 min, more preferably 15 to 30 g / 10 min, in view of stable production in the fiber production process. Here, MI is a value measured under conditions of 190 ° C. and a load of 21.2 N according to ASTM D-1238.

使用するエチレン・α−オレフィン共重合体は、1種単独であっても2種以上の混合物であってもよい。
本発明で使用するエチレン・α−オレフィン共重合体には、本発明の目的が損なわれない範囲で、各種添加剤を配合することができる。例えば、滑剤、耐熱安定剤、酸化防止剤、耐候安定剤、帯電防止剤、着色剤などである。滑剤として好ましく用いられるのは、オレイン酸アミドやエルカ酸アミドなどの脂肪酸アミド、ステアリン酸ブチルなどの脂肪酸エステル、ポリエチレンワックスやポリプロピレンワックスなどのポリオレフィンワックス、ステアリン酸カルシウムなどの金属石けんなどがある。特に好ましく用いられるのは、オレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、ベヘニン酸アミドなどの脂肪酸アミドである。
The ethylene / α-olefin copolymer to be used may be a single type or a mixture of two or more types.
Various additives can be blended in the ethylene / α-olefin copolymer used in the present invention as long as the object of the present invention is not impaired. For example, lubricants, heat stabilizers, antioxidants, weathering stabilizers, antistatic agents, colorants and the like. Preferable examples of the lubricant include fatty acid amides such as oleic acid amide and erucic acid amide, fatty acid esters such as butyl stearate, polyolefin waxes such as polyethylene wax and polypropylene wax, and metal soaps such as calcium stearate. Particularly preferably used are fatty acid amides such as oleic acid amide, erucic acid amide, stearic acid amide, and behenic acid amide.

本発明の複合繊維における第1成分には、低温で熱接着に関与可能であるように、特に、不織布化や成形加工時の熱媒体に蒸気や熱水を使用できるように、上記エチレン・α−オレフィン共重合体が有効量含まれていることが必要である。このエチレン・α−オレフィン共重合体の含有量は、第1成分の質量基準で75%以上であって、好ましくは85%以上であり、樹脂原料としては100%を占めるのが特に好ましい。上記エチレン・α−オレフィン共重合体が第1成分において75質量%以上であると、エチレン・α−オレフィン共重合体の性能が主体的に発現できる点から好ましい。
上記のエチレン・α−オレフィン共重合体が、第1成分の質量基準で75%以上含まれるという条件のもとに、当該エチレン・α−オレフィン共重合体以外に、第1成分に含めてもよい樹脂原料としては、例えば、低密度ポリエチレン、高密度ポリエチレン、エチレン・酢酸ビニル共重合体、プロピレン共重合体などを挙げることができる。これらは、樹脂の状態で予め均一に混合して用いる方法や、繊維製造工程においてエチレン・α−オレフィン共重合体を溶融させて押出す際に、押出機の途中のフィード口から投入するといった方法で混ぜ合わせることができる。
The first component in the conjugate fiber of the present invention is made of the above ethylene / α so that steam or hot water can be used as a heat medium at the time of forming into a non-woven fabric or molding so that it can be involved in thermal bonding at low temperatures. -It must contain an effective amount of an olefin copolymer. The content of the ethylene / α-olefin copolymer is 75% or more, preferably 85% or more, and particularly preferably 100% as a resin raw material, based on the mass of the first component. It is preferable that the ethylene / α-olefin copolymer is 75% by mass or more in the first component because the performance of the ethylene / α-olefin copolymer can be mainly exhibited.
In addition to the ethylene / α-olefin copolymer, the ethylene / α-olefin copolymer may be included in the first component under the condition that 75% or more of the ethylene / α-olefin copolymer is included on the mass basis of the first component. Examples of a good resin material include low density polyethylene, high density polyethylene, ethylene / vinyl acetate copolymer, and propylene copolymer. These are a method of uniformly mixing in advance in the state of a resin, and a method of feeding from an feed port in the middle of an extruder when an ethylene / α-olefin copolymer is melted and extruded in a fiber production process Can be mixed together.

本発明の複合繊維は結晶性ポリプロピレンを含む成分を第2成分とする。この結晶性ポリプロピレンとは、プロピレン単独重合体、もしくはプロピレンと少量の(通常2質量%以下の)α−オレフィンとの共重合体で、このような結晶性ポリプロピレンとしては、チーグラナッタ触媒やメタロセン触媒を用いて得られる汎用のポリプロピレンがある。
本発明における結晶性ポリプロピレンは、融点が150〜165℃、好ましくは155〜165℃で、メルトマスフローレイト(MFR=230℃、21.2N)が0.1〜80g/10min、さらは3〜40g/10minの範囲にあるものが好ましい。
本発明の複合繊維を構成する第2成分は、結晶性ポリプロピレンを含むものであり、効果を著しく損なわない限りにおいて、プロピレン・α−オレフィン共重合体との混合や、メルトマスフローレイト(MFR)や分子量分布(Mw/Mn)などの物性が異なる結晶性ポリプロピレン同士との混合などを好適に用いることができる。また、必要に応じて他の熱可塑性樹脂や、二酸化チタン、炭酸カルシウム及び水酸化マグネシウムなどの無機物や、各種添加剤(難燃剤、耐熱安定剤、酸化防止剤、耐候安定剤、帯電防止剤、着色剤など)を配合しても差し支えない。本発明の複合繊維を構成する第2成分において、一般的に結晶性ポリプロピレンが少なくとも75質量%を占めることが適当である。
The composite fiber of the present invention uses a component containing crystalline polypropylene as the second component. This crystalline polypropylene is a propylene homopolymer or a copolymer of propylene and a small amount of α-olefin (usually 2% by mass or less). As such crystalline polypropylene, Ziegler Natta catalyst or metallocene catalyst is used. There is a general-purpose polypropylene obtained by using.
The crystalline polypropylene in the present invention has a melting point of 150 to 165 ° C., preferably 155 to 165 ° C., a melt mass flow rate (MFR = 230 ° C., 21.2 N) of 0.1 to 80 g / 10 min, and further 3 to 40 g. Those within the range of / 10 min are preferred.
The second component constituting the conjugate fiber of the present invention contains crystalline polypropylene and, as long as the effect is not significantly impaired, mixing with a propylene / α-olefin copolymer, melt mass flow rate (MFR), A mixture of crystalline polypropylenes having different physical properties such as molecular weight distribution (Mw / Mn) can be suitably used. If necessary, other thermoplastic resins, inorganic substances such as titanium dioxide, calcium carbonate and magnesium hydroxide, various additives (flame retardants, heat stabilizers, antioxidants, weather stabilizers, antistatic agents, Colorants etc. may be added. In the second component constituting the conjugate fiber of the present invention, it is generally appropriate that crystalline polypropylene accounts for at least 75% by mass.

本発明の複合繊維において、エチレン・α−オレフィン共重合体を含む第1成分と、結晶性ポリプロピレンを含む第2成分とが特定構造の並列型断面を構成している。
繊維軸に直角な繊維断面において、繊維外周の55〜90%をエチレン・α−オレフィン共重合体を含む第1成分が占め、45〜10%を結晶性ポリプロピレンを含む第2成分が占めるものである。特定のエチレン・α−オレフィン共重合体を含む第1成分が、繊維外周の55%以上を占めることによって、100℃以下での熱処理加工が可能となり、結晶性ポリプロピレンを含む第2成分が、繊維外周の10%以上を占めることによって、繊維表面に結晶性ポリプロピレンが連続的に現われ、エチレン・α−オレフィン共重合体を繊維表面に用いた場合の繊維間摩擦や対金属摩擦、粘性を低減することができ、紡糸性や、カード加工を行う場合にはそのカード加工性が良好となる。特に、繊維軸に直角な繊維断面において、繊維外周の60〜80%をエチレン・α−オレフィン共重合体を含む第1成分が占め、結晶性ポリプロピレンを含む第2成分が40〜20%を占めるのが好ましい。
In the conjugate fiber of the present invention, a first component containing an ethylene / α-olefin copolymer and a second component containing crystalline polypropylene constitute a parallel-type cross section having a specific structure.
In the fiber cross section perpendicular to the fiber axis, 55 to 90% of the outer periphery of the fiber is occupied by the first component including the ethylene / α-olefin copolymer, and 45 to 10% is occupied by the second component including crystalline polypropylene. is there. When the first component including the specific ethylene / α-olefin copolymer occupies 55% or more of the outer periphery of the fiber, heat treatment at 100 ° C. or less is possible, and the second component including crystalline polypropylene is the fiber. By occupying 10% or more of the outer periphery, crystalline polypropylene continuously appears on the fiber surface, reducing inter-fiber friction, metal friction, and viscosity when ethylene / α-olefin copolymer is used on the fiber surface. The spinnability and, when card processing is performed, the card processability is good. In particular, in the fiber cross section perpendicular to the fiber axis, the first component including the ethylene / α-olefin copolymer occupies 60 to 80% of the outer periphery of the fiber, and the second component including crystalline polypropylene occupies 40 to 20%. Is preferred.

本発明の複合繊維は、さらに、繊維軸に直角な繊維断面において、第1成分と第2成分との境界線が、第1成分側に向かって凸状に湾曲する曲線を描いている。この構造を有することによって、単に半月状の両成分が接合した一般的な並列断面構造の複合繊維に比べ、第1成分と第2成分との境界線の長さが増し、すなわち、両成分間の接合面積が増すとともに、さらに、第1成分が第2成分を包み込む構造をとることによって、当該複合繊維からの、第2成分の剥離が抑制される。
特に、繊維軸に直角な繊維断面において、第1成分側に向かって凸状に湾曲する曲線を描く第1成分と第2成分との境界線が繊維外周と交わる2つの交点をaとbとし、このaとbを結ぶ線分abを2等分する点cを通り、該線分abと直角する方向に伸びる直線が、第1成分と第2成分との境界線と交わる点をd、第2成分側の繊維外周と交わる点をeとしたとき、線分cdの長さと線分ceの長さの関係が、cd≧0.8ceの関係を充足するように、前記境界線が第1成分側に向かって凸状に湾曲する構造を有するのが好ましい。さらに好ましいのはcd≧ce、より好ましいのはcd≧1.5ce、特に好ましいのはcd≧2ceの関係を充足する場合に、複合成分間の剥離性と、熱処理時や成形加工時の熱収縮性が良好となる。
また、第1成分側に向かって凸状に湾曲する曲線を描く第1成分と第2成分との境界線を、第2成分の外周が描く円または楕円の外周の一部とみなしたとき、この境界線の長さ(g)が、第2成分によって描かれるべき円または楕円の全外周長(h)の50%を超えていることが好ましく、さらに好ましいのは、60%以上の場合である。特に、第2成分によって描かれるべき円または楕円の直径または長軸の両端が、該複合繊維の繊維軸に直角な繊維断面内に存在しており、その長さをfとした場合、第1成分と第2成分との境界線が繊維外周と交わる2つの交点a、bを結ぶ線分abの長さが、f>abの関係にある場合には、第2成分が、当該複合繊維の断面において、第1成分に対してアンカー機能を奏するような複合構造を形成することができるために、第2成分の剥離防止効果を極めて有効に高めることができるのである。
The conjugate fiber of the present invention further draws a curve in which the boundary line between the first component and the second component curves convexly toward the first component side in the fiber cross section perpendicular to the fiber axis. By having this structure, the length of the boundary line between the first component and the second component is increased, that is, between the two components compared to a composite fiber having a general parallel cross-sectional structure in which both components in a semicircular shape are simply joined. Further, when the first component has a structure in which the second component is wrapped, the peeling of the second component from the conjugate fiber is suppressed.
In particular, in the fiber cross section perpendicular to the fiber axis, two intersections where the boundary line between the first component and the second component that draws a curve curved in a convex shape toward the first component side intersects the outer circumference of the fiber are a and b. , A point where a straight line passing through a point c that bisects a line segment ab connecting a and b and extending in a direction perpendicular to the line segment ab intersects the boundary line between the first component and the second component is d, When the point intersecting the fiber outer periphery on the second component side is represented by e, the boundary line is the first so that the relationship between the length of the line segment cd and the length of the line segment ce satisfies the relationship of cd ≧ 0.8ce. It is preferable to have a structure that curves convexly toward the one component side. Further preferable is cd ≧ ce, more preferable is cd ≧ 1.5ce, and particularly preferable is the case where the relationship of cd ≧ 2ce is satisfied. Property is improved.
Further, when the boundary line between the first component and the second component that draws a curve that curves in a convex shape toward the first component side is regarded as a part of the outer periphery of a circle or ellipse drawn by the outer periphery of the second component, It is preferable that the length (g) of the boundary line exceeds 50% of the total outer circumferential length (h) of the circle or ellipse to be drawn by the second component, and more preferably 60% or more. is there. In particular, when both ends of the diameter or major axis of the circle or ellipse to be drawn by the second component are present in the fiber cross section perpendicular to the fiber axis of the composite fiber, and the length is f, the first When the length of the line segment ab connecting the two intersection points a and b where the boundary line between the component and the second component intersects the outer periphery of the fiber is in a relationship of f> ab, the second component is In the cross section, since a composite structure that exhibits an anchor function with respect to the first component can be formed, the anti-separation effect of the second component can be extremely effectively enhanced.

本発明の複合繊維を構成する2つの成分は、繊維軸に直角な繊維断面における面積において第1成分/第2成分=70/30〜30/70の比率が、断面形状を保持する点や繊維製造時の安定性、不織布に加工した際の強度と伸度のバランスの点からも好ましく、60/40〜40/60の比率であることがさらに好ましい。
本発明の複合繊維は、従来の公知の並列型複合口金を用いて製造することが出来る。例えば、特開昭48−11417や特開昭52−74011に記載の並列型複合紡糸口金などを用いて製造することが出来る。
The two components constituting the composite fiber of the present invention are the fiber and the point that the ratio of the first component / second component = 70/30 to 30/70 maintains the cross-sectional shape in the area in the fiber cross section perpendicular to the fiber axis. It is also preferable from the viewpoint of stability during production and the balance between strength and elongation when processed into a nonwoven fabric, and a ratio of 60/40 to 40/60 is more preferable.
The conjugate fiber of the present invention can be produced using a conventionally known parallel type composite die. For example, it can be produced using a parallel type composite spinneret described in JP-A-48-11417 and JP-A-52-74011.

当該並列型複合口金を用いて本発明の複合繊維の断面形状を形成するためには、エチレン・α−オレフィン共重合体を含む第1成分と、結晶性ポリプロピレンを含む第2成分の溶融時の流動性(粘度など)のバランスをとることが必要で、2つの成分のメルトインデックス(MI)及びメルトマスフローレイト(MFR)などを考慮し、繊維製造時の条件で、これを調整する。例えば、エチレン・α−オレフィン共重合体を含む第1成分について、190℃前後の温度における溶融時の流動性(粘度)を測定し、溶融流動性(溶融粘度)の変動から繊維製造が可能な流動性(粘度)になる温度範囲を選択し、繊維製造条件である押出温度とするが、同様に結晶性ポリプロピレンを含む第2成分について230℃前後の温度について流動性(粘度)を測定して押出温度を選択したとき、第1成分の溶融流動性(溶融粘度)が第2成分の溶融流動性(溶融粘度)よりも相対的に大きくなるような押出温度を選択した場合、各成分を等しい圧力で押し出すと、繊維断面において、繊維周面を覆う第1成分の割合が相対的に高まることになる。例えば、使用される樹脂によって溶融時の流動性(粘度)の温度依存性(上昇傾向)が異なるため一概には言えないものの、第1成分のメルトインデックス(MI)と第2成分のメルトマスフローレイト(MFR)の比率が、第2成分のメルトマスフローレイト(MFR)に対する第1成分のメルトインデックス(MI)の比が1.5〜3倍である場合、本発明の複合繊維の断面形状を形成することが容易となる。特に好ましいのは、この比が、1.8〜2.5の範囲である。この比が、高い程、第1成分が第2成分を包み込む構造に成り易いため、第2成分が繊維外周を占める割合が少なくなる。また、同じ押出温度、溶融粘度であっても、樹脂の吐出量比を変更することで、繊維断面における第1成分及び第2成分の繊維外周に対する割合を増減することが出来る。これは、前記の繊維軸に直角な繊維断面における面積比率を変更するということであって、例えば、同じ製造条件において、繊維軸に直角な繊維断面に占める第2成分の面積比率が相対的に高くなると、繊維外周に対する第2成分の占める割合が増加しやすくなる。
本発明の複合繊維を製造するには、上記のように押出温度や樹脂の吐出量を選択するほか、通常の溶融紡糸法を採用することができる。
In order to form the cross-sectional shape of the composite fiber of the present invention using the parallel composite die, the first component containing the ethylene / α-olefin copolymer and the second component containing crystalline polypropylene are melted. It is necessary to balance fluidity (viscosity, etc.), and the melt index (MI) and melt mass flow rate (MFR) of the two components are taken into account and adjusted according to the conditions during fiber production. For example, for the first component containing an ethylene / α-olefin copolymer, the fluidity (viscosity) at the time of melting at a temperature of about 190 ° C. is measured, and fibers can be produced from fluctuations in the melt fluidity (melt viscosity). Select the temperature range for fluidity (viscosity) and set the extrusion temperature as the fiber production condition. Similarly, measure the fluidity (viscosity) at a temperature around 230 ° C for the second component containing crystalline polypropylene. When the extrusion temperature is selected, when the extrusion temperature is selected such that the melt fluidity (melt viscosity) of the first component is relatively greater than the melt fluidity (melt viscosity) of the second component, each component is equal. When it extrudes with a pressure, the ratio of the 1st component which covers a fiber surrounding surface in a fiber cross section will increase relatively. For example, although the temperature dependence (increase tendency) of the fluidity (viscosity) at the time of melting differs depending on the resin used, it cannot be generally stated, but the melt index (MI) of the first component and the melt mass flow rate of the second component When the ratio of (MFR) is 1.5 to 3 times the ratio of the melt index (MI) of the first component to the melt mass flow rate (MFR) of the second component, the cross-sectional shape of the composite fiber of the present invention is formed. Easy to do. Particularly preferred is a ratio of 1.8 to 2.5. The higher this ratio is, the easier it is to have a structure in which the first component wraps the second component, so the proportion of the second component occupying the outer periphery of the fiber decreases. Moreover, even if it is the same extrusion temperature and melt viscosity, the ratio with respect to the fiber outer periphery of the 1st component in a fiber cross section and a 2nd component can be increased / decreased by changing resin discharge amount ratio. This means that the area ratio in the fiber cross section perpendicular to the fiber axis is changed. For example, in the same manufacturing conditions, the area ratio of the second component in the fiber cross section perpendicular to the fiber axis is relatively When it becomes higher, the ratio of the second component to the outer periphery of the fiber tends to increase.
In order to produce the conjugate fiber of the present invention, an ordinary melt spinning method can be employed in addition to selecting the extrusion temperature and the resin discharge amount as described above.

本発明の複合繊維の表面には、繊維製造時の工程安定性などを向上させる目的で処理剤が塗布されてもよい。処理剤は主として帯電防止剤で、その他には繊維表面の濡れ性をより向上させる親水剤があり、成分としては、アルキルリン酸塩やそのエチレンオキサイド付加物、ソルビタン脂肪酸エステルエチレンオキサイド付加物、ポリグリセリン脂肪酸エステル、ポリオキシエチレン変性シリコーンなどが挙げられる。これら成分の単体あるいは任意の混合物が処理剤として用いられる。   A treatment agent may be applied to the surface of the conjugate fiber of the present invention for the purpose of improving process stability during fiber production. The treatment agent is mainly an antistatic agent, and there are other hydrophilic agents that further improve the wettability of the fiber surface. Components include alkyl phosphates and their ethylene oxide adducts, sorbitan fatty acid ester ethylene oxide adducts, Examples include glycerin fatty acid ester and polyoxyethylene-modified silicone. A simple substance or an arbitrary mixture of these components is used as a treating agent.

本発明の複合繊維は、100℃で5分間熱処理したときの熱収縮率が、50%以下であり、好ましくは30%以下で、特に好ましくは20%以下である。
ここで言う熱収縮率とは、本発明の複合繊維をステープルファイバーとしてカード機に投入し、カード出口で採取した繊維ウェブ(繊維が絡まった状態でシートとなったもの)を定形にカット後、100℃で5分間熱処理を行い、処理前後のサイズの違い(減少分)を百分率(%)で表したものである。
本発明において、該熱収縮率は、具体的には、本発明の複合繊維を30〜65mmの任意の長さにカットしてステープルファイバーとし、これをミニチュアカード機に投入して、目付200g/m2の繊維ウェブを作製する。同繊維ウェブを、250mm×250mmの型紙を用いて、繊維の流れ方向(MD)とその流れ方向に直角な方向(CD)において、型紙に沿うようにカットしたのち10分間放置し、熱処理を行う直前に、このカットした繊維ウェブのMD長さを測定した後、循環熱風式オーブンにより100℃で5分間熱処理を行う。熱処理後に再度MD長さを測定して、以下の式によって求めた値である。
熱収縮率(%)={(L0−L)/L0}×100
0:熱処理前のMDの長さ
L :熱処理後のMDの長さ
この数値が少ないほど不織布化する際の繊維ウェブの縮みが少なく、安定した加工が可能で、良好な地合の不織布を得ることができる。
なお、ここで示した熱収縮の測定条件は、本発明の複合繊維の加工条件、熱処理条件、不織布化条件、使用法等を何ら特定・限定するものではない。
The composite fiber of the present invention has a heat shrinkage rate of 50% or less, preferably 30% or less, particularly preferably 20% or less when heat-treated at 100 ° C. for 5 minutes.
The heat shrinkage referred to here is the composite fiber of the present invention is fed into a card machine as a staple fiber, and the fiber web collected at the card exit (which has become a sheet with the fibers tangled) is cut into a fixed shape, The heat treatment is performed at 100 ° C. for 5 minutes, and the size difference (decrease) before and after the treatment is expressed as a percentage (%).
In the present invention, the heat shrinkage rate is specifically determined by cutting the composite fiber of the present invention into an arbitrary length of 30 to 65 mm to form a staple fiber, which is put into a miniature card machine, and has a basis weight of 200 g / An m 2 fibrous web is made. The fiber web is cut using a paper pattern of 250 mm × 250 mm in the fiber flow direction (MD) and the direction perpendicular to the flow direction (CD), and then left for 10 minutes to perform heat treatment. Immediately before, the MD length of the cut fiber web is measured, and then heat treatment is performed at 100 ° C. for 5 minutes in a circulating hot air oven. The MD length is measured again after the heat treatment, and is a value obtained by the following formula.
Thermal contraction rate (%) = {(L 0 −L) / L 0 } × 100
L 0 : Length of MD before heat treatment L: Length of MD after heat treatment The smaller this value, the less shrinkage of the fiber web when making into a nonwoven fabric, stable processing is possible, and a good texture nonwoven fabric Obtainable.
In addition, the measurement conditions of heat shrink shown here do not specify or limit the processing conditions, heat treatment conditions, nonwoven fabric forming conditions, usage methods, and the like of the conjugate fiber of the present invention.

従来知られていた樹脂の組み合わせによる並列型断面構造を有する複合繊維は、繊維製造の際の熱処理工程においては、その断面構造及びそれらの樹脂構成に由来した捲縮が発現しやすく、その結果、繊維としての嵩高性向上効果を奏するものである。特に不織布化のための、所望の長さにカットした繊維の集合体である繊維ウェブのように、繊維の自由度が高まった状態で熱処理を施すと、繊維自体の収縮も発生しやすくなる。そのため、繊維ウェブの状態で嵩高だったものが、不織布加工後に大きく収縮し、せっかくの嵩高性を維持できないことが多かった。また、繊維ウェブにおいては、目付を均一にしようと様々な工夫が成されるが、目付斑が全く無くなるわけではなく、加えて、繊維ウェブ内の繊維の自由度に分布があり、その程度が若干異なることから、不織布化の際の熱処理時に、より自由度の高い部分から収縮が発生しやすくなる。そのため、より収縮しやすい部分は周辺の繊維を収束させて塊状になり、収束によって繊維が少なくなった部分は目付が低下することで、不織布全体で目付の斑が極めて顕著になって、均一な地合の不織布を得ることが難しかったのである。   Conventionally known composite fibers having a parallel cross-sectional structure by a combination of resins, in the heat treatment process in the fiber production, it is easy to express the crimp derived from the cross-sectional structure and their resin configuration, as a result, The effect of improving the bulkiness as a fiber is achieved. In particular, when a heat treatment is performed in a state in which the degree of freedom of the fibers is increased, such as a fiber web that is an aggregate of fibers cut to a desired length for making a nonwoven fabric, the fibers themselves tend to contract. Therefore, what was bulky in the state of the fiber web contracted greatly after the nonwoven fabric processing, and it was often impossible to maintain the bulkiness. Further, in the fiber web, various devices are made to make the basis weight uniform, but the spot weight is not completely eliminated, and in addition, the degree of freedom of the fibers in the fiber web is distributed, and the degree thereof is Since it is slightly different, shrinkage is likely to occur from a portion with a higher degree of freedom during the heat treatment in forming the nonwoven fabric. Therefore, the more shrinkable part converges the surrounding fibers to become a lump, and the part where the fibers are reduced due to the convergence is reduced in the basis weight, so that the unevenness of the basis weight is extremely noticeable throughout the nonwoven fabric, and is uniform. It was difficult to obtain a non-woven fabric.

これに対し、本発明の複合繊維は、2つの成分からなる並列型断面構造を有しているにも拘らず、エチレン・α−オレフィン共重合体を含む第1成分が、繊維軸に直角な繊維断面において繊維外周の55〜90%を占め、さらに、結晶性ポリプロピレンを含む第2成分を包み込むように配された断面形状を有しており、かつ、融点が70〜100℃のエチレン・α−オレフィン共重合体、好ましくは、分子量分布(Mw/Mn)が1.5〜2.5、密度が0.87〜0.91g/cm3、メルトインデックス(MI)が10〜35g/10minであるエチレン・α−オレフィン共重合体を用いることによって、並列型断面構造を採用することで付与される潜在捲縮による嵩高性向上効果の恩恵を維持しながら、熱処理加工時の収縮性を、安定して不織布化や成形加工できる範囲である50%以下に抑制することが可能となるのである。
特定の樹脂構成と特定の複合構造とが組み合わされた本発明の複合繊維が、なぜこのように優れた収縮抑制機構を発現しうるのかは不明である。上記の特定のエチレン・α−オレフィン共重合体を用い、これを結晶性ポリプロピレンと組み合わせ、さらに、特定の繊維断面形状を有する繊維とすることで、驚くべきことに収縮が抑制されながらも、その一方では一般に相反する性能と考えられている嵩高性に優れ、風合いが良く、かつ、100℃以下の低温での熱処理加工特性に優れた不織布が得られることは予期せぬことであった。
On the other hand, the first component containing the ethylene / α-olefin copolymer is perpendicular to the fiber axis even though the conjugate fiber of the present invention has a parallel-type cross-sectional structure composed of two components. Ethylene / α having a cross-sectional shape that occupies 55 to 90% of the outer periphery of the fiber in the fiber cross section, and has a cross-sectional shape arranged to wrap around the second component containing crystalline polypropylene, and has a melting point of 70 to 100 ° C. An olefin copolymer, preferably a molecular weight distribution (Mw / Mn) of 1.5 to 2.5, a density of 0.87 to 0.91 g / cm 3 , and a melt index (MI) of 10 to 35 g / 10 min. By using a certain ethylene / α-olefin copolymer, the shrinkage during heat treatment can be stabilized while maintaining the benefits of improving the bulkiness due to the latent crimp imparted by adopting the parallel cross-sectional structure. It from becoming possible to suppress 50% or less is a range that can be a nonwoven fabric or molding Te.
It is unclear why the composite fiber of the present invention in which a specific resin structure and a specific composite structure are combined can exhibit such an excellent shrinkage suppression mechanism. By using the above specific ethylene / α-olefin copolymer, combining it with crystalline polypropylene, and making it a fiber having a specific fiber cross-sectional shape, surprisingly the shrinkage is suppressed, On the other hand, it was unexpected that a non-woven fabric having excellent bulkiness, which is generally considered to be a contradictory performance, good texture, and excellent heat treatment characteristics at a low temperature of 100 ° C. or less was obtained.

本発明の複合繊維の繊度は特に限定されない。複合繊維を構成する成分の物性や製造時の工程安定性を考慮し、また、該複合繊維を不織布もしくは成形体へ加工するに適した繊度を選択すればよい。例えば、人肌に直接触れる化粧パフや薬剤塗布シートなどの用途では1〜5dtexの範囲で選択することが望ましく、また、プリンターのインクカートリッジなどに代表される液体保持材用途では、1〜10dtexの範囲が適しており、また、家庭用芳香剤の芳香芯のような液体揮発材用途では、1〜20dtexの範囲が適している。
本発明の複合繊維の長さは特に限定されず、長繊維もしくは短繊維でありうる。短繊維にカットする場合、そのカット長は、該複合繊維の繊度及び加工法や用途に応じて適宜選択することができる。ステープルファイバーとして、カード工程を経る場合には、20〜125mmとすることが好ましく、さらに良好なカード通過性や繊維ウェブの地合を得るためには、25〜75mmとすることが好ましい。また、本発明の複合繊維をエアレイド法で不織布化する場合には、エアレイド用チョップとして3〜25mmとすることが好ましい。
The fineness of the conjugate fiber of the present invention is not particularly limited. Considering the physical properties of the components constituting the composite fiber and the process stability during production, a fineness suitable for processing the composite fiber into a nonwoven fabric or a molded body may be selected. For example, it is desirable to select in the range of 1 to 5 dtex for applications such as cosmetic puffs and drug-coated sheets that directly touch the human skin, and for liquid holding material applications such as printer ink cartridges, 1 to 10 dtex. The range is suitable, and the range of 1 to 20 dtex is suitable for the use of liquid volatile materials such as the fragrance core of household fragrances.
The length of the composite fiber of the present invention is not particularly limited, and may be a long fiber or a short fiber. In the case of cutting into short fibers, the cut length can be appropriately selected according to the fineness, processing method and application of the composite fiber. As a staple fiber, when passing through a card process, it is preferable to set it as 20-125 mm, and in order to obtain the further favorable card | curd permeability and the formation of a fiber web, it is preferable to set it as 25-75 mm. Moreover, when making the composite fiber of this invention into a nonwoven fabric by the airlaid method, it is preferable to set it as 3-25 mm as a chop for airlaid.

本発明の複合繊維は、繊維束を開繊させ、嵩高な繊維ウェブや不織布を得るために、捲縮を有することが好ましい。付与される捲縮数や捲縮のタイプは、該複合繊維の繊度及びカット長、また、加工法や用途に応じて適宜選択することができる。例えば、3.3〜6.6dtexの繊度でカット長が38〜45mmの複合繊維(ステープルファイバー)をカーディング法にて繊維ウェブとする場合は、捲縮数10〜25山/25mmを付与することが好ましく、3.3〜6.6dtexの繊度でカット長が3〜6mmの複合繊維(エアレイド用チョップ)をエアレイド法にて繊維ウェブとする場合は、捲縮数5〜15山/25mmの範囲で付与することが好ましい。捲縮のタイプとしては、ジグザグ形状やスパイラル構造のものを例示できる。   The composite fiber of the present invention preferably has crimps in order to open the fiber bundle and obtain a bulky fiber web or nonwoven fabric. The number of crimps to be applied and the type of crimps can be appropriately selected according to the fineness and cut length of the composite fiber, and the processing method and application. For example, when a composite fiber (staple fiber) having a fineness of 3.3 to 6.6 dtex and a cut length of 38 to 45 mm is used as a fiber web by the carding method, the number of crimps is 10 to 25/25 mm. Preferably, when a composite fiber (air laid chop) having a fineness of 3.3 to 6.6 dtex and a cut length of 3 to 6 mm is used as a fiber web by the air laid method, the number of crimps is 5 to 15 threads / 25 mm. It is preferable to apply in a range. Examples of the crimp type include a zigzag shape and a spiral structure.

本発明の複合繊維を不織布に加工するためには、繊維ウェブを形成した後に、熱処理を行い、不織布化する手法を用いることが好ましい。繊維ウェブ形成法としてカード機を通過させるカーディング法、あるいは、スリットを設けた円柱状のドラムの中に繊維を投入し、このドラムを回転させてコンベア上に繊維を集積させるエアレイド法などを例示できるが、これらの方法に限定されない。これらの形成法を用いる場合、本発明の効果を著しく損なわない限りにおいて、他の繊維を混綿することができる。混綿できる繊維として、例えば、保水性を向上させるためのレーヨンやコットン、不織布を更に嵩高にするためのポリエチレンテレフタレートを成分とする中空繊維などを挙げることができる。
これらの繊維ウェブ形成法で所望の目付の繊維ウェブを形成した後、繊維ウェブを熱処理して不織布化する場合には、熱処理を行う前に、水流や圧縮空気、ニードルによって繊維ウェブ中の繊維を交絡させるスパンレース法やニードルパンチ法を用いて、強度向上や風合いを変化させることができる。
熱処理法としては、熱風接着法、熱水接着法、熱ロール接着法、などの方法を例示できる。中でも、本発明の複合繊維を繊維ウェブに形成した後に行う熱処理法として、熱風接着法や熱水接着法が好ましい。
In order to process the conjugate fiber of the present invention into a non-woven fabric, it is preferable to use a technique of forming a non-woven fabric by performing a heat treatment after forming a fiber web. Examples of the fiber web forming method include a carding method in which a card machine is passed, or an airlaid method in which fibers are put into a cylindrical drum provided with slits, and the fibers are rotated and accumulated on a conveyor. Yes, but not limited to these methods. When these forming methods are used, other fibers can be blended as long as the effects of the present invention are not significantly impaired. Examples of fibers that can be blended include rayon and cotton for improving water retention, and hollow fibers containing polyethylene terephthalate as a component for further increasing the bulk of a nonwoven fabric.
After forming a fiber web with a desired basis weight by these fiber web forming methods, when the fiber web is heat treated to form a nonwoven fabric, before performing the heat treatment, the fibers in the fiber web are removed by water flow, compressed air, or needle. Strength improvement and texture can be changed by using a spunlace method or a needle punch method.
Examples of the heat treatment method include a hot air bonding method, a hot water bonding method, and a hot roll bonding method. Especially, as a heat processing method performed after forming the composite fiber of this invention in a fiber web, a hot air bonding method and a hot water bonding method are preferable.

熱風接着法は、加熱した空気を繊維ウェブ中に通して複合繊維の低融点成分を軟化、溶融させて繊維交絡部分を接着する方法であって、熱ロール接着法のように一定面積を押しつぶして嵩高さを損じる接着法ではないため、本発明の課題である嵩高で地合、風合いの良好な不織布を提供するのに適した接着法である。
この熱風接着法は、嵩高で風合いの良好な不織布を得るために適した接着法である。従来、特に、2つの成分で構成された一般的な半月形状組み合わせ型の並列断面を持つ短繊維のカットされた複合繊維ウェブを熱風接着法で熱処理すると、コンベア上での繊維ウェブの自由度が高いために、他の接着法に比べて収縮が大きくなりやすく、地合や風合いの良好な不織布が得られにくい。一方本発明の複合繊維は、不織布化のための熱処理による収縮が効果的に抑制されているために、特にこの熱風接着法において好適に用いることができるものであり、熱風接着法により本来的にもたらされる嵩高性という優位性を維持しつつ、風合いに優れた不織布の提供を可能とするものである。
The hot air bonding method is a method in which heated air is passed through a fiber web to soften and melt the low melting point component of the composite fiber to bond the fiber entangled portion, and crush a certain area like the hot roll bonding method. Since it is not an adhesion method that impairs the bulkiness, it is an adhesion method suitable for providing a nonwoven fabric that is bulky and has a good texture and texture.
This hot air bonding method is a bonding method suitable for obtaining a non-woven fabric that is bulky and has a good texture. Conventionally, in particular, when a composite fiber web cut with short fibers having a parallel section of a general half-moon shape composed of two components is heat-treated by a hot air bonding method, the degree of freedom of the fiber web on the conveyor is increased. Since it is high, shrinkage tends to be larger than other bonding methods, and it is difficult to obtain a nonwoven fabric with a good texture and texture. On the other hand, the composite fiber of the present invention can be suitably used particularly in this hot air bonding method because shrinkage due to heat treatment for making a nonwoven fabric is effectively suppressed. It is possible to provide a nonwoven fabric with excellent texture while maintaining the superiority of the resulting bulkiness.

熱水接着法は、熱水や蒸気が繊維ウェブの中を通過することで複合繊維の低融点成分を軟化、溶融させ、繊維交絡部分を接着する方法である。本発明の複合繊維は、70℃〜100℃の融点を持つエチレン・α−オレフィン共重合体を含む第1成分が繊維周面の過半を占めているために、本来的に100℃以下での熱処理となる熱水接着法の適用が可能となる。この接着法に用いられる媒体は、熱水や蒸気といった比較的安価で、特殊な設備を必要としないものであり、このような媒体で処理を行うことで、不織布化と同時に本発明の複合繊維の表面に塗布されている処理剤をほとんど洗い落とすことができる。繊維表面に塗布されている処理剤は、複合繊維(ステープルファイバー及びエアレイド用チョップ等)製造工程においては欠かせないものであるが、用途によっては、不織布化や成形加工の後に不必要、または障害となることがある。例えば、食品に直接触れる食品保護シートや包材やトレイ、化粧品を含侵させる化粧パフ、薬剤を患部に塗布するためのスティックなどである。繊維表面の処理剤を安全な食品添加物やそれに準じた成分で構成する手法や、不織布や成形体となった後で、洗浄工程を設けて処理剤を落とす手法もあるが、人体に安全な成分で処理剤を構成しても、化粧品や薬剤への影響が無くなるわけではなく、製品として安定した性能を保持するためには、不織布や成形体に処理剤ができるだけ残っていないことが望ましい。また、不織布や成形体に加工した後で更に洗浄工程を経るのは、設備や時間の追加であって、コスト面で不利である。
従って、上記のような用途に対し、嵩高であって、処理剤がほとんど付着していないか処理剤の付着量が前記不具合を引き起こさない程度に有効に軽減された不織布や成形体を低コストで効率よく提供できるという点において、熱水接着法を採用可能な本発明の複合繊維はその工業的意義が極めて大きいのである。本発明の複合繊維を用いて、熱水接着法によって不織布化、成形加工する、または、一旦熱風接着法で熱処理し不織布としたものを熱水接着法で成形加工するのがもっとも好ましい。
The hot water bonding method is a method in which hot water or steam passes through the fiber web to soften and melt the low melting point component of the composite fiber and bond the fiber entangled portions. In the conjugate fiber of the present invention, the first component containing an ethylene / α-olefin copolymer having a melting point of 70 ° C. to 100 ° C. occupies a majority of the fiber peripheral surface. It is possible to apply a hot water bonding method to be heat treatment. The medium used in this bonding method is relatively inexpensive, such as hot water or steam, and does not require special equipment. By treating with such a medium, the composite fiber of the present invention is formed simultaneously with making a nonwoven fabric. Most of the treatment agent applied to the surface can be washed off. The treatment agent applied to the fiber surface is indispensable in the production process of composite fibers (such as staple fibers and airlaid chops), but depending on the application, it may be unnecessary or obstructed after making into a non-woven fabric or molding process. It may become. For example, food protective sheets, packaging materials and trays that come into direct contact with food, cosmetic puffs that impregnate cosmetics, and sticks for applying drugs to affected areas. There are techniques to configure the fiber surface treatment agent with safe food additives and components equivalent to it, and methods to remove the treatment agent by providing a washing process after becoming a non-woven fabric or molded product. Even if the treatment agent is composed of components, it does not eliminate the influence on cosmetics and drugs, and in order to maintain stable performance as a product, it is desirable that the treatment agent remains as little as possible on the nonwoven fabric or the molded body. Further, after the processing into a non-woven fabric or a molded body, the further washing step is an addition of equipment and time, which is disadvantageous in terms of cost.
Therefore, for such applications as described above, a nonwoven fabric or a molded body which is bulky and has been effectively reduced to such an extent that the treatment agent is hardly attached or the amount of the treatment agent attached does not cause the above-mentioned problems can be obtained at low cost. The industrial fiber of the present invention, which can adopt the hot water bonding method, is extremely significant in that it can be efficiently provided. Most preferably, the composite fiber of the present invention is made into a non-woven fabric by hot water bonding method and molded, or once formed into a non-woven fabric by heat treatment by hot air bonding method, it is molded by hot water bonding method.

本発明の複合繊維を不織布に加工した場合の不織布の目付は、使用目的によって適宜選ぶことができる。例えば、食品包材の用途では、20〜50g/m2の範囲で選択することが望ましく、化粧パフや薬剤含侵シートなどの用途では30〜150g/m2の範囲で選択することが望ましく、また、薬剤塗布用のスティックなどの用途では、50〜250g/m2の範囲が適している。
また、本発明の複合繊維を不織布に加工した場合の不織布の嵩高さは、比容積で算出して、20cm3/g以上のものが容易に得られ、30cm3/g以上のものも好適に得ることができる。
The basis weight of the nonwoven fabric when the conjugate fiber of the present invention is processed into a nonwoven fabric can be appropriately selected depending on the purpose of use. For example, in the food packaging material applications, it is desirable to select the range of 20 to 50 g / m 2, preferably be selected in the range of 30 to 150 g / m 2 in applications such as cosmetic puffs and drugs impregnated sheet, For applications such as sticks for drug application, a range of 50 to 250 g / m 2 is suitable.
Moreover, bulkiness of the nonwoven fabric in the case of the composite fiber of the present invention is processed into a nonwoven fabric, calculated in specific volume, 20 cm 3 / g or more of easily obtained, also preferably 30 cm 3 / g or more of Obtainable.

本発明の複合繊維を不織布に加工した場合、目的に応じて、該不織布に他の不織布や繊維ウェブ、熱可塑性フィルム、シートなどを積層してもかまわない。低融点の通気性フィルム、開孔フィルムや開孔不織布との貼り合わせや、エラストマー、他のエチレン・α−オレフィン共重合体から成る伸縮性不織布との積層などを例示できる。   When the conjugate fiber of the present invention is processed into a nonwoven fabric, other nonwoven fabrics, fiber webs, thermoplastic films, sheets and the like may be laminated on the nonwoven fabric according to the purpose. Examples thereof include a low melting point breathable film, a laminate with an apertured film or an apertured nonwoven fabric, and a laminate with an elastic nonwoven fabric made of an elastomer or another ethylene / α-olefin copolymer.

本発明において、「成形体」とは、本発明の複合繊維を用いて不織布化工程を経ずに加工し得られた加工品、及び、不織布化工程を経て加工し得られた加工品を言う。不織布化工程を経ずに加工される場合、カーディング法等で得られた所望の目付の繊維ウェブをスライバー状にして、特定の型に入れ、その状態で熱処理を行うことで、「成形体」を得ることができる。不織布化工程を経て加工する場合、本発明の複合繊維をカーディング法またはエアレイド法等により所望の目付の繊維ウェブにして、これを熱風接着法などで一旦不織布化し、得られた不織布を所望の目付や厚みになるように重ね合わせたり、カットして組み合わせた後に、さらに、熱風接着法や熱水接着法を用いて一体化させて「成形体」を得ることができる。また、本発明の複合繊維を用いて不織布化した後、所望の目付や厚みになるように不織布を重ね合わせたり、カットして組み合わせたものを特定の型に入れ、その状態で熱処理を行い、「成形体」を得ることもできる。
本発明の複合繊維を用いて得られた「成形体」は、その一部分をカットしたり、更に熱処理を行うなど、2次加工も容易にできる。
本発明の複合繊維は、化粧用パフや薬剤塗布シート、解熱シート、食品トレイ、クッション材、緩衝材、家庭用芳香剤等の芯材、加湿器等の保液材、育苗シート、ワイパー、などの用途に好適に使用できる。
In the present invention, the “molded product” refers to a processed product obtained by processing the composite fiber of the present invention without passing through the non-woven fabric process, and a processed product obtained by processing through the non-woven fabric process. . When processed without a non-woven fabric process, a fiber web with a desired basis weight obtained by a carding method or the like is formed into a sliver shape, put into a specific mold, and heat-treated in that state. Can be obtained. When processing through a non-woven fabric forming step, the composite fiber of the present invention is made into a fiber web having a desired basis weight by a carding method or an airlaid method, etc., and this is once made into a non-woven fabric by a hot air bonding method or the like, and the obtained non-woven fabric is formed into a desired nonwoven fabric. After being overlapped or cut so as to have a basis weight or thickness, they can be further integrated by using a hot air bonding method or a hot water bonding method to obtain a “molded body”. In addition, after making the nonwoven fabric using the conjugate fiber of the present invention, the nonwoven fabric is overlaid or cut so as to have a desired basis weight and thickness, put into a specific mold and combined and subjected to heat treatment in that state, A “molded body” can also be obtained.
The “molded product” obtained using the conjugate fiber of the present invention can be easily subjected to secondary processing such as cutting a part thereof or further performing heat treatment.
The composite fiber of the present invention includes a cosmetic puff, a drug application sheet, a heat-dissipating sheet, a food tray, a cushioning material, a cushioning material, a core material such as a home fragrance, a liquid retaining material such as a humidifier, a seedling sheet, a wiper, It can use suitably for the use of.

次に実施例と比較例によって本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、本明細書、特に実施例と比較例、及び以下の表1〜3において用いられる用語の定義及び測定方法は以下の通りである。
(1)メルトインデックス
MI:ASTM D−1238に準じて190℃、21.2Nの条件で測定を行った。
なお、表中に示した数値は、樹脂を測定したものである。(単位:g/min)
(2)密度
JIS K7112に準じて測定を行った。
なお、表中に示した数値は、樹脂を測定したものである。(単位:g/cm3
EXAMPLES Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to a following example. In addition, the definition and the measuring method of the term used in this specification, especially an Example and a comparative example, and the following Tables 1-3 are as follows.
(1) Melt index MI: Measured under conditions of 190 ° C. and 21.2 N according to ASTM D-1238.
In addition, the numerical value shown in the table | surface is what measured resin. (Unit: g / min)
(2) Density The density was measured according to JIS K7112.
In addition, the numerical value shown in the table | surface is what measured resin. (Unit: g / cm 3 )

(3)分子量分布(Mw/Mn)
重量平均分子量を数平均分子量との比であり、ゲルパーミエイションクロマトグラフ法によって求められる。Waters製「GPC−150C」を用いて測定した。(カラム:東ソー製TSKgel GMH6−HT 7.5cmI.D.×60cm 1本)
なお、表中の数値は原料樹脂について測定した値である。
(4)融点
樹脂が溶融する温度を示し、示差走査熱量計(DSC)を用いて測定する。(単位:℃)
ティー・エイ・インスツルメント製のDSC「Q−10」を用いて測定した。樹脂を4.20〜4.80mgの質量になるようにカットし、これをサンプルパンに充填し、カバーした。N2パージ内で30℃〜200℃まで、10℃/minの昇温速度で測定し、溶融チャートを得た。チャートを解析し溶融ピーク温度を求めた。
(5)メルトマスフローレイト(MFR)
JIS K7210に準じて230℃、21.2Nの条件で測定を行った。
なお、表中に示した数値は、原料樹脂について測定した値である。(単位:g/min)
(3) Molecular weight distribution (Mw / Mn)
It is the ratio of the weight average molecular weight to the number average molecular weight, and is determined by gel permeation chromatography. It measured using "GPC-150C" made from Waters. (Column: Tosoh TSKgel GMH 6 -HT 7.5cmI.D. × 60cm 1 pcs.)
In addition, the numerical value in a table | surface is the value measured about raw material resin.
(4) Melting point The temperature at which the resin melts is measured using a differential scanning calorimeter (DSC). (Unit: ° C)
Measurement was performed using DSC “Q-10” manufactured by TA Instruments. The resin was cut to a mass of 4.20 to 4.80 mg and filled into a sample pan and covered. Measurement was performed at a temperature increase rate of 10 ° C./min from 30 ° C. to 200 ° C. in an N 2 purge to obtain a melting chart. The chart was analyzed to determine the melting peak temperature.
(5) Melt mass flow rate (MFR)
Measurements were performed at 230 ° C. and 21.2 N according to JIS K7210.
In addition, the numerical value shown in the table | surface is the value measured about raw material resin. (Unit: g / min)

(6)繊度、繊維径
繊維の太さを示し、単位長さ当たりの重量から算出される。(単位:dtex)
繊維の長さが60mmよりも充分に長い場合は、繊維の束を60mmにカットし、カットした繊維150本分の重量を島津製作所製電子天秤「AEL-40SM」を用いて計量した。その数値を1111倍して繊度とした。繊維の長さが充分でない場合は、走査型電子顕微鏡を用いて観察し、得られた画像から繊維100本を任意で選び、それらの直径を測定した。直径の平均値と繊維の比重から繊度を算出した。
(6) Fineness, fiber diameter This indicates the thickness of the fiber and is calculated from the weight per unit length. (Unit: dtex)
When the length of the fiber was sufficiently longer than 60 mm, the fiber bundle was cut into 60 mm, and the weight of 150 cut fibers was weighed using an electronic balance “AEL-40SM” manufactured by Shimadzu Corporation. The numerical value was multiplied by 1111 to obtain the fineness. When the length of the fiber was not sufficient, it was observed using a scanning electron microscope, 100 fibers were arbitrarily selected from the obtained images, and the diameters thereof were measured. The fineness was calculated from the average diameter and the specific gravity of the fiber.

(7)繊維断面外周長に対する第1成分の占有率等、断面形状観察
繊維軸に直角な繊維断面の繊維外周長に対する、第1成分の占有率(%)や、繊維軸に直角な繊維断面において、第1成分側に向かって凸状に湾曲する曲線を描く第1成分と第2成分との境界線が繊維外周と交わる2つの交点をaとbとし、このaとbを結ぶ線分abを2等分する点cを通り、該線分abと直角する方向に伸びる直線が、第1成分と第2成分との境界線と交わる点をd、第2成分側の繊維外周と交わる点をeとしたときの、線分ceの長さに対する繊維cdの長さの比(cd/ce)、また、第1成分側に向かって凸状に湾曲する曲線を描く第1成分と第2成分との境界線を、第2成分の外周が描く円または楕円の外周の一部とみなしたとき、第2成分によって描かれるべき円または楕円の全外周長hに対するこの境界線の長さgの比(g/h)、さらに、第2成分によって描かれるべき円または楕円の直径または長軸の両端が、該複合繊維の繊維軸に直角な繊維断面内に存在している場合の当該直径または長軸の長さfと、線分abの長さの長短の関係については、複合繊維を長さ方向に対して直角にカットし、光学顕微鏡または走査型電子顕微鏡によって観察し求めた。
NIKON製光学顕微鏡または日本電子データム(株)製走査型電子顕微鏡「JSM−T220」を用いて観察を行った。得られた画像から各成分が繊維表面に露出している部分の長さを測定し、次式に当てはめて算出した。なお、繊維断面において第1成分と第2成分の区別は、繊維を長さ方向に対して直角にカットした状態で熱処理を行って確認できる。例えば、カット後の繊維を100℃のオーブンドライヤー内に放置し、第1成分を軟化、溶融させた後に光学顕微鏡または走査型電子顕微鏡にて観察して、繊維断面のどの部分が第1成分であるかを確認する。
第1成分の周面の長さ(%)=(L1/L)×100
1:第1成分の周面の長さ
L:繊維断面の周面の全長
(7) Observation of cross-sectional shape, such as occupancy ratio of first component relative to fiber cross-section outer circumference length Occupancy ratio (%) of first component relative to fiber perimeter length of fiber cross-section perpendicular to fiber axis and fiber cross-section perpendicular to fiber axis , The two intersections where the boundary line between the first component and the second component that draws a curve curved convexly toward the first component side intersects the outer circumference of the fiber are defined as a and b, and the line segment connecting the a and b A point where a straight line extending in a direction perpendicular to the line segment ab intersects with the boundary line between the first component and the second component passes through a point c that bisects ab into two, and intersects with the outer periphery of the fiber on the second component side. The ratio of the length of the fiber cd to the length of the line segment ce (cd / ce) when the point is e, and the first component and the first component that draw a curve that curves convexly toward the first component side When the boundary line with the two components is regarded as a part of the circumference of the circle or ellipse drawn by the outer periphery of the second component, The ratio (g / h) of the length g of this boundary line to the total outer circumferential length h of the circle or ellipse to be placed, and further the diameter or the major axis of the circle or ellipse to be drawn by the second component is the composite fiber As for the relationship between the diameter f or the length of the long axis and the length of the line segment ab when the cross section is present in the fiber cross section perpendicular to the fiber axis, the composite fiber is perpendicular to the length direction. And was observed and determined with an optical microscope or a scanning electron microscope.
Observation was performed using an optical microscope manufactured by NIKON or a scanning electron microscope “JSM-T220” manufactured by JEOL Datum. The length of the portion where each component was exposed on the fiber surface was measured from the obtained image, and calculated by applying the following equation. In the fiber cross section, the distinction between the first component and the second component can be confirmed by performing heat treatment in a state where the fiber is cut at right angles to the length direction. For example, the cut fiber is allowed to stand in an oven dryer at 100 ° C., the first component is softened and melted, and then observed with an optical microscope or a scanning electron microscope. Check if it exists.
Length of peripheral surface of first component (%) = (L 1 / L) × 100
L 1 : Length of the peripheral surface of the first component L: Total length of the peripheral surface of the fiber cross section

(8)熱収縮率
繊維ウェブについて、熱処理前後の単位長さの変化(減少率)を示し、変化量と単位長さの比から算出する。(単位:%)
ミニチュアカード機を通過させて採取した繊維ウェブ200g/m2を、250mm×250mmの型紙を用いて、繊維の流れ方向(MD)とその流れ方向に直角な方向(CD)において、それぞれこの型紙に沿うようにカットした。10分放置後、次いで、カットした繊維ウェブを、クラフト紙(350mm×700mm)の上に置き、MDの長さを測定した。その後、クラフト紙を2つ折りにして繊維ウェブの上を軽く覆うようにした状態にし、そのまま SANYO製コンベクションオーブン(循環熱風式)に入れ、100℃、5分間熱処理を行った。処理終了後ドライヤーから出し、室温で5分間放冷して、再度MDの長さを測った。次式に当てはめて熱収縮率を算出した。
熱収縮率(%)={(L0−L)/L0}×100
0:熱処理前のMDの長さ
L:熱処理後のMDの長さ
(8) Thermal contraction rate About a fiber web, the change (decrease rate) of the unit length before and behind heat processing is shown, and it calculates from ratio of change amount and unit length. (unit:%)
Using a 250 mm × 250 mm pattern paper, 200 g / m 2 of the fiber web collected through the miniature card machine is used for each of the pattern in the fiber flow direction (MD) and the direction perpendicular to the flow direction (CD). Cut along. After standing for 10 minutes, the cut fiber web was then placed on kraft paper (350 mm × 700 mm) and the MD length was measured. Thereafter, the kraft paper was folded in half so that the top of the fiber web was lightly covered, and the kraft paper was placed in a SANYO convection oven (circulation hot air type) as it was and heat-treated at 100 ° C. for 5 minutes. After completion of the treatment, it was taken out from the dryer, allowed to cool at room temperature for 5 minutes, and the length of MD was measured again. The heat shrinkage rate was calculated by applying the following equation.
Thermal contraction rate (%) = {(L 0 −L) / L 0 } × 100
L 0 : Length of MD before heat treatment L: Length of MD after heat treatment

(9)目付
不織布及び繊維ウェブの単位当たりの質量を示し、一定面積で切り出された不織布または繊維ウェブの質量から算出される。(単位:g/m2
250mm×250mmに切り出した不織布を、A&D社製上皿電子天秤「HF-200」で軽量し、その数値を16倍して目付を算出した。
(10)嵩高さ(比容積)
不織布の単位体積当たりの重量を示し、目付測定と厚み測定から算出される。(単位:cm3/g)
不織布の厚みを、東洋精機製作所製「デジシックネステスター」を用いて、アンビル荷重2g/cm2、速度2mm/secの条件で測定し、その数値(mm)と目付(g/m2)から算出した。
(11)風合い
不織布の、見た目の地合と、手触りによる柔らかさ、こし、ふくらみなどを総合的に判断したもの。
パネラーによる官能試験によって判断した。「良好」、「普通」、「悪い」の3段階の基準で評価した。
(9) Weight per unit area Indicates the mass per unit of the nonwoven fabric and the fiber web, and is calculated from the mass of the nonwoven fabric or the fiber web cut out in a certain area. (Unit: g / m 2 )
The nonwoven fabric cut out to 250 mm × 250 mm was lightened with an A & D company top plate electronic balance “HF-200”, and the numerical value was multiplied by 16 to calculate the basis weight.
(10) Bulkiness (specific volume)
Indicates the weight per unit volume of the nonwoven fabric, and is calculated from the basis weight measurement and the thickness measurement. (Unit: cm 3 / g)
The thickness of the non-woven fabric is measured under the conditions of an anvil load of 2 g / cm 2 and a speed of 2 mm / sec using a “Digithic Nestor” manufactured by Toyo Seiki Seisakusho, and is calculated from the numerical value (mm) and the basis weight (g / m 2 ). did.
(11) Texture This is a comprehensive judgment of the appearance of the non-woven fabric and the softness, strain, and swelling of the nonwoven fabric.
Judgment was made by a sensory test by a panelist. The evaluation was made according to three grades of “good”, “normal”, and “bad”.

以下に実施例1〜6及び比較例1〜6を説明し、それらの結果を表1〜3にまとめる。
[実施例1]
第1成分は、メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体で、α−オレフィンはオクテン−1であり、共重合体中に10モル%含有されていた。その密度は0.880、融点は72℃、メルトインデックス(MI)は18g/10min、分子量分布(Mw/Mn)は1.9である。第2成分は、メルトマスフローレイト(MFR)が8g/10minで融点が160℃の結晶性ポリプロピレンである。
これら2つの成分を構成成分として、並列型複合口金を用い、第1成分/第2成分=50/50の容積比で、第1成分側200℃、第2成分側260℃の押出温度(設定温度)の条件で溶融紡糸を行った。巻き取る際に、ソルビタン脂肪酸エステル及びラウリルホスフェートカリウム塩のエチレンオキサイド付加物を主成分とする帯電防止剤を付着させた。紡糸性は良好であった。得られた繊度6.5dtexの紡糸複合フィラメントを55℃の加熱ロールを備えた加熱装置を用いて1.7倍に延伸し、捲縮付与装置で捲縮を付与した後、38mmにカットして、繊度4.4dtex(繊維径25.2μm)の複合繊維(ステープルファイバー)を得た。
Examples 1 to 6 and Comparative Examples 1 to 6 will be described below, and the results are summarized in Tables 1 to 3.
[Example 1]
The first component was an ethylene / α-olefin copolymer polymerized using a metallocene catalyst, and the α-olefin was octene-1, which was contained in the copolymer at 10 mol%. The density is 0.880, the melting point is 72 ° C., the melt index (MI) is 18 g / 10 min, and the molecular weight distribution (Mw / Mn) is 1.9. The second component is a crystalline polypropylene having a melt mass flow rate (MFR) of 8 g / 10 min and a melting point of 160 ° C.
Using these two components as constituent components, a parallel-type composite die is used, and the extrusion ratio (setting of 200 ° C. on the first component side and 260 ° C. on the second component side is set at a volume ratio of first component / second component = 50/50. (Temperature) was melt-spun. At the time of winding, an antistatic agent composed mainly of sorbitan fatty acid ester and ethylene oxide adduct of lauryl phosphate potassium salt was adhered. Spinnability was good. The obtained composite filament with a fineness of 6.5 dtex was stretched 1.7 times using a heating device equipped with a heating roll at 55 ° C., crimped with a crimping device, and then cut into 38 mm. A composite fiber (staple fiber) having a fineness of 4.4 dtex (fiber diameter: 25.2 μm) was obtained.

第1成分について、密度、融点、メルトインデックス(MI)、分子量分布(Mw/Mn)を、上記(1)〜(4)の測定方法に準拠して測定した。第2成分について、融点、メルトマスフローレイト(MFR)を、上記(4)、(5)の測定方法に準拠して測定した。それらの結果を表1の構成成分の項目に示す。得られた複合繊維(ステープルファイバー)の繊維物性を上記(6)、(7)の測定方法に準拠して測定を行った。それらの結果を繊維断面の概略図とともに表1の糸質の項目に示す。繊維軸と直角する方向の繊維断面において、成分間の剥離は見られなかった。さらに、cd/ce=7.5、f>abであり、g/h=0.80であった。
得られた複合繊維(ステープルファイバー)100gを、500mm幅のミニチュアカード機に投入して繊維ウェブを採取した。カード工程での繊維通過性は良好であった。この繊維ウェブについて熱収縮率を上記(8)の測定方法に準拠して測定を行った。その結果を表1の糸質の項目に示す。また、得られた複合繊維(ステープルファイバー)50gを500mm幅のミニチュアカード機に投入して繊維ウェブとした。この繊維ウェブを熱風循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.8m/sec、加工時間12secの条件で加工した。得られたスルーエア不織布の物性を上記(9)〜(11)の測定方法に準拠して測定及び評価を行った。それらの結果を表1の不織布物性の項目に示す。
得られた複合繊維(ステープルファイバー)を用いた繊維ウェブの熱収縮率は15%と低い数値になったため、熱風接着法での加工においても嵩高で、地合及び風合いの良好な不織布を得ることができた。
About the 1st component, the density, melting | fusing point, melt index (MI), and molecular weight distribution (Mw / Mn) were measured based on the measuring method of said (1)-(4). About 2nd component, melting | fusing point and melt mass flow rate (MFR) were measured based on the measuring method of said (4) and (5). The results are shown in the item of constituents in Table 1. The fiber properties of the obtained composite fiber (staple fiber) were measured according to the measurement methods (6) and (7) above. The results are shown in the item of yarn quality in Table 1 together with a schematic diagram of the fiber cross section. In the fiber cross section in the direction perpendicular to the fiber axis, no separation between the components was observed. Furthermore, cd / ce = 7.5, f> ab, and g / h = 0.80.
100 g of the obtained conjugate fiber (staple fiber) was put into a 500 mm width miniature card machine to collect a fiber web. The fiber permeability in the card process was good. The thermal shrinkage of this fiber web was measured according to the measurement method of (8) above. The result is shown in the item of yarn quality in Table 1. Further, 50 g of the obtained composite fiber (staple fiber) was put into a 500 mm width miniature card machine to obtain a fiber web. This fiber web was processed using a hot air circulating through-air processing machine under the conditions of a set temperature of 98 ° C., a hot air wind speed of 0.8 m / sec, and a processing time of 12 sec. The physical properties of the obtained through-air nonwoven fabric were measured and evaluated according to the measurement methods (9) to (11) above. The results are shown in the item of physical properties of nonwoven fabric in Table 1.
Since the thermal shrinkage rate of the fiber web using the obtained composite fiber (staple fiber) has become a low value of 15%, it is bulky even in processing by the hot air bonding method, and a nonwoven fabric having a good texture and texture can be obtained. I was able to.

[実施例2]
第1成分は、メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体で、α−オレフィンはオクテン−1であり、共重合体中に9モル%含有されていた。その密度は0.885、融点は78℃、メルトインデックス(MI)は30g/10min、分子量分布(Mw/Mn)は2.0である。第2成分は、メルトマスフローレイト(MFR)が16g/10minで融点が160℃の結晶性ポリプロピレンである。
これら2つの成分を構成成分として、並列型複合口金を用い、第1成分/第2成分=50/50の容積比で、第1成分側200℃、第2成分側260℃の押出温度(設定温度)の条件で溶融紡糸を行った。巻き取る際に、ソルビタン脂肪酸エステル及びラウリルホスフェートカリウム塩のエチレンオキサイド付加物を主成分とする帯電防止剤を付着させた。紡糸性は良好であった。得られた繊度10.2dtexの紡糸複合フィラメントを60℃の加熱ロールを備えた加熱装置を用いて1.7倍に延伸し、捲縮付与装置で捲縮を付与した後、38mmにカットして、繊度7.0dtex(繊維径31.7μm)の複合繊維(ステープルファイバー)を得た。
[Example 2]
The first component was an ethylene / α-olefin copolymer polymerized using a metallocene catalyst, and the α-olefin was octene-1, which was contained by 9 mol% in the copolymer. The density is 0.885, the melting point is 78 ° C., the melt index (MI) is 30 g / 10 min, and the molecular weight distribution (Mw / Mn) is 2.0. The second component is a crystalline polypropylene having a melt mass flow rate (MFR) of 16 g / 10 min and a melting point of 160 ° C.
Using these two components as constituent components, a parallel-type composite die is used, and the extrusion ratio (setting of 200 ° C. on the first component side and 260 ° C. on the second component side is set at a volume ratio of first component / second component = 50/50. (Temperature) was melt-spun. At the time of winding, an antistatic agent composed mainly of sorbitan fatty acid ester and ethylene oxide adduct of lauryl phosphate potassium salt was adhered. Spinnability was good. The obtained composite filament with a fineness of 10.2 dtex was stretched 1.7 times using a heating device equipped with a heating roll at 60 ° C., crimped with a crimping device, and then cut into 38 mm. A composite fiber (staple fiber) having a fineness of 7.0 dtex (fiber diameter: 31.7 μm) was obtained.

第1成分について、密度、融点、メルトインデックス(MI)、分子量分布(Mw/Mn)を、上記(1)〜(4)の測定方法に準拠して測定した。第2成分について、融点、メルトマスフローレイト(MFR)を、上記(4)、(5)の測定方法に準拠して測定した。それらの結果を表1の構成成分の項目に示す。得られた複合繊維(ステープルファイバー)の繊維物性を上記(6)、(7)の測定方法に準拠して測定を行った。それらの結果を繊維断面の概略図とともに表1の糸質の項目に示す。繊維軸と直角する方向の繊維断面において、成分間の剥離は見られなかった。さらに、cd/ce=6.0、f>abであり、g/h=0.75であった。
得られた複合繊維(ステープルファイバー)100gを、500mm幅のミニチュアカード機に投入して繊維ウェブを採取した。カード工程での繊維通過性は良好であった。この繊維ウェブについて熱収縮率を上記(8)の測定方法に準拠して測定を行った。その結果を表1の糸質の項目に示す。得られた複合繊維(ステープルファイバー)50gを500mm幅のミニチュアカード機に投入して繊維ウェブとし、これら繊維ウェブを熱風循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.8m/sec、加工時間12secの条件で加工した。得られたスルーエア不織布の物性を上記(9)〜(11)の測定方法に準拠して測定及び評価を行った。それらの結果を表1の不織布物性の項目に示す。
得られた複合繊維(ステープルファイバー)を用いた繊維ウェブの熱収縮率は17%と低い数値になったため、熱風接着法での加工においても嵩高で、地合及び風合いの良好な不織布を得ることができた。
About the 1st component, the density, melting | fusing point, melt index (MI), and molecular weight distribution (Mw / Mn) were measured based on the measuring method of said (1)-(4). About 2nd component, melting | fusing point and melt mass flow rate (MFR) were measured based on the measuring method of said (4) and (5). The results are shown in the item of constituents in Table 1. The fiber properties of the obtained composite fiber (staple fiber) were measured according to the measurement methods (6) and (7) above. The results are shown in the item of yarn quality in Table 1 together with a schematic diagram of the fiber cross section. In the fiber cross section in the direction perpendicular to the fiber axis, no separation between the components was observed. Furthermore, cd / ce = 6.0, f> ab, and g / h = 0.75.
100 g of the obtained conjugate fiber (staple fiber) was put into a 500 mm width miniature card machine to collect a fiber web. The fiber permeability in the card process was good. The thermal shrinkage of this fiber web was measured according to the measurement method of (8) above. The result is shown in the item of yarn quality in Table 1. 50 g of the obtained composite fiber (staple fiber) was put into a 500 mm width miniature card machine to form fiber webs, and these fiber webs were set at a set temperature of 98 ° C. and hot air speed 0. Processing was performed under conditions of 8 m / sec and a processing time of 12 sec. The physical properties of the obtained through-air nonwoven fabric were measured and evaluated according to the measurement methods (9) to (11) above. The results are shown in the item of physical properties of nonwoven fabric in Table 1.
Since the thermal shrinkage rate of the fiber web using the obtained composite fiber (staple fiber) was as low as 17%, a nonwoven fabric that is bulky even in processing by the hot air bonding method and has a good texture and texture can be obtained. I was able to.

[実施例3]
第1成分は、メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体で、α−オレフィンはオクテン−1であり、共重合体中に5モル%含有されていた。その密度は0.902、融点は98℃、メルトインデックス(MI)は30g/10min、分子量分布(Mw/Mn)は2.1である。第2成分は、メルトマスフローレイト(MFR)が16g/10minで融点が160℃の結晶性ポリプロピレンである。
これら2つの成分を構成成分として、並列型複合口金を用い、第1成分/第2成分=45/55の容積比で、第1成分側200℃、第2成分側260℃の押出温度(設定温度)の条件で溶融紡糸を行った。巻き取る際に、ソルビタン脂肪酸エステル及びラウリルホスフェートカリウム塩のエチレンオキサイド付加物を主成分とする帯電防止剤を付着させた。紡糸性は良好であった。得られた繊度10.0dtexの紡糸複合フィラメントを70℃の加熱ロールを備えた加熱装置を用いて2.6倍に延伸し、捲縮付与装置で捲縮を付与した後、38mmにカットして、繊度4.4dtex(繊維径25.0μm)の複合繊維(ステープルファイバー)を得た。
[Example 3]
The first component was an ethylene / α-olefin copolymer polymerized using a metallocene catalyst, and the α-olefin was octene-1, which was contained in the copolymer at 5 mol%. The density is 0.902, the melting point is 98 ° C., the melt index (MI) is 30 g / 10 min, and the molecular weight distribution (Mw / Mn) is 2.1. The second component is a crystalline polypropylene having a melt mass flow rate (MFR) of 16 g / 10 min and a melting point of 160 ° C.
Using these two components as constituent components, a parallel-type composite die is used, and the extrusion ratio (set by the first component side 200 ° C. and the second component side 260 ° C. at a volume ratio of first component / second component = 45/55) (Temperature) was melt-spun. At the time of winding, an antistatic agent composed mainly of sorbitan fatty acid ester and ethylene oxide adduct of lauryl phosphate potassium salt was adhered. Spinnability was good. The obtained composite filament with a fineness of 10.0 dtex was stretched 2.6 times using a heating device equipped with a heating roll at 70 ° C., crimped with a crimping device, and then cut into 38 mm. A composite fiber (staple fiber) having a fineness of 4.4 dtex (fiber diameter 25.0 μm) was obtained.

第1成分について、密度、融点、メルトインデックス(MI)、分子量分布(Mw/Mn)を、上記(1)〜(4)の測定方法に準拠して測定した。第2成分について、融点、メルトマスフローレイト(MFR)を、上記(4)、(5)の測定方法に準拠して測定した。それらの結果を表1の構成成分の項目に示す。得られた複合繊維(ステープルファイバー)の繊維物性を上記(6)、(7)の測定方法に準拠して測定を行った。それらの結果を繊維断面の概略図とともに表1の糸質の項目に示す。繊維軸と直角する方向の繊維断面において、成分間の剥離は見られなかった。さらに、cd/ce=3.0、f>abであり、g/h=0.70であった。
得られた複合繊維(ステープルファイバー)100gを、500mm幅のミニチュアカード機に投入して繊維ウェブを採取した。カード工程での繊維通過性は良好であった。この繊維ウェブについて熱収縮率を上記(8)の測定方法に準拠して測定を行った。その結果を表1の糸質の項目に示す。得られた複合繊維(ステープルファイバー)50gを500mm幅のミニチュアカード機に投入して繊維ウェブとし、この繊維ウェブを熱風循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.8m/sec、加工時間12secの条件で加工した。得られたスルーエア不織布の物性を上記(9)〜(11)の測定方法に準拠して測定及び評価を行った。それらの結果を表1の不織布物性の項目に示す。
得られた複合繊維(ステープルファイバー)を用いた繊維ウェブの熱収縮率は28%と低い数値になったため、熱風接着法での加工においても嵩高で、地合及び風合いの良好な不織布を得ることができた。
About the 1st component, the density, melting | fusing point, melt index (MI), and molecular weight distribution (Mw / Mn) were measured based on the measuring method of said (1)-(4). About 2nd component, melting | fusing point and melt mass flow rate (MFR) were measured based on the measuring method of said (4) and (5). The results are shown in the item of constituents in Table 1. The fiber properties of the obtained composite fiber (staple fiber) were measured according to the measurement methods (6) and (7) above. The results are shown in the item of yarn quality in Table 1 together with a schematic diagram of the fiber cross section. In the fiber cross section in the direction perpendicular to the fiber axis, no separation between the components was observed. Furthermore, cd / ce = 3.0, f> ab, and g / h = 0.70.
100 g of the obtained conjugate fiber (staple fiber) was put into a 500 mm width miniature card machine to collect a fiber web. The fiber permeability in the card process was good. The thermal shrinkage of this fiber web was measured according to the measurement method of (8) above. The result is shown in the item of yarn quality in Table 1. 50 g of the obtained composite fiber (staple fiber) is put into a 500 mm width miniature card machine to form a fiber web, and this fiber web is set at a set temperature of 98 ° C. and hot air wind speed 0. 0 using a hot air circulation type through air processing machine. Processing was performed under conditions of 8 m / sec and a processing time of 12 sec. The physical properties of the obtained through-air nonwoven fabric were measured and evaluated according to the measurement methods (9) to (11) above. The results are shown in the item of physical properties of nonwoven fabric in Table 1.
Since the thermal shrinkage rate of the fiber web using the obtained composite fiber (staple fiber) was as low as 28%, it is bulky even in processing by the hot air bonding method, and a nonwoven fabric having a good texture and texture can be obtained. I was able to.

[実施例4]
実施例3と同じ成分構成で、同条件の紡糸と延伸を行い、捲縮付与装置で捲縮を付与した後、5mmにカットして、繊度4.4dtex(繊維径25.0μm)の複合繊維(エアレイド用チョップ)を得た。
得られた複合繊維(エアレイド用チョップ)200gを一対のフォーミングヘッドを一個有するエアレイド機に投入し、エアレイド法にて繊維ウェブとした。エアレイド機からの繊維排出性は良好であった。この繊維ウェブを熱風循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.38m/sec、加工時間14secの条件で熱風接着加工した。得られたスルーエア不織布の物性を上記(9)〜(11)の測定方法に準拠して測定及び評価を行った。それらの結果を表1の不織布物性の項目に示す。
得られた複合繊維を、エアレイド法で繊維ウェブにして熱風接着法で加工したところ、嵩高で、収縮が抑制され、地合及び風合いの良好な不織布を得ることができた。
[Example 4]
Spinning and drawing under the same conditions as in Example 3 and applying crimps with a crimping device, then cutting to 5 mm and a composite fiber having a fineness of 4.4 dtex (fiber diameter 25.0 μm) (Airlaid chop) was obtained.
200 g of the obtained composite fiber (airlaid chop) was put into an airlaid machine having one pair of forming heads, and a fiber web was formed by the airlaid method. The fiber dischargeability from the airlaid machine was good. This fiber web was subjected to hot air bonding using a hot air circulation type through-air processing machine under the conditions of a set temperature of 98 ° C., a hot air wind speed of 0.38 m / sec, and a processing time of 14 sec. The physical properties of the obtained through-air nonwoven fabric were measured and evaluated according to the measurement methods (9) to (11) above. The results are shown in the item of physical properties of nonwoven fabric in Table 1.
When the obtained composite fiber was processed into a fiber web by the airlaid method and processed by the hot air bonding method, it was bulky, shrinkage was suppressed, and a nonwoven fabric having a good texture and texture could be obtained.

[比較例1]
第1成分は、エチレン・α−オレフィン共重合体で、α−オレフィンはオクテン−1であり、共重合体中に2モル%含有されていた。その密度は0.913、融点は107℃、メルトインデックス(MI)は30g/10min、分子量分布(Mw/Mn)は3.0である。第2成分は、メルトマスフローレイト(MFR)が16g/10minで融点が160℃の結晶性ポリプロピレンである。
これら2つの成分を構成成分として、並列型複合口金を用い、第1成分/第2成分=50/50の容積比で、第1成分側200℃、第2成分側260℃の押出温度(設定温度)の条件で溶融紡糸を行い、第1成分と第2成分の境界線が、第1成分側に向かって凸状に湾曲した曲線を描く繊維断面構造を持つ複合繊維を製造した。巻き取る際に、ソルビタン脂肪酸エステル及びラウリルホスフェートカリウム塩のエチレンオキサイド付加物を主成分とする帯電防止剤を付着させた。紡糸性は良好であった。得られた繊度11.5dtexの紡糸複合フィラメントを70℃の加熱ロールを備えた加熱装置を用いて3.3倍に延伸し、捲縮付与装置で捲縮を付与した後、38mmにカットして、繊度3.8dtex(繊維径23.2μm)の複合繊維(ステープルファイバー)を得た。
[Comparative Example 1]
The first component was an ethylene / α-olefin copolymer, and the α-olefin was octene-1, and 2 mol% was contained in the copolymer. The density is 0.913, the melting point is 107 ° C., the melt index (MI) is 30 g / 10 min, and the molecular weight distribution (Mw / Mn) is 3.0. The second component is a crystalline polypropylene having a melt mass flow rate (MFR) of 16 g / 10 min and a melting point of 160 ° C.
Using these two components as constituent components, a parallel-type composite die is used, and the extrusion ratio (setting of 200 ° C. on the first component side and 260 ° C. on the second component side is set at a volume ratio of first component / second component = 50/50. The composite fiber having a fiber cross-sectional structure in which a boundary line between the first component and the second component curved in a convex shape toward the first component side was produced by melt spinning under the condition of (temperature). At the time of winding, an antistatic agent composed mainly of sorbitan fatty acid ester and ethylene oxide adduct of lauryl phosphate potassium salt was adhered. Spinnability was good. The obtained composite filament with a fineness of 11.5 dtex was stretched 3.3 times using a heating device equipped with a heating roll at 70 ° C., crimped with a crimping device, and then cut into 38 mm. A composite fiber (staple fiber) having a fineness of 3.8 dtex (fiber diameter: 23.2 μm) was obtained.

第1成分について、密度、融点、メルトインデックス(MI)、分子量分布(Mw/Mn)を、上記(1)〜(4)の測定方法に準拠して測定した。第2成分について、融点、メルトマスフローレイト(MFR)を、上記(4)、(5)の測定方法に準拠して測定した。それらの結果を表2の構成成分の項目に示す。得られた複合繊維(ステープルファイバー)の繊維物性を上記(6)、(7)の測定方法に準拠して測定を行った。それらの結果を繊維断面の概略図とともに表2の糸質の項目に示す。さらに、繊維軸と直角する方向の繊維断面において、cd/ce=3.5、f>abであり、g/h=0.55であった。
得られた複合繊維(ステープルファイバー)100gを、500mm幅のミニチュアカード機に投入して繊維ウェブを採取した。カード工程における繊維通過性は良好であった。これらの繊維ウェブについて熱収縮率を上記(8)の測定方法に準拠して測定を行った。その結果を表2の糸質の項目に示す。得られた複合繊維(ステープルファイバー)50gを500mm幅のミニチュアカード機に投入して繊維ウェブとし、これら繊維ウェブを熱風循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.8m/sec、加工時間12secの条件で加工したが、第1成分であるエチレン・オクテン−1共重合体の融点が高いため、98℃の加工温度では繊維交絡点が溶融せず、不織布化ができなかった。このように、本比較例1は、主に融点が107℃である点などにおいて上記実施例3記載のものと大きく相違するほかは、およそこの実施例3記載のものと類似の方法で製造したものであるが、得られたものは、熱水接着法を採用できるほどの低温での不織布化処理や成形加工を可能ならしめる複合繊維ではなかった。よって、予定していた、低温加工を前提とした100℃での繊維ウェブの収縮率の評価も、もはやその測定の意味を失うものであった。
About the 1st component, the density, melting | fusing point, melt index (MI), and molecular weight distribution (Mw / Mn) were measured based on the measuring method of said (1)-(4). About 2nd component, melting | fusing point and melt mass flow rate (MFR) were measured based on the measuring method of said (4) and (5). The results are shown in the item of components in Table 2. The fiber properties of the obtained composite fiber (staple fiber) were measured according to the measurement methods (6) and (7) above. The results are shown in the item of yarn quality in Table 2 together with a schematic diagram of the fiber cross section. Furthermore, in the fiber cross section in the direction perpendicular to the fiber axis, cd / ce = 3.5, f> ab, and g / h = 0.55.
100 g of the obtained conjugate fiber (staple fiber) was put into a 500 mm width miniature card machine to collect a fiber web. The fiber permeability in the card process was good. These fiber webs were measured for thermal shrinkage in accordance with the measurement method of (8) above. The results are shown in the item of yarn quality in Table 2. 50 g of the obtained composite fiber (staple fiber) was put into a 500 mm width miniature card machine to form fiber webs, and these fiber webs were set at a set temperature of 98 ° C. and hot air speed 0. Processing was performed under conditions of 8 m / sec and processing time of 12 sec. However, since the melting point of the ethylene / octene-1 copolymer, which is the first component, is high, the fiber entanglement point does not melt at the processing temperature of 98 ° C. could not. As described above, Comparative Example 1 was produced by a method similar to that described in Example 3 except that the melting point was 107 ° C., which was largely different from that described in Example 3. However, what was obtained was not a composite fiber that enables non-woven fabric processing and molding at a low temperature enough to adopt the hot water bonding method. Therefore, the expected evaluation of the shrinkage ratio of the fiber web at 100 ° C. on the assumption of low-temperature processing no longer makes sense for the measurement.

[比較例2]
第1成分は、エチレン・α−オレフィン共重合体で、α−オレフィンはプロピレンとブテンであり、それぞれの含有量は、共重合体中で3モル%、および、3モル%であった。その密度は0.897、融点は81℃、メルトインデックス(MI)は4g/10min、分子量分布(Mw/Mn)は2.0である。第2成分は、メルトマスフローレイト(MFR)が8g/10minで融点が160℃の結晶性ポリプロピレンである。
これら2つの成分を構成成分として、並列型複合口金を用い、第1成分/第2成分=50/50の容積比で、第1成分側220℃、第2成分側260℃の押出温度(設定温度)の条件で溶融紡糸を行った。巻き取る際に、ソルビタン脂肪酸エステル及びラウリルホスフェートカリウム塩のエチレンオキサイド付加物を主成分とする帯電防止剤を付着させたが、巻き取った紡糸複合フィラメントを確認したところ、少し膠着が発生していた。膠着が見られたものの、得られた繊度9.8dtexの紡糸複合フィラメントを60℃の加熱ロールを備えた加熱装置を用いて1.7倍に延伸し、捲縮付与装置で捲縮を付与した後、38mmにカットして、繊度6.8dtex(繊維径31.1μm)の複合繊維(ステープルファイバー)を得た。
[Comparative Example 2]
The first component was an ethylene / α-olefin copolymer, and the α-olefin was propylene and butene, and the respective contents were 3 mol% and 3 mol% in the copolymer. The density is 0.897, the melting point is 81 ° C., the melt index (MI) is 4 g / 10 min, and the molecular weight distribution (Mw / Mn) is 2.0. The second component is a crystalline polypropylene having a melt mass flow rate (MFR) of 8 g / 10 min and a melting point of 160 ° C.
Using these two components as constituent components, a parallel-type composite die is used, and the extrusion ratio (set by the first component side at 220 ° C. and the second component side at 260 ° C. with a volume ratio of first component / second component = 50/50 (setting) (Temperature) was melt-spun. When winding, an antistatic agent mainly composed of sorbitan fatty acid ester and ethylene oxide adduct of lauryl phosphate potassium was adhered, but when the wound composite filament was confirmed, a little sticking occurred. . Although the agglutination was observed, the obtained composite filament with a fineness of 9.8 dtex was stretched 1.7 times using a heating device equipped with a heating roll at 60 ° C., and crimped by a crimping device. Thereafter, the resultant was cut to 38 mm to obtain a composite fiber (staple fiber) having a fineness of 6.8 dtex (fiber diameter: 31.1 μm).

第1成分について、密度、融点、メルトインデックス(MI)、分子量分布(Mw/Mn)を、上記(1)〜(4)の測定方法に準拠して測定した。第2成分について、融点、メルトマスフローレイト(MFR)を、上記(4)、(5)の測定方法に準拠して測定した。それらの結果を表2の構成成分の項目に示す。得られた複合繊維(ステープルファイバー)の繊維物性を上記(6)、(7)の測定方法に準拠して測定を行った。それらの結果を繊維断面の概略図とともに表2の糸質の項目に示す。第1成分のメルトインデックス(MI)が低いため、繊維軸と直角する方向の繊維断面において、第1成分と第2成分の境界線が、第2成分側に向かって凸状に湾曲する曲線を描くようになってしまった。そのため、cd/ceは測定出来ず、f、g/hも測定出来なかった。また、成分間での剥離が見られた。
得られた複合繊維(ステープルファイバー)100gを、500mm幅のミニチュアカード機に投入して繊維ウェブを採取した。カード工程での繊維通過性は、繊維排出性に斑が発生したため、良くなかった。この繊維ウェブについて熱収縮率を上記(8)の測定方法に準拠して測定を行った。それらの結果を表2の糸質の項目に示す。得られた複合繊維(ステープルファイバー)50gを500mm幅のミニチュアカード機に投入して繊維ウェブとし、これら繊維ウェブを熱風循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.8m/sec、加工時間12secの条件で加工したが、収縮が大きく、不織布強度が低く、地合、風合いの良好な不織布を得ることができなかった。得られた複合繊維を用いた繊維ウェブの熱収縮率は55%と高かった。
About the 1st component, the density, melting | fusing point, melt index (MI), and molecular weight distribution (Mw / Mn) were measured based on the measuring method of said (1)-(4). About 2nd component, melting | fusing point and melt mass flow rate (MFR) were measured based on the measuring method of said (4) and (5). The results are shown in the item of components in Table 2. The fiber properties of the obtained composite fiber (staple fiber) were measured according to the measurement methods (6) and (7) above. The results are shown in the item of yarn quality in Table 2 together with a schematic diagram of the fiber cross section. Since the melt index (MI) of the first component is low, in the fiber cross section in the direction perpendicular to the fiber axis, the boundary line between the first component and the second component curves in a convex shape toward the second component side. I started drawing. Therefore, cd / ce could not be measured, and f and g / h could not be measured. Moreover, the peeling between components was seen.
100 g of the obtained conjugate fiber (staple fiber) was put into a 500 mm width miniature card machine to collect a fiber web. The fiber passing property in the carding process was not good because spots were generated in the fiber discharging property. The thermal shrinkage of this fiber web was measured according to the measurement method of (8) above. The results are shown in the item of yarn quality in Table 2. 50 g of the obtained composite fiber (staple fiber) was put into a 500 mm width miniature card machine to form fiber webs, and these fiber webs were set at a set temperature of 98 ° C. and hot air speed 0. Processing was performed under conditions of 8 m / sec and processing time of 12 sec. However, the shrinkage was large, the strength of the nonwoven fabric was low, and a nonwoven fabric with good texture and texture could not be obtained. The heat shrinkage rate of the fiber web using the obtained conjugate fiber was as high as 55%.

[比較例3]
第1成分は、エチレン・α−オレフィン共重合体で、α−オレフィンはプロピレンであり、共重合体中に15モル%含有されていた。その密度は0.863、融点は50℃、メルトインデックス(MI)は21g/10min、分子量分布(Mw/Mn)は2.0である。第2成分は、メルトマスフローレイト(MFR)が16g/10minで融点が160℃の結晶性ポリプロピレンである。
これら2つの成分を構成成分として、並列型複合口金を用い、第1成分/第2成分=50/50の容積比で、第1成分側220℃、第2成分側260℃の押出温度(設定温度)の条件で溶融紡糸を行った。しかし、巻き取る際に、紡糸複合フィラメントが膠着を起こし、延伸を行えるような紡糸複合フィラメントが採取できなかった。当該比較例に関して、表2に記した繊維断面の模式図は、膠着した複合紡糸フィラメントから何とか採取して観察したものである。第1成分のメルトインデックス(MI)が第2成分のメルトマスフローレイト(MFR)に対して有意的に低いため、繊維軸と直角方向の繊維断面において、第1成分と第2成分の境界線が直線状、いわゆる両複合成分がともに半月状の複合断面となっていた。繊維軸と直角する方向の繊維断面において、cd/ce=0であって、複合成分間には剥離が見られた。
第1成分について、密度、融点、メルトインデックス(MI)、分子量分布(Mw/Mn)を、上記(1)〜(4)の測定方法に準拠して測定した。第2成分について、融点、メルトマスフローレイト(MFR)を、上記(4)、(5)の測定方法に準拠して測定した。それらの結果を表2の構成成分の項目に示す。
[Comparative Example 3]
The first component was an ethylene / α-olefin copolymer, and the α-olefin was propylene, and was contained in an amount of 15 mol% in the copolymer. The density is 0.863, the melting point is 50 ° C., the melt index (MI) is 21 g / 10 min, and the molecular weight distribution (Mw / Mn) is 2.0. The second component is a crystalline polypropylene having a melt mass flow rate (MFR) of 16 g / 10 min and a melting point of 160 ° C.
Using these two components as constituent components, a parallel-type composite die is used, and the extrusion ratio (set by the first component side at 220 ° C. and the second component side at 260 ° C. with a volume ratio of first component / second component = 50/50 (setting) (Temperature) was melt-spun. However, at the time of winding, the spun composite filament was stuck, and a spun composite filament that could be drawn could not be collected. Regarding the comparative example, the schematic diagram of the fiber cross section shown in Table 2 is something that was collected and observed from the glued composite spun filaments. Since the melt index (MI) of the first component is significantly lower than the melt mass flow rate (MFR) of the second component, the boundary line between the first component and the second component is present in the fiber cross section perpendicular to the fiber axis. Both the linear and so-called composite components had a half-moon-shaped composite cross section. In the fiber cross section in the direction perpendicular to the fiber axis, cd / ce = 0, and separation was observed between the composite components.
About the 1st component, the density, melting | fusing point, melt index (MI), and molecular weight distribution (Mw / Mn) were measured based on the measuring method of said (1)-(4). About 2nd component, melting | fusing point and melt mass flow rate (MFR) were measured based on the measuring method of said (4) and (5). The results are shown in the item of components in Table 2.

[比較例4]
第1成分として、2つの樹脂をブレンドしたものを使用した。1つはエチレン・α−オレフィン共重合体で、α−オレフィンはプロペンであり、共重合体中に12モル%含有されていた。その密度は0.870、融点は75℃、メルトインデックス(MI)は1g/10min、分子量分布(Mw/Mn)は1.9である。もう1つは、プロピレン・α−オレフィン共重合体で、α−オレフィンはエチレンとブテン−1であり、それらの含有量は、共重合体中で共に1モル%であった。その融点は128℃、メルトマスフローレイト(MFR)は16g/10minである。この2つの樹脂を質量比20/80の割合でブレンドした。なお、表2には、より低融点の樹脂であるエチレン・プロペン共重合体の物性を記す。第2成分は、メルトマスフローレイト(MFR)が8g/10minで融点が160℃の結晶性ポリプロピレンである。
これら2つの成分を構成成分として、並列型複合口金を用い、第1成分/第2成分=50/50の容積比で、第1成分側200℃、第2成分側260℃の押出温度(設定温度)の条件で溶融紡糸を行い、第1成分と第2成分の境界線が、第1成分側に向かって凸状に湾曲した曲線を描く繊維断面構造を持つ複合繊維を製造した。巻き取る際に、ソルビタン脂肪酸エステル及びラウリルホスフェートカリウム塩のエチレンオキサイド付加物を主成分とする帯電防止剤を付着させた。紡糸性は良好であった。得られた繊度9.7dtexの紡糸複合フィラメントを60℃の加熱ロールを備えた加熱装置を用いて2.6倍に延伸し、捲縮付与装置で捲縮を付与した後、38mmにカットして、繊度4.4dtex(繊維径25.1μm)の複合繊維(ステープルファイバー)を得た。
[Comparative Example 4]
As the first component, a blend of two resins was used. One was an ethylene / α-olefin copolymer, and the α-olefin was propene, which was contained in the copolymer at 12 mol%. The density is 0.870, the melting point is 75 ° C., the melt index (MI) is 1 g / 10 min, and the molecular weight distribution (Mw / Mn) is 1.9. The other was a propylene / α-olefin copolymer, and the α-olefin was ethylene and butene-1, and their contents were both 1 mol% in the copolymer. Its melting point is 128 ° C. and its melt mass flow rate (MFR) is 16 g / 10 min. The two resins were blended at a mass ratio of 20/80. Table 2 shows the physical properties of an ethylene / propene copolymer which is a resin having a lower melting point. The second component is a crystalline polypropylene having a melt mass flow rate (MFR) of 8 g / 10 min and a melting point of 160 ° C.
Using these two components as constituent components, a parallel-type composite die is used, and the extrusion ratio (set by the first component side 200 ° C. and the second component side 260 ° C. at a volume ratio of first component / second component = 50/50) The composite fiber having a fiber cross-sectional structure in which a boundary line between the first component and the second component curved in a convex shape toward the first component side was produced by melt spinning under the condition of (temperature). At the time of winding, an antistatic agent composed mainly of sorbitan fatty acid ester and ethylene oxide adduct of lauryl phosphate potassium salt was adhered. Spinnability was good. The obtained composite filament with a fineness of 9.7 dtex was stretched 2.6 times using a heating device equipped with a heating roll at 60 ° C., crimped with a crimping device, and then cut into 38 mm. A composite fiber (staple fiber) having a fineness of 4.4 dtex (fiber diameter 25.1 μm) was obtained.

第1成分について、密度、融点、メルトインデックス(MI)、分子量分布(Mw/Mn)を、上記(1)〜(4)の測定方法に準拠して測定した。第2成分について、融点、メルトマスフローレイト(MFR)を、上記(4)、(5)の測定方法に準拠して測定した。それらの結果を表2の構成成分の項目に示す。得られた複合繊維(ステープルファイバー)の繊維物性を上記(6)、(7)の測定方法に準拠して測定を行った。それらの結果を繊維断面の概略図とともに表2の糸質の項目に示す。さらに、繊維軸と直角する方向の繊維断面において、cd/ce=0.2、g/h<0.5であった。
得られた複合繊維(ステープルファイバー)100gを、500mm幅のミニチュアカード機に投入して繊維ウェブを採取した。カード工程での繊維通過性は良好であった。得られた繊維ウェブについて熱収縮率を上記(8)の測定方法に準拠して測定を行った。それらの結果を表2の糸質の項目に示す。得られた複合繊維(ステープルファイバー)50gを500mm幅のミニチュアカード機に投入して繊維ウェブとし、これら繊維ウェブを熱風循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.8m/sec、加工時間12secの条件で加工したが、収縮が大きく、地合、風合いの良好な不織布を得ることができなかった。得られた複合繊維を用いた繊維ウェブの熱収縮率は65%と高かった。
About the 1st component, the density, melting | fusing point, melt index (MI), and molecular weight distribution (Mw / Mn) were measured based on the measuring method of said (1)-(4). About 2nd component, melting | fusing point and melt mass flow rate (MFR) were measured based on the measuring method of said (4) and (5). The results are shown in the item of components in Table 2. The fiber properties of the obtained composite fiber (staple fiber) were measured according to the measurement methods (6) and (7) above. The results are shown in the item of yarn quality in Table 2 together with a schematic diagram of the fiber cross section. Furthermore, in the fiber cross section in the direction perpendicular to the fiber axis, cd / ce = 0.2 and g / h <0.5.
100 g of the obtained conjugate fiber (staple fiber) was put into a 500 mm width miniature card machine to collect a fiber web. The fiber permeability in the card process was good. About the obtained fiber web, the heat shrinkage rate was measured based on the measuring method of said (8). The results are shown in the item of yarn quality in Table 2. 50 g of the obtained composite fiber (staple fiber) was put into a 500 mm width miniature card machine to form fiber webs, and these fiber webs were set at a set temperature of 98 ° C. and hot air speed 0. Processing was performed under conditions of 8 m / sec and a processing time of 12 sec. However, the shrinkage was large, and a nonwoven fabric having a good texture and texture could not be obtained. The heat shrinkage ratio of the fiber web using the obtained conjugate fiber was as high as 65%.

[比較例5]
第1成分として、2つの樹脂をブレンドしたものを使用した。1つは低密度ポリエチレンである。その密度は0.918、融点は105℃、メルトインデックス(MI)は24g/10min、分子量分布が7.0である。もう1つは、エチレン・酢酸ビニル共重合体である。酢酸ビニル量は20質量%で、その密度は0.939、融点は92℃、メルトインデックス(MI)は20g/10min、分子量分布(Mw/Mn)は5.0である。この2つの樹脂を質量比75/25の割合でブレンドした。なお、表3には、より低融点の樹脂であるエチレン・酢酸ビニル共重合体の物性を記す。第2成分は、メルトマスフローレイト(MFR)が8g/10minで融点が160℃の結晶性ポリプロピレンである。
これら2つの成分を構成成分として、並列型複合口金を用い、第1成分/第2成分=50/50の容積比で、第1成分側200℃、第2成分側260℃の押出温度(設定温度)の条件で溶融紡糸を行い、第1成分と第2成分の境界線が、第1成分側に向かって凸状に湾曲した曲線を描く繊維断面構造を持つ複合繊維を製造した。巻き取る際に、ソルビタン脂肪酸エステル及びラウリルホスフェートカリウム塩のエチレンオキサイド付加物を主成分とする帯電防止剤を付着させた。紡糸の際に糸切れが多く発生した。得られた繊度9.7dtexの紡糸複合フィラメントを60℃の加熱ロールを備えた加熱装置を用いて2.6倍に延伸し、捲縮付与装置で捲縮を付与した後、38mmにカットして、繊度3.3dtex(繊維径21.5μm)の複合繊維(ステープルファイバー)を得た。
[Comparative Example 5]
As the first component, a blend of two resins was used. One is low density polyethylene. The density is 0.918, the melting point is 105 ° C., the melt index (MI) is 24 g / 10 min, and the molecular weight distribution is 7.0. The other is an ethylene / vinyl acetate copolymer. The amount of vinyl acetate is 20% by mass, the density is 0.939, the melting point is 92 ° C., the melt index (MI) is 20 g / 10 min, and the molecular weight distribution (Mw / Mn) is 5.0. The two resins were blended at a mass ratio of 75/25. Table 3 shows the physical properties of an ethylene / vinyl acetate copolymer which is a resin having a lower melting point. The second component is a crystalline polypropylene having a melt mass flow rate (MFR) of 8 g / 10 min and a melting point of 160 ° C.
Using these two components as constituent components, a parallel-type composite die is used, and the extrusion ratio (setting of 200 ° C. on the first component side and 260 ° C. on the second component side is set at a volume ratio of first component / second component = 50/50. The composite fiber having a fiber cross-sectional structure in which a boundary line between the first component and the second component curved in a convex shape toward the first component side was produced by melt spinning under the condition of (temperature). At the time of winding, an antistatic agent composed mainly of sorbitan fatty acid ester and ethylene oxide adduct of lauryl phosphate potassium salt was adhered. Many yarn breaks occurred during spinning. The obtained composite filament with a fineness of 9.7 dtex was stretched 2.6 times using a heating device equipped with a heating roll at 60 ° C., crimped with a crimping device, and then cut into 38 mm. A composite fiber (staple fiber) having a fineness of 3.3 dtex (fiber diameter 21.5 μm) was obtained.

第1成分について、密度、融点、メルトインデックス(MI)、分子量分布(Mw/Mn)を、上記(1)〜(4)の測定方法に準拠して測定した。第2成分について、融点、メルトマスフローレイト(MFR)を、上記(4)、(5)の測定方法に準拠して測定した。それらの結果を表3の構成成分の項目に示す。得られた複合繊維(ステープルファイバー)の繊維物性を上記(6)、(7)の測定方法に準拠して測定を行った。それらの結果を繊維断面の概略図とともに表3の糸質の項目に示す。さらに、繊維軸と直角する方向の繊維断面において、cd/ce=9.5、f>abであり、g/h=0.86であった。
得られた複合繊維(ステープルファイバー)100gを、500mm幅のミニチュアカード機に投入して繊維ウェブを採取した。カード工程における繊維通過性は、繊維の排出に斑が発生したため、良くなかった。得られた繊維ウェブについて熱収縮率を上記(8)の測定方法に準拠して測定を行った。それらの結果を表3の糸質の項目に示す。得られた複合繊維(ステープルファイバー)50gを500mm幅のミニチュアカード機に投入して繊維ウェブとし、これら繊維ウェブを熱風循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.8m/sec、加工時間12secの条件で加工したが、収縮が大きく、地合、風合いの良好な不織布を得ることができなかった。
得られた複合繊維を用いた繊維ウェブの熱収縮率は60%と高かった。
About the 1st component, the density, melting | fusing point, melt index (MI), and molecular weight distribution (Mw / Mn) were measured based on the measuring method of said (1)-(4). About 2nd component, melting | fusing point and melt mass flow rate (MFR) were measured based on the measuring method of said (4) and (5). The results are shown in the item of constituents in Table 3. The fiber properties of the obtained composite fiber (staple fiber) were measured according to the measurement methods (6) and (7) above. The results are shown in the item of yarn quality in Table 3 together with a schematic diagram of the fiber cross section. Furthermore, in the fiber cross section in the direction perpendicular to the fiber axis, cd / ce = 9.5, f> ab, and g / h = 0.86.
100 g of the obtained conjugate fiber (staple fiber) was put into a 500 mm width miniature card machine to collect a fiber web. The fiber passability in the carding process was not good because spots were generated in the fiber discharge. About the obtained fiber web, the heat shrinkage rate was measured based on the measuring method of said (8). The results are shown in the item of yarn quality in Table 3. 50 g of the obtained composite fiber (staple fiber) was put into a 500 mm width miniature card machine to form fiber webs, and these fiber webs were set at a set temperature of 98 ° C. and hot air speed 0. Processing was performed under conditions of 8 m / sec and a processing time of 12 sec. However, the shrinkage was large, and a nonwoven fabric having a good texture and texture could not be obtained.
The heat shrinkage rate of the fiber web using the obtained conjugate fiber was as high as 60%.

[比較例6]
比較例5と同じ成分構成で、同条件の紡糸と延伸を行い、捲縮付与装置で捲縮を付与した後、5mmにカットして、繊度3.3dtex(繊維径21.5μm)の複合繊維(エアレイド用チョップ)を得た。
得られた複合繊維(エアレイド用チョップ)200gを一対のフォーミングヘッドを一個有するエアレイド機に投入し、エアレイド法にて繊維ウェブとしたが、エアレイド機からの繊維排出性は良くなかった。得られた繊維ウェブを熱風循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.38m/sec、加工時間14secの条件で熱風接着加工したが、当該98℃での熱風接着は可能であったものの、収縮が発生し、地合、風合いの良好な不織布を得ることができなかった。結果を表3に示す。
[Comparative Example 6]
Spinning and drawing under the same conditions as in Comparative Example 5 and applying crimps with a crimping device, then cutting to 5 mm and a composite fiber having a fineness of 3.3 dtex (fiber diameter 21.5 μm) (Airlaid chop) was obtained.
200 g of the obtained composite fiber (air laid chop) was put into an air laid machine having one pair of forming heads to form a fiber web by the air laid method. However, the fiber dischargeability from the air laid machine was not good. The obtained fiber web was hot-air bonded using a hot-air circulating through-air processing machine at a set temperature of 98 ° C., a hot-air wind speed of 0.38 m / sec, and a processing time of 14 sec. Although it was possible, shrinkage occurred, and a nonwoven fabric with good texture and texture could not be obtained. The results are shown in Table 3.

[実施例5]
実施例3で得た複合繊維(ステープルファイバー)を、カーディング法にて繊維ウェブとし、この繊維ウェブを棒状のスライバーにした。スライバーにした繊維ウェブを、線径0.29mmの20メッシュの金網で出来た筒状の型(10mm×10mm×60mm)に充填し、その状態で循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速1.2m/sec、加工時間12secの条件で熱風接着加工して、直方体状の繊維成形体を得た。得られた繊維成形体は、クッション性に優れていた。
[Example 5]
The composite fiber (staple fiber) obtained in Example 3 was made into a fiber web by the carding method, and this fiber web was made into a rod-shaped sliver. The fiber web made into a sliver is filled into a cylindrical mold (10 mm × 10 mm × 60 mm) made of a 20 mesh wire net with a wire diameter of 0.29 mm, and in that state, 98 ° C. using a circulating through-air processing machine. Was subjected to hot air bonding under the conditions of a set temperature of 1, a hot air speed of 1.2 m / sec, and a processing time of 12 sec to obtain a rectangular parallelepiped fiber molded body. The obtained fiber molded body was excellent in cushioning properties.

[実施例6]
実施例4で得た複合繊維(エアレイド用チョップ)を用いて、エアレイド法にて目付50g/m2の繊維ウェブとし、この繊維ウェブを循環式のスルーエア加工機を用いて、98℃の設定温度、熱風風速0.38m/sec、加工時間14secの条件で熱風接着加工した。得られたスルーエア不織布を内径8mmのガラス管の中に充填し、その状態のまま沸騰水の中に入れ、2分間煮沸した。煮沸後、冷却させて、円柱状の繊維成形体を得た。得られた繊維成形体は、適度に柔軟で繊維密度のばらつきが少なく、液体の保液等に適したものであった。
[Example 6]
Using the composite fiber (air laid chop) obtained in Example 4, a fiber web having a basis weight of 50 g / m 2 was obtained by the air laid method, and this fiber web was set at 98 ° C. using a circulating through-air processing machine. Then, hot air bonding was performed under conditions of a hot air speed of 0.38 m / sec and a processing time of 14 sec. The obtained through-air non-woven fabric was filled in a glass tube having an inner diameter of 8 mm, placed in boiling water as it was, and boiled for 2 minutes. After boiling, it was cooled to obtain a cylindrical fiber molded body. The obtained fiber molded body was moderately flexible and had little variation in fiber density, and was suitable for liquid retention.

Figure 2011506778
Figure 2011506778

Figure 2011506778
Figure 2011506778

Figure 2011506778
Figure 2011506778

本発明の複合繊維は、特定の性質を持つエチレン・α−オレフィン共重合体を含む第1成分と結晶性プロピレンを含む第2成分とで並列型断面を構成しているものであって、低温加工性を持ち、熱収縮率が低いことから、100℃以下の熱処理温度で、嵩高で地合、風合いの良好な不織布及び成形体を製造するのに有用である。   The composite fiber of the present invention comprises a parallel section with a first component containing an ethylene / α-olefin copolymer having specific properties and a second component containing crystalline propylene, Since it has processability and has a low thermal shrinkage rate, it is useful for producing a nonwoven fabric and a molded body that are bulky and have good texture and texture at a heat treatment temperature of 100 ° C. or less.

Claims (7)

融点が70〜100℃のエチレン・α−オレフィン共重合体を少なくとも75質量%含む第1成分と、結晶性ポリプロピレンを含む第2成分が、並列型断面を構成してなる複合繊維であって、繊維軸に直角な繊維断面において、第1成分が、繊維外周の55〜90%を占め、第1成分と第2成分との境界線が、第1成分側に向かって凸状に湾曲する曲線を描いており、第1成分と第2成分との面積比率(第1成分/第2成分)が、70/30〜30/70の範囲であることを特徴とする複合繊維。   A first component containing at least 75% by mass of an ethylene / α-olefin copolymer having a melting point of 70 to 100 ° C. and a second component containing crystalline polypropylene are a composite fiber having a parallel section, In the fiber cross section perpendicular to the fiber axis, the first component occupies 55 to 90% of the outer periphery of the fiber, and the boundary line between the first component and the second component curves convexly toward the first component side. A composite fiber, wherein the area ratio of the first component to the second component (first component / second component) is in the range of 70/30 to 30/70. エチレン・α−オレフィン共重合体の分子量分布(Mw/Mn)が1.5〜2.5で、密度が0.87〜0.91g/cm3、ASTM D−1238に準じて、温度190℃、荷重21.2Nの条件で測定したメルトインデックス(MI)が10〜35g/10minである、請求項1に記載の複合繊維。 The molecular weight distribution (Mw / Mn) of the ethylene / α-olefin copolymer is 1.5 to 2.5, the density is 0.87 to 0.91 g / cm 3 , and the temperature is 190 ° C. according to ASTM D-1238. The composite fiber according to claim 1, wherein the melt index (MI) measured under a load of 21.2 N is 10 to 35 g / 10 min. 100℃で5分間熱処理したときの熱収縮率が50%以下であることを特徴とする請求項1又は2に記載の複合繊維。   The composite fiber according to claim 1 or 2, wherein a heat shrinkage rate when heat-treated at 100 ° C for 5 minutes is 50% or less. 請求項1〜3のいずれか1項記載の複合繊維を不織布化処理して得られた不織布。   The nonwoven fabric obtained by making the conjugate fiber of any one of Claims 1-3 into a nonwoven fabric. 不織布化処理が、熱風接着法、又は熱水接着法である、請求項4に記載の不織布。   The nonwoven fabric according to claim 4, wherein the nonwoven fabric treatment is a hot air bonding method or a hot water bonding method. 請求項1〜3のいずれか1項記載の複合繊維を用いて得られた成形体。   The molded object obtained using the composite fiber of any one of Claims 1-3. 請求項4又は5に記載の不織布を用いて得られた成形体。   The molded object obtained using the nonwoven fabric of Claim 4 or 5.
JP2010523227A 2007-12-14 2008-12-15 Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same Active JP5535911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523227A JP5535911B2 (en) 2007-12-14 2008-12-15 Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007323616 2007-12-14
JP2007323616 2007-12-14
JP2010523227A JP5535911B2 (en) 2007-12-14 2008-12-15 Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same
PCT/JP2008/073148 WO2009078479A1 (en) 2007-12-14 2008-12-15 Conjugate fiber having low-temperature processability, nonwoven fabric and formed article using the conjugate fiber

Publications (2)

Publication Number Publication Date
JP2011506778A true JP2011506778A (en) 2011-03-03
JP5535911B2 JP5535911B2 (en) 2014-07-02

Family

ID=40795590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010523227A Active JP5535911B2 (en) 2007-12-14 2008-12-15 Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same

Country Status (8)

Country Link
US (1) US20100261399A1 (en)
EP (1) EP2229474B1 (en)
JP (1) JP5535911B2 (en)
KR (1) KR101259968B1 (en)
CN (1) CN101939470B (en)
BR (1) BRPI0819934B1 (en)
TW (1) TW200934897A (en)
WO (1) WO2009078479A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175581A1 (en) * 2012-05-23 2013-11-28 東レ株式会社 Fiber-reinforced plastic and method for producing same
WO2017033797A1 (en) * 2015-08-21 2017-03-02 株式会社タイキ Cosmetic
JP2019070207A (en) * 2017-10-06 2019-05-09 三菱ケミカル株式会社 Low-melting-temperature thermal fusion fiber
WO2022196527A1 (en) * 2021-03-18 2022-09-22 東レ株式会社 Spunbond nonwoven fabric, laminate nonwoven fabric, manufacturing method of these and sanitary material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233053B2 (en) * 2008-05-19 2013-07-10 Esファイバービジョンズ株式会社 Composite fiber for producing air laid nonwoven fabric and method for producing high density air laid nonwoven fabric
JP5842353B2 (en) * 2010-04-13 2016-01-13 Jnc株式会社 Bulky nonwoven fabric
CN102978724B (en) * 2012-12-21 2015-05-13 东华大学 Dual-component parallel composite fiber and preparation method thereof
JP6222997B2 (en) * 2013-05-31 2017-11-01 Esファイバービジョンズ株式会社 Thermal adhesive composite fiber with excellent flexibility and non-woven fabric using the same
TWI550147B (en) * 2013-11-20 2016-09-21 Fabrication method and finished product of juxtaposed polypropylene crimp telescopic fiber
US10463222B2 (en) 2013-11-27 2019-11-05 Kimberly-Clark Worldwide, Inc. Nonwoven tack cloth for wipe applications
WO2016073719A1 (en) 2014-11-06 2016-05-12 The Procter & Gamble Company Apertured webs and methods for making the same
EP3215085B1 (en) 2014-11-06 2019-10-09 The Procter and Gamble Company Crimped fiber spunbond nonwoven webs / laminates
EP4223920A3 (en) * 2016-11-14 2023-09-13 Fare' S.p.A. a Socio Unico Filament for spunbond non woven fabric
EP3582733B1 (en) 2017-02-16 2022-08-17 The Procter & Gamble Company Absorbent articles with substrates having repeating patterns of apertures comprising a plurality of repeat units
CN111630221B (en) * 2018-01-24 2022-07-29 旭化成株式会社 Nonwoven fabric of composite long fibers using eccentric sheath-core composite fibers on at least one surface
KR102152393B1 (en) * 2019-07-11 2020-09-04 도레이첨단소재 주식회사 Non-woven fabric of crimped composite fiber and laminate thereof, and article including the laminate
WO2023131591A1 (en) * 2022-01-05 2023-07-13 Fibertex Personal Care A/S Nonwoven material comprising crimped multicomponent fibers
EP4209629A1 (en) * 2022-01-05 2023-07-12 Borealis AG Use of polymer composition on making soft nonwoven fabrics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212830B2 (en) * 1972-11-25 1977-04-09
JPH0665849A (en) * 1992-08-21 1994-03-08 Kimberly Clark Corp Non-woven fabric of multi-component polymer and its preparation
JP2682130B2 (en) * 1989-04-25 1997-11-26 三井石油化学工業株式会社 Flexible long-fiber non-woven fabric
JP2002529617A (en) * 1998-11-12 2002-09-10 キンバリー クラーク ワールドワイド インコーポレイテッド Crimped multicomponent fiber and method for producing the same
JP2003518205A (en) * 1999-12-21 2003-06-03 キンバリー クラーク ワールドワイド インコーポレイテッド Fine denier multicomponent fiber
JP3569972B2 (en) * 1994-08-11 2004-09-29 チッソ株式会社 Heat-fusible composite fiber and heat-fusible nonwoven fabric
WO2005021850A1 (en) * 2003-08-28 2005-03-10 Daiwabo Co., Ltd. Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189338A (en) * 1972-11-25 1980-02-19 Chisso Corporation Method of forming autogenously bonded non-woven fabric comprising bi-component fibers
JPS5734145A (en) * 1980-08-07 1982-02-24 Mitsui Petrochem Ind Ltd Ethylene-alpha-olefin copolymer composition
JPH0819570B2 (en) * 1986-09-12 1996-02-28 チッソ株式会社 Heat-bondable composite fiber and method for producing the same
US6448355B1 (en) * 1991-10-15 2002-09-10 The Dow Chemical Company Elastic fibers, fabrics and articles fabricated therefrom
JP3246787B2 (en) * 1993-03-10 2002-01-15 宇部日東化成株式会社 Nonwoven fabric using porous fiber and method for producing the same
US5780155A (en) * 1994-08-11 1998-07-14 Chisso Corporation Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
US6001752A (en) * 1994-08-11 1999-12-14 Chisso Corporation Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
JP2000008244A (en) * 1998-06-18 2000-01-11 Hagiwara Kogyo Kk Flat yarn cloth for reinforcement lamination
CN1090259C (en) * 1998-12-16 2002-09-04 三井化学株式会社 Composite-fiber nonwoven fabric
MY139729A (en) * 2002-11-25 2009-10-30 Mitsui Chemicals Inc Nonwoven fabric capable of being elongated and composite nonwoven fabric comprising said nonwoven fabric laminated

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212830B2 (en) * 1972-11-25 1977-04-09
JP2682130B2 (en) * 1989-04-25 1997-11-26 三井石油化学工業株式会社 Flexible long-fiber non-woven fabric
JPH0665849A (en) * 1992-08-21 1994-03-08 Kimberly Clark Corp Non-woven fabric of multi-component polymer and its preparation
JP3569972B2 (en) * 1994-08-11 2004-09-29 チッソ株式会社 Heat-fusible composite fiber and heat-fusible nonwoven fabric
JP2002529617A (en) * 1998-11-12 2002-09-10 キンバリー クラーク ワールドワイド インコーポレイテッド Crimped multicomponent fiber and method for producing the same
JP2003518205A (en) * 1999-12-21 2003-06-03 キンバリー クラーク ワールドワイド インコーポレイテッド Fine denier multicomponent fiber
WO2005021850A1 (en) * 2003-08-28 2005-03-10 Daiwabo Co., Ltd. Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175581A1 (en) * 2012-05-23 2013-11-28 東レ株式会社 Fiber-reinforced plastic and method for producing same
JPWO2013175581A1 (en) * 2012-05-23 2016-01-12 東レ株式会社 Fiber-reinforced plastic and method for producing the same
WO2017033797A1 (en) * 2015-08-21 2017-03-02 株式会社タイキ Cosmetic
KR20180044883A (en) * 2015-08-21 2018-05-03 가부시키가이샤 타이키 Cosmetic
JPWO2017033797A1 (en) * 2015-08-21 2018-06-07 株式会社タイキ Cosmetics
US10413037B2 (en) 2015-08-21 2019-09-17 Taiki Corp., Ltd. Cosmetic
KR102153202B1 (en) * 2015-08-21 2020-09-07 가부시키가이샤 타이키 Cosmetic
JP2019070207A (en) * 2017-10-06 2019-05-09 三菱ケミカル株式会社 Low-melting-temperature thermal fusion fiber
WO2022196527A1 (en) * 2021-03-18 2022-09-22 東レ株式会社 Spunbond nonwoven fabric, laminate nonwoven fabric, manufacturing method of these and sanitary material
JP7168125B1 (en) * 2021-03-18 2022-11-09 東レ株式会社 Spunbond nonwovens and laminated nonwovens, their production methods and sanitary materials

Also Published As

Publication number Publication date
KR101259968B1 (en) 2013-05-02
CN101939470B (en) 2012-10-03
TWI367967B (en) 2012-07-11
KR20100090720A (en) 2010-08-16
JP5535911B2 (en) 2014-07-02
EP2229474B1 (en) 2017-06-07
TW200934897A (en) 2009-08-16
BRPI0819934B1 (en) 2019-07-09
EP2229474A1 (en) 2010-09-22
US20100261399A1 (en) 2010-10-14
CN101939470A (en) 2011-01-05
BRPI0819934A2 (en) 2015-05-26
WO2009078479A1 (en) 2009-06-25
EP2229474A4 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP5535911B2 (en) Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same
JP3995697B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP3819440B2 (en) Thermal adhesive composite fiber and non-woven fabric using the same
JP5557365B2 (en) Fiber bundle and web
JP2000507654A (en) Polypropylene fibers and products made therefrom
JP2001159078A (en) Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
EP2279293B1 (en) Conjugate fiber for air-laid nonwoven fabric manufacture and method for manufacturing a high-density air-laid nonwoven fabric
JP6927299B2 (en) Non-woven
JP4468208B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP6731284B2 (en) Heat-fusible composite fiber, method for producing the same, and non-woven fabric using the same
JP2002069820A (en) Spun-bonded nonwoven fabric and absorbing article
KR101377002B1 (en) Mixture of thermally bondable core-sheath type composite fiber, manufacturing method thereof and use thereof
JP2004124351A (en) Method for production of latent crimpable polyester conjugated short fibers, and fiber assembly, and nonwoven fabric
WO2020203890A1 (en) Composite fiber, method for manufacturing same, thermally bonded nonwoven fabric, surface sheet for absorbent article, and absorbent article
JP6587568B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP3790459B2 (en) Thermal adhesive composite fiber and method for producing the same, and nonwoven fabric and synthetic paper using the same
JP4665364B2 (en) Heat-fusible composite fiber, and fiber molded body and fiber product using the same
WO2022004505A1 (en) Surface material for sanitary material and production method therefor
JP3567892B2 (en) Thermo-adhesive conjugate fiber, non-woven fabric and molded article using the same
KR20130008477A (en) Stretchable nonwoven fabric and production thereof
JP2002088582A (en) Polyethylene conjugated fiber and nonwoven fabric by using the same
JP7112632B2 (en) Composite fibers and batting
JP2017226944A (en) Granular cotton compact and manufacturing method thereof
JP2004346476A (en) Propylene-based short fiber, fiber assembly using the same and fused nonwoven fabric
WO2021200145A1 (en) Surface material for sanitary material and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250