JP2004124351A - Method for production of latent crimpable polyester conjugated short fibers, and fiber assembly, and nonwoven fabric - Google Patents

Method for production of latent crimpable polyester conjugated short fibers, and fiber assembly, and nonwoven fabric Download PDF

Info

Publication number
JP2004124351A
JP2004124351A JP2003321567A JP2003321567A JP2004124351A JP 2004124351 A JP2004124351 A JP 2004124351A JP 2003321567 A JP2003321567 A JP 2003321567A JP 2003321567 A JP2003321567 A JP 2003321567A JP 2004124351 A JP2004124351 A JP 2004124351A
Authority
JP
Japan
Prior art keywords
component
less
crimp
propylene copolymer
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003321567A
Other languages
Japanese (ja)
Other versions
JP4360528B2 (en
Inventor
Yoshiharu Usui
薄井 義治
Kenji Kobayashi
小林 賢治
Toru Matsumura
松村 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Daiwabo Co Ltd
Japan Polypropylene Corp
Original Assignee
Daiwa Boseki KK
Daiwabo Co Ltd
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK, Daiwabo Co Ltd, Japan Polypropylene Corp filed Critical Daiwa Boseki KK
Priority to JP2003321567A priority Critical patent/JP4360528B2/en
Publication of JP2004124351A publication Critical patent/JP2004124351A/en
Application granted granted Critical
Publication of JP4360528B2 publication Critical patent/JP4360528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide latent crimpable polyester conjugated fibers excellent in crimpability in heat processing, high-speed carding property in production of nonwoven fabric and high-speed productivity in heat processing property or the like. <P>SOLUTION: The latent crimpable polyester conjugated fibers are obtained by conjugating and spinning a first component and a second component, and comprises the first component with 120-145°C melting point Tf<SB>1</SB>after spinning and comprises α-olefin-propylene copolymer with ≥ 95 mass.% of propylene content and the second component with a thermoplastic resin which has of a melting point Tf<SB>2</SB>≥15°C higher than that of Tf<SB>1</SB>, and at least one in the total percentage of crimp and ratio of the incidental percentage of crimp to the total percentage of crimp is less than 15%, and the temperature exhibiting maximum peak of the heat crimping force is less than 145°C and has ≥75% of dry heating percentage of crimp of the monofilament. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、熱加工時における捲縮発現性に優れる潜在捲縮性複合短繊維に関するものであって、詳しくは、90m/min以上の速度で不織布を生産するときの高速カード性および熱加工性などの高速生産性に優れた潜在捲縮性複合短繊維に関する。また、本発明は、当該潜在捲縮性複合短繊維を用いた収縮性あるいは伸縮性に優れた繊維集合物に関する。 The present invention relates to a latently crimpable conjugate short fiber having excellent crimp development during thermal processing. More specifically, the present invention relates to high-speed cardability and thermal processability when producing a nonwoven fabric at a speed of 90 m / min or more. And a latently crimpable conjugate short fiber having excellent high-speed productivity. The present invention also relates to a fiber aggregate using the latently crimpable conjugate short fiber and having excellent shrinkage or stretchability.

 従来から、伸縮性を有する不織布を製造するのに用いられる潜在捲縮性複合繊維として、例えば、特開平2−191720号公報(特許文献1)では、Q値が5未満、メルトフローレートが15〜200g/10minのポリプロピレンを第1成分とし、融点が133〜145℃のエチレン−プロピレンを第2成分とし、並列型、または第1成分を芯に第2成分を鞘にした偏心芯鞘型に配置した複合繊維が提案されている。特開平3−167314号公報(特許文献2)では、結晶性ポリプロピレンを高融点成分とし、ポリプロピレンを主成分とする融点125℃以上の共重合体を低融点成分とし、紡糸温度を比較的高温にし、紡糸速度をできるだけ低くし、延伸温度を比較的高温とし、延伸倍率を比較的低倍率で製造することにより、120℃における真の熱収縮率が25%以下であり、見掛けの熱収縮率が55%以上である伸縮性複合繊維が提案されている。さらに、特開平6−184823号公報(特許文献3)では、芯成分を結晶性ポリプロピレンとし、鞘成分を融点125℃以上のプロピレン共重合体とし、全捲縮率に対して18〜66%の自然捲縮を発現させた偏心鞘芯型複合繊維を提案している。また、特開平5−71057号公報(特許文献4)および特開平5−78916号公報(特許文献5)では、エチレン含有量が3〜8重量%のエチレン−プロピレンランダム共重合体と、エチレン含有量が0〜3重量%のエチレン−プロピレンランダム共重合体とで構成され、メルトフローレートが15〜45g/10minであり、温度120℃及び初荷重2mgにおける乾熱収縮率が35%以上、温度120℃における捲縮数が60個/25mm以上のポリプロピレン系複合短繊維が提案されている。特開2001−32139号公報(特許文献6)では、融点が160℃以上のポリプロピレンを鞘成分とし、融点が120〜147℃のプロピレン共重合体を芯成分とする偏芯鞘芯型複合繊維が提案されている。 Hitherto, as a latently crimpable conjugate fiber used for producing a stretchable nonwoven fabric, for example, in JP-A-2-191720 (Patent Document 1), a Q value is less than 5 and a melt flow rate is 15 or less. ~ 200g / 10min polypropylene as the first component, ethylene-propylene with a melting point of 133 ~ 145 ° C as the second component, parallel type or eccentric core-sheath type with the first component as the core and the second component as the sheath Arranged composite fibers have been proposed. In JP-A-3-167314 (Patent Document 2), a crystalline polypropylene is used as a high melting point component, a copolymer containing polypropylene as a main component and having a melting point of 125 ° C. or more is used as a low melting point component, and the spinning temperature is made relatively high. By making the spinning speed as low as possible, making the stretching temperature relatively high, and making the stretching ratio relatively low, the true heat shrinkage at 120 ° C. is 25% or less, and the apparent heat shrinkage is Stretch conjugate fibers that are 55% or more have been proposed. Further, in JP-A-6-184823 (Patent Document 3), the core component is made of crystalline polypropylene, the sheath component is made of a propylene copolymer having a melting point of 125 ° C. or more, and the total crimp ratio is 18 to 66%. We have proposed an eccentric sheath-core composite fiber with natural crimp. Further, JP-A-5-71057 (Patent Document 4) and JP-A-5-78916 (Patent Document 5) disclose an ethylene-propylene random copolymer having an ethylene content of 3 to 8% by weight and an ethylene-propylene random copolymer. An ethylene-propylene random copolymer having an amount of 0 to 3% by weight, a melt flow rate of 15 to 45 g / 10 min, a dry heat shrinkage of 35% or more at a temperature of 120 ° C. and an initial load of 2 mg, A polypropylene-based composite short fiber having a number of crimps at 120 ° C. of 60/25 mm or more has been proposed. In Japanese Patent Application Laid-Open No. 2001-32139 (Patent Document 6), an eccentric sheath-core conjugate fiber containing polypropylene having a melting point of 160 ° C. or more as a sheath component and a propylene copolymer having a melting point of 120 to 147 ° C. as a core component is disclosed. Proposed.

 一方、メタロセン触媒を用いて重合されたエチレン−プロピレン共重合体を繊維表面の少なくとも一部に露出させた複合繊維として、例えば、特開平10−219521号公報(特許文献7)、特開平10−298824号公報(特許文献8)、あるいは特開2001−254256号公報(特許文献9)が提案されている。 On the other hand, as a composite fiber in which an ethylene-propylene copolymer polymerized using a metallocene catalyst is exposed on at least a part of the fiber surface, for example, JP-A-10-219521 (Patent Document 7) and JP-A-10- Japanese Patent Application Laid-Open No. 298824 (Patent Document 8) and Japanese Patent Application Laid-Open No. 2001-254256 (Patent Document 9) have been proposed.

特開平2−191720号公報JP-A-2-191720 特開平3−167314号公報JP-A-3-167314 特開平6−184823号公報JP-A-6-184823 特開平5−71057号公報JP-A-5-71057 特開平5−78916号公報JP-A-5-78916 特開2001−32139号公報JP 2001-32139 A 特開平10−219521号公報JP-A-10-219521 特開平10−298824号公報JP-A-10-298824 特開2001−254256号公報JP 2001-254256 A

 しかしながら、上記複合繊維には以下の問題点が挙げられる。例えば、特開平2−191720号公報、特開平3−167314号公報、特開平5−71057号公報、特開平5−78916号公報、および特開平6−184823号公報で提案されている潜在捲縮性複合繊維では、繊維ウェブを120〜140℃の低温で熱処理し、高度に捲縮発現させて伸長回復性に優れた伸縮性不織布を得ようと試みている。しかし、一般に繊維製造時の延伸倍率を大きくすると、不織布の収縮力(伸縮力)は向上する傾向にあるが、繊維の製造段階(原綿段階)で立体捲縮が発現してしまい、捲縮率が大きく捲縮がきつく(ちりぢりに)なってしまう。そのような繊維を使用して不織布を製造すると、カード工程において開繊不良、シリンダーへの巻き付き、地合ムラ(クラウディ)を生じる。これらの問題は、カード速度が50m/min以上になると顕著となる。一方、カード性を重視する場合には、繊維製造時の延伸倍率を抑えて(即ち、低くして)、立体捲縮が発現しないように調整することが行われる。しかし、その場合には、収縮力(伸縮力)が不十分となったり、あるいは、収縮速度が遅く、短時間での熱処理では十分な収縮(伸縮)性能が得られず、熱処理ゾーンの大型化が強いられる場合があり、効率的でない。特開2001−32139号公報では、融点が160℃以上のポリプロピレンを鞘成分とし、金属摩擦抵抗の大きいプロピレン共重合体を芯成分としてカード性を改善するしようとする試みが示されているが、プロピレン共重合体の自由度が少なく、収縮性が不十分となることがある。 However, the above-mentioned conjugate fiber has the following problems. For example, latent crimps proposed in JP-A-2-191720, JP-A-3-167314, JP-A-5-71057, JP-A-5-78916, and JP-A-6-184823. With regard to the composite conjugate fiber, an attempt has been made to heat-treat the fibrous web at a low temperature of 120 to 140 ° C. and to develop a highly crimp to obtain a stretchable nonwoven fabric excellent in elongation recovery. However, in general, when the stretching ratio at the time of fiber production is increased, the shrinkage force (stretching force) of the nonwoven fabric tends to be improved, but three-dimensional crimping occurs at the fiber production stage (raw cotton stage), and the crimping ratio is increased. But the crimp becomes tight (crisp). When a nonwoven fabric is manufactured using such fibers, poor opening, winding around a cylinder, and formation unevenness (cloudy) occur in the carding process. These problems become significant when the card speed is 50 m / min or more. On the other hand, when importance is placed on cardability, the draw ratio at the time of fiber production is suppressed (that is, lowered), and adjustment is performed so that three-dimensional crimping does not occur. However, in such a case, the shrinking force (stretching force) becomes insufficient, or the shrinking speed is slow, and sufficient shrinkage (stretching) performance cannot be obtained by heat treatment in a short time, and the heat treatment zone becomes large. May be forced and inefficient. Japanese Patent Application Laid-Open No. 2001-32139 discloses an attempt to improve cardability by using a polypropylene having a melting point of 160 ° C. or higher as a sheath component and a propylene copolymer having a high metal friction resistance as a core component. The degree of freedom of the propylene copolymer is low, and the shrinkage may be insufficient.

 一方、メタロセン触媒を用いて重合されたエチレン−プロピレン共重合体を繊維表面の少なくとも一部に露出させた複合繊維として、様々な繊維が提案されている。しかし、熱加工時における捲縮発現性に優れる潜在捲縮性複合短繊維の検討は十分になされていない。したがって、捲縮発現性に優れるとともに高速生産性に優れる潜在捲縮性複合短繊維は得られていないのが実情である。 On the other hand, various fibers have been proposed as conjugate fibers in which an ethylene-propylene copolymer polymerized using a metallocene catalyst is exposed on at least a part of the fiber surface. However, studies on latently crimpable conjugate short fibers having excellent crimp development during thermal processing have not been sufficiently made. Therefore, the fact is that latently crimpable conjugate short fibers which are excellent in crimp development and high-speed productivity have not been obtained.

 本発明は、かかる課題を鑑みてなされたものであり、熱加工時における捲縮発現性に優れ、特に90m/min以上の速度で不織布を生産するときの高速カード性および熱加工性などの高速生産性に優れた潜在捲縮性複合短繊維を提供することを目的とする。また、潜在捲縮性複合短繊維を用いて伸縮性あるいは収縮性に優れ、風合いの良好な繊維集合物および不織布を提供することを目的とする。 The present invention has been made in view of the above problems, and has excellent crimp development during thermal processing, and particularly when producing a nonwoven fabric at a speed of 90 m / min or more, such as high-speed carding and thermal processing. An object of the present invention is to provide a latently crimpable conjugate short fiber having excellent productivity. Another object of the present invention is to provide a fiber aggregate and a nonwoven fabric which are excellent in elasticity or shrinkage and have a good texture by using latently crimpable conjugate short fibers.

 本発明者等は、αオレフィン−プロピレン共重合体を含む第1成分と、融点TがTよりも15℃以上高い熱可塑性樹脂を含む第2成分とからなる捲縮を有する複合短繊維であって、全捲縮率および/または全捲縮率に対する自然捲縮率の割合、熱収縮応力が最大ピークを示す温度、および単繊維乾熱収縮率を所望の範囲に調整し、さらに必要に応じて熱収縮応力および/または単繊維伸度を所望の範囲に調整することよって、あるいは特定のαオレフィン−プロピレン共重合体を用いることによって、捲縮発現性に優れるとともに高速生産性に優れる潜在捲縮性複合短繊維が得られることを見い出し、本発明に至った。 The present inventors have developed a crimped conjugate short fiber composed of a first component containing an α-olefin-propylene copolymer and a second component containing a thermoplastic resin having a melting point T 2 of 15 ° C. or more higher than T 1. It is necessary to adjust the total crimp rate and / or the ratio of the natural crimp rate to the total crimp rate, the temperature at which the heat shrinkage stress exhibits the maximum peak, and the single fiber dry heat shrinkage rate to a desired range, and By adjusting the heat shrinkage stress and / or the elongation of a single fiber to a desired range according to the above, or by using a specific α-olefin-propylene copolymer, it is excellent in crimp development and high-speed productivity. The present inventors have found that latently crimpable conjugate short fibers can be obtained, and have reached the present invention.

 すなわち、本発明の潜在捲縮性複合短繊維における第1の発明は、第1成分と第2成分とが複合紡糸されて成り、紡糸後の融点Tfが120℃以上145℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなるαオレフィン−プロピレン共重合体を含む第1成分と、紡糸後の融点TfがTfよりも15℃以上高い熱可塑性樹脂を含む第2成分とからなる捲縮を有する複合短繊維であって、全捲縮率および全捲縮率に対する自然捲縮率の割合のうち、少なくとも一方が15%以下であり、且つ下記(1)および(2)の物性値を満たすことを特徴とする。
(1)熱収縮応力測定において、145℃未満の温度で最大ピークを示す。
(2)JIS−L−1015(乾熱収縮率)に準じ、温度120℃、時間15分間、初荷重0.018mN/dtex(2mg/d)における単繊維乾熱収縮率が75%以上である。
That is, the first aspect of the latently crimpable conjugate short fiber of the present invention is that the first component and the second component are conjugate spun, and the melting point Tf 1 after spinning is in the range of 120 ° C. or more and 145 ° C. or less. And a second component containing a thermoplastic resin having a melting point Tf 2 higher than Tf 1 by 15 ° C. or more after spinning, and a first component containing an α-olefin-propylene copolymer having a propylene content of 95 mass% or more. The composite staple fiber having a crimp comprising the components, wherein at least one of the total crimp rate and the ratio of the natural crimp rate to the total crimp rate is 15% or less, and the following (1) and ( It is characterized by satisfying the physical property value of 2).
(1) In the heat shrinkage stress measurement, a maximum peak is shown at a temperature lower than 145 ° C.
(2) According to JIS-L-1015 (dry heat shrinkage), the single fiber dry heat shrinkage at an initial load of 0.018 mN / dtex (2 mg / d) at a temperature of 120 ° C. for 15 minutes is 75% or more. .

 本発明の潜在捲縮性複合短繊維における第2の発明は、融点Tが115℃以上140℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなり、JIS−K−7210(条件:230℃、荷重21.18N(2.16kg))におけるメルトフローレートが10g/10min以上60g/10min以下の範囲内にあり、かつJIS−K−7121に準じて測定したDSC曲線より求めたαオレフィン−プロピレン共重合体の総融解熱量をΔHmとしたとき、低温側から起算した融解熱量がΔHmの50%になるときの温度が125℃以下であるαオレフィン−プロピレン共重合体を含む第1成分と、融点TがTよりも15℃以上高い熱可塑性樹脂を含む第2成分とを複合紡糸して得られる偏心鞘芯型断面、または並列型断面を有する捲縮性複合短繊維であって、全捲縮率および全捲縮率に対する自然捲縮率の割合のうち、少なくともが15%以下であることを特徴とする。 The second invention in the latently crimpable conjugate short fiber of the present invention are within the melting point T 1 is a 140 ° C. or less 115 ° C. or higher, the propylene content is accounted for more than 95mass%, JIS-K-7210 (Condition: 230 ° C, load: 21.18 N (2.16 kg)) Melt flow rate is in the range of 10 g / 10 min or more and 60 g / 10 min or less, and is determined from a DSC curve measured according to JIS-K-7121. When the total heat of fusion of the α-olefin-propylene copolymer is ΔHm, the α-olefin-propylene copolymer has a temperature of 125 ° C. or less when the heat of fusion calculated from the low temperature side becomes 50% of ΔHm. a first component, an eccentric sheath-core type cross-melting T 2 is obtained by conjugate spinning and a second component comprising 15 ℃ or higher thermoplastic resin than T 1 or crimpable multiple having parallel section, A short fibers, of the proportion of natural crimp ratio to the total percentage of crimp and the total crimp ratio, wherein at least 15% or less.

 本発明の潜在捲縮性複合短繊維における第3の発明は、第1成分と第2成分とが複合紡糸されて成り、紡糸後の融点Tfが120℃以上145℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなるαオレフィン−プロピレン共重合体を含む第1成分と、紡糸後の融点TfがTfよりも15℃以上高い熱可塑性樹脂を含む第2成分とからなる捲縮を有する複合短繊維であって、当該複合短繊維で目付30g/mのウェブを形成し、これを120℃で4秒間熱処理したときのウェブ面積収縮率が85%以上となることを特徴とする。 The third invention in the latently crimpable conjugate short fiber of the present invention, the first component and the second component is made is conjugate spinning, the melting point Tf 1 after spinning is within the range of 120 ° C. or higher 145 ° C. or less A first component containing an α-olefin-propylene copolymer having a propylene content of 95 mass% or more, and a second component containing a thermoplastic resin having a melting point Tf 2 after spinning of 15 ° C. or more higher than Tf 1. And a crimped conjugate short fiber comprising a web having a basis weight of 30 g / m 2 formed from the conjugate short fiber and heat-treated at 120 ° C. for 4 seconds to have a web area shrinkage of 85% or more. It is characterized by the following.

 本発明の潜在捲縮性複合短繊維は、融点Tが115℃以上140℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなり、JIS−K−7210(条件:230℃、荷重21.18N(2.16kg))におけるメルトフローレートが10g/10min以上50g/10min以下の範囲内にあり、かつJIS−K−7121に準じて測定したDSC曲線より求めたαオレフィン−プロピレン共重合体の総融解熱量をΔHmとしたとき、低温側から起算した融解熱量がΔHmの50%になるときの温度が125℃以下であるαオレフィン−プロピレン共重合体を含む樹脂を第1成分とし、融点TがTよりも15℃以上高い熱可塑性樹脂を含む樹脂を第2成分として、偏芯鞘心型または並列型断面となるように複合紡糸して紡糸フィラメントを得ること、30℃以上90℃以下の範囲内にある温度で2倍以上で延伸すること、捲縮数11山/25mm以上18山/25mm以下の範囲で機械捲縮を付与すること、ならびに20℃以上80℃以下の範囲内にある温度でアニーリング処理を施すことを含む製造方法により製造することができる。 Latently crimpable conjugate short fiber of the present invention, the melting point T 1 is in the range of less than 140 ° C. 115 ° C. or higher, the propylene content is accounted for more than 95mass%, JIS-K-7210 ( condition: 230 ° C. Α-olefin-propylene having a melt flow rate at a load of 21.18 N (2.16 kg) within a range of 10 g / 10 min to 50 g / 10 min and obtained from a DSC curve measured according to JIS-K-7121. Assuming that the total heat of fusion of the copolymer is ΔHm, the first component is a resin containing an α-olefin-propylene copolymer having a temperature of 125 ° C. or less when the heat of fusion calculated from the low temperature side becomes 50% of ΔHm. and then, a resin having a melting point T 2 comprises a high thermoplastic resin 15 ℃ or higher than T 1 as the second component, the spun filaments were conjugated spinning so that Henshinsaya-core or side-by-side cross-section Stretching at a temperature within the range of 30 ° C. or more and 90 ° C. or less by a factor of 2 or more; imparting mechanical crimping within a range of 11 crimps / 25 mm or more and 18 crimps / 25 mm or less; It can be manufactured by a manufacturing method including performing an annealing treatment at a temperature in the range of not less than 80 ° C. and not more than 80 ° C.

 本発明の繊維集合物は、前記潜在捲縮性複合短繊維、または前記製造方法により得られた潜在捲縮性複合短繊維を20mass%以上含有し、潜在捲縮性複合短繊維において潜在捲縮を発現していることを特徴とする。潜在捲縮を発現させることにより、伸縮性あるいは収縮性に優れ、風合いの良好な繊維集合物を得ることができる。 The fiber aggregate of the present invention contains the latently-crimpable conjugate short fiber or the latently-crimpable conjugate short fiber obtained by the production method in an amount of 20 mass% or more. Characterized by the expression of By expressing latent crimp, a fiber aggregate having excellent stretchability or shrinkage and good texture can be obtained.

 本発明の不織布は、前記潜在捲縮性複合短繊維、または前記製造方法により得られた潜在捲縮性複合短繊維を20mass%以上含有し、潜在捲縮性複合短繊維において捲縮が発現しており、且つ、実質的に熱融着されていないことを特徴とする。ここで、「実質的に」という用語は、潜在捲縮の発現のために加熱すると、実際には、僅かながらも一部の繊維が熱融着することを考慮して、使用されている。本発明の潜在捲縮性複合短繊維は、潜在捲縮が発現する温度がその融点よりも5℃以上低い。したがって、この繊維を用いてウェブを作製し、これを収縮させると、繊維を実質的に熱融着させることなく、ウェブを高い面積収縮率で収縮させて不織布を得ることができる。したがって、この不織布は、高い伸縮性を有するとともに、風合いの柔軟なものとなる。 The nonwoven fabric of the present invention contains at least 20% by mass of the latently crimpable conjugate short fibers or the latently crimpable conjugate short fibers obtained by the production method, and the latently crimpable conjugate short fibers exhibit crimp. And is substantially not thermally fused. Here, the term "substantially" is used in view of the fact that when heated for the development of latent crimping, in practice, a small amount of some fibers are heat-sealed. In the latently crimpable conjugate short fibers of the present invention, the temperature at which latently crimps are developed is lower than its melting point by 5 ° C. or more. Therefore, when a web is produced using these fibers and is shrunk, the web can be shrunk at a high area shrinkage ratio without substantially thermally fusing the fibers to obtain a nonwoven fabric. Therefore, this nonwoven fabric has a high elasticity and a soft texture.

 本発明の潜在捲縮性複合短繊維は、第1成分をαオレフィン−プロピレン共重合体を含む成分とし、また、全捲縮率および/または全捲縮率に対する自然捲縮率の割合、熱収縮応力が最大ピークを示す温度、ならびに単繊維乾熱収縮率を所望の範囲に調整することにより、優れた立体捲縮発現性を示し、また優れた高速生産性を有する。 In the latently crimpable conjugate short fiber of the present invention, the first component is a component containing an α-olefin-propylene copolymer, and the total crimp rate and / or the ratio of the natural crimp rate to the total crimp rate, By adjusting the temperature at which the shrinkage stress reaches the maximum peak and the dry heat shrinkage of the single fiber to the desired ranges, excellent three-dimensional crimp development and excellent high-speed productivity can be obtained.

 また本発明の潜在捲縮性複合短繊維は、メタロセン触媒により重合された特定のαオレフィン−プロピレン共重合体を用いることにより、熱収縮応力が小さいにもかかわらず、低い温度で高度な捲縮を発現するものとなる。それにより、高速カード性を実現するのに最適な、全捲縮率および全捲縮率に対する自然捲縮率の割合に代表される捲縮状態を容易に得ることができる。 Further, the latently crimpable conjugate short fiber of the present invention has a high crimp at a low temperature despite the low heat shrinkage stress by using a specific α-olefin-propylene copolymer polymerized by a metallocene catalyst. Is expressed. Thereby, it is possible to easily obtain a crimped state represented by the total crimp rate and the ratio of the natural crimp rate to the total crimp rate, which is optimal for realizing high-speed cardability.

 前記潜在捲縮性複合短繊維を用いた繊維集合物は、熱処理を施すと高度に収縮して高度な伸縮性を発揮し、また、良好な風合いを呈するので、オムツなどの衛生材料、パップ剤や包帯などの医療(用途)材料、ウェットティッシュ、ワイパー、緩衝材、包装材料、スポンジ状不織布材料用途等の用途に好適である。 The fiber aggregate using the latently crimpable conjugate short fibers, when subjected to heat treatment, exhibits a high degree of contraction due to high shrinkage, and also exhibits a good texture, so that sanitary materials such as diapers, cataplasms It is suitable for medical (use) materials such as wraps and bandages, wet tissues, wipers, cushioning materials, packaging materials, sponge-like nonwoven fabric materials, and the like.

 本発明の潜在捲縮性複合短繊維において、第1成分は、紡糸後の融点Tfが120℃以上145℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなるαオレフィン−プロピレン共重合体(以下、プロピレン共重合体という)を含む成分である。ここでいう紡糸後の融点とは、JIS−K−7121(DSC法)により、得られる潜在捲縮性複合短繊維の融解ピークから求めるものである。好ましいプロピレン共重合体の紡糸後の融点Tfの下限は、125℃である。好ましいプロピレン共重合体の紡糸後の融点Tfの上限は、140℃である。プロピレン共重合体の紡糸後の融点Tfが120℃未満となるような第1成分を選択して複合紡糸すると、紡糸性が悪くなる恐れがある。一方、プロピレン共重合体の紡糸後の融点Tfが145℃を超えるような樹脂を第1成分として選択して複合紡糸すると、密着糸が発生する恐れがある。 In the latently crimpable conjugate short fiber of the present invention, the first component is an α-olefin having a melting point Tf 1 after spinning in the range of 120 ° C. or more and 145 ° C. or less and a propylene content of 95 mass% or more. It is a component containing a propylene copolymer (hereinafter, referred to as a propylene copolymer). The melting point after spinning here is determined from the melting peak of the latently crimpable conjugate short fiber obtained according to JIS-K-7121 (DSC method). The lower limit of the melting point Tf 1 after spinning preferred propylene copolymer is 125 ° C.. The upper limit of the melting point Tf 1 after spinning preferred propylene copolymer is 140 ° C.. When the melting point Tf 1 after spinning propylene copolymer is conjugate spinning selects the first component such that less than 120 ° C., there is a fear that spinning becomes poor. On the other hand, the resin such as the melting point Tf 1 after spinning propylene copolymer exceeds 145 ° C. When the composite-spinning to select as the first component, there is a fear that adhesion yarn occurs.

 前記プロピレン共重合体における好ましいプロピレン含有量の下限は、96mass%である。好ましいプロピレン含有量の上限は、98mass%である。プロピレン含有量が95mass%未満であると、プロピレン共重合体のゴム的弾性が大きくなる傾向となり、高速カード性の低下を引き起こす恐れがある。 好 ま し い The lower limit of the preferable propylene content in the propylene copolymer is 96 mass%. The preferred upper limit of the propylene content is 98 mass%. If the propylene content is less than 95% by mass, the rubbery elasticity of the propylene copolymer tends to increase, and the high-speed cardability may be reduced.

 前記プロピレン共重合体を構成するαオレフィンモノマーとしては、エチレン、ブテン−1などが挙げられ、なかでもエチレン−プロピレン共重合体、ブテン−プロピレン共重合体およびエチレン−プロピレン−ブテン三元共重合体から選ばれる少なくとも1種を用いると、所望の収縮性を容易に得ることができ、好ましい。前記プロピレン共重合体におけるエチレンおよび/またはブテンの含有量は、5mass%以下であることが好ましい。より好ましいエチレンおよび/またはブテンの含有量は、2mass%以上4mass%以下の範囲内にある。エチレンおよび/またはブテンの含有量が少なすぎると、繊維集合物に加工した後で十分な収縮が得られない恐れがあり、エチレンおよび/またはブテンの含有量が5mass%を超えると、高速カード性に劣るだけでなく、繊維集合物としたときの風合いがべたつき感を有するものとなることがある。 Examples of the α-olefin monomer constituting the propylene copolymer include ethylene, butene-1, and the like. Among them, ethylene-propylene copolymer, butene-propylene copolymer and ethylene-propylene-butene terpolymer It is preferable to use at least one member selected from the group, since desired shrinkability can be easily obtained. The content of ethylene and / or butene in the propylene copolymer is preferably 5 mass% or less. A more preferred content of ethylene and / or butene is in the range of 2 mass% to 4 mass%. If the content of ethylene and / or butene is too small, sufficient shrinkage may not be obtained after processing into a fiber aggregate, and if the content of ethylene and / or butene exceeds 5 mass%, high-speed cardability may be obtained. Not only is it inferior, but sometimes the texture of the fiber aggregate becomes sticky.

 第1成分におけるプロピレン共重合体としては、その樹脂融点Tが115℃以上140℃以下の範囲内にあるものを用いるとよい。そのような樹脂を用いると、複合短繊維としたときの第1成分の融点Tfを120℃以上145℃以下とすることができる。好ましいプロピレン共重合体の融点Tの下限は、120℃である。好ましいプロピレン共重合体の融点Tの上限は、135℃である。プロピレン共重合体の融点Tが115℃未満であると、紡糸性が悪くなる恐れがあり、プロピレン共重合体の融点Tが140℃を超えると、密着糸が発生する恐れがある。 The propylene copolymer of the first component, the resin melting point T 1 is preferably used to be within the scope of 115 ° C. or higher 140 ° C. or less. With such a resin, the melting point Tf 1 of the first component when the composite short fibers may be 120 ° C. or higher 145 ° C. or less. The lower limit of the melting point T 1 of the preferred propylene copolymer is 120 ° C.. The upper limit of the melting point T 1 of the preferred propylene copolymer is 135 ° C.. If the melting point T 1 of the propylene copolymer is lower than 115 ° C., spinnability may be deteriorated. If the melting point T 1 of the propylene copolymer exceeds 140 ° C., cohesive yarn may be generated.

 前記プロピレン共重合体のJIS−K−7210(条件:230℃、荷重21.18N(2.16kg))に準じたメルトフローレート(以下、MFRという)は、10g/10min以上60g/10min以下の範囲内にあることが好ましい。より好ましいMFRの下限は20g/10minである。より好ましいMFRの上限は、50g/10minである。プロピレン共重合体のMFRが10g/10min未満であると、樹脂自体が硬く、糸切れを起こす恐れがあり、MFRが60g/10minを超えると、樹脂自体が柔らかく、密着糸が発生する恐れがある。 The propylene copolymer has a melt flow rate (hereinafter, referred to as MFR) according to JIS-K-7210 (condition: 230 ° C., load: 21.18 N (2.16 kg)) of 10 g / 10 min to 60 g / 10 min. It is preferably within the range. A more preferred lower limit of the MFR is 20 g / 10 min. A more preferred upper limit of the MFR is 50 g / 10 min. When the MFR of the propylene copolymer is less than 10 g / 10 min, the resin itself is hard and may cause thread breakage. When the MFR exceeds 60 g / 10 min, the resin itself may be soft and a cohesive yarn may be generated. .

 前記プロピレン共重合体におけるJIS−K−7121に準ずるDSC曲線により求めたプロピレン共重合体の総融解熱量をΔHmとしたとき、低温側から起算した融解熱量がΔHmの50%になるときの温度は、125℃以下であることが好ましい。融解熱量がΔHmの50%になるときのより好ましい温度は、120℃以下である。融解熱量がΔHmの50%になるときの温度の好ましい下限は110℃である。ここで、融解熱量がΔHmの50%になるときの温度は、DSC曲線の積分面積が50%となるように温度軸に対して垂直な直線を引いたときに、この直線と温度軸との交点における温度をいう。融解熱量がΔHmの50%になるときの温度は、樹脂の融解に伴う収縮挙動を示す指標であり、温度の上昇に伴って融解熱量が増大して、ΔHmの50%付近に達したときに潜在捲縮を高度に発現させるのに十分な収縮力を示すと想定して規定した指標である。融解熱量がΔHmの50%になるときの温度が125℃以下のプロピレン共重合体を用いることにより、潜在捲縮性複合短繊維を含有する繊維ウェブなどを熱処理して潜在捲縮を発現させる時の低温での熱加工性が向上するばかりでなく、熱加工温度の上昇に伴って、熱加工速度を上昇させることができ、ひいては高速生産性が向上し、好ましい。 When the total heat of fusion of the propylene copolymer in the propylene copolymer determined by a DSC curve according to JIS-K-7121 is ΔHm, the temperature at which the heat of fusion calculated from the low temperature side becomes 50% of ΔHm is: , 125 ° C. or lower. A more preferable temperature at which the heat of fusion becomes 50% of ΔHm is 120 ° C. or less. A preferred lower limit of the temperature at which the heat of fusion becomes 50% of ΔHm is 110 ° C. Here, the temperature at which the heat of fusion becomes 50% of ΔHm is determined by drawing a straight line perpendicular to the temperature axis so that the integral area of the DSC curve becomes 50%. Refers to the temperature at the intersection. The temperature at which the amount of heat of fusion becomes 50% of ΔHm is an index indicating the shrinkage behavior accompanying the melting of the resin. When the amount of heat of fusion increases as the temperature rises and reaches about 50% of ΔHm, It is an index defined assuming that it exhibits a sufficient shrinkage force to express latent crimps to a high degree. When using a propylene copolymer having a temperature of 125 ° C. or less when the heat of fusion becomes 50% of ΔHm, a fiber web or the like containing latently crimpable conjugate short fibers is heat-treated to develop latent crimp. Not only is the thermal processing property at a low temperature improved, but the thermal processing speed can be increased with an increase in the thermal processing temperature, and the high-speed productivity is improved, which is preferable.

 また、前記プロピレン共重合体の融点Tと融解熱量がΔHmの50%になるときの温度との差は、7℃以上であることが好ましく、10℃以上であることがより好ましい。この温度差は、本発明の潜在捲縮性複合短繊維で不織布を製造するときに、ウェブを面収縮させるときの加工温度と面積収縮率に影響を及ぼす。温度差が7℃未満であると、高い面積収縮率を得るために加工温度を融点付近まで上げる必要がある。加工温度をそのような高い温度に設定すると、最終的に得られる不織布が硬くなる等、不織布の風合いが損われる場合がある。 The difference between the temperature at which the melting point T 1 and the heat of fusion of the propylene copolymer is 50% of the ΔHm is preferably 7 at ° C. or higher, more preferably 10 ° C. or higher. This temperature difference affects the processing temperature and the area shrinkage rate when the web is surface shrunk when producing a nonwoven fabric from the latently crimpable conjugate short fibers of the present invention. If the temperature difference is less than 7 ° C., it is necessary to raise the processing temperature to near the melting point in order to obtain a high area shrinkage. If the processing temperature is set to such a high temperature, the texture of the nonwoven fabric may be impaired, such as the hardness of the finally obtained nonwoven fabric.

 前記プロピレン共重合体における重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値)は、1.5以上3.5以下の範囲内にあることが好ましい。より好ましいQ値の下限は、2である。より好ましいQ値の上限は、3である。プロピレン共重合体のQ値は、複合繊維としたときの収縮力(伸縮力)に影響を与える因子であり、上記範囲を満たすことにより収縮は大きくなる。 比 The ratio (Q value) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the propylene copolymer is preferably in the range of 1.5 or more and 3.5 or less. A more preferred lower limit of the Q value is 2. A more preferred upper limit of the Q value is 3. The Q value of the propylene copolymer is a factor that affects the shrinking force (stretching force) of the conjugate fiber, and the shrinkage increases when the above range is satisfied.

 前記の融点Tが115℃以上140℃以下の範囲内にあり、MFRが10g/10min以上60g/10min以下の範囲内にあり、融解熱量がΔHmの50%になるときの温度が125℃以下を満たす具体的なプロピレン共重合体としては、メタロセン触媒により重合されたプロピレン共重合体が挙げられ、より具体的には、日本ポリケム(株)製のXK1167およびXK1183などが挙げられる。本発明に好適に用いられるプロピレン共重合体の製造方法としては、メタロセン化合物とアルモキサンとを組み合わせたメタロセン触媒を使用して重合する方法を例示することができる(特開平2−173014号公報、特開平2−173015号公報、特開平2−255812号公報、特開平3−234710号公報、および特開平4−96908号公報の各公報参照)。 In the range melting point T 1 is a 115 ° C. or higher 140 ° C. or less of the, MFR is in the range of less than 10 g / 10min or more 60 g / 10min, temperature of 125 ° C. or less when the heat of fusion is 50% of the ΔHm Specific examples of the propylene copolymer satisfying the above condition include a propylene copolymer polymerized by a metallocene catalyst, and more specifically, XK1167 and XK1183 manufactured by Nippon Polychem Co., Ltd. Examples of the method for producing a propylene copolymer suitably used in the present invention include a method in which polymerization is carried out using a metallocene catalyst in which a metallocene compound and an alumoxane are combined (Japanese Patent Application Laid-Open No. 2-173014, JP-A-2-173015, JP-A-2-255812, JP-A-3-234710, and JP-A-4-96908.

 前記プロピレン共重合体は、第1成分において50mass%以上含まれることが好ましい。より好ましいプロピレン共重合体の含有率は、80mass%以上であり、プロピレン共重合体を単独で用いて、第1成分とすることが最も好ましい。プロピレン共重合体の含有率が50mass%未満であると、熱加工時に十分な収縮性が得られない。第1成分に混合される他の熱可塑性樹脂としては、プロピレン共重合体の融点、MFR、Q値などを考慮して、例えば、ポリプロピレンおよび/またはポリブテン−1などが用いられる。 The propylene copolymer is preferably contained in the first component in an amount of 50 mass% or more. The content of the propylene copolymer is more preferably 80 mass% or more, and it is most preferable that the propylene copolymer is used alone and used as the first component. If the content of the propylene copolymer is less than 50 mass%, sufficient shrinkage during thermal processing cannot be obtained. As the other thermoplastic resin mixed with the first component, for example, polypropylene and / or polybutene-1 is used in consideration of the melting point, MFR, Q value, and the like of the propylene copolymer.

 本発明の潜在捲縮性複合短繊維に用いられる第2成分は、紡糸後の融点TfがTfよりも15℃以上高い熱可塑性樹脂を含む樹脂である。前記熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、およびその共重合体などのポリエステル樹脂、ナイロン6、ナイロン66、およびその共重合体などのポリアミド樹脂、ならびにポリプロピレン、およびポリメチルペンテンなどのポリオレフィン樹脂などが挙げられる。特に、ポリプロピレン、収縮性を有するポリエステル、またはポリアミドが、紡糸性、捲縮発現性、収縮性などの点で好ましく用いられる。前記熱可塑性樹脂は、第2成分において50mass%以上含まれることが好ましく、80mass%以上含まれることがより好ましい。 The second component used in the latently crimpable conjugate short fiber of the present invention, the melting point Tf 2 after spinning is a resin comprising 15 ℃ or higher thermoplastic resin than Tf 1. As the thermoplastic resin, for example, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyester resins such as copolymers thereof, nylon 6, nylon 66, polyamide resins such as copolymers thereof, and polypropylene, And polyolefin resins such as polymethylpentene. In particular, polypropylene, shrinkable polyester, or polyamide is preferably used in terms of spinnability, crimp development, shrinkage, and the like. The thermoplastic resin is preferably contained in the second component in an amount of 50% by mass or more, more preferably 80% by mass or more.

 前記熱可塑性樹脂は、ポリオレフィン樹脂であって、そのMFRが10g/10min以上100g/10min以下の範囲内にあるものであることが好ましい。より好ましいMFRの下限は、20g/10minである。より好ましいMFRの上限は、80g/10minである。MFRが10g/10min未満であると、延伸性が悪く単繊維伸度の小さい繊維しか得られない恐れがあり、MFRが100g/10minを超えると、紡糸性が悪くなる恐れがある。 The thermoplastic resin is preferably a polyolefin resin having an MFR in the range of 10 g / 10 min to 100 g / 10 min. A more preferred lower limit of the MFR is 20 g / 10 min. A more preferred upper limit of the MFR is 80 g / 10 min. When the MFR is less than 10 g / 10 min, there is a possibility that only a fiber having low stretchability and a small single fiber elongation may be obtained, and when the MFR exceeds 100 g / 10 min, the spinnability may be deteriorated.

 また、前記熱可塑性樹脂は、ポリオレフィン樹脂であって、その重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値)が、4以下であることが好ましい。好ましいQ値の下限は2である。より詳細には、第1成分として、メタロセン触媒を用いて重合されたαオレフィン−プロピレン共重合体を使用する場合には、Q値が4以下であるポリオレフィン樹脂を使用することが好ましい。第1成分として、チーグラ−ナッタ触媒を用いて重合されたαオレフィン−プロピレン共重合体を使用する場合には、Q値が3.3以下であるポリオレフィン樹脂を使用することが好ましい。Q値が4を超えると、複合短繊維としたときの捲縮発現性や収縮性が低下する傾向にある。 The thermoplastic resin is a polyolefin resin, and the ratio (Q value) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 4 or less. A preferred lower limit of the Q value is 2. More specifically, when an α-olefin-propylene copolymer polymerized using a metallocene catalyst is used as the first component, it is preferable to use a polyolefin resin having a Q value of 4 or less. When an α-olefin-propylene copolymer polymerized using a Ziegler-Natta catalyst is used as the first component, it is preferable to use a polyolefin resin having a Q value of 3.3 or less. When the Q value exceeds 4, the crimp development and shrinkage of the conjugated short fibers tend to decrease.

 上記MFRが10g/10min以上100g/10min以下の範囲内にあり、かつQ値が4以下であるポリオレフィン樹脂としては、ポリプロピレン樹脂が好ましく、ポリプロピレン樹脂として、例えば、日本ポリケム(株)製の商品名SA03Dが挙げられる。 As the polyolefin resin having an MFR in the range of 10 g / 10 min or more and 100 g / 10 min or less and a Q value of 4 or less, a polypropylene resin is preferable. As the polypropylene resin, for example, a trade name of Nippon Polychem Co., Ltd. SA03D.

 本発明の潜在捲縮性複合短繊維は、その断面が、第1成分が鞘成分、第2成分が芯成分であって、第2成分(芯成分)の重心位置が繊維の重心位置からずれている偏心鞘芯型断面、または第1成分が繊維の周面の長さに対して20%以上の長さで露出している並列型断面であることが好ましい。かかる繊維断面を有する複合繊維とすることにより、収縮性に優れ、捲縮発現性に優れた複合短繊維を得ることができ、好ましい。 The cross-section of the latently crimpable conjugate short fiber of the present invention is such that the first component is a sheath component, the second component is a core component, and the center of gravity of the second component (core component) is shifted from the center of gravity of the fiber. An eccentric sheath-core section or a parallel section in which the first component is exposed at a length of 20% or more of the length of the peripheral surface of the fiber is preferable. By using a conjugate fiber having such a fiber cross section, it is possible to obtain a conjugate short fiber having excellent shrinkage and excellent crimp development, which is preferable.

 潜在捲縮性複合短繊維が、偏心鞘芯型複合繊維である場合、第2成分の偏心率は、20%以上60%以下の範囲内にあることが好ましい。より好ましい偏心率の下限は、30%である。より好ましい偏心率の上限は、50%である。ここでいう偏心率とは、次式で定義される。

Figure 2004124351
When the latently crimpable conjugate short fiber is an eccentric sheath-core conjugate fiber, the eccentricity of the second component is preferably in the range of 20% or more and 60% or less. A more preferable lower limit of the eccentricity is 30%. A more preferred upper limit of the eccentricity is 50%. The eccentricity here is defined by the following equation.
Figure 2004124351

 第2成分の偏心率が20%未満であると、低温加工時における十分な収縮性が得られず、捲縮発現性が得られない。偏心率が60%を超えると、第1成分と第2成分の樹脂比率においてバランスが極端に悪くなり、高速カード性に適した捲縮が得られない。 (4) If the eccentricity of the second component is less than 20%, sufficient shrinkage during low-temperature processing cannot be obtained, and crimp development cannot be obtained. When the eccentricity exceeds 60%, the balance in the resin ratio of the first component and the second component becomes extremely poor, and a crimp suitable for high-speed cardability cannot be obtained.

 潜在捲縮性複合短繊維が、並列型複合繊維である場合、第1成分の繊維周面長さに対する露出率は、20%以上であることが好ましい。より好ましい露出率の下限は、30%である。露出率が20%未満であると、収縮性が不十分となる恐れがある。なお、露出率が100%である場合には、実質的に前記偏心型断面の複合短繊維となる。 (4) When the latently crimpable conjugate short fibers are side-by-side conjugate fibers, the exposure ratio of the first component to the fiber peripheral surface length is preferably 20% or more. A more preferable lower limit of the exposure rate is 30%. If the exposure ratio is less than 20%, the shrinkage may be insufficient. When the exposure ratio is 100%, the composite staple fiber has substantially the eccentric cross section.

 前記第1成分と前記第2成分の複合比率は、容積比で3:7〜7:3の範囲内にあることが好ましい。より好ましい容積比の範囲は、4:6〜6:4である。第1成分の割合が3未満であると、収縮が不十分となる場合があり、第1成分の割合が7を超えると、高速カード性が悪くなり、生産性が低下する場合がある。 複合 The composite ratio of the first component and the second component is preferably in the range of 3: 7 to 7: 3 in volume ratio. A more preferable range of the volume ratio is 4: 6 to 6: 4. If the ratio of the first component is less than 3, shrinkage may be insufficient, and if the ratio of the first component exceeds 7, high-speed cardability may deteriorate, and productivity may decrease.

 本発明の潜在捲縮性複合短繊維は、前記プロピレン共重合体を含む第1成分と、前記熱可塑性樹脂を含む第2成分とからなる捲縮を有する複合短繊維であって、全捲縮率および全捲縮率に対する自然捲縮率の割合のうち、少なくとも一方が15%以下を満たし、下記(1)および(2)の物性値を満たすものである。
(1)熱収縮応力測定において、145℃未満の温度で最大ピークを示す。
(2)JIS−L−1015(乾熱収縮率)に準じ、温度120℃、時間15分間、初荷重0.018mN/dtex(2mg/d)における単繊維乾熱収縮率が75%以上である。
The latently crimpable conjugate short fiber of the present invention is a conjugate short fiber having a crimp consisting of a first component containing the propylene copolymer and a second component containing the thermoplastic resin, At least one of the ratio of the natural crimp ratio to the total crimp ratio and the natural crimp ratio satisfies 15% or less, and satisfies the following physical property values (1) and (2).
(1) In the heat shrinkage stress measurement, a maximum peak is shown at a temperature lower than 145 ° C.
(2) According to JIS-L-1015 (dry heat shrinkage), the single fiber dry heat shrinkage at an initial load of 0.018 mN / dtex (2 mg / d) at a temperature of 120 ° C. for 15 minutes is 75% or more. .

 ここで、全捲縮率とは、クリンパー等で付与された機械捲縮に基づく捲縮率と、製造段階で加熱等により自然に繊維に発現した自然捲縮(即ち、立体捲縮)に基づく捲縮率の和に相当する。全捲縮率は、後述する通常の製造方法に従って製造した繊維について求められる捲縮率であって、JIS−L−1015に準じて測定される。自然捲縮率は、全捲縮率を求めた繊維と同じ条件で繊維を製造して、同じ条件で機械捲縮を付与した後、低温で乾燥させて(具体的には、約20℃〜約30℃の室温にて、1〜3日間かけて自然乾燥させて)自然捲縮の発現を抑えるように製造した繊維についてJIS−L−1015に準じて捲縮率を測定し、これを機械捲縮率として、下記の式(1)に従って算出する。
自然捲縮率=全捲縮率−機械捲縮率  (1)
Here, the total crimp rate is based on a crimp rate based on a mechanical crimp given by a crimper or the like and a natural crimp (that is, a three-dimensional crimp) that naturally appears in a fiber by heating or the like in a manufacturing stage. It corresponds to the sum of the crimp rates. The total crimp rate is a crimp rate determined for a fiber manufactured according to a normal manufacturing method described later, and is measured according to JIS-L-1015. The natural crimp rate is determined by producing a fiber under the same conditions as the fiber for which the total crimp rate is obtained, applying a mechanical crimp under the same conditions, and then drying at a low temperature (specifically, about 20 ° C. The fiber manufactured so as to suppress the occurrence of spontaneous crimp (by natural drying at room temperature of about 30 ° C. for 1 to 3 days) was measured for the crimp rate in accordance with JIS-L-1015, and this was machined. The crimp rate is calculated according to the following equation (1).
Natural crimp rate = Total crimp rate-Mechanical crimp rate (1)

 さらに、全捲縮率に対する自然捲縮率の割合は、下記の式(2)に従って算出する。

Figure 2004124351
Further, the ratio of the natural crimp rate to the total crimp rate is calculated according to the following equation (2).
Figure 2004124351

 本発明の潜在捲縮性複合短繊維は、全捲縮率および全捲縮率に対する自然捲縮の割合のうち、少なくとも一方が、15%以下である繊維として特定される。
 前記全捲縮率は、本発明の潜在捲縮性複合短繊維における高速カード性を決定する重要な因子であり、延伸倍率、機械捲縮数、機械捲縮率、およびアニーリング処理温度などによって調整することが可能である。好ましい全捲縮率の下限は、11%である。好ましい全捲縮率の上限は、14%である。潜在捲縮性複合短繊維の場合、原綿段階の全捲縮率は、カード性(ネップ発生、地合ムラ、およびカード巻き付き)に影響を及ぼし、高速カードを通過させる場合にはその影響は特に顕著となる。全捲縮率が15%を超えると、原綿段階で立体捲縮が高度に発現してしまうため、高速カード通過時において開繊不良、シリンダーへの巻き付き、あるいは地合ムラ(クラウディ)が発生する傾向にある。
The latently-crimpable conjugate short fiber of the present invention is specified as a fiber in which at least one of the total crimp ratio and the ratio of natural crimp to the total crimp ratio is 15% or less.
The total crimp rate is an important factor for determining the high-speed cardability of the latently crimpable conjugate short fiber of the present invention, and is adjusted by a draw ratio, a mechanical crimp number, a mechanical crimp rate, and an annealing temperature. It is possible to do. The lower limit of the preferable total crimp rate is 11%. A preferred upper limit of the total crimp rate is 14%. In the case of latently crimpable conjugate short fibers, the total crimp ratio at the raw cotton stage affects the cardability (nep generation, formation unevenness, and card winding), especially when passing through high-speed cards. It becomes remarkable. If the total crimping ratio exceeds 15%, three-dimensional crimping is highly developed at the raw cotton stage, resulting in poor opening, winding around a cylinder, or uneven formation (cloudy) when passing through a high-speed card. There is a tendency.

 本発明の潜在捲縮性複合短繊維はまた、原綿段階において、自然捲縮を発現しにくいものであるため、全捲縮率に対する自然捲縮率の割合が15%以下である潜在捲縮性複合短繊維としても特定される。このように全捲縮率に対する自然捲縮率の割合が小さい繊維は、全捲縮率がたとえ15%をこえるとしても、カード性が良好であり、高速カードに適したものとなる。全捲縮率に対する自然捲縮率の割合は、好ましくは10%以下である。また、全捲縮率および全捲縮率に対する自然捲縮率の割合の両方が15%以下となることが、カード性の点からはより好ましい。 Since the latently crimpable conjugate short fibers of the present invention hardly exhibit natural crimping at the raw cotton stage, the latently crimpable conjugate short fiber has a ratio of the natural crimping ratio to the total crimping ratio of 15% or less. It is also specified as a composite short fiber. Such a fiber having a small ratio of the natural crimp ratio to the total crimp ratio has good cardability even if the total crimp ratio exceeds 15%, and is suitable for a high-speed card. The ratio of the natural crimp rate to the total crimp rate is preferably 10% or less. It is more preferable that both the total crimp rate and the ratio of the natural crimp rate to the total crimp rate be 15% or less from the viewpoint of cardability.

 前記熱収縮応力は、温度に対する収縮挙動を示すファクターである。145℃未満の温度で熱収縮応力が最大ピークを示すと、熱加工時の温度が低温であっても高度な収縮性が発現することを示す。即ち、上記(1)の物性値を満たすことによって、不織布製造の省エネルギー化に寄与し、また、高速生産が可能となる。なお、上記において「低温」とは、本発明の潜在捲縮性複合短繊維の第1成分の紡糸後の融点Tfよりも40℃低い温度をいう。本発明の潜在捲縮性複合短繊維は、そのような低い温度でも、ウエブ(目付30g/m)の面積収縮率が70%以上となるような潜在捲縮を発現する。熱収縮応力は、下記のようにして測定する。 The heat shrinkage stress is a factor indicating a shrinkage behavior with respect to temperature. When the heat shrinkage stress shows a maximum peak at a temperature lower than 145 ° C., it indicates that a high degree of shrinkage is exhibited even at a low temperature during thermal processing. That is, by satisfying the physical property value of the above (1), it contributes to energy saving of nonwoven fabric production, and high-speed production becomes possible. In the above description, “low temperature” means a temperature lower by 40 ° C. than the melting point Tf 1 of the first component of the latently crimpable conjugate short fiber of the present invention after spinning. The latently-crimpable conjugate short fibers of the present invention exhibit latent crimping such that the area shrinkage of a web (30 g / m 2 ) becomes 70% or more even at such a low temperature. The heat shrinkage stress is measured as described below.

 [熱収縮応力]
 熱収縮応力測定装置として、カネボウ合繊エンジニアリング(株)製、熱応力測定機KE−ZLS型を用い、以下の手順で測定を行う。
(1)試料長50mmで、試料の繊度がトータル約110dtexとなるようにして試料を準備し、取付用フックにセットする。このとき、予めトータル約110dtexとするのに必要な単繊維の本数を測定しておく。
(2)初荷重3.23cN/110dtex(3.3g/110dtex)を試料に加える。
(3)試料長を50mmに保った状態で、装置を40℃から170℃までの温度範囲を昇温速度1.25℃/secで加熱したとき、各温度と荷重値を読み、荷重値において最大ピークを示したときの温度を最大ピーク温度とし、最大荷重値をトータル約110dtexとするのに必要な単繊維の本数で除した値を単繊維あたりの最大熱収縮応力とする。なお、最大ピークが2℃以上の温度範囲にかかる場合は、最大ピークに最初に到達したときの温度を指す。
[Heat shrinkage stress]
The measurement is performed by the following procedure using a thermal stress measuring device KE-ZLS manufactured by Kanebo Synthetic Engineering Co., Ltd. as a thermal shrinkage stress measuring device.
(1) Prepare a sample so that the sample length is 50 mm and the fineness of the sample is about 110 dtex in total, and set on a mounting hook. At this time, the number of single fibers required to make the total about 110 dtex is measured in advance.
(2) An initial load of 3.23 cN / 110 dtex (3.3 g / 110 dtex) is applied to the sample.
(3) When the apparatus was heated in a temperature range of 40 ° C. to 170 ° C. at a heating rate of 1.25 ° C./sec with the sample length kept at 50 mm, each temperature and load value were read and the load value was measured. The temperature at which the maximum peak is shown is defined as the maximum peak temperature, and the value obtained by dividing the maximum load value by the number of single fibers required to make the total load about 110 dtex the maximum heat shrinkage stress per single fiber. When the maximum peak covers a temperature range of 2 ° C. or more, it indicates the temperature when the maximum peak is first reached.

 本発明の潜在捲縮性複合短繊維について、前記熱収縮応力の最大ピークが発生する温度範囲は、145℃未満である。熱収縮応力の最大ピークが発生する好ましい温度の上限は、140℃である。熱収縮応力の最大ピークが発生する温度が145℃を超えると、加工温度が高く、不織布の触感が悪くなる傾向にある。 潜在 In the latently crimpable conjugate short fibers of the present invention, the temperature range in which the maximum peak of the heat shrinkage stress occurs is less than 145 ° C. A preferred upper limit of the temperature at which the maximum peak of the heat shrinkage stress occurs is 140 ° C. When the temperature at which the maximum peak of the heat shrinkage stress exceeds 145 ° C., the processing temperature tends to be high, and the feel of the nonwoven fabric tends to deteriorate.

 本発明の潜在捲縮性複合短繊維は、好ましくは、単繊維あたりの最大熱収縮応力が、0.1cN以上0.25cN以下の範囲内にあるものである。単繊維あたりの熱収縮応力が大きいほど、高度な収縮性が発現することを示すので、最大熱収縮応力が上記範囲内にあることは、不織布製造における高速生産性に寄与する。より好ましい最大熱収縮応力の下限は、0.12cNである。好ましい最大熱収縮応力の上限は、0.2cNである。最大熱収縮応力が0.1cN未満であると、例えば、熱加工機内での滞留時間が5秒以下となるような高速で熱加工した場合、あるいは低温で熱加工した場合において、十分な収縮性が得られない傾向にある。最大熱収縮応力が0.25cNを超えると、原綿段階で立体捲縮が発現しやすく、全捲縮率が大きくなる傾向にある。 潜在 The latently crimpable conjugate short fibers of the present invention preferably have a maximum heat shrinkage stress per single fiber in the range of 0.1 cN or more and 0.25 cN or less. Since the higher the heat shrinkage stress per single fiber is, the higher the shrinkage is, the higher the heat shrinkage stress is, the higher the heat shrinkage stress is in the above range, the higher the productivity in the nonwoven fabric production. A more preferred lower limit of the maximum heat shrinkage stress is 0.12 cN. The preferred upper limit of the maximum heat shrinkage stress is 0.2 cN. When the maximum heat shrinkage stress is less than 0.1 cN, for example, when heat processing is performed at a high speed such that the residence time in the heat processing machine is 5 seconds or less, or when heat processing is performed at a low temperature, sufficient shrinkability is obtained. Tend not to be obtained. If the maximum heat shrinkage stress exceeds 0.25 cN, three-dimensional crimping is likely to occur at the raw cotton stage, and the total crimping ratio tends to increase.

 前記全捲縮率と前記熱収縮応力との関係において、全捲縮率が大きいと熱収縮応力も大きくなる傾向にあり、収縮性自体は大きくなるものの、高速カード性に劣るとともにカードから排出されたカードウェブにおいて繊維が強固に絡み合っているため、繊維同士の自由度がなく、ウェブでの収縮率が十分に得られない傾向となる。 In the relationship between the total crimp rate and the heat shrinkage stress, when the total crimp rate is large, the heat shrinkage stress also tends to increase, and although the shrinkage itself increases, the high-speed card property is inferior and the card is discharged from the card. Since the fibers are firmly entangled in the card web, there is no degree of freedom between the fibers, and there is a tendency that a sufficient shrinkage rate in the web cannot be obtained.

 前記単繊維乾熱収縮率は、温度に対する捲縮発現による見掛けの収縮挙動を示すファクターである。従来の潜在捲縮性複合短繊維は、前記全捲縮率を大きくして捲縮が発現しやすいようにするのに対し、本発明の潜在捲縮性複合短繊維は、高速カード性と収縮性を両立するため、全捲縮率および全捲縮率に対する自然捲縮率の割合のうち、少なくとも一方を15%以下としながら従来の50〜70%程度の乾熱収縮率よりも大きな収縮率を有するものである。 The single fiber dry heat shrinkage factor is a factor indicating an apparent shrinkage behavior due to the appearance of crimp with respect to temperature. While the conventional latently crimpable conjugate short fibers increase the total crimp ratio to facilitate crimping, the latently crimpable conjugate short fibers of the present invention have high-speed cardability and shrinkage. In order to balance the properties, at least one of the total crimp rate and the ratio of the natural crimp rate to the total crimp rate is 15% or less, and the shrinkage rate is larger than the conventional dry heat shrinkage rate of about 50 to 70%. It has.

 本発明の潜在捲縮性複合短繊維は、JIS−L−1015(乾熱収縮率)に準じて、温度120℃、時間15分間、初荷重0.018mN/dtex(2mg/d)で測定した単繊維乾熱収縮率が、75%以上を示すものである。好ましい単繊維乾熱収縮率の下限は、80%である。単繊維乾熱収縮率が75%未満であると、立体捲縮の発現性に劣る。 The latently crimpable conjugate short fibers of the present invention were measured at a temperature of 120 ° C. for a period of 15 minutes at an initial load of 0.018 mN / dtex (2 mg / d) according to JIS-L-1015 (dry heat shrinkage). The single fiber dry heat shrinkage is 75% or more. The preferable lower limit of the single fiber dry heat shrinkage is 80%. When the single fiber dry heat shrinkage is less than 75%, the three-dimensional crimping property is poor.

 本発明の潜在捲縮性複合短繊維は、JIS−L−1015に準じて測定した単繊維伸度が80%以上200%以下の範囲内にあるものであることが好ましい。単繊維伸度は、繊維の結晶性と繊維配向性などにより決定される物性であり、温度に対する収縮挙動を代用するものである。単繊維伸度を80%以上200%以下とすることにより、適度な結晶性と非晶性とを有するので、原綿段階での立体捲縮の発現を抑制しながら、繊維集合物形成時の高速カード性と収縮性を両立させることができる。より好ましい単繊維伸度の下限は、100%である。より好ましい単繊維伸度の上限は、150%である。単繊維伸度が80%未満であると、原綿段階で立体捲縮が発現しやすくなる傾向にあり、高速カード性に劣る。単繊維伸度が200%を超えると、熱処理時に十分な収縮が得られない場合がある。 潜在 The latently crimpable conjugate short fibers of the present invention preferably have a single fiber elongation of 80% or more and 200% or less measured according to JIS-L-1015. The single fiber elongation is a physical property determined by the crystallinity and fiber orientation of the fiber, and substitutes for shrinkage behavior with respect to temperature. When the single fiber elongation is set to 80% or more and 200% or less, it has appropriate crystallinity and non-crystallinity. Both cardability and shrinkage can be achieved. A more preferable lower limit of the single fiber elongation is 100%. A more preferable upper limit of the single fiber elongation is 150%. If the single fiber elongation is less than 80%, three-dimensional crimping tends to occur easily at the raw cotton stage, resulting in poor high-speed cardability. If the single fiber elongation exceeds 200%, sufficient shrinkage may not be obtained during heat treatment.

 本発明の潜在捲縮性複合短繊維は、例えば以下のようにして製造することができる。まず、融点Tが115℃以上140℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなるプロピレン共重合体、あるいはプロピレン共重合体を含む混合物と、融点TがTよりも15℃以上高い熱可塑性樹脂、あるいは前記熱可塑性樹脂を含む混合物を準備する。次いで、前記プロピレン共重合体またはこれを含む混合物を第1成分とし、前記熱可塑性樹脂またはこれを含む混合物を第2成分として、常套の溶融紡糸機を用いて複合紡糸し、繊度が3dtex以上50dtex以下の範囲内にある紡糸フィラメントを作製する。紡糸フィラメントの引取繊度が3dtex未満であると、糸切れ等が生じて繊維生産性が低下する。紡糸フィラメントの引取繊度が50dtexを超えると、延伸工程において十分な延伸ができず、ネッキングにより均質な繊度の繊維が得られない。 The latently crimpable conjugate short fibers of the present invention can be produced, for example, as follows. First, a propylene copolymer having a melting point T 1 in the range of 115 ° C. to 140 ° C. and a propylene content of 95 mass% or more, or a mixture containing the propylene copolymer, and a melting point T 2 of T 1 A thermoplastic resin higher than 15 ° C. or a mixture containing the thermoplastic resin is prepared. Next, the propylene copolymer or a mixture containing the propylene copolymer is used as a first component, and the thermoplastic resin or a mixture containing the same is used as a second component, and is subjected to composite spinning using a conventional melt spinning machine to have a fineness of 3 dtex or more and 50 dtex or more. A spun filament within the following range is prepared. When the take-up fineness of the spun filament is less than 3 dtex, yarn breakage or the like occurs and fiber productivity is reduced. When the take-up fineness of the spun filament exceeds 50 dtex, sufficient drawing cannot be performed in the drawing step, and a fiber having a uniform fineness cannot be obtained by necking.

 次いで、紡糸フィラメントを公知の延伸処理機を用いて延伸処理して、延伸フィラメントを得る。延伸処理は、延伸温度を30℃以上90℃以下の範囲内にある温度に設定して実施することが好ましい。また延伸倍率は、2倍以上とすることが好ましい。より好ましい延伸倍率の下限は、3倍である。より好ましい延伸倍率の上限は、5倍である。延伸処理は得られる単繊維伸度を決定する1つの因子であり、単繊維伸度が80%以上となるように延伸処理条件を調整することで原綿段階での立体捲縮の発現を抑制することが可能となる。延伸温度が30℃未満であると、十分な延伸ができず単繊維伸度が残る傾向にあり、またボイドが発生し、著しく繊維強度が低下する場合がある。延伸温度が90℃を超えると、不織布加工時に十分な収縮性が得られない。延伸倍率が2倍未満であると、単繊維伸度が大きく残り、高速カード性に劣る。さらに不織布加工時に十分な収縮性が得られない。一方、延伸倍率が5倍を超えると、原綿段階で立体捲縮が発現しやすく、全捲縮率および全捲縮率に対する自然捲縮率の割合が大きくなる傾向にあり、高速カード性が悪くなる場合がある。延伸方法は、温水または熱水中で実施する湿式延伸法、あるいは乾式延伸法のいずれであってもよい。 Next, the spun filament is drawn using a known drawing machine to obtain a drawn filament. The stretching treatment is preferably performed by setting the stretching temperature to a temperature in the range of 30 ° C. or more and 90 ° C. or less. The stretching ratio is preferably 2 times or more. A more preferred lower limit of the stretching ratio is 3 times. The more preferable upper limit of the stretching ratio is 5 times. The stretching treatment is one factor that determines the obtained single fiber elongation, and the expression of the three-dimensional crimp at the raw cotton stage is suppressed by adjusting the stretching treatment conditions so that the single fiber elongation becomes 80% or more. It becomes possible. If the stretching temperature is less than 30 ° C., sufficient stretching cannot be performed, and the single fiber elongation tends to remain. In addition, voids may be generated and the fiber strength may be significantly reduced. If the stretching temperature exceeds 90 ° C., sufficient shrinkage cannot be obtained during nonwoven fabric processing. If the draw ratio is less than 2 times, the single fiber elongation remains large and the high-speed cardability is poor. Furthermore, sufficient shrinkage cannot be obtained during nonwoven fabric processing. On the other hand, when the stretching ratio exceeds 5 times, three-dimensional crimping is likely to occur at the raw cotton stage, and the total crimping ratio and the ratio of the natural crimping ratio to the total crimping ratio tend to increase, resulting in poor high-speed cardability. May be. The stretching method may be any of a wet stretching method performed in warm water or hot water or a dry stretching method.

 得られた延伸フィラメントには、所定量の繊維処理剤が付着され、クリンパー(捲縮付与装置)で機械捲縮が与えられる。前記機械捲縮における捲縮数は、11山/25mm以上18山/25mm以下の範囲内にあることが好ましい。捲縮数が11山/25mm未満であると、カードでのシリンダーへの巻き付き及び風綿が発生しやすいために、高速カード通過性が悪い。さらに、繊維同士の交絡度合いを示すウェブ強力も低く、カード工程でトラブルが発生し易い傾向にある。捲縮数が18山/25mmを超えると、カード工程での開繊不良によるネップ、クラウディなど地合いムラが発生する。 (4) A predetermined amount of a fiber treatment agent is attached to the obtained drawn filament, and is mechanically crimped by a crimper (crimp applying device). The number of crimps in the mechanical crimp is preferably in the range of 11 peaks / 25 mm or more and 18 peaks / 25 mm or less. When the number of crimps is less than 11 ridges / 25 mm, high-speed card passage is poor because the card is easily wound around the cylinder and fly is easily generated. Further, the web strength indicating the degree of entanglement between the fibers is low, and a trouble tends to occur in the carding process. If the number of crimps exceeds 18 peaks / 25 mm, uneven formation such as NEP and cloudy due to poor spreading in the carding process occurs.

 捲縮付与後のフィラメントに20℃以上80℃以下の範囲内にある温度で数秒から約30分間、アニーリング処理を施す。繊維処理剤を付着させた後でアニーリング処理を実施する場合、アニーリング処理温度を50℃以上80℃以下の範囲内にある温度とし、処理時間を5分以上として、アニーリング処理を実施すると同時に繊維処理剤を乾燥させることがより好ましい。アニーリング処理を上記温度範囲に設定することにより、複合繊維の結晶化を抑制して、原綿段階での立体捲縮の発現を低く抑え、全捲縮率および全捲縮率に対する自然捲縮率の割合、ならびに単繊維乾熱収縮率を所望の範囲に調整することが可能である。 フ ィ ラ メ ン ト Anneal the filament after crimping at a temperature in the range of 20 ° C. or more and 80 ° C. or less for several seconds to about 30 minutes. When the annealing treatment is performed after the fiber treatment agent is applied, the annealing treatment temperature is set to a temperature within a range of 50 ° C. or more and 80 ° C. or less, the treatment time is set to 5 minutes or more, and the annealing treatment is performed. More preferably, the agent is dried. By setting the annealing treatment in the above temperature range, the crystallization of the conjugate fiber is suppressed, the expression of the three-dimensional crimp at the raw cotton stage is suppressed to a low level, and the total crimp rate and the natural crimp rate with respect to the total crimp rate are reduced. It is possible to adjust the ratio and the single fiber dry heat shrinkage to a desired range.

 前記アニーリング処理終了後、フィラメントは用途等に応じて、繊維長30mm以上100mm以下の範囲内にある長さに切断される。 終了 After the annealing treatment is completed, the filament is cut to a length within a range of 30 mm or more and 100 mm or less, depending on the application.

 次に、本発明の潜在捲縮性複合短繊維の製造方法の具体的な一例を示す。第1成分として、融点Tが115℃以上140℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなり、MFRが10g/10min以上60g/10min以下の範囲内にあり、かつ融解熱量がΔHmの50%になるときの温度が125℃以下であるプロピレン共重合体からなる樹脂を準備する。これらの条件を満たすプロピレン共重合体としては、プロピレン含有量が96mass%以上98mass%以下の範囲内にあり、Q値が1.5以上3.5以下の範囲内にある、メタロセン触媒により重合されたエチレン−プロピレン共重合体、ブテン−プロピレン共重合体およびエチレン−プロピレン−ブテン三元共重合体から選ばれる少なくとも1種であることが好ましい。 Next, a specific example of the method for producing a latently crimpable conjugate short fiber of the present invention will be described. As a first component, the melting point T 1 is in the range of 115 ° C. or more and 140 ° C. or less, the propylene content accounts for 95 mass% or more, the MFR is in the range of 10 g / 10 min or more and 60 g / 10 min or less, and A resin made of a propylene copolymer having a temperature at which the heat of fusion becomes 50% of ΔHm is 125 ° C. or less is prepared. As a propylene copolymer satisfying these conditions, the propylene content is in the range of 96 mass% to 98 mass% and the Q value is in the range of 1.5 to 3.5, and is polymerized by a metallocene catalyst. It is preferably at least one selected from ethylene-propylene copolymer, butene-propylene copolymer and ethylene-propylene-butene terpolymer.

 一方、第2成分として、融点TがTよりも15℃以上高い熱可塑性樹脂、例えばMFRが10g/10min以上100g/10min以下の範囲内にあり、かつQ値が4以下であるポリプロピレン樹脂を準備する。 On the other hand, as the second component, a thermoplastic resin having a melting point T 2 higher than T 1 by 15 ° C. or more, for example, a polypropylene resin having an MFR in the range of 10 g / 10 min to 100 g / 10 min and a Q value of 4 or less Prepare

 前記第1成分が鞘成分を、第2成分が芯成分を構成し、第2成分の重心位置が繊維の重心位置からずれるように配置された偏心鞘芯型ノズル、または第1成分が繊維の周面の長さに対して20%以上の長さで露出するように配置された並列型ノズルを用い、紡糸温度を200℃以上300℃以下の範囲内にある温度にして溶融押し出し、引取速度を150m/min以上1500m/min以下の範囲内にある速度にして複合紡糸して、繊度が3dtex以上30dtex以下の範囲内にある紡糸フィラメントを得る。 An eccentric sheath-core nozzle in which the first component constitutes a sheath component, the second component constitutes a core component, and the center of gravity of the second component is shifted from the center of gravity of the fiber, or Using a parallel type nozzle arranged so as to be exposed at a length of 20% or more with respect to the length of the peripheral surface, the spinning temperature is set to a temperature within a range of 200 ° C or more and 300 ° C or less, and is extruded by melting. At a speed in the range of 150 m / min to 1500 m / min to obtain a spun filament having a fineness in the range of 3 dtex to 30 dtex.

 次いで、紡糸フィラメントを、延伸温度を40℃以上80℃以下の範囲内にある温度とし、延伸倍率を2倍以上6倍以下の範囲内にある倍率に設定して、延伸処理に付し、繊度が1dtex以上15dtex以下の範囲内にある延伸フィラメントを得る。 Next, the spun filament is subjected to a drawing treatment by setting the drawing temperature to a temperature in the range of 40 ° C. or more and 80 ° C. or less, and setting the draw ratio in a range of 2 to 6 times. Is obtained in the range of 1 dtex or more and 15 dtex or less.

 次いで、所定量の繊維処理剤を付着させ、クリンパー(捲縮付与装置)で捲縮数が11山/25mm以上、18山/25mm以下の範囲の機械捲縮を付与する。それから、アニーリング処理温度を50℃以上80℃以下とし、処理時間を5分以上30分以下として、アニーリング処理を実施するとともに、繊維処理剤を乾燥させる。次いで、繊維長が30mm以上100mm以下となるように切断することにより、全捲縮率および全捲縮率に対する自然捲縮率の割合のうち、少なくとも一方が15%以下を満たし、かつ前記熱収縮応力および単繊維乾熱収縮率に関して所定の物性値を満たす潜在捲縮性複合短繊維が得られる。 Next, a predetermined amount of the fiber treating agent is applied, and mechanical crimping is performed using a crimper (crimping device) in a range of 11 crimps / 25 mm or more and 18 crimps / 25 mm or less. Then, the annealing treatment temperature is set to 50 ° C. or more and 80 ° C. or less, the treatment time is set to 5 minutes or more and 30 minutes or less, and the annealing treatment is performed, and the fiber treating agent is dried. Next, by cutting so that the fiber length becomes 30 mm or more and 100 mm or less, at least one of the total crimp rate and the ratio of the natural crimp rate to the total crimp rate satisfies 15% or less, and the heat shrinkage. A latently crimpable conjugate short fiber that satisfies predetermined physical properties with respect to stress and single fiber dry heat shrinkage is obtained.

 本発明の潜在捲縮性複合短繊維は、これでウェブを形成したときのウェブの熱収縮挙動が従来の繊維とは異なり、当該熱収縮挙動によって特定され得るものである。具体的には、本発明の潜在捲縮性複合短繊維は、第1成分と第2成分とが複合紡糸されて成り、紡糸後の融点Tfが120℃以上145℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなるαオレフィン−プロピレン共重合体を含む第1成分と、紡糸後の融点TfがTfよりも15℃以上高い熱可塑性樹脂を含む第2成分とからなる捲縮を有する複合短繊維であって、当該複合短繊維で目付30g/mのウェブを形成し、これを120℃で4秒間熱処理したときのウェブ面積収縮率が85%以上となるものである。即ち、本発明の潜在捲縮性複合短繊維は、比較的低い温度および短い時間で潜在捲縮を良好に発現するものである。 The latently crimpable conjugate short fibers of the present invention are different from conventional fibers in the heat shrinkage behavior of the web when the web is formed therefrom, and can be specified by the heat shrinkage behavior. Specifically, the latently crimpable conjugate short fiber of the present invention is formed by conjugate spinning of the first component and the second component, and has a melting point Tf 1 after spinning in the range of 120 ° C. or more and 145 ° C. or less. A first component containing an α-olefin-propylene copolymer having a propylene content of 95 mass% or more, and a second component containing a thermoplastic resin having a melting point Tf 2 after spinning of 15 ° C. or more higher than Tf 1. And a crimped conjugate short fiber comprising a web having a basis weight of 30 g / m 2 formed from the conjugate short fiber and heat-treated at 120 ° C. for 4 seconds to have a web area shrinkage of 85% or more. Things. That is, the latently-crimpable conjugate short fiber of the present invention is one that expresses latently-crimped at a relatively low temperature and for a short time.

 以上において説明した本発明の潜在捲縮性複合短繊維は、繊維集合物中に20mass%以上含有され、潜在捲縮を発現させることにより、伸縮性あるいは収縮性に優れ、風合いの良好な繊維集合物を形成する。繊維集合物としては、織編物、不織布などが挙げられる。 The latently-crimpable conjugate short fiber of the present invention described above is contained in a fiber aggregate in an amount of 20 mass% or more, and by developing latent crimp, the fiber aggregate is excellent in stretchability or shrinkage and has a good texture. Form an object. Examples of the fiber aggregate include a woven and knitted fabric and a nonwoven fabric.

 続いて、本発明の繊維集合物の具体的な一例として不織布を、その製造方法とともに説明する。前記不織布は、前記潜在捲縮性複合短繊維を20mass%以上含有するようにカードウェブを作製し、前記カードウェブを熱処理し、潜在捲縮を発現させることにより得ることができる。前記不織布には、潜在捲縮性複合短繊維以外に他の繊維を混綿したり、積層してもよい。当該他の繊維は、例えば、コットン、シルク、ウール、麻、パルプなどの天然繊維、レーヨン、キュプラなどの再生繊維、およびアクリル系、ポリエステル系、ポリアミド系、ポリオレフィン系、ポリウレタン系などの合成繊維から1種または複数種の繊維を用途などに応じて選択するとよい。 Next, a nonwoven fabric as a specific example of the fiber aggregate of the present invention will be described together with a method for producing the nonwoven fabric. The nonwoven fabric can be obtained by preparing a card web so as to contain the latently crimpable conjugate short fibers in an amount of 20% by mass or more, heat-treating the card web, and developing a latent crimp. The nonwoven fabric may be mixed with other fibers or laminated other than the latently crimpable conjugate short fibers. The other fibers are, for example, natural fibers such as cotton, silk, wool, hemp, pulp, regenerated fibers such as rayon and cupra, and synthetic fibers such as acrylic, polyester, polyamide, polyolefin, and polyurethane. One or more types of fibers may be selected according to the application.

 前記不織布を製造するに際して用いられるカードウェブとしては、パラレルウェブ、セミランダムウェブ、ランダムウェブ、クロスウェブ、クリスクロスウェブなどが挙げられ、異なる種類の繊維ウェブを2種類以上積層してもよい。また、繊維間を絡合させるために、繊維ウェブには必要に応じて熱処理前および/または熱処理後にニードルパンチ処理や水流交絡処理等の二次加工を施してもよい。特に、ニードルパンチ処理や水流交絡処理のように、構成する繊維同士を三次元的に交絡する方法によれば、後述する熱処理によって潜在捲縮性複合短繊維の立体捲縮が発現したときに、繊維同士が適度に拘束されているため、高度な伸長回復性を有し、好ましい。 カ ー ド As a card web used in manufacturing the nonwoven fabric, a parallel web, a semi-random web, a random web, a cross web, a criss cross web and the like can be mentioned, and two or more different types of fiber webs may be laminated. Further, in order to entangle the fibers, the fiber web may be subjected to a secondary processing such as a needle punching treatment or a hydroentangling treatment before and / or after the heat treatment, if necessary. In particular, according to a method of three-dimensionally entangled constituting fibers, such as a needle punching process and a hydroentanglement process, when a three-dimensional crimp of a latently crimpable conjugate short fiber is developed by a heat treatment described below, Since the fibers are appropriately restrained, they have a high degree of elongation recovery and are preferable.

 前記繊維ウェブには、公知の熱処理手段により熱処理を施される。熱処理手段としては、熱風吹き付け法および熱圧着法から選ばれる少なくとも1種の熱処理方法を用いることが好ましい。前記熱処理方法における熱処理温度等の熱処理条件は、採用する熱処理方法に応じて適宜設定される。例えば、熱風吹き付け法(エアースルー法)を採用する場合、熱処理温度は、潜在捲縮性複合短繊維の立体捲縮が発現する温度に設定するとよいが、好ましくは、Tf−40≦T(℃)≦Tf+20の範囲内にある温度、より好ましくはTf−30≦T(℃)≦Tf−5の範囲内にある温度で処理するとよい。 The fiber web is subjected to a heat treatment by a known heat treatment means. As the heat treatment means, it is preferable to use at least one heat treatment method selected from a hot air blowing method and a thermocompression bonding method. The heat treatment conditions such as the heat treatment temperature in the heat treatment method are appropriately set according to the heat treatment method to be adopted. For example, when a hot air blowing method (air-through method) is employed, the heat treatment temperature may be set to a temperature at which three-dimensional crimping of the latently crimpable conjugate short fiber is developed, and preferably, Tf 1 -40 ≦ T ( C.) ≦ Tf 1 +20, more preferably Tf 1 −30 ≦ T (° C.) ≦ Tf 1 −5.

 得られた不織布は、収縮性および伸縮性に優れ、柔軟な風合いを有するから、オムツなどの衛生材料、パップ剤や包帯などの医療(用途)材料、ウェットティッシュ、ワイパー、緩衝材、包装材料、スポンジ状不織布材料等の用途に好適である。 The obtained non-woven fabric has excellent shrinkage and elasticity, and has a soft texture. Therefore, sanitary materials such as diapers, medical (use) materials such as cataplasms and bandages, wet tissues, wipers, cushioning materials, packaging materials, It is suitable for applications such as sponge-like nonwoven fabric materials.

 以下、本発明の内容について実施例を挙げて具体的に説明する。なお、使用した第1成分および第2成分の融点TおよびT、第1成分の低温側から起算した融解熱量がΔHmの50%になるときの温度、紡糸後の第1成分および第2成分の融点Tf1およびTf2、単繊維強伸度、捲縮数、全捲縮率および全捲縮率に対する自然捲縮率の割合、単繊維乾熱収縮率、不織布の面積収縮率、および高速カード性は、以下のように測定した。 Hereinafter, the contents of the present invention will be specifically described with reference to examples. The melting points T 1 and T 2 of the first and second components used, the temperature at which the heat of fusion calculated from the low temperature side of the first component becomes 50% of ΔHm, the first and second components after spinning, The melting points Tf 1 and Tf 2 of the components, the strength and elongation of a single fiber, the number of crimps, the ratio of the natural crimp rate to the total crimp rate and the total crimp rate, the dry heat shrinkage rate of the single fiber, the area shrinkage rate of the nonwoven fabric, and High-speed cardability was measured as follows.

 [TおよびT、ならびに第1成分の融解熱量ΔHmの50%温度の測定]
 セイコー社製DSCを使用し、サンプル量を5.0mgとして、200℃で5分間保持した後、40℃まで10℃/minの降温スピードで冷却した後、10℃/minの昇温スピードで融解させて、第1および第2成分それぞれについて融解熱量曲線を得、得られた融解熱量曲線より、融点TおよびTをそれぞれ求めた。さらに、第1成分について得られた融解熱量曲線から、低温側から起算した融解熱量がΔHmの50%になるときの温度を求めた。
[Measurement of T 1 and T 2 , and 50% temperature of heat of fusion ΔHm of first component]
Using a Seiko DSC, the sample amount was adjusted to 5.0 mg, held at 200 ° C for 5 minutes, cooled to 40 ° C at a rate of 10 ° C / min, and then melted at a rate of 10 ° C / min. by, give heat of fusion curve for each of the first and second components, the melting heat curve obtained was determined melting point T 1 and T 2, respectively. Further, from the heat of fusion curve obtained for the first component, the temperature at which the heat of fusion calculated from the low temperature side became 50% of ΔHm was determined.

 [Tf1およびTf2の測定]
 セイコー社製DSCを使用し、サンプル量を6.0mgとして、10℃/minの昇温スピードで常温から200℃まで昇温して、繊維を融解させて、得られた融解熱量曲線からTf1およびTf2を求めた。
[Measurement of Tf 1 and Tf 2 ]
Using a DSC manufactured by Seiko, the sample amount was 6.0 mg, the temperature was raised from room temperature to 200 ° C. at a temperature rising speed of 10 ° C./min to melt the fibers, and Tf 1 was obtained from the obtained heat of fusion curve. And Tf 2 were determined.

 [単繊維強伸度]
 JIS−L−1015に準じ、引張試験機を用いて、試料のつかみ間隔を20mmとしたときの繊維切断時の荷重値および伸びを測定し、それぞれ単繊維強力、単繊維伸度とした。
[Strength and elongation of single fiber]
According to JIS-L-1015, the load value and elongation at the time of fiber cutting were measured using a tensile tester with a sample gripping distance of 20 mm, and the results were defined as single fiber strength and single fiber elongation, respectively.

 [捲縮数、全捲縮率、機械捲縮率、全捲縮率に対する自然捲縮率の割合]
 捲縮数および全捲縮率は、JIS−L−1015に準じて測定した。また、各実施例および比較例において、同じ樹脂および同じ製造条件を用いて紡糸および延伸した後、機械捲縮を付与してから、室温(約20℃〜約30℃)にて1〜3日間かけて自然乾燥させて、機械捲縮率測定のための複合短繊維を得た。この複合短繊維について、JIS−L−1015に準じて捲縮率を測定し、これを機械捲縮率とした。全捲縮率と機械捲縮率とから、上記式(1)に従って自然捲縮率を求め、さらに、上記式(2)に従って全捲縮率に対する自然捲縮率の割合を求めた。
[Number of crimps, total crimp rate, mechanical crimp rate, ratio of natural crimp rate to total crimp rate]
The number of crimps and the total crimp rate were measured according to JIS-L-1015. In addition, in each of Examples and Comparative Examples, after spinning and stretching using the same resin and the same manufacturing conditions, a mechanical crimp was applied, and then at room temperature (about 20 ° C. to about 30 ° C.) for 1 to 3 days. The mixture was air-dried to obtain a composite short fiber for measuring a mechanical crimp rate. About this composite short fiber, the crimp rate was measured according to JIS-L-1015, and this was made into the mechanical crimp rate. From the total crimp rate and the mechanical crimp rate, the natural crimp rate was determined according to the above equation (1), and further, the ratio of the natural crimp rate to the total crimp rate was determined according to the above equation (2).

 [単繊維乾熱収縮率]
 JIS−L−1015に準じ、つかみ間隔を100mmとし、処理温度120℃、処理時間15分間、初荷重0.018mN/dtex(2mg/d)および0.45mN/dtex(50mg/d)における乾熱収縮率をそれぞれ測定した。
[Single fiber dry heat shrinkage]
According to JIS-L-1015, the grip interval is 100 mm, the processing temperature is 120 ° C., the processing time is 15 minutes, and the dry heat at an initial load of 0.018 mN / dtex (2 mg / d) and 0.45 mN / dtex (50 mg / d) Each shrinkage was measured.

 [ウェブ面積収縮率]
 ウェブ面積収縮率を以下の方法で測定した。
 (1)セミランダムカード機で目付約30g/mのカードウェブを作製し、縦20cm×横20cm角の大きさに切断する。収縮処理前のウェブの寸法(cm)を測定する。
 (2)エアスルー熱処理機を用い、熱処理温度120℃、風速1.5m/secの条件下で、カードウェブをフリー状態で熱処理して収縮させる。熱処理時間は、4秒および12秒に設定し、それぞれの場合についてウェブ面積収縮率を測定した。
 (3)収縮後のウェブの寸法(cm)を測定する。
 (4)面積収縮率を下記式から算出する。

Figure 2004124351
[Web area shrinkage]
The web area shrinkage was measured by the following method.
(1) A card web having a basis weight of about 30 g / m 2 is prepared using a semi-random card machine and cut into a size of 20 cm × 20 cm. The dimensions (cm) of the web before shrinkage treatment are measured.
(2) Using an air-through heat treatment machine, the card web is heat-treated and shrunk in a free state at a heat treatment temperature of 120 ° C. and a wind speed of 1.5 m / sec. The heat treatment time was set to 4 seconds and 12 seconds, and the web area shrinkage was measured in each case.
(3) Measure the dimensions (cm) of the web after shrinking.
(4) The area shrinkage is calculated from the following equation.
Figure 2004124351

 [高速カード性]
 ローラー型カード機を用い、ライン速度120m/minで、目付約15g/mのカードウェブを排出したときのカードウェブの地合い、風綿の発生(フライ)、静電気、および巻き付きの有無を確認し、下記の基準で判断した。
 ◎:カードウェブの地合い、風綿の発生、静電気、および巻き付きのいずれも優良。
 ○:カードウェブの地合い、風綿の発生、静電気、および巻き付きのいずれも良好。
 △:カードウェブの地合い、風綿の発生、静電気、および巻き付きのうち、1つが不良。
 ×:カードウェブの地合い、風綿の発生、静電気、および巻き付きのうち、2つ以上が不良。
[High-speed card]
Using a roller-type card machine, check the formation of the card web, the generation of fly wool (fly), static electricity, and the presence or absence of winding when the card web with a basis weight of about 15 g / m 2 is discharged at a line speed of 120 m / min. And the following criteria.
◎: The texture of the card web, generation of fluff, static electricity, and winding were all excellent.
:: Good texture of card web, generation of fly wool, static electricity, and winding.
Δ: One of the formation of the card web, generation of fluff, static electricity, and winding was defective.
X: Two or more of the formation of the card web, generation of fluff, static electricity, and winding were defective.

 [実施例1]
 鞘成分(第1成分)として融点が128℃、MFRが26g/10min、融解熱量がΔHmの50%になるときの温度が116℃、Q値が2.6、エチレン含有量が2.6mass%、プロピレン含有量が97.4mass%であるエチレン-プロピレン共重合体であって、メタロセン触媒を用いて重合したもの(日本ポリケム(株)製、試験グレード名XK1183)を使用した。芯成分(第2成分)として融点が161℃、MFRが30g/10min、Q値が3.5の結晶性ポリプロピレン(日本ポリケム(株)製、商品名SA03B)を用いた。前記2成分を偏心鞘芯型複合ノズルを用い、第1成分/第2成分の複合比(容積比)を5/5として、鞘成分の紡糸温度を250℃、芯成分の紡糸温度を230℃で溶融押出し、偏心率40%、繊度6.7dtexの紡糸フィラメントを得た。
[Example 1]
The sheath component (first component) has a melting point of 128 ° C., an MFR of 26 g / 10 min, a temperature of 116 ° C. when the heat of fusion becomes 50% of ΔHm, a Q value of 2.6, and an ethylene content of 2.6 mass%. An ethylene-propylene copolymer having a propylene content of 97.4 mass%, which was polymerized using a metallocene catalyst (manufactured by Nippon Polychem Co., Ltd., test grade name: XK1183) was used. As the core component (second component), crystalline polypropylene (manufactured by Nippon Polychem Co., Ltd., trade name: SA03B) having a melting point of 161 ° C., an MFR of 30 g / 10 min, and a Q value of 3.5 was used. Using an eccentric sheath-core composite nozzle for the two components, setting the composite ratio (volume ratio) of the first component / second component to 5/5, the spinning temperature of the sheath component is 250 ° C, and the spinning temperature of the core component is 230 ° C. To obtain a spun filament having an eccentricity of 40% and a fineness of 6.7 dtex.

 前記紡糸フィラメントを60℃の温水中で3.3倍に延伸し、繊度2.5dtexの延伸フィラメントとした。次いで、繊維処理剤を付与した後、延伸フィラメントにスタッフィングボックス型クリンパーにて捲縮数約15山/25mmの機械捲縮を付与した。そして、65℃に設定した熱風貫通型乾燥機にて約15分間、弛緩した状態でアニーリング処理と乾燥処理を同時に施し、フィラメントを51mmの繊維長に切断して、本発明の潜在捲縮性複合短繊維を得た。 (4) The spun filament was drawn 3.3 times in hot water at 60 ° C. to give a drawn filament having a fineness of 2.5 dtex. Next, after applying the fiber treating agent, the drawn filament was subjected to mechanical crimping of about 15 peaks / 25 mm with a stuffing box type crimper. Then, annealing and drying are simultaneously performed in a relaxed state for about 15 minutes in a hot air penetration type dryer set at 65 ° C., and the filament is cut into a fiber length of 51 mm. Short fibers were obtained.

 [実施例2]
 芯成分(第2成分)として融点が161℃、MFRが30g/10min、Q値が3の結晶性ポリプロピレン(日本ポリケム(株)製、商品名SA03D)を用い、繊度6.0dtexの紡糸フィラメントを60℃の温水中で3.0倍に延伸し、クリンパーで捲縮数約13山/25mmの機械捲縮を付与したこと以外は、実施例1と同様の方法で本発明の潜在捲縮性複合短繊維を得た。
[Example 2]
As a core component (second component), a crystalline polypropylene (trade name: SA03D, manufactured by Nippon Polychem Co., Ltd., trade name: SA03D) having a melting point of 161 ° C., an MFR of 30 g / 10 min, and a Q value of 3, is used. Except that the film was stretched 3.0 times in hot water at 60 ° C., and a mechanical crimp of about 13 peaks / 25 mm was applied with a crimper, and the latent crimpability of the present invention was obtained in the same manner as in Example 1. A composite short fiber was obtained.

 [実施例3]
 繊度6.7dtexの紡糸フィラメントを60℃の温水中で3.3倍に延伸し、クリンパーで捲縮数約12山/25mmの機械捲縮を付与したこと以外は、実施例2と同様の方法で本発明の潜在捲縮性複合短繊維を得た。
[Example 3]
A method similar to that of Example 2 except that a spun filament having a fineness of 6.7 dtex is drawn 3.3 times in warm water at 60 ° C., and a mechanical crimp of about 12 peaks / 25 mm is applied by a crimper. Thus, a latently crimpable conjugate short fiber of the present invention was obtained.

 [実施例4]
 繊度7.4dtexの紡糸フィラメントを60℃の温水中で3.6倍に延伸し、クリンパーで捲縮数約15山/25mmの機械捲縮を付与したこと以外は、実施例2と同様の方法で本発明の潜在捲縮性複合短繊維を得た。
[Example 4]
A method similar to that of Example 2 except that a spun filament having a fineness of 7.4 dtex is drawn 3.6 times in hot water at 60 ° C., and a mechanical crimp of about 15 peaks / 25 mm is applied by a crimper. Thus, a latently crimpable conjugate short fiber of the present invention was obtained.

 [実施例5]
 鞘成分(第1成分)として融点が128℃、MFRが38g/10min、融解熱量がΔHmの50%になるときの温度が116℃、Q値が2.6、エチレン含有量が2.6mass%、プロピレン含有量が97.4mass%であるエチレン-プロピレン共重合体であって、メタロセン触媒を用いて重合したもの(日本ポリケム(株)製、試験グレード名XK1167)を使用した。芯成分(第2成分)として融点が161℃、MFRが60g/10min、Q値が3.0の結晶性ポリプロピレン(日本ポリケム(株)製、商品名SA06A)を用いた。これらを用いて、実施例1と同様の方法で、本発明の潜在捲縮性複合短繊維を得た。この実施例では、クリンパーで捲縮数約13山/25mmの機械捲縮を付与した。
[Example 5]
The sheath component (first component) has a melting point of 128 ° C., an MFR of 38 g / 10 min, a temperature of 116 ° C. when the heat of fusion becomes 50% of ΔHm, a Q value of 2.6, and an ethylene content of 2.6 mass%. An ethylene-propylene copolymer having a propylene content of 97.4 mass%, which was polymerized using a metallocene catalyst (manufactured by Nippon Polychem Co., Ltd., test grade name: XK1167) was used. As the core component (second component), a crystalline polypropylene (manufactured by Nippon Polychem Co., Ltd., trade name: SA06A) having a melting point of 161 ° C., an MFR of 60 g / 10 min, and a Q value of 3.0 was used. Using these, a latently crimpable conjugate short fiber of the present invention was obtained in the same manner as in Example 1. In this example, a mechanical crimp of about 13 peaks / 25 mm was applied by a crimper.

 [実施例6]
 鞘成分(第1成分)として融点が136℃、MFRが18g/10min、融解熱量がΔHmの50%になるときの温度が130℃、Q値が3.5、エチレン含有量が4.3mass%、プロピレン含有量が95.7mass%であるエチレン-プロピレン共重合体であって、チーグラー・ナッタ触媒を用いて重合したもの(日本ポリケム(株)製、商品名SX02R)を使用した。繊度6.7dtexの紡糸フィラメントを60℃の温水中で3.3倍に延伸し、クリンパーで捲縮数約13山/25mmの機械捲縮を付与したこと以外は、実施例1と同様の方法で本発明の潜在捲縮性複合短繊維を得た。
[Example 6]
The sheath component (first component) has a melting point of 136 ° C., an MFR of 18 g / 10 min, a temperature of 130 ° C. when the heat of fusion becomes 50% of ΔHm, a Q value of 3.5, and an ethylene content of 4.3 mass%. An ethylene-propylene copolymer having a propylene content of 95.7 mass%, which was polymerized using a Ziegler-Natta catalyst (trade name SX02R, manufactured by Nippon Polychem Co., Ltd.) was used. A method similar to that of Example 1 except that a spun filament having a fineness of 6.7 dtex is drawn 3.3 times in hot water at 60 ° C., and a mechanical crimp of about 13 peaks / 25 mm is applied by a crimper. Thus, a latently crimpable conjugate short fiber of the present invention was obtained.

 [比較例1]
 実施例6で用いた第1成分と、実施例1で用いた第2成分とからなる繊度7.2dtexの紡糸フィラメントを60℃の温水中で3.6倍に延伸し、クリンパーで捲縮数約14山/25mmの機械捲縮を付与したこと以外は、実施例1と同様の方法で潜在捲縮性複合短繊維を得た。
[Comparative Example 1]
A spun filament having a fineness of 7.2 dtex, composed of the first component used in Example 6 and the second component used in Example 1, was drawn 3.6 times in hot water at 60 ° C., and was crimped by a crimper. Latent crimpable conjugate short fibers were obtained in the same manner as in Example 1 except that a mechanical crimp of about 14 peaks / 25 mm was provided.

 [比較例2]
 実施例6で用いた第1成分と、実施例1で用いた第2成分とからなる繊度6.7dtexの紡糸フィラメントを60℃の温水中で3.3倍に延伸し、クリンパーで捲縮数約14山/25mmの機械捲縮を付与したこと以外は、実施例1と同様の方法で潜在捲縮性複合短繊維を得た。
[Comparative Example 2]
A spun filament having a fineness of 6.7 dtex, composed of the first component used in Example 6 and the second component used in Example 1, is drawn 3.3 times in hot water at 60 ° C., and crimped by a crimper. Latent crimpable conjugate short fibers were obtained in the same manner as in Example 1 except that a mechanical crimp of about 14 peaks / 25 mm was provided.

 [比較例3]
 実施例6で用いた第1成分と、実施例1で用いた第2成分とからなる繊度6.0dtexの紡糸フィラメントを60℃の温水中で3.0倍に延伸し、クリンパーで捲縮数約15山/25mmの機械捲縮を付与したこと以外は、実施例1と同様の方法で潜在捲縮性複合短繊維を得た。
 得られた潜在捲縮性複合短繊維の物性を表1に示す。
[Comparative Example 3]
A spun filament having a fineness of 6.0 dtex, composed of the first component used in Example 6 and the second component used in Example 1, was drawn 3.0 times in warm water at 60 ° C., and was crimped with a crimper. Latent crimpable conjugate short fibers were obtained in the same manner as in Example 1 except that a mechanical crimp of about 15 peaks / 25 mm was provided.
Table 1 shows the physical properties of the resulting latently crimpable conjugate short fibers.

Figure 2004124351
Figure 2004124351

 実施例1〜6の潜在捲縮性複合短繊維は、全捲縮率および全捲縮率に対する自然捲縮率の割合を15%以下とし、熱収縮応力が最大ピークを示す温度および単繊維乾熱収縮率を所望の範囲とし、さらに熱収縮応力および単繊維伸度を上記好ましい範囲とすることによって、高速カード性およびウェブ収縮性に優れたものとなった。特に、実施例1〜5のメタロセン触媒により重合されたエチレン−プロピレン共重合体を用いた短繊維は、熱収縮応力が小さいにもかかわらず高度な収縮性を有するので、原綿段階での捲縮発現を抑制しながら全捲縮率の調整を容易にすることができた。 The latently crimpable conjugate short fibers of Examples 1 to 6 had a total crimp ratio and a ratio of the natural crimp ratio to the total crimp ratio of 15% or less, a temperature at which the heat shrinkage stress exhibited the maximum peak, and a single fiber dryness. By setting the heat shrinkage in a desired range and further setting the heat shrinkage stress and single fiber elongation in the above-mentioned preferable ranges, the high-speed cardability and the web shrinkability were excellent. In particular, short fibers using the ethylene-propylene copolymer polymerized by the metallocene catalyst of Examples 1 to 5 have a high degree of shrinkage in spite of a small heat shrinkage stress. It was possible to easily adjust the total crimp rate while suppressing the expression.

 一方、紡糸条件および延伸条件を調整することにより、比較例1では高熱収縮応力、高単繊維乾熱収縮率を有する短繊維を得ることができたが、原綿段階で立体捲縮が発現していたため全捲縮率が大きく、また全捲縮率に対する自然捲縮の割合も大きくなって、高速カードで開繊不良によるネップが発生した。また、メインシリンダーへの巻き付きによりクラウディが発生(メインシリンダーへ巻き付きが多くなると突然排出し、またしばらくは巻き付くといった繰り返しによる目付ムラが生じる現象)し、カードウェブに地合ムラを生じた。比較例2では、比較例1よりはカード性はよく、ネップは確認されなかったが、クラウディは発生した。さらに、120℃4秒でのウェブの面積収縮率も満足できるものではなかった。比較例3では、カード性は良好であったが、十分な熱収縮率が得られなかった。 On the other hand, by adjusting the spinning conditions and the drawing conditions, in Comparative Example 1, short fibers having a high heat shrinkage stress and a high single fiber dry heat shrinkage could be obtained, but three-dimensional crimps appeared at the raw cotton stage. Therefore, the total crimp ratio was large, and the ratio of the natural crimp to the total crimp ratio was also large. In addition, cloudy was generated due to the winding around the main cylinder (a phenomenon in which a sudden increase in the number of windings around the main cylinder caused sudden discharge and repeated winding for a while, resulting in uneven weight per unit area), resulting in uneven formation of the card web. In Comparative Example 2, the cardability was better than in Comparative Example 1, and no NEP was confirmed, but cloudy occurred. Furthermore, the area shrinkage of the web at 120 ° C. for 4 seconds was not satisfactory. In Comparative Example 3, the cardability was good, but a sufficient heat shrinkage was not obtained.

 本発明の潜在捲縮性複合短繊維は、原綿段階で立体捲縮の発現が抑制され、且つ短時間の熱処理で良好な捲縮を発現するから、高速で(即ち、カード速度を高くし、且つ熱処理時間を短くして)、柔軟な風合いを有する繊維集合物(特に不織布)を製造するのに有用である。

The latently crimpable conjugate staple fiber of the present invention suppresses the expression of three-dimensional crimp at the raw cotton stage, and develops a good crimp in a short heat treatment. In addition, the heat treatment time is shortened), and it is useful for producing a fiber aggregate (in particular, a nonwoven fabric) having a soft texture.

Claims (14)

 第1成分と第2成分とが複合紡糸されて成り、紡糸後の融点Tfが120℃以上145℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなるαオレフィン−プロピレン共重合体を含む第1成分と、紡糸後の融点TfがTfよりも15℃以上高い熱可塑性樹脂を含む第2成分とからなる捲縮を有する複合短繊維であって、全捲縮率および全捲縮率に対する自然捲縮率の割合のうち、少なくとも一方が15%以下であり、且つ下記(1)および(2)の物性値を満たす潜在捲縮性複合短繊維。
(1)熱収縮応力測定において、145℃未満の温度で最大ピークを示す。
(2)JIS−L−1015(乾熱収縮率)に準じ、温度120℃、時間15分間、初荷重0.018mN/dtex(2mg/d)における単繊維乾熱収縮率が75%以上である。
An α-olefin-propylene copolymer comprising a first component and a second component, which is formed by composite spinning, has a melting point Tf 1 after spinning in the range of 120 ° C. or more and 145 ° C. or less, and has a propylene content of 95 mass% or more. a first component comprising a polymer, the melting point Tf 2 after spinning a composite short fibers having a crimp and a second component comprising 15 ℃ or higher thermoplastic resin than Tf 1, the total crimp ratio A latently crimpable conjugate short fiber in which at least one of a ratio of a natural crimp ratio to a total crimp ratio is 15% or less and satisfies the following physical property values (1) and (2).
(1) In the heat shrinkage stress measurement, a maximum peak is shown at a temperature lower than 145 ° C.
(2) According to JIS-L-1015 (dry heat shrinkage), the single fiber dry heat shrinkage at an initial load of 0.018 mN / dtex (2 mg / d) at a temperature of 120 ° C. for 15 minutes is 75% or more. .
 熱収縮応力測定において、単繊維あたりの最大熱収縮応力が0.1cN以上0.25cN以下の範囲内にある、請求項1に記載の潜在捲縮性複合短繊維。 The latently crimpable conjugate short fiber according to claim 1, wherein the maximum heat shrinkage stress per single fiber in the heat shrinkage stress measurement is in the range of 0.1 cN to 0.25 cN.  JIS−L−1015に準じて測定した単繊維伸度が80%以上200%以下の範囲内にある、請求項1または請求項2に記載の潜在捲縮性複合短繊維。 The latently crimpable conjugate short fiber according to claim 1 or 2, wherein the single fiber elongation measured according to JIS-L-1015 is in the range of 80% or more and 200% or less.  複合短繊維の断面が、第1成分が鞘成分であり、第2成分が芯成分であって、第2成分の重心位置が繊維の重心位置からずれている偏心鞘芯型断面、または第1成分が繊維の周面の長さに対して20%以上の長さで露出している並列型断面である、請求項1〜3のいずれかに記載の潜在捲縮性複合短繊維。 An eccentric sheath-core cross section in which the first component is a sheath component, the second component is a core component, and the center of gravity of the second component is shifted from the center of gravity of the fiber, The latently crimpable conjugate short fiber according to any one of claims 1 to 3, wherein the component is a parallel-shaped cross section in which the component is exposed at a length of 20% or more with respect to the length of the peripheral surface of the fiber.  第1成分が、αオレフィン−プロピレン共重合体を50mass%以上含有し、当該αオレフィン−プロピレン共重合体のJIS−K−7210(条件:230℃、荷重21.18N(2.16kg))に準じて測定したメルトフローレートが10g/10min以上60g/10min以下の範囲内にあり、かつJIS−K−7121におけるDSC曲線により求めた当該αオレフィン−プロピレン共重合体の総融解熱量をΔHmとしたとき、低温側から起算した融解熱量がΔHmの50%になるときの温度が125℃以下である、請求項1〜4のいずれかに記載の潜在捲縮性複合短繊維。 The first component contains an α-olefin-propylene copolymer in an amount of 50 mass% or more, and complies with JIS-K-7210 (conditions: 230 ° C., load: 21.18 N (2.16 kg)) of the α-olefin-propylene copolymer. The melt flow rate measured according to the method is in the range of 10 g / 10 min or more and 60 g / 10 min or less, and the total heat of fusion of the α-olefin-propylene copolymer determined by the DSC curve in JIS-K-7121 was defined as ΔHm. The latently crimpable conjugate short fiber according to any one of claims 1 to 4, wherein the temperature when the heat of fusion calculated from the low temperature side becomes 50% of ΔHm is 125 ° C or less.  αオレフィン−プロピレン共重合体が、プロピレン含有量が96mass%以上98mass%以下の範囲内にある、エチレン−プロピレン共重合体、ブテン−プロピレン共重合体およびエチレン−プロピレン−ブテン三元共重合体から選ばれる少なくとも1種である、請求項1〜5のいずれかに記載の潜在捲縮性複合短繊維。 α-olefin-propylene copolymer, ethylene-propylene copolymer, butene-propylene copolymer and ethylene-propylene-butene terpolymer having a propylene content of 96 mass% or more and 98 mass% or less. The latently crimpable conjugate short fiber according to any one of claims 1 to 5, which is at least one selected from the group consisting of:  αオレフィン−プロピレン共重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値)が、1.5以上3.5以下の範囲内にある、請求項1〜6のいずれかに記載の潜在捲縮性複合短繊維。 The ratio (Q value) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the α-olefin-propylene copolymer is in the range of 1.5 or more and 3.5 or less. The latently crimpable conjugate short fiber according to any one of the above.  αオレフィン−プロピレン共重合体がメタロセン触媒により重合された樹脂である、請求項5〜7のいずれかに記載の潜在捲縮性複合短繊維。 The latently crimpable conjugate short fiber according to any one of claims 5 to 7, wherein the α-olefin-propylene copolymer is a resin polymerized by a metallocene catalyst.  融点Tが115℃以上140℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなり、JIS−K−7210(条件:230℃、荷重21.18N(2.16kg))におけるメルトフローレートが10g/10min以上60g/10min以下の範囲内にあり、かつJIS−K−7121に準じて測定したDSC曲線より求めたαオレフィン−プロピレン共重合体の総融解熱量をΔHmとしたとき、低温側から起算した融解熱量がΔHmの50%になるときの温度が125℃以下であるαオレフィン−プロピレン共重合体を含む第1成分と、融点TがTよりも15℃以上高い熱可塑性樹脂を含む第2成分とを複合紡糸して得られる偏心鞘芯型断面、または並列型断面を有する捲縮性複合短繊維であって、全捲縮率および全捲縮率に対する自然捲縮率の割合のうち、少なくとも一方が15%以下である潜在捲縮性複合短繊維。 Melting point T 1 is in the range of 140 ° C. or less 115 ° C. or higher, the propylene content is accounted for more than 95mass%, JIS-K-7210 ( condition: 230 ° C., a load 21.18 N (2.16 kg)) in the When the melt flow rate is in the range of 10 g / 10 min or more and 60 g / 10 min or less, and the total heat of fusion of the α-olefin-propylene copolymer determined from a DSC curve measured according to JIS-K-7121 is ΔHm. A first component containing an α-olefin-propylene copolymer having a temperature of 125 ° C. or less when the heat of fusion calculated from the low temperature side becomes 50% of ΔHm, and a melting point T 2 higher than T 1 by 15 ° C. or more A crimped conjugate short fiber having an eccentric sheath-core type cross section or a parallel type cross section obtained by compound spinning with a second component containing a thermoplastic resin, wherein the total crimp rate and the self crimp rate relative to the total crimp rate are Among percentage of crimp, at least one of 15% or less latently crimpable conjugate short fiber.  第2成分に含まれる前記熱可塑性樹脂が、ポリオレフィン樹脂であり、当該ポリオレフィン樹脂の重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値)が4以下である、請求項1〜9のいずれかに記載の潜在捲縮性複合短繊維。 The said thermoplastic resin contained in a 2nd component is a polyolefin resin, The ratio (Q value) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the said polyolefin resin is 4 or less. 10. The latently crimpable conjugate short fiber according to any one of items 9 to 9.  第1成分と第2成分とが複合紡糸されて成り、紡糸後の融点Tfが120℃以上145℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなるαオレフィン−プロピレン共重合体を含む第1成分と、紡糸後の融点TfがTfよりも15℃以上高い熱可塑性樹脂を含む第2成分とからなる捲縮を有する複合短繊維であって、当該複合短繊維で目付30g/mのウェブを形成し、これを120℃で4秒間熱処理したときのウェブ面積収縮率が85%以上となる、潜在捲縮性複合短繊維。 An α-olefin-propylene copolymer comprising a first component and a second component, which is formed by composite spinning, has a melting point Tf 1 after spinning in the range of 120 ° C. or more and 145 ° C. or less, and has a propylene content of 95 mass% or more. a first component comprising a polymer, the melting point Tf 2 after spinning a composite short fibers having a crimp and a second component comprising 15 ℃ or higher thermoplastic resin than Tf 1, the composite short fibers A latently crimpable conjugate short fiber which forms a web having a basis weight of 30 g / m 2 and heat-treats the web at 120 ° C. for 4 seconds to have a web area shrinkage of 85% or more.  融点Tが115℃以上140℃以下の範囲内にあり、プロピレン含有量が95mass%以上を占めてなり、JIS−K−7210(条件:230℃、荷重21.18N(2.16kg))におけるメルトフローレートが10g/10min以上50g/10min以下の範囲内にあり、かつJIS−K−7121に準じて測定したDSC曲線より求めたαオレフィン−プロピレン共重合体の総融解熱量をΔHmとしたとき、低温側から起算した融解熱量がΔHmの50%になるときの温度が125℃以下であるαオレフィン−プロピレン共重合体を含む樹脂を第1成分とし、融点TがTよりも15℃以上高い熱可塑性樹脂を含む樹脂を第2成分として、偏芯鞘心型または並列型断面となるように複合紡糸して紡糸フィラメントを得ること、30℃以上90℃以下の範囲内にある温度で2倍以上で延伸すること、捲縮数11山/25mm以上18山/25mm以下の範囲で機械捲縮を付与すること、ならびに20℃以上80℃以下の範囲内にある温度でアニーリング処理を施すことを含む、潜在捲縮性複合短繊維の製造方法。 Melting point T 1 is in the range of 140 ° C. or less 115 ° C. or higher, the propylene content is accounted for more than 95mass%, JIS-K-7210 ( condition: 230 ° C., a load 21.18 N (2.16 kg)) in the When the melt flow rate is in the range of 10 g / 10 min or more and 50 g / 10 min or less, and the total heat of fusion of the α-olefin-propylene copolymer determined from a DSC curve measured according to JIS-K-7121 is ΔHm. A resin containing an α-olefin-propylene copolymer having a temperature at which the heat of fusion calculated from the low temperature side becomes 50% of ΔHm is 125 ° C. or less is used as the first component, and the melting point T 2 is 15 ° C. higher than T 1. Using a resin containing a high thermoplastic resin as the second component as a second component, to obtain a spun filament by performing composite spinning so as to have an eccentric sheath-core type or side-by-side cross section; Stretching at a temperature within the range of 2 times or more, applying mechanical crimps in a range of 11 crimps / 25 mm or more and 18 crimps / 25 mm or less, and a temperature in a range of 20 ° C. or more and 80 ° C. or less A method for producing a latently crimpable conjugate short fiber, which comprises performing an annealing treatment in step (a).  請求項1〜11のいずれかに記載の潜在捲縮性複合短繊維、または請求項12に記載の製造方法により得られた潜在捲縮性複合短繊維を20mass%以上含有し、潜在捲縮性複合短繊維において潜在捲縮が発現している、繊維集合物。 A latently crimpable conjugate short fiber according to any one of claims 1 to 11, or a latently crimpable conjugate short fiber obtained by the production method according to claim 12, which contains at least 20 mass%, A fiber aggregate in which latent crimp is expressed in the conjugate short fiber.  請求項1〜11のいずれかに記載の潜在捲縮性複合短繊維、または請求項12に記載の製造方法により得られた潜在捲縮性複合短繊維を20mass%以上含有し、潜在捲縮性複合短繊維において潜在捲縮が発現しており、且つ、実質的に熱融着されていない不織布。

A latently crimpable conjugate short fiber according to any one of claims 1 to 11, or a latently crimpable conjugate short fiber obtained by the production method according to claim 12, which contains at least 20 mass%, A nonwoven fabric in which latent crimps have been expressed in the conjugate staple fibers and substantially not heat-sealed.

JP2003321567A 2002-09-12 2003-09-12 Latent crimped composite short fiber, method for producing the same, fiber assembly, and non-woven fabric Expired - Fee Related JP4360528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321567A JP4360528B2 (en) 2002-09-12 2003-09-12 Latent crimped composite short fiber, method for producing the same, fiber assembly, and non-woven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002266557 2002-09-12
JP2003321567A JP4360528B2 (en) 2002-09-12 2003-09-12 Latent crimped composite short fiber, method for producing the same, fiber assembly, and non-woven fabric

Publications (2)

Publication Number Publication Date
JP2004124351A true JP2004124351A (en) 2004-04-22
JP4360528B2 JP4360528B2 (en) 2009-11-11

Family

ID=32301594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321567A Expired - Fee Related JP4360528B2 (en) 2002-09-12 2003-09-12 Latent crimped composite short fiber, method for producing the same, fiber assembly, and non-woven fabric

Country Status (1)

Country Link
JP (1) JP4360528B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214019A (en) * 2005-02-02 2006-08-17 Ube Nitto Kasei Co Ltd Sheath core type polyolefin-based composite fiber and method for producing the same
JP2007204901A (en) * 2006-02-06 2007-08-16 Teijin Fibers Ltd Heat-bonding conjugated fiber and method for producing the same
WO2008015972A1 (en) * 2006-08-04 2008-02-07 Kuraray Kuraflex Co., Ltd. Stretch nonwoven fabric and tapes
JP2009183363A (en) * 2008-02-04 2009-08-20 Kuraray Kuraflex Co Ltd Underlap tape
US7670677B2 (en) 2003-08-28 2010-03-02 Daiwabo Holdings Co., Ltd. Latently crimpable conjugate fiber and production method of the same, and fiber assembly, and nonwoven
JPWO2011129211A1 (en) * 2010-04-16 2013-07-18 三井化学株式会社 Crimped composite fiber and nonwoven fabric made of the fiber
JP2016188443A (en) * 2015-03-30 2016-11-04 ダイワボウホールディングス株式会社 Nonwoven fabric and method for producing the same
CN106795671A (en) * 2014-08-27 2017-05-31 株式会社可乐丽 Flexible nonwoven fabrics of excellent in te pins of durability repeatedly
EP3121314A4 (en) * 2014-03-20 2017-10-25 Idemitsu Kosan Co. Ltd (IKC) Crimped fiber and nonwoven fabric
JP2019135345A (en) * 2019-04-26 2019-08-15 ダイワボウホールディングス株式会社 Nonwoven fabric and method for producing the same
JP2022507684A (en) * 2018-11-20 2022-01-18 ダウ グローバル テクノロジーズ エルエルシー Manufacturing method of curled fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104210156B (en) * 2014-08-13 2016-09-07 宁波骏豪进出口有限公司 A kind of mat

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670677B2 (en) 2003-08-28 2010-03-02 Daiwabo Holdings Co., Ltd. Latently crimpable conjugate fiber and production method of the same, and fiber assembly, and nonwoven
JP2006214019A (en) * 2005-02-02 2006-08-17 Ube Nitto Kasei Co Ltd Sheath core type polyolefin-based composite fiber and method for producing the same
JP2007204901A (en) * 2006-02-06 2007-08-16 Teijin Fibers Ltd Heat-bonding conjugated fiber and method for producing the same
US8518841B2 (en) 2006-08-04 2013-08-27 Kuraray Co., Ltd. Stretchable nonwoven fabric and tape
JPWO2008015972A1 (en) * 2006-08-04 2009-12-24 クラレクラフレックス株式会社 Elastic nonwoven fabric and tapes
JP4943436B2 (en) * 2006-08-04 2012-05-30 株式会社クラレ Elastic nonwoven fabric and tapes
KR101423797B1 (en) * 2006-08-04 2014-07-25 가부시키가이샤 구라레 Stretch nonwoven fabric and tapes
WO2008015972A1 (en) * 2006-08-04 2008-02-07 Kuraray Kuraflex Co., Ltd. Stretch nonwoven fabric and tapes
TWI413514B (en) * 2006-08-04 2013-11-01 Kuraray Co Nonwoven fabrics and manufacturing method thereof
JP2009183363A (en) * 2008-02-04 2009-08-20 Kuraray Kuraflex Co Ltd Underlap tape
JP5484564B2 (en) * 2010-04-16 2014-05-07 三井化学株式会社 Crimped composite fiber and nonwoven fabric made of the fiber
JPWO2011129211A1 (en) * 2010-04-16 2013-07-18 三井化学株式会社 Crimped composite fiber and nonwoven fabric made of the fiber
EP3121314A4 (en) * 2014-03-20 2017-10-25 Idemitsu Kosan Co. Ltd (IKC) Crimped fiber and nonwoven fabric
CN106795671A (en) * 2014-08-27 2017-05-31 株式会社可乐丽 Flexible nonwoven fabrics of excellent in te pins of durability repeatedly
US11598034B2 (en) 2014-08-27 2023-03-07 Kuraray Co., Ltd. Stretchable non-woven fabric having excellent repetition durability
JP2016188443A (en) * 2015-03-30 2016-11-04 ダイワボウホールディングス株式会社 Nonwoven fabric and method for producing the same
JP2022507684A (en) * 2018-11-20 2022-01-18 ダウ グローバル テクノロジーズ エルエルシー Manufacturing method of curled fiber
JP2019135345A (en) * 2019-04-26 2019-08-15 ダイワボウホールディングス株式会社 Nonwoven fabric and method for producing the same

Also Published As

Publication number Publication date
JP4360528B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP3995697B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP3819440B2 (en) Thermal adhesive composite fiber and non-woven fabric using the same
JP4824898B2 (en) Method for producing poly (trimethylene terephthalate) staple fiber, and poly (trimethylene terephthalate) staple fiber, yarn and fabric
EP2370620B1 (en) Fiber bundle
JP4468208B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
EP2049715B1 (en) Fiber bundle and web
US10533271B2 (en) Conjugate fiber for air-laid nonwoven fabric manufacture and method for manufacturing a high-density air-laid nonwoven fabric
JP4360528B2 (en) Latent crimped composite short fiber, method for producing the same, fiber assembly, and non-woven fabric
JPH0860441A (en) Thermally fusible conjugate fiber and thermally fusible nonwoven fabric
JP4505987B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the same
JP4031382B2 (en) Thermal adhesive composite fiber for airlaid nonwoven fabric
JPH0192415A (en) Heat-bondable fiber and nonwoven fabric thereof
JP4433567B2 (en) Latent crimpable conjugate fiber and nonwoven fabric using the same
JP4438181B2 (en) Latent crimpable conjugate fiber and nonwoven fabric using the same
JP6587568B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP2691320B2 (en) Stretchable non-woven fabric
TWI573906B (en) Elastic nonwoven fabric and method for producing thereof
JP3790460B2 (en) Thermal adhesive composite fiber, method for producing the same, and nonwoven fabric using the same
JP4379127B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the composite fiber
JP3790459B2 (en) Thermal adhesive composite fiber and method for producing the same, and nonwoven fabric and synthetic paper using the same
JP2741113B2 (en) Method for manufacturing stretchable nonwoven fabric
JP2004346476A (en) Propylene-based short fiber, fiber assembly using the same and fused nonwoven fabric
JP7458228B2 (en) Polyolefin splittable conjugate fiber, method for producing the same, fiber aggregate and battery separator using the same
JP3528792B2 (en) Thermal adhesive conjugate fiber, method for producing the same, and fiber molded body using the same
JPH03167314A (en) Elastic conjugated yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

R150 Certificate of patent or registration of utility model

Ref document number: 4360528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees