JP2007204901A - Heat-bonding conjugated fiber and method for producing the same - Google Patents

Heat-bonding conjugated fiber and method for producing the same Download PDF

Info

Publication number
JP2007204901A
JP2007204901A JP2006028314A JP2006028314A JP2007204901A JP 2007204901 A JP2007204901 A JP 2007204901A JP 2006028314 A JP2006028314 A JP 2006028314A JP 2006028314 A JP2006028314 A JP 2006028314A JP 2007204901 A JP2007204901 A JP 2007204901A
Authority
JP
Japan
Prior art keywords
heat
resin component
fiber
thermoplastic resin
crystalline thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006028314A
Other languages
Japanese (ja)
Other versions
JP2007204901A5 (en
JP5021938B2 (en
Inventor
Hironori Aida
裕憲 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006028314A priority Critical patent/JP5021938B2/en
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to EP07708274A priority patent/EP1985729B1/en
Priority to MYPI20082953A priority patent/MY146829A/en
Priority to US12/278,323 priority patent/US7674524B2/en
Priority to KR1020087021687A priority patent/KR101415384B1/en
Priority to CN200780004645.0A priority patent/CN101379232B/en
Priority to DK07708274.1T priority patent/DK1985729T3/en
Priority to PCT/JP2007/052290 priority patent/WO2007091662A1/en
Priority to TW096104131A priority patent/TW200745393A/en
Publication of JP2007204901A publication Critical patent/JP2007204901A/en
Publication of JP2007204901A5 publication Critical patent/JP2007204901A5/ja
Priority to HK09103297.5A priority patent/HK1125142A1/en
Application granted granted Critical
Publication of JP5021938B2 publication Critical patent/JP5021938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-bonding conjugated fiber characterized by low orientation and high elongation and having high adhesiveness and low heat shrinkability in combination and further excellent carding properties. <P>SOLUTION: The heat-bonding conjugated fiber is composed of a fiber-forming resin component and a heat-bonding resin component composed of a crystalline thermoplastic resin having a lower melting point than that of the fiber-forming resin component by ≥20°C and has 60-600% breaking elongation, -10 to 1% dry heat shrinkage percentage at 120°C and ≥0.8 crimp ratio/number of crimps. A method for producing the heat-bonding conjugated fiber is characterized by heat-treating an undrawn eccentric core-sheath type conjugated yarn taken off at 150-1,800 m/min spinning speed at a higher temperature than the glass transition point of the crystalline thermoplastic resin of the heat-bonding resin component and the glass transition point of the fiber-forming resin component at 0.5-1.3 ratio under tension at a constant length and then heat-treating the resulting yarn at a higher temperature than the heat-treating temperature at the constant length by ≥5°C under no tension. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱接着後の接着強力が高く、かつ熱接着時の熱収縮が極めて少ない、熱接着性複合繊維とその製造方法に関する。更に詳しくは、低配向、高伸度でありながら良好な捲縮性能を有し、カード性が良好な高接着性と低熱収縮性を兼備する熱接着性複合繊維とその製造方法に関するものである。   The present invention relates to a heat-adhesive conjugate fiber having high adhesive strength after heat-bonding and extremely low heat shrinkage during heat-bonding and a method for producing the same. More specifically, the present invention relates to a heat-adhesive conjugate fiber having high crimpability and good heat resistance and low heat shrinkability while having good crimping performance while having low orientation and high elongation, and a method for producing the same. .

熱接着性樹脂成分を鞘とし、繊維形成性樹脂成分を芯とする鞘芯型熱接着複合繊維に代表される熱接着性複合繊維は、カード法やエアレイド法、湿式抄紙法等により繊維ウェブを形成した後、熱風ドライヤーや熱ロールにより熱接着性樹脂成分を融解させて繊維間結合を形成するため、有機溶剤を溶媒とする接着剤を用いずに済み、環境への有害物排出が少ないだけでなく、生産速度向上およびそれに伴うコストダウンのメリットが大きく、硬綿、ベッドマット等の繊維構造体や不織布用途をメインとして広く用いられてきた。中でも、不織布強力の更なる向上や不織布生産速度向上を狙って、熱接着性複合繊維の低温接着性または接着強度の向上が検討されている。   Thermal adhesive composite fibers typified by sheath-core thermal adhesive composite fibers with a thermal adhesive resin component as a sheath and a fiber-forming resin component as a core can be used to form fiber webs by the card method, airlaid method, wet papermaking method, etc. After forming, the heat-adhesive resin component is melted with a hot air dryer or hot roll to form an interfiber bond, so there is no need to use an adhesive with an organic solvent as a solvent, and there is little discharge of harmful substances to the environment. In addition, the advantages of improving the production speed and the associated cost reduction are great, and it has been widely used mainly for fiber structures such as hard cotton and bed mats and nonwoven fabrics. Among these, with the aim of further improving the strength of the nonwoven fabric and improving the nonwoven fabric production speed, studies have been made on improving the low-temperature adhesiveness or adhesive strength of the heat-adhesive conjugate fiber.

特許文献1においては、プロピレン−エチレン−ブテン−1からなる3元共重合体を鞘成分とし、結晶性ポリプロピレンを芯成分として、それらを複合比(鞘成分/芯成分=20/80〜60/40)で紡糸して得た複合未延伸糸を、延伸倍率3.0未満で延伸することにより、従来よりも高い接着強力を有する熱接着性複合繊維が得られることが開示されている。特許文献2においては、高速紡糸法により熱接着性樹脂成分の配向指数が25%以下で、繊維形成性樹脂成分の配向指数が40%以上とすることで、接着点強度が強く、より低温で融着し、かつ熱収縮率の小さい熱融着性複合繊維が開示されている。   In Patent Document 1, a ternary copolymer composed of propylene-ethylene-butene-1 is used as a sheath component, and crystalline polypropylene is used as a core component, and these are combined ratios (sheath component / core component = 20 / 80-60 / It is disclosed that a heat-adhesive conjugate fiber having higher adhesive strength than that of the prior art can be obtained by drawing the composite undrawn yarn obtained by spinning in 40) at a draw ratio of less than 3.0. In Patent Document 2, by using the high speed spinning method, the orientation index of the thermoadhesive resin component is 25% or less and the orientation index of the fiber-forming resin component is 40% or more. A heat-fusible conjugate fiber that is fused and has a low heat shrinkage rate is disclosed.

しかしながら、これらの繊維は比較的低配向、高伸度であり、延伸による配向が不十分であるため繊維の曲げ剛性が小さく、押し込み式クリンパー等による機械的な捲縮付与方法では、一旦付与した捲縮が回復してしまい、繊維間の絡合が不良であるため、カード通過性が悪く、カードスピードを上げるとウェブが切れてしまい、不織布生産性に難があった。捲縮を強くするために、クリンパーを通過する前に加熱する方法があるが、剛性が小さいために捲縮が非常に細かくなり、繊維間の絡みが強くなり過ぎるため、反ってカード通過性が悪くなる。このように、低配向、高伸度の熱接着性複合繊維において、カード性の良好な繊維は従来提案されていなかった。   However, these fibers have relatively low orientation and high elongation, and the orientation by stretching is insufficient, so the bending stiffness of the fibers is small. In the mechanical crimping method using a push-in crimper, etc., the fibers were once applied. Since the crimps are recovered and the entanglement between the fibers is poor, the card passing property is poor, and when the card speed is increased, the web is cut and the nonwoven fabric productivity is difficult. In order to strengthen the crimp, there is a method of heating before passing through the crimper, but since the rigidity is small, the crimp becomes very fine and the entanglement between the fibers becomes too strong, so that the card passing property is warped. Deteriorate. Thus, in the low-orientation and high-strength heat-adhesive conjugate fiber, a fiber having good card properties has not been proposed.

特開平6−108310号公報JP-A-6-108310 特開2004−218183号公報JP 2004-218183 A

本発明は、上記従来技術を背景になされたもので、その目的は、低配向、高伸度を特徴とする高接着性と低熱収縮性を兼備する上、カード性の極めて良好な熱接着性複合繊維を提供することにある。   The present invention has been made against the background of the above-described prior art, and its purpose is to have both high adhesiveness and low heat shrinkability characterized by low orientation and high elongation, and thermal adhesiveness with extremely good card properties. It is to provide a composite fiber.

本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、芯成分と鞘成分の組成、芯鞘比、流動性、偏芯状態等を適度に設定した同芯芯鞘型あるいは偏芯芯鞘型複合繊維の未延伸糸を、芯と鞘のガラス転移点より高い温度で定長熱処理し、続いて更に高い温度で弛緩熱処理することにより、従来提案されてきた低配向高伸度よりカード性が良好な、高接着性と低熱収縮性を兼備する熱接着性複合繊維の発明に到達した。   As a result of intensive studies in order to solve the above problems, the present inventors have determined that the composition of the core component and the sheath component, the core-sheath ratio, the fluidity, the eccentric state, etc. are set appropriately, Low-orientation high-stretching, which has been proposed in the past, is performed by subjecting unstretched yarns of eccentric core-sheath type composite fibers to constant length heat treatment at a temperature higher than the glass transition point of the core and sheath, followed by relaxation heat treatment at a higher temperature. The present inventors have reached the invention of a heat-adhesive conjugate fiber having both good adhesion and low heat-shrinkability, which has better card properties.

より具体的には、上記課題は繊維形成性樹脂成分および繊維形成性樹脂成分の融点より20℃以上低い融点を持つ結晶性熱可塑性樹脂によって構成される熱接着性樹脂成分からなる熱接着性複合繊維であって、破断伸度が60〜600%、120℃乾熱収縮率が−10〜1%、捲縮率/捲縮数が0.8以上であることを特徴とする熱接着性複合繊維、並びに150〜1800m/minの紡糸速度で引き取った複合繊維の未延伸糸を熱接着性樹脂成分の主たる結晶性熱可塑性樹脂のガラス転移点と繊維形成性樹脂成分のガラス転移点の双方より高い温度で0.5〜1.3倍で定長熱処理し、その後該定長熱処理温度より5℃以上高い温度において無緊張下で熱処理することを特徴とする熱接着性複合繊維の製造方法による発明により解決することができる。   More specifically, the above-mentioned problem is a heat-adhesive composite comprising a heat-adhesive resin component composed of a fiber-forming resin component and a crystalline thermoplastic resin having a melting point that is 20 ° C. lower than the melting point of the fiber-forming resin component. A heat-adhesive composite having a breaking elongation of 60 to 600%, a dry heat shrinkage of 120 ° C. of −10 to 1%, and a crimp ratio / crimp number of 0.8 or more. The fiber and the unstretched yarn of the composite fiber taken up at a spinning speed of 150 to 1800 m / min are obtained from both the glass transition point of the main crystalline thermoplastic resin of the thermoadhesive resin component and the glass transition point of the fiber-forming resin component. According to a method for producing a heat-adhesive conjugate fiber, which is subjected to constant length heat treatment at a high temperature of 0.5 to 1.3 times, and then heat-treated under no tension at a temperature 5 ° C. or more higher than the constant length heat treatment temperature. Solve by invention Door can be.

本発明は、従来提案されていた低配向タイプの高接着性低熱収縮性の熱接着性複合繊維での欠点であったカード通過性を改善し、不織布生産性を向上させるだけでなく、ウェブ品位も良好な熱接着不織布の提供を可能とする。更には、熱接着性複合繊維が自己伸張性を有するために、熱接着後の不織布が嵩高に仕上がり、剛性の小さいことと相まって、従来にない風合いに優れかつ嵩高な不織布の商用生産の拡大に大きく貢献するものである。   The present invention not only improves the card passing property, which has been a drawback of the conventionally proposed low-adhesion type, high-adhesion, low-heat-shrinkable, heat-adhesive conjugate fibers, and improves the nonwoven fabric productivity, but also improves the web quality. Can also provide a good heat-bonding nonwoven fabric. Furthermore, since the heat-bondable conjugate fiber has self-stretchability, the nonwoven fabric after heat-bonding is finished bulky and coupled with its low rigidity, combined with the unprecedented texture and expansion of commercial production of bulky nonwoven fabrics It contributes greatly.

以下本発明の実施形態について詳細に説明する。熱接着性複合繊維を構成する成分としては、繊維形成性樹脂成分となる樹脂および繊維形成性樹脂成分より20℃以上低い融点をもつ結晶性熱可塑性樹脂を熱接着性樹脂成分として選択する必要がある。繊維形成性樹脂成分と熱接着性樹脂成分の融点差が20℃未満であると、熱接着性樹脂成分を融解し接着させる工程で繊維形成性樹脂成分も溶けてしまい、強度の高い不織布または繊維構造体ができない。   Hereinafter, embodiments of the present invention will be described in detail. As the components constituting the heat-adhesive conjugate fiber, it is necessary to select a resin to be a fiber-forming resin component and a crystalline thermoplastic resin having a melting point 20 ° C. lower than that of the fiber-forming resin component as the heat-adhesive resin component. is there. If the difference in melting point between the fiber-forming resin component and the heat-adhesive resin component is less than 20 ° C., the fiber-forming resin component also melts in the process of melting and bonding the heat-adhesive resin component, and the nonwoven fabric or fiber having high strength There is no structure.

繊維形成性樹脂成分としては特に限定されないが、融点が150℃以上の結晶性熱可塑性樹脂がよく、高密度ポリエチレン(HDPE)、アイソタクティックポリプロピレン(PP)若しくはこれらを主成分とする共重合体等のポリオレフィン類やナイロン−6、ナイロン−66等のポリアミド類、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、若しくはポリエチレンナフタレート等のポリエステル類等が上げられるが、上記のような製造方法でウェブ又は不織布に適度の剛性を付与できるポリエステル類、中でもポリエチレンテレフタレート(PET)が好ましく用いられる。   The fiber-forming resin component is not particularly limited, but is preferably a crystalline thermoplastic resin having a melting point of 150 ° C. or higher, high-density polyethylene (HDPE), isotactic polypropylene (PP), or a copolymer mainly composed of these. Polyolefins such as nylon-6, nylons such as nylon-6 and nylon-66, polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate, etc. can be raised. Polyesters that can impart moderate rigidity to the web or the nonwoven fabric, particularly polyethylene terephthalate (PET) are preferably used.

本発明の熱接着性複合繊維の形態は繊維形成性樹脂成分と熱接着性樹脂成分とが所謂サイドバイサイド型で貼りあわされた複合繊維であっても、両成分が芯鞘構造を持つ芯鞘型複合繊維であっても構わない。しかし、繊維軸方向に対して直角方向であってあらゆる方向に熱接着性樹脂成分が配置され得る点で繊維形成性樹脂成分を芯成分、熱接着性樹脂成分を鞘成分とする芯鞘型複合繊維であることが好ましい。また芯鞘型複合繊維としては同芯芯鞘型複合繊維又は偏芯芯鞘型複合繊維を挙げることができる。   The form of the heat-adhesive conjugate fiber of the present invention is a core-sheath type in which both components have a core-sheath structure even if the fiber-forming resin component and the heat-adhesive resin component are bonded together in a so-called side-by-side type. It may be a composite fiber. However, a core-sheath type composite in which the fiber-forming resin component is the core component and the heat-adhesive resin component is the sheath component in that the heat-adhesive resin component can be arranged in any direction perpendicular to the fiber axis direction. It is preferably a fiber. Examples of the core-sheath type composite fiber include concentric core-sheath type composite fiber and eccentric core-sheath type composite fiber.

その繊維形成性樹脂成分(好ましくは芯成分)と熱接着性樹脂成分(好ましくは鞘成分)の比率(芯/鞘)は60/40〜10/90(重量比)であることが、カード通過性を良好とする捲縮性能を付与する点で好ましく、更に55/45〜20/80にあることが好ましい。この理由は鞘成分が弛緩熱処理をする際に軟化し熱収縮を起こすが、鞘成分が多いほど芯を変形させやすく、立体捲縮が発現しやすくなるためと思われる。鞘比率が40重量未満であると芯を変形させる収縮力が小さくなるため立体捲縮が発現しにくくなる。逆に鞘比率が90重量%を超えると立体捲縮が多くなりすぎて、カードで詰りを生じる傾向にある。紡糸時の双方の樹脂成分の供給量を制御することによりこの範囲を達成することができる。   The ratio of the fiber-forming resin component (preferably the core component) to the heat-adhesive resin component (preferably the sheath component) (core / sheath) is 60/40 to 10/90 (weight ratio). It is preferable at the point which provides the crimping performance which makes property favorable, and it is further preferable to exist in 55/45-20/80. The reason for this seems to be that the sheath component softens and undergoes thermal shrinkage during the relaxation heat treatment, but the more the sheath component, the easier the core is deformed and the more likely that the three-dimensional crimps are expressed. If the sheath ratio is less than 40 weights, the shrinkage force that deforms the core becomes small, so that the three-dimensional crimps are difficult to appear. On the contrary, when the sheath ratio exceeds 90% by weight, the number of three-dimensional crimps is excessive, and the card tends to be clogged. This range can be achieved by controlling the supply amounts of both resin components during spinning.

その鞘成分を構成する主たる結晶性熱可塑性樹脂は、芯成分より20℃以上低い融点をもつ結晶性熱可塑性樹脂を選択することが必要である。非晶性熱可塑性樹脂であると、紡糸時に配向した分子鎖が融解と同時に無配向となるに伴い大きく収縮してしまう。鞘成分を構成する結晶性熱可塑性樹脂としては特に限定を受けないが、ポリオレフィン系樹脂や結晶性共重合ポリエステルが好ましい例として挙げられる。ここで主たるとは、上述または後述のようなポリマーブレンドの例を採用する際に本発明の複合繊維の特徴を全体として失わない程度であるが、好ましくは55重量%以上、より好ましくは60重量%以上である。   As the main crystalline thermoplastic resin constituting the sheath component, it is necessary to select a crystalline thermoplastic resin having a melting point 20 ° C. or more lower than that of the core component. In the case of an amorphous thermoplastic resin, the molecular chains that are oriented during spinning are greatly shrunk as they become non-oriented simultaneously with melting. The crystalline thermoplastic resin constituting the sheath component is not particularly limited, but preferred examples include polyolefin resins and crystalline copolyesters. Here, the main is that the characteristics of the composite fiber of the present invention are not lost as a whole when adopting the example of the polymer blend described above or below, but preferably 55% by weight or more, more preferably 60% by weight. % Or more.

そのポリオレフィン系樹脂の例としては、ポリプロピレン、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、若しくはプロピレンと他のαオレフィンからなる結晶性プロピレン共重合体等のポリオレフィン類、又はエチレン、プロピレン、ブテン−1、若しくはペンテン−1等のαオレフィンと、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、若しくはハイミック酸等の不飽和カルボン酸あるいはこれらのエステル、若しくは酸無水物等の極性基を有する不飽和化合物等の少なくとも1種のコモノマーとの共重合体からなる変性ポリオレフィン類等が挙げられる。   Examples of the polyolefin resin include polyolefins such as polypropylene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, or crystalline propylene copolymer composed of propylene and other α-olefins, or Α-olefins such as ethylene, propylene, butene-1, or pentene-1, and unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, or hymic acid, or these And modified polyolefins made of a copolymer with at least one comonomer such as an unsaturated compound having a polar group such as an acid anhydride or an acid anhydride.

また結晶性共重合ポリエステルの例としては、酸成分として、主たるジカルボン酸成分をテレフタル酸あるいはそのエステル形成性誘導体とし、主たるジオール成分をエチレングリコール、ジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、又はこれらの誘導体からのうち1〜3種の組合せにより得られるアルキレンテレフタレートにイソフタル酸、ナフタレン−2,6−ジカルボン酸、5−スルホイソフタル酸塩等の芳香族ジカルボン酸、アジピン酸、セバシン酸等の脂肪族ジカルボン酸、シクロヘキサメチレンジカルボン酸等の脂環族ジカルボン酸、ε−ヒドロキシカルボン酸、ω−ヒドロキシカルボン酸等、前述の例の他、ポリエチレングリコール、ポリテトラメチレングリコール等の脂肪族ジオール、シクロヘキサメチレンジメタノール等の脂環族ジオール等を、目的の融点を呈するように共重合させたものが挙げられる。   Examples of crystalline copolyesters include, as an acid component, the main dicarboxylic acid component is terephthalic acid or an ester-forming derivative thereof, and the main diol component is ethylene glycol, diethylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol. Or alkylene terephthalate obtained from a combination of 1 to 3 of these derivatives to aromatic dicarboxylic acids such as isophthalic acid, naphthalene-2,6-dicarboxylic acid, 5-sulfoisophthalic acid salt, adipic acid, sebacic acid Aliphatic dicarboxylic acid such as cycloaliphatic dicarboxylic acid such as cyclohexamethylenedicarboxylic acid, ε-hydroxycarboxylic acid, ω-hydroxycarboxylic acid and the like, polyethylene glycol, polytetramethyleneglycol And alicyclic diols such as cyclohexamethylene dimethanol and the like, which are copolymerized so as to exhibit the target melting point.

本発明の熱接着性複合繊維の特徴は、破断伸度が60〜600%、120℃乾熱収縮率が−10〜−0.2%、捲縮率と捲縮数の比(捲縮率/捲縮数)が0.8以上であり、これを満足することが、接着強力と低熱収縮性および良好なカード通過性を兼備するために必要である。   The heat-adhesive conjugate fiber of the present invention is characterized in that the elongation at break is 60 to 600%, the dry heat shrinkage at 120 ° C. is −10 to −0.2%, and the ratio of the crimp rate to the number of crimps (crimp rate). / Crimping number) is 0.8 or more, and satisfying this is necessary in order to combine adhesive strength, low heat shrinkage, and good card passability.

熱接着性複合繊維の破断伸度を、熱接着性樹脂成分の樹脂の配向を低く抑えるために、60〜600%の範囲にコントロールする必要があり、好ましくは80〜450%の範囲とする。破断伸度が60%未満であると、熱接着成分の配向が高いために接着性に劣り、不織布強度が低下する。また、600%を超えると、実質的に繊維強度が小さいために熱接着不織布の強度を上げることができない。   In order to keep the orientation of the resin of the heat-adhesive resin component low, it is necessary to control the elongation at break of the heat-adhesive conjugate fiber in the range of 60 to 600%, preferably in the range of 80 to 450%. If the elongation at break is less than 60%, the orientation of the thermal bonding component is high, so that the adhesiveness is inferior and the strength of the nonwoven fabric is reduced. On the other hand, if it exceeds 600%, the strength of the thermobonding nonwoven fabric cannot be increased because the fiber strength is substantially small.

また、熱接着性複合繊維の120℃乾熱収縮率は−10〜1%の範囲となるようにする。熱接着時の収縮が少ないために繊維交点での接着点のズレが少なく、接着点が強固になる。更に収縮率が負となり、いわゆる自己伸長の状態になると熱接着前に不織布中の繊維密度が低下し、嵩高に仕上がることによって柔く風合いの良い不織布ができる。収縮率が1%を超えると、熱接着時に接着交点がずれ、接着強度が低下する方向であり、目標とする接着強力の向上に寄与しない。一方、収縮率が−10%を超えて自己伸長になると、やはり接着点のずれが生じ、不織布強度は低下する方向に移行する。   Further, the 120 ° C. dry heat shrinkage ratio of the heat-adhesive conjugate fiber is set to be in the range of −10 to 1%. Since there is little shrinkage at the time of thermal bonding, there is little shift of the bonding point at the fiber intersection, and the bonding point becomes strong. Further, when the shrinkage rate becomes negative and a so-called self-elongation state is reached, the fiber density in the nonwoven fabric is lowered before thermal bonding, and a non-woven fabric that is soft and has a good texture can be obtained by being bulky. When the shrinkage rate exceeds 1%, the bonding intersection is shifted at the time of thermal bonding, and the bonding strength is lowered, which does not contribute to the improvement of the target bonding strength. On the other hand, when the shrinkage rate exceeds -10% and self-elongation occurs, the adhesion point shifts again, and the strength of the nonwoven fabric decreases.

前述の高い破断伸度と低い乾熱収縮率を両立するためには、延伸ドラフトとして0.5〜1.3倍程度の定長熱処理を行うことによって達成される。更にドラフトが1.0倍未満、いわゆるオーバーフィード率を大きくするか、弛緩熱処理の温度を高くすると、自己伸張率が大きくなる傾向にあるが、適度な自己伸張性を付与することにより、不織布であれば嵩高に仕上がり、繊維構造体であれば低密度に仕上がる特徴を付与できる利点がある。120℃乾熱収縮率の好ましい範囲は−8〜−0.2%、更に好ましくは−6〜−1%である。   In order to achieve both the above-described high breaking elongation and a low dry heat shrinkage rate, it is achieved by performing a constant-length heat treatment of about 0.5 to 1.3 times as a drawing draft. Further, when the draft is less than 1.0 times, so-called overfeed rate is increased or the temperature of the relaxation heat treatment is increased, the self-extension rate tends to increase. If it exists, it will be finished bulky, and if it is a fiber structure, there exists an advantage which can provide the characteristic finished to low density. The preferable range of the 120 ° C. dry heat shrinkage is −8 to −0.2%, more preferably −6 to −1%.

複合繊維断面は、上述のように同芯芯鞘断面または偏芯芯鞘断面が好ましい。サイドバイサイド型では未延伸糸でも立体捲縮が多く発現し、捲縮発現性を小さくコントロールすることが難しいため、反ってカード通過性が悪くなる。また接着強度も小さくなる方向で、本発明の目指す効果は幾分減少され得る。   The composite fiber cross section is preferably a concentric core sheath cross section or an eccentric core sheath cross section as described above. In the side-by-side type, a large number of three-dimensional crimps appear even in an undrawn yarn, and it is difficult to control the crimp development property to be small. In addition, the effect aimed by the present invention can be somewhat reduced in the direction of decreasing the adhesive strength.

また、繊維断面としては、中実繊維であっても中空繊維であってもよいし、外形は丸断面に限定されることはなく、楕円断面、3〜8葉断面等の多葉断面、3〜8角形等の多角形断面など異形断面でもよい。繊度は目的に応じて選択すればよく、特に限定されないが、一般的に0.01〜500デシテックス程度の範囲で用いられる。紡糸時に樹脂が吐出される口金の径を所定の範囲にすること等により、この繊度範囲を達成することができる。   The fiber cross section may be a solid fiber or a hollow fiber, and the outer shape is not limited to a round cross section. An irregular cross section such as a polygonal cross section such as an octagon may be used. The fineness may be selected according to the purpose and is not particularly limited, but is generally used in a range of about 0.01 to 500 dtex. This fineness range can be achieved by setting the diameter of the die through which the resin is discharged during spinning to a predetermined range.

立体捲縮の発現性を良くする方法として、熱接着性樹脂成分を構成する主たる結晶性熱可塑性樹脂のメルトフローレイト(MFR)が、繊維形成性樹脂成分のMFRより5g/10min以上小さいことも有効な手段である。これは溶融紡糸において熱接着性樹脂成分の伸張粘度が繊維形成性樹脂成分のそれより高くなるため、繊維形成性樹脂成分の配向が不十分で、未延伸糸の定長熱処理後の状態において熱収縮しやすく、立体捲縮を発現しやすい効果がある。   As a method for improving the expression of steric crimps, the melt flow rate (MFR) of the main crystalline thermoplastic resin constituting the thermoadhesive resin component may be 5 g / 10 min or less smaller than the MFR of the fiber-forming resin component. It is an effective means. This is because, in melt spinning, the elongation viscosity of the heat-adhesive resin component is higher than that of the fiber-forming resin component, so that the orientation of the fiber-forming resin component is insufficient and the unstretched yarn is heated in a state after constant-length heat treatment. There is an effect that it is easy to shrink and a three-dimensional crimp is easily developed.

熱接着性樹脂成分を構成する主たる結晶性熱可塑性樹脂のMFRと繊維形成性樹脂成分のMFR差が5g/10min未満であると、繊維形成性樹脂成分の配向を抑制する効果が小さいために、立体捲縮の発現効果が少なくなる。好ましいMFR差は10g/10minである。当業者であれば複合繊維製造を行う前に各樹脂成分のMFRを測定することによって、上記の範囲に合致しそれぞれの成分に適切な樹脂を選択することができる。   If the MFR difference between the MFR of the main crystalline thermoplastic resin constituting the thermoadhesive resin component and the fiber-forming resin component is less than 5 g / 10 min, the effect of suppressing the orientation of the fiber-forming resin component is small. The effect of steric crimp is reduced. A preferred MFR difference is 10 g / 10 min. A person skilled in the art can select an appropriate resin for each component that meets the above range by measuring the MFR of each resin component before the composite fiber is manufactured.

なお、本発明における熱接着性樹脂成分は、結晶性熱可塑性樹脂Aが100〜60重量%及び結晶性熱可塑性樹脂Bが0〜40重量%からなるポリマーブレンド、又は結晶性熱可塑性樹脂を3種以上がポリマーブレンドされた形態でもよいが、結晶性熱可塑性樹脂A又は最も融点の高い結晶性熱可塑性樹脂と、結晶性熱可塑性樹脂B又は最も融点の低い結晶性熱可塑性樹脂の融点差が20℃以上有り、最も融点の低い結晶性熱可塑性樹脂を40重量%以下含む形態にすると、熱接着性樹脂成分全体が融解する前に融点の低い結晶性熱可塑性樹脂が融解するために鞘成分が熱収縮を起こし、立体捲縮が発現するため、より好ましい。但し、最も融点の低い結晶性熱可塑性樹脂の熱接着性樹脂成分中の含有率が40重量%を超えると、分散構造が逆転し、立体捲縮発現性が小さくなってしまうため、好ましくない。更に好ましい含有率は3〜35重量%である。また、低融点側の結晶性熱可塑性樹脂(結晶性熱可塑性樹脂B他)の代りに、高融点側の結晶性熱可塑性樹脂(結晶性熱可塑性樹脂A他)の融点より20℃以上低いガラス転移点をもつ非晶性熱可塑性樹脂を添加しても同様の効果を期待できる。その場合の添加量としては非晶性熱可塑性樹脂を0.2〜10重量%、好ましくは1〜8重量%の範囲に限定した方がよい。非晶性熱可塑性樹脂の添加量が10重量を超えると収縮が大きくなり、本発明の特徴である低収縮性を満足しない。一方、0.2重量%を下回ると、十分な立体捲縮が発現しない。   The heat-adhesive resin component in the present invention is a polymer blend composed of 100 to 60% by weight of the crystalline thermoplastic resin A and 0 to 40% by weight of the crystalline thermoplastic resin B, or 3 of the crystalline thermoplastic resin. The polymer blend may be in the form of a polymer blend of more than one species, but there is a difference in melting point between the crystalline thermoplastic resin A or the crystalline thermoplastic resin having the highest melting point and the crystalline thermoplastic resin B or the crystalline thermoplastic resin having the lowest melting point. When the temperature is 20 ° C. or higher and the crystalline thermoplastic resin having the lowest melting point is contained in an amount of 40% by weight or less, the crystalline thermoplastic resin having a low melting point is melted before the entire thermoadhesive resin component is melted. Is more preferable because it causes heat shrinkage and steric crimps. However, if the content of the crystalline thermoplastic resin having the lowest melting point in the heat-adhesive resin component exceeds 40% by weight, the dispersion structure is reversed and the steric crimp expression is reduced, which is not preferable. A more preferred content is 3 to 35% by weight. Further, instead of the low-melting-point crystalline thermoplastic resin (crystalline thermoplastic resin B or the like), a glass that is 20 ° C. or more lower than the melting point of the high-melting-point crystalline thermoplastic resin (crystalline thermoplastic resin A or the like). The same effect can be expected even when an amorphous thermoplastic resin having a transition point is added. In this case, the amount of the amorphous thermoplastic resin should be limited to 0.2 to 10% by weight, preferably 1 to 8% by weight. When the added amount of the amorphous thermoplastic resin exceeds 10%, the shrinkage increases, and the low shrinkage characteristic of the present invention is not satisfied. On the other hand, when it is less than 0.2% by weight, sufficient steric crimps are not exhibited.

上記のようなポリマーブレンドの形態であっても、結晶性熱可塑性樹脂として用いるのに好適な樹脂は上述の中から適宜選ぶことができる。また非晶性熱可塑性樹脂の例としては、イソフタル酸をジカルボン酸成分として50〜20モル%共重合したポリエチレンテレフタレート、アタクチックポリスチレン、ポリアクリロニトリル、ポリメチルメタアクリレート等が挙げられるが、特にイソフタル酸共重合ポリエチレンテレフタレートがガラス転移温度が60〜65℃程度であるため好ましい。   Even in the form of the polymer blend as described above, a resin suitable for use as the crystalline thermoplastic resin can be appropriately selected from the above. Examples of amorphous thermoplastic resins include polyethylene terephthalate, atactic polystyrene, polyacrylonitrile, polymethyl methacrylate and the like, which are copolymerized with 50 to 20 mol% of isophthalic acid as a dicarboxylic acid component. Copolymerized polyethylene terephthalate is preferable because it has a glass transition temperature of about 60 to 65 ° C.

またこのようなポリマーブレンド体を得るには、熱接着性樹脂成分を構成する複数の樹脂を両樹脂の融点以上、又は融点及びガラス転移点以上の温度で例えば1軸又は2軸押出機中で混練することにより得ることができる。樹脂の分散状態を制御する為には樹脂の配合量、混練温度、溶融時の滞留時間等について十分配慮することが好ましい。   Further, in order to obtain such a polymer blend, a plurality of resins constituting the heat-adhesive resin component are, for example, in a single-screw or twin-screw extruder at a temperature equal to or higher than the melting point of both resins, or higher than the melting point and the glass transition point. It can be obtained by kneading. In order to control the dispersion state of the resin, it is preferable to give sufficient consideration to the blending amount of the resin, the kneading temperature, the residence time during melting, and the like.

本発明の複合繊維の製造方法としては、公知の複合繊維の溶融方法や口金を用いて、150〜1800m/min以下の紡糸速度で引き取った未延伸糸を熱接着性樹脂成分の主たる結晶性熱可塑性樹脂のガラス転移点と繊維形成性樹脂成分のガラス転移点の双方より高い温度で0.5〜1.3の倍率で定長熱処理する製造方法により得られる。紡糸速度は好ましくは300〜1500m/分、より好ましくは500〜1300m/分である。1800m/minを超えると未延伸糸の配向が上がり、本発明が目標とする高接着性を阻害する上、断糸が多くなり、生産性が悪くなる。また紡糸速度が150m/minより遅くても当然のごとく生産性が悪くなる。   As the method for producing the conjugate fiber of the present invention, the main crystalline heat of the heat-adhesive resin component is obtained by using an undrawn yarn taken up at a spinning speed of 150 to 1800 m / min or less by using a known conjugate fiber melting method or a die. It is obtained by a production method in which a constant length heat treatment is performed at a magnification of 0.5 to 1.3 at a temperature higher than both the glass transition point of the plastic resin and the glass transition point of the fiber-forming resin component. The spinning speed is preferably 300 to 1500 m / min, more preferably 500 to 1300 m / min. If it exceeds 1800 m / min, the orientation of the undrawn yarn is increased, which hinders the high adhesiveness targeted by the present invention, and increases the number of yarn breaks, resulting in poor productivity. Further, even if the spinning speed is slower than 150 m / min, the productivity is naturally deteriorated.

ここでいう定長熱処理は、溶融紡糸により得た未延伸糸を0.5〜1.3倍のドラフトをかけた状態で行う。実質は、熱処理前後で繊維軸方向の変形がないように1.0倍で行うが、樹脂の性質上未延伸糸に熱伸長が生じる場合は延伸機のローラー間での糸条の弛みを防ぐために、1.0倍より大きいドラフトをかけてもよい。更に、樹脂の組合せによっては1.05〜1.3倍の小さいドラフトを付与することにより、高度な接着性能と低収縮性を維持しながら適度に高い捲縮性能を付与できるので好ましい。1.3倍を超えると、複合繊維の乾熱収縮率が1%を超えてしまい、本発明の目的とする低収縮性と高接着性を満足しなくなる。また、樹脂の性質上強い熱収縮を生じる場合も繊維の配向を上げてしまう方向であるので、1.0倍より大きいドラフトをかける代わりに未延伸糸が延伸中に弛みを生じない程度の1.0倍未満のドラフト(オーバーフィード)としても差し支えない。好ましくは0.5〜0.9倍である。ただし、ドラフトは0.5倍程度が下限であり、これを下回ると複合繊維の伸度を600%以下に抑えることが難しい場合が多い。また定長熱処理は熱接着性樹脂成分の主たる結晶性熱可塑性樹脂のガラス転移点と繊維形成性樹脂成分のガラス転移点の双方より高い温度で行う。定長熱処理の温度がこの範囲より低いと複合繊維の熱接着時の収縮率が大きくなるので好ましくない。定長熱処理はヒータープレート上、熱風吹付け、高温空気中、蒸気吹付け、シリコンオイルバス等の液体熱媒中で実施すればよいが、熱効率がよく、その後の繊維処理剤付与の際に洗浄の必要がない温水中で実施することが好ましい。   The constant length heat treatment here is performed in a state in which an undrawn yarn obtained by melt spinning is drafted 0.5 to 1.3 times. Substantially, it is performed at a magnification of 1.0 so that there is no deformation in the fiber axis direction before and after heat treatment. However, when thermal elongation occurs in the undrawn yarn due to the nature of the resin, the yarn is prevented from slackening between the rollers of the drawing machine. Therefore, a draft larger than 1.0 times may be applied. Further, depending on the combination of resins, it is preferable to impart a draft that is 1.05 to 1.3 times smaller, because moderately high crimping performance can be imparted while maintaining high adhesion performance and low shrinkage. When it exceeds 1.3 times, the dry heat shrinkage of the composite fiber exceeds 1%, and the low shrinkage and high adhesiveness which are the objects of the present invention are not satisfied. In addition, in the case where strong heat shrinkage occurs due to the nature of the resin, the orientation of the fiber is also increased, so that the undrawn yarn does not loosen during drawing instead of applying a draft larger than 1.0 times. It may be a draft (overfeed) of less than 0 times. Preferably it is 0.5 to 0.9 times. However, the lower limit of the draft is about 0.5 times, and if it is less than this, it is often difficult to suppress the elongation of the composite fiber to 600% or less. The constant length heat treatment is performed at a temperature higher than both the glass transition point of the main crystalline thermoplastic resin of the thermoadhesive resin component and the glass transition point of the fiber-forming resin component. If the temperature of the constant-length heat treatment is lower than this range, the shrinkage rate at the time of thermal bonding of the composite fiber increases, which is not preferable. Constant-length heat treatment may be performed on a heater plate, in hot air spray, in high-temperature air, steam spray, or in a liquid heat medium such as a silicon oil bath. It is preferable to carry out in warm water where there is no need for water.

これらの定長熱処理に引き続いて、押し込み型クリンパーを通過あるいはバイパスさせ、油剤を付与した後、定長熱処理の温度より更に5℃以上高い温度、より好ましくは10℃以上高い温度で無緊張下で熱処理(弛緩熱処理)を行う。これにより、未延伸糸または低倍率延伸糸が立体捲縮を発現し、カード通過性を確保するための捲縮性能を発現させる。押し込み型クリンパーを通過しない場合はスパイラル状の三次元立体捲縮となり、クリンパーを通過させ、単糸に挫屈を加えた場合はΩ状の平面捲縮となるが、本発明の捲縮性能の範囲内にあればいずれの方法でもよい。弛緩熱処理の加熱は熱風中で、すなわち熱風を吹きつけて行うのが熱効率の面と繊維の拘束が少なく、捲縮が発現しやすいので好ましい。弛緩熱処理温度は得ようとする繊維の目標捲縮性能や不織布または繊維構造体の熱接着時に出したい潜在捲縮性能の要求に応じて決めればよい。この定長熱処理後に引き続いて行う熱処理が無緊張下でない場合、及び定長熱処理温度より更に5℃以上高い温度でない場合には、複合繊維に十分な捲縮を付与することができず、捲縮率/捲縮数を所定の値以上にすることができない。   Subsequent to these constant length heat treatments, after passing or bypassing the indentation type crimper and applying an oil agent, the temperature is further 5 ° C. higher than the temperature of the constant length heat treatment, more preferably 10 ° C. or higher under no tension. Heat treatment (relaxation heat treatment) is performed. Thereby, an undrawn yarn or a low magnification drawn yarn expresses a three-dimensional crimp, and expresses a crimping performance for ensuring card passability. When it does not pass through the indentation type crimper, it becomes a spiral three-dimensional crimp, and when it passes through the crimper and the single yarn is crimped, it becomes an Ω-shaped flat crimp, but the crimp performance of the present invention Any method may be used as long as it is within the range. Heating in the relaxation heat treatment is preferably performed in hot air, that is, by blowing hot air, because the thermal efficiency is less and the fiber is less constrained, and crimps are easily generated. The relaxation heat treatment temperature may be determined according to the requirements of the target crimping performance of the fiber to be obtained and the latent crimping performance desired to be obtained at the time of thermal bonding of the nonwoven fabric or the fiber structure. If the subsequent heat treatment after the constant length heat treatment is not under no tension, and if it is not a temperature higher than the constant length heat treatment temperature by 5 ° C. or more, sufficient crimp cannot be imparted to the composite fiber. The rate / crimp number cannot be greater than a predetermined value.

元来、未延伸糸、低延伸糸または高速紡糸糸に機械捲縮を付与するのが難しいが、前述の方法により捲縮数、捲縮率ともに高めることができる。捲縮性能の設定としては、JIS L1015:2005 8.12.1〜8.12.2に定める捲縮率(CD)と捲縮数(CN)の比、CD/CNが0.8以上、好ましくは1.0以上となるように捲縮率を大きくすればよい。CNの範囲としては6〜25山/25mm、更に好ましくは8〜20山/25mmであり、CDの範囲としては6〜40%、更に好ましくは8〜35%の範囲が高速カード性とウェブ地合いを両立する点でよい。これらの上限を超えるとウェブの地合いが悪くなり、下限を下回るとカードウェブが切れやすくなり、高速カード性に劣るようになる。なお、捲縮数と捲縮率のバランスを調整し、CD/CN比を上記の範囲内にする目的で、クリンパー前のトウ温度を、スチーム加熱やヒーター加熱、温水加熱等の手段で高くする方法が実施される。ここに挙げなかった他の手法であっても一般にトウ温度を高くすれば、捲縮率を大きく調整することができる。   Originally, it is difficult to impart mechanical crimps to undrawn yarns, low-drawn yarns, or high-speed spun yarns, but both the number of crimps and the crimp rate can be increased by the method described above. As the setting of the crimping performance, the ratio of the crimping rate (CD) and the number of crimps (CN) defined in JIS L1015: 2005 8.12.1 to 8.12.2, CD / CN is 0.8 or more, The crimp rate is preferably increased so as to be preferably 1.0 or more. The CN range is 6-25 peaks / 25 mm, more preferably 8-20 peaks / 25 mm, and the CD range is 6-40%, more preferably 8-35%. It is good in that both are compatible. If these upper limits are exceeded, the web feels worse, and if the lower limit is not reached, the card web is likely to be cut, resulting in poor high-speed card properties. In addition, in order to adjust the balance between the number of crimps and the crimp ratio and to make the CD / CN ratio within the above range, the tow temperature before the crimper is increased by means of steam heating, heater heating, hot water heating, or the like. The method is performed. Even with other methods not mentioned here, the crimp rate can be largely adjusted if the tow temperature is generally increased.

更に熱接着性樹脂成分の組成が、1)熱接着性樹脂成分のMFRが繊維形成性樹脂成分のMFRより5g/10min以上小さい芯鞘型複合繊維の場合、2)熱接着性樹脂成分が、結晶性熱可塑性樹脂Aが100〜60重量%および結晶性熱可塑性樹脂Bが0〜40重量%からなるポリマーブレンドである芯鞘型複合繊維の場合、3)熱接着性樹脂成分が、結晶性熱可塑性樹脂Aが99.8〜90重量%および非晶性熱可塑性樹脂0.2〜10重量%からなるポリマーブレンドである芯鞘型複合繊維の場合においても同様の製造方法により本発明の複合繊維を製造することができる。   Further, when the composition of the heat-adhesive resin component is 1) a core-sheath type composite fiber in which the MFR of the heat-adhesive resin component is 5 g / 10 min or less than the MFR of the fiber-forming resin component, 2) the heat-adhesive resin component is In the case of a core-sheath type composite fiber which is a polymer blend composed of 100 to 60% by weight of the crystalline thermoplastic resin A and 0 to 40% by weight of the crystalline thermoplastic resin B. 3) The thermal adhesive resin component is crystalline. In the case of a core-sheath type composite fiber which is a polymer blend composed of 99.8 to 90% by weight of thermoplastic resin A and 0.2 to 10% by weight of amorphous thermoplastic resin, the composite of the present invention is produced by the same production method. Fiber can be produced.

以下、実施例により、本発明を更に具体的に説明するが、本発明はこれによって何ら限定を受けるものでは無い。なお、実施例における各項目は次の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In addition, each item in an Example was measured with the following method.

(1)固有粘度(IV)
ポリマーを一定量計量し、o−クロロフェノールに0.012g/mlの濃度に溶解してから、常法に従って35℃にて求めた。
(1) Intrinsic viscosity (IV)
A fixed amount of the polymer was weighed and dissolved in o-chlorophenol at a concentration of 0.012 g / ml, and then determined at 35 ° C. according to a conventional method.

(2)メルトフローレイト(MFR)
ポリプロピレン樹脂はJIS―K7210条件14(230℃、21.18N)、ポリエチレンテレフタレート樹脂はJIS―K7210条件20(280℃、21.18N)、それ以外の樹脂はJIS−K7210条件4(190℃、21.18N)に準じて測定した。なお、メルトフローレイトは溶融紡糸前のペレットを試料とし測定した値である。
(2) Melt flow rate (MFR)
Polypropylene resin is JIS-K7210 condition 14 (230 ° C, 21.18N), polyethylene terephthalate resin is JIS-K7210 condition 20 (280 ° C, 21.18N), and other resins are JIS-K7210 condition 4 (190 ° C, 21 .18N). The melt flow rate is a value measured using a pellet before melt spinning as a sample.

(3)融点(Tm)、ガラス転移点(Tg)
TAインスツルメント・ジャパン(株)社製のサーマル・アナリスト2200を使用し、昇温速度20℃/分で測定した。
(3) Melting point (Tm), glass transition point (Tg)
A thermal analyst 2200 manufactured by TA Instrument Japan Co., Ltd. was used, and the temperature was measured at a temperature rising rate of 20 ° C./min.

(4)繊度
JIS L 1015:2005 8.5.1 A法に記載の方法により測定した。
(4) Fineness Measured by the method described in JIS L 1015: 2005 8.5.1 Method A.

(5)強度・伸度
JIS L 1015:2005 8.7.1法に記載の方法により測定した。
本発明の繊維は定長熱処理の効率により、強伸度にバラツキを生じやすいので、単糸で測定する場合は測定点数を増やす必要がある。測定点数は50以上が好ましいため、ここでは測定点数を50とし、その平均値として定義する。
(5) Strength / Elongation Measured by the method described in JIS L 1015: 2005 8.7.1.
Since the fiber of the present invention tends to vary in the strength and elongation due to the efficiency of the constant length heat treatment, it is necessary to increase the number of measurement points when measuring with a single yarn. Since the number of measurement points is preferably 50 or more, here, the number of measurement points is defined as 50, which is defined as the average value.

(6)捲縮数、捲縮率
JIS L 1015:2005 8.12.1〜8.12.2法に記載の方法により測定した。
(6) Number of crimps and crimp rate Measured by the method described in JIS L 1015: 2005 8.12.1 to 8.12.2.

(7)120℃乾熱収縮率
JIS L 1015:2005 8.15 b)において、120℃において実施した。
(7) 120 degreeC dry heat shrinkage rate It implemented at 120 degreeC in JISL 1015: 2005 8.15 b).

(8)高速カード性
鳥越紡機株式会社製JM型小型高速カード機を用いて、熱接着性複合繊維100%からなる目付25g/mのカードウェブを紡出する際、カードウェブが切れ始めるドッファー速度より5m/min小さい速度を最大カード速度とし、これが大きいほど、高速カード性が良好とする。
(8) High-speed card properties When spinning a card web with a basis weight of 25 g / m 2 made of 100% heat-adhesive conjugate fiber using a JM type small high-speed card machine manufactured by Torigoe Spinning Co., Ltd. The speed 5 m / min smaller than the speed is set as the maximum card speed, and the higher the speed, the better the high-speed card property.

(9)ウェブ地合い
上記高速カード性試験において得られたウェブの品位を、5名のパネラーが以下の基準にて評価した。
(レベル1)繊維密度が均一で毛玉等の欠点も目立たず、良好な外観を呈する。
(レベル2)繊維の素抜けたような密度の小さい部分が若干見受けられる。
(レベル3)粗密が多く、外観が悪い。
(9) Web texture Five panelists evaluated the quality of the web obtained in the high-speed card property test according to the following criteria.
(Level 1) The fiber density is uniform, and defects such as pills are not conspicuous and a good appearance is exhibited.
(Level 2) A portion having a low density such as a fiber is slightly seen.
(Level 3) Lots of density and poor appearance.

(10)ウェブ面積収縮率
上記高速カード性試験において得られたウェブを30cm四方に切り出して、所定の温度に維持した熱風乾燥機(佐竹化学機械工業株式会社製熱風循環恒温乾燥器:41−S4)中に2分間放置して熱処理を行い、収縮処理前のシート面積A0と収縮処理後の面積A1から下記の式により求め面積収縮率とする。
面積収縮率(%)=〔(A0−A1)/A0〕×100
(10) Web area shrinkage rate The hot air dryer (Satake Chemical Machinery Co., Ltd. hot air circulation thermostatic dryer: 41-S4) which cut | disconnected the web obtained in the said high-speed card property test in 30 cm square, and maintained at predetermined | prescribed temperature. ) For 2 minutes, heat treatment is performed, and the area shrinkage is obtained from the sheet area A0 before the shrinkage treatment and the area A1 after the shrinkage treatment by the following formula.
Area shrinkage (%) = [(A0−A1) / A0] × 100

(11)不織布強力(接着強力)
上記熱処理後ウェブから、幅5cm、長さ20cmの試験片を切り取り、つかみ間隔10cm、伸長速度20cm/minで測定した。接着強度は、引張破断力(N)を試験片重量(g)で除した値とした。
(11) Nonwoven fabric strong (adhesive strength)
A test piece having a width of 5 cm and a length of 20 cm was cut from the web after the heat treatment and measured at a gripping interval of 10 cm and an elongation rate of 20 cm / min. The adhesive strength was a value obtained by dividing the tensile breaking force (N) by the test piece weight (g).

[実施例1]
芯成分(繊維形成性樹脂成分)にIV=0.64dl/g、MFR=25g/10min、Tg=70℃、Tm=256℃のポリエチレンテレフタレート(PET)、鞘成分(熱接着性樹脂成分)にMFR=20g/10min、Tm=131℃(Tgは零度未満)の高密度ポリエチレン(HDPE)を用い、各々290℃、250℃となるように溶融したのち、公知の偏芯型複合繊維用口金を用いて、芯/鞘=50/50(重量%)の比率となるように偏芯芯鞘型複合繊維を形成し、吐出量0.71g/min/孔、紡糸速度1150m/minにて紡糸し、未延伸糸を得た。これを、芯成分のガラス転移点より20℃高い90℃の温水中で1.0倍で定長熱処理を行い、ラウリルホスフェートカリウム塩からなる油剤の水溶液に糸条を浸漬した後、押し込み型クリンパーを用いて11個/25mmの機械捲縮を付与し、無緊張下110℃の熱風下で乾燥した後(弛緩熱処理後)、繊維長51mmに切断した。捲縮形態はΩ型のものが得られた。繊維物性およびカード性、不織布物性を表1に示す。
[Example 1]
Polyethylene terephthalate (PET) with IV = 0.64 dl / g, MFR = 25 g / 10 min, Tg = 70 ° C., Tm = 256 ° C. for the core component (fiber-forming resin component), sheath component (thermal adhesive resin component) A high-density polyethylene (HDPE) with MFR = 20 g / 10 min and Tm = 131 ° C. (Tg is less than 0 ° C.) is melted to 290 ° C. and 250 ° C., respectively, and then a known eccentric type composite fiber die is used. An eccentric core-sheath type composite fiber is formed so that the ratio of core / sheath is 50/50 (weight%), and is spun at a discharge rate of 0.71 g / min / hole and a spinning speed of 1150 m / min. An undrawn yarn was obtained. This was subjected to a constant length heat treatment in hot water at 90 ° C., 20 ° C., 20 ° C. higher than the glass transition point of the core component, and the yarn was immersed in an aqueous solution of an oil agent composed of potassium lauryl phosphate. 11 pieces / 25 mm of mechanical crimps were applied, dried under hot air at 110 ° C. under no tension (after relaxation heat treatment), and cut to a fiber length of 51 mm. The crimp form was Ω type. The fiber properties, card properties, and nonwoven fabric properties are shown in Table 1.

[実施例2〜3]
芯鞘比を変更した他は実施例1と同一条件とし、6.5デシテックスの繊維を得た。結果を表1に示す。
[Examples 2-3]
Except for changing the core-sheath ratio, the same conditions as in Example 1 were used to obtain 6.5 dtex fibers. The results are shown in Table 1.

[実施例4]
吐出量を0.53g/min/孔、定長熱処理倍率を0.7倍とした他は実施例1と同一条件とし、6.6デシテックスの繊維を得た。結果を表1に示す。
[Example 4]
6.6 decitex fibers were obtained under the same conditions as in Example 1 except that the discharge rate was 0.53 g / min / hole and the constant length heat treatment magnification was 0.7 times. The results are shown in Table 1.

[実施例5、比較例1〜2]
口金を同芯芯鞘型複合口金に変更した他は表1に示す条件で繊維を得た。結果を表1に示す。
[Example 5, Comparative Examples 1-2]
Fibers were obtained under the conditions shown in Table 1 except that the base was changed to a concentric core-sheath type composite base. The results are shown in Table 1.

[実施例6]
芯成分(繊維形成性樹脂成分)にIV=0.64dl/g、Tg=70℃、Tm=256℃のポリエチレンテレフタレート(PET;MFR=25g/10min)、鞘成分(熱接着性樹脂成分)にMFR=8g/10min、Tm=165℃(Tgは零度未満)のアイソタクティックポリプロピレン(PP)を用い、各々290℃、260℃となるように溶融したのち、公知の同芯芯鞘型複合繊維用口金を用いて芯:鞘=50:50の重量比率となるように複合繊維を形成し、吐出量1.0g/min/孔、紡糸速度900m/minにて紡糸し、未延伸糸を得た。これを、芯成分のガラス転移点より20℃高い90℃の温水中で1.25倍の定長熱処理を行い、ラウリルホスフェートカリウム塩からなる油剤の水溶液に糸条を浸漬した後、押し込み型クリンパーを用いて11個/25mmの機械捲縮を付与し、無緊張下130℃の熱風下で乾燥した後(弛緩熱処理後)、繊維長51mmに切断して、8.8デシテックスのΩ型捲縮の繊維を得た。結果を表1に示す。
[Example 6]
Polyethylene terephthalate (PET; MFR = 25 g / 10 min) with IV = 0.64 dl / g, Tg = 70 ° C., Tm = 256 ° C. for the core component (fiber-forming resin component), and sheath component (thermal adhesive resin component) Using isotactic polypropylene (PP) with MFR = 8 g / 10 min, Tm = 165 ° C. (Tg is less than 0 ° C.) and melting to 290 ° C. and 260 ° C., respectively, a known concentric core-sheath type composite fiber A composite fiber is formed using a base for core: sheath = 50: 50, and spun at a discharge rate of 1.0 g / min / hole and a spinning speed of 900 m / min to obtain an undrawn yarn. It was. This was subjected to a heat treatment at a constant length of 1.25 times in warm water at 90 ° C., which is 20 ° C. higher than the glass transition point of the core component, so that the yarn was immersed in an aqueous solution of an oil agent comprising lauryl phosphate potassium salt, and then an indentation type crimper. After applying mechanical crimps of 11 pieces / 25mm using, dried under hot air at 130 ° C under no tension (after relaxation heat treatment), cut to a fiber length of 51mm and 8.8 dtex Ω-type crimp Fiber. The results are shown in Table 1.

[実施例7]
吐出量を0.8g/min/孔、定長熱処理倍率を1.0倍とした他は実施例6と同一条件とし、8.7デシテックスの繊維を得た。結果を表1に示す。
[Example 7]
An 8.7 dtex fiber was obtained under the same conditions as in Example 6 except that the discharge rate was 0.8 g / min / hole and the constant length heat treatment magnification was 1.0. The results are shown in Table 1.

[比較例3]
吐出量を0.8g/min/孔、定長熱処理倍率を1.0倍とし、弛緩熱処理温度を70℃とした他は実施例6と同一条件とし、8.7デシテックスの繊維を得た。結果を表1に示す。
[Comparative Example 3]
An 8.7 dtex fiber was obtained under the same conditions as in Example 6 except that the discharge rate was 0.8 g / min / hole, the constant length heat treatment magnification was 1.0 times, and the relaxation heat treatment temperature was 70 ° C. The results are shown in Table 1.

[比較例4]
鞘成分をMFR=35g/10minのアイソタクティックポリプロピレンに変更し、吐出量を1.0g/min/孔、定長熱処理倍率を1.25とした他は、実施例6と同一条件とし、8.7デシテックスの繊維を得た。結果を表1に示す。
[Comparative Example 4]
The same conditions as in Example 6 were applied except that the sheath component was changed to isotactic polypropylene with MFR = 35 g / 10 min, the discharge rate was 1.0 g / min / hole, and the constant length heat treatment magnification was 1.25. .7 decitex fibers were obtained. The results are shown in Table 1.

[実施例8]
芯成分(繊維形成性樹脂成分)にIV=0.64dl/g、Tg=70℃、Tm=256℃のポリエチレンテレフタレート(PET;MFR=25g/10min)、鞘成分(熱接着性樹脂成分)にMFR=8g/10min、Tm=165℃(Tgは零度未満)のアイソタクティックポリプロピレン(PP)を80重量%と、MFR=8g/10min、Tm=98℃(Tgは零度未満)の無水マレイン酸−アクリル酸メチルグラフト共重合ポリエチレン(m−PE;無水マレイン酸=2重量%、アクリル酸メチル=7重量%)を20重量%とをブレンドしたペレットを用い、各々290℃、250℃となるように溶融したのち、公知の同芯芯鞘型複合繊維用口金を用いて芯:鞘=50:50の重量比率となるように複合繊維を形成し、吐出量0.94g/min/孔、紡糸速度900m/minにて紡糸し、未延伸糸を得た。これを、芯成分のガラス転移点より20℃高い90℃の温水中で1.2倍の定長熱処理を行い、ラウリルホスフェートカリウム塩からなる油剤の水溶液に糸条を浸漬した後、押し込み型クリンパーを用いて11個/25mmの機械捲縮を付与し、無緊張下110℃の熱風下で乾燥した後(弛緩熱処理後)、繊維長51mmに切断して、8.7デシテックスのΩ型捲縮の繊維を得た。結果を表1に示す。
[Example 8]
Polyethylene terephthalate (PET; MFR = 25 g / 10 min) with IV = 0.64 dl / g, Tg = 70 ° C., Tm = 256 ° C. for the core component (fiber-forming resin component), and sheath component (thermal adhesive resin component) 80% by weight of isotactic polypropylene (PP) with MFR = 8 g / 10 min, Tm = 165 ° C. (Tg is less than zero degree), maleic anhydride with MFR = 8 g / 10 min, Tm = 98 ° C. (Tg is less than zero degree) -Methyl acrylate graft copolymerized polyethylene (m-PE; maleic anhydride = 2% by weight, methyl acrylate = 7% by weight) blended with 20% by weight, using pellets of 290 ° C. and 250 ° C., respectively. Then, using a known concentric core-sheath type composite fiber die, a composite fiber is formed so that the weight ratio of core: sheath = 50: 50 is obtained. The amount 0.94 g / min / hole, and spun at a spinning speed of 900 meters / min, to give an undrawn yarn. This was subjected to a constant length heat treatment in 90 ° C warm water 20 ° C higher than the glass transition point of the core component, and the yarn was immersed in an aqueous solution of an oil agent composed of potassium lauryl phosphate, followed by an indentation type crimper. After applying mechanical crimps of 11 pieces / 25mm using, dried under hot air of 110 ° C under no tension (after relaxation heat treatment), cut to a fiber length of 51mm, 8.7 decitex Ω-type crimp Fiber. The results are shown in Table 1.

[実施例9]
鞘成分へのm−PEのブレンド量を35重量%とした他は、実施例8と同一条件とし、8.8デシテックスの繊維を得た。結果を表1に示す。
[Example 9]
An 8.8 dtex fiber was obtained under the same conditions as in Example 8, except that the blend amount of m-PE into the sheath component was 35% by weight. The results are shown in Table 1.

[実施例10]
MFR=45g/10min、IV=0.56dl/g、Tg=63℃の非晶性共重合ポリエステル(co−PET−1:イソフタル酸40モル%−ジエチレングリコール4モル%共重合ポリエチレンテレフタレート)を8重量%鞘成分へ添加し、吐出量を0.8g/min/孔、定長熱処理倍率を1.0とした他は、実施例8と同一条件とし、8.9デシテックスのΩ型捲縮の繊維を得た。結果を表1に示す。
[Example 10]
8 weights of amorphous copolymer polyester (co-PET-1: isophthalic acid 40 mol% -diethylene glycol 4 mol% copolymer polyethylene terephthalate) having MFR = 45 g / 10 min, IV = 0.56 dl / g, Tg = 63 ° C. 8.9 decitex Ω-type crimped fiber except that it was added to the% sheath component, the discharge rate was 0.8 g / min / hole, and the constant length heat treatment magnification was 1.0. Got. The results are shown in Table 1.

[実施例11]
芯成分(繊維形成性樹脂成分)にIV=0.64dl/g、Tg=70℃、Tm=256℃のポリエチレンテレフタレート(PET;MFR=25g/10min)、鞘成分(熱接着性樹脂成分)にMFR=40g/10min、Tm=152℃、Tg=43℃の結晶性共重合ポリエステル(co−PET−2:イソフタル酸20モル%−テトラメチレングリコール50モル%共重合ポリエチレンテレフタレート)を用い、各々290℃、255℃となるように溶融したのち、公知の偏芯芯鞘複合繊維用口金を用いて芯:鞘=50:50の重量比率となるように複合繊維を形成し、吐出量0.63g/min/孔、紡糸速度1250m/minにて紡糸し、未延伸糸を得た。これを、芯成分のガラス転移点より10℃以上高い80℃の温水中で0.65倍のオーバーフィード定長熱処理を行い、ラウリルホスフェートカリウム塩からなる油剤の水溶液に糸条を浸漬した後、押し込み型クリンパーを用いて11個/25mmの機械捲縮を付与し、無緊張下90℃の熱風下で乾燥した後(弛緩熱処理後)、繊維長51mmに切断し、7.8デシテックスのΩ型捲縮の繊維を得た。結果を表1に示す。
[Example 11]
Polyethylene terephthalate (PET; MFR = 25 g / 10 min) with IV = 0.64 dl / g, Tg = 70 ° C., Tm = 256 ° C. for the core component (fiber-forming resin component), and sheath component (thermal adhesive resin component) Crystalline copolyester (co-PET-2: isophthalic acid 20 mol% -tetramethylene glycol 50 mol% copolymer polyethylene terephthalate) having MFR = 40 g / 10 min, Tm = 152 ° C., Tg = 43 ° C. was used, respectively 290 C. After melting to 255.degree. C., a composite fiber is formed using a known eccentric core-sheath composite fiber die so that the weight ratio of core: sheath = 50: 50, and the discharge amount is 0.63 g. Spinning at / min / hole and spinning speed of 1250 m / min gave an undrawn yarn. This was subjected to an overfeed constant-length heat treatment of 0.65 times in warm water at 80 ° C., which is 10 ° C. higher than the glass transition point of the core component, and the yarn was immersed in an aqueous solution of an oil agent composed of lauryl phosphate potassium salt. After applying mechanical crimps of 11 pieces / 25 mm using an indentation type crimper, drying under hot air at 90 ° C. under no tension (after relaxation heat treatment), cutting to a fiber length of 51 mm, 7.8 decitex Ω type A crimped fiber was obtained. The results are shown in Table 1.

[比較例5]
実施例11において、同芯芯鞘型複合繊維口金を用い、吐出量を2.05g/min/孔、紡糸速度700m/min、70℃の温水中で4.35倍の延伸を行った他は、実施例11と同様に実施し、7.8デシテックスの機械捲縮の繊維を得た。結果を表1に示す。
[Comparative Example 5]
In Example 11, a concentric core-sheath type composite fiber die was used, and the amount of discharge was 2.05 g / min / hole, the spinning speed was 700 m / min, and the film was stretched 4.35 times in warm water at 70 ° C. In the same manner as in Example 11, a mechanically crimped fiber of 7.8 dtex was obtained. The results are shown in Table 1.

Figure 2007204901
Figure 2007204901

Figure 2007204901
Figure 2007204901

本発明は、従来提案されていた低配向タイプの高接着性低熱収縮性の熱接着性複合繊維での欠点であったカード通過性を改善し、不織布生産性を向上させるだけでなく、ウェブ品位も良好な熱接着不織布の提供を可能とする。更には、熱接着性複合繊維が自己伸張性を有するために、熱接着後の不織布が嵩高に仕上がり、剛性の小さいことと相まって、従来にない風合いに優れかつ嵩高な不織布の商用生産の拡大に大きく貢献するものである。   The present invention not only improves the card passing property, which has been a drawback of the conventionally proposed low-adhesion type, high-adhesion, low-heat-shrinkable, heat-adhesive conjugate fibers, and improves the nonwoven fabric productivity, but also improves the web quality. Can also provide a good heat-bonding nonwoven fabric. Furthermore, since the heat-bondable conjugate fiber has self-stretchability, the nonwoven fabric after heat-bonding is finished bulky and coupled with its low rigidity, combined with the unprecedented texture and expansion of commercial production of bulky nonwoven fabrics It contributes greatly.

Claims (15)

繊維形成性樹脂成分および繊維形成性樹脂成分の融点より20℃以上低い融点を持つ結晶性熱可塑性樹脂によって構成される熱接着性樹脂成分からなる熱接着性複合繊維であって、破断伸度が60〜600%、120℃乾熱収縮率が−10〜1%、捲縮率/捲縮数が0.8以上であることを特徴とする熱接着性複合繊維。   A heat-adhesive conjugate fiber comprising a fiber-forming resin component and a thermo-adhesive resin component composed of a crystalline thermoplastic resin having a melting point 20 ° C. or more lower than the melting point of the fiber-forming resin component, the elongation at break being A heat-adhesive conjugate fiber having 60 to 600%, a dry heat shrinkage of 120 ° C. of −10 to 1%, and a crimp ratio / crimp number of 0.8 or more. 繊維形成性樹脂成分が芯、熱接着性樹脂成分が鞘となる、同芯芯鞘型複合繊維または偏芯芯鞘型複合繊維である請求項1記載の熱接着性複合繊維。   The heat-adhesive conjugate fiber according to claim 1, which is a concentric core-sheath type conjugate fiber or an eccentric core-sheath type conjugate fiber in which the fiber-forming resin component is a core and the heat-adhesive resin component is a sheath. 芯/鞘比が60/40〜10/90(重量比)であることを特徴とする、請求項1〜2のいずれか1項記載の熱接着性複合繊維。   The heat-adhesive conjugate fiber according to any one of claims 1 and 2, wherein a core / sheath ratio is 60/40 to 10/90 (weight ratio). 熱接着性樹脂成分を構成する主たる結晶性熱可塑性樹脂のメルトフローレイト(MFR)が、繊維形成性樹脂成分のMFRより5g/10min以上小さいことを特徴とする、請求項1〜3のいずれか1項記載の熱接着性複合繊維。   4. The melt flow rate (MFR) of the main crystalline thermoplastic resin constituting the thermoadhesive resin component is 5 g / 10 min or less smaller than the MFR of the fiber-forming resin component. The heat-adhesive conjugate fiber according to 1. 熱接着性樹脂成分が2種以上の熱可塑性樹脂からなるポリマーブレンド体から構成されることを特徴とする、請求項1〜4のいずれか1項記載の熱接着性複合繊維。   The heat-adhesive conjugate fiber according to any one of claims 1 to 4, wherein the heat-adhesive resin component is composed of a polymer blend composed of two or more thermoplastic resins. 熱接着性樹脂成分が、結晶性熱可塑性樹脂Aが100〜60重量%および結晶性熱可塑性樹脂Bが0〜40重量%からなるポリマーブレンドであり、結晶性熱可塑性樹脂Bの融点が結晶性熱可塑性樹脂Aの融点より20℃以上低いことを特徴とする、請求項5記載の熱接着性複合繊維。   The thermoadhesive resin component is a polymer blend comprising 100 to 60% by weight of the crystalline thermoplastic resin A and 0 to 40% by weight of the crystalline thermoplastic resin B, and the melting point of the crystalline thermoplastic resin B is crystalline. The heat-adhesive conjugate fiber according to claim 5, which is 20 ° C or more lower than the melting point of the thermoplastic resin A. 熱接着性樹脂成分が、結晶性熱可塑性樹脂Aが99.8〜90重量%および非晶性熱可塑性樹脂0.2〜10重量%からなるポリマーブレンドであり、非晶性熱可塑性樹脂のガラス転移点が結晶性熱可塑性樹脂Aの融点より20℃以上低いことを特徴とする、請求項5記載の熱接着性複合繊維。   The thermoadhesive resin component is a polymer blend composed of 99.8 to 90% by weight of crystalline thermoplastic resin A and 0.2 to 10% by weight of amorphous thermoplastic resin, and is a glass of amorphous thermoplastic resin. The thermoadhesive conjugate fiber according to claim 5, wherein the transition point is 20 ° C or more lower than the melting point of the crystalline thermoplastic resin A. 繊維形成性樹脂成分がポリエチレンテレフタレートである請求項1〜7のいずれか1項記載の熱接着性複合繊維。   The heat-bondable conjugate fiber according to any one of claims 1 to 7, wherein the fiber-forming resin component is polyethylene terephthalate. 熱接着性樹脂成分の主たる結晶性熱可塑性樹脂がポリオレフィン系樹脂である、請求項1〜8のいずれか1項記載の熱接着性複合繊維。   The thermoadhesive conjugate fiber according to any one of claims 1 to 8, wherein the main crystalline thermoplastic resin of the thermoadhesive resin component is a polyolefin resin. 熱接着性樹脂成分の主たる結晶性熱可塑性樹脂が結晶性共重合ポリエステルである、請求項1〜9のいずれか1項記載の熱接着性複合繊維。   The thermoadhesive conjugate fiber according to any one of claims 1 to 9, wherein the main crystalline thermoplastic resin of the thermoadhesive resin component is a crystalline copolyester. 150〜1800m/minの紡糸速度で引き取った複合繊維の未延伸糸を熱接着性樹脂成分の主たる結晶性熱可塑性樹脂のガラス転移点と繊維形成性樹脂成分のガラス転移点の双方より高い温度下0.5〜1.3倍で定長熱処理し、その後該定長熱処理温度より5℃以上高い温度において無緊張下で熱処理することを特徴とする、請求項1〜10のいずれか1項記載の熱接着性複合繊維の製造方法。   The undrawn yarn of the composite fiber taken up at a spinning speed of 150 to 1800 m / min is at a temperature higher than both the glass transition point of the main crystalline thermoplastic resin of the heat-adhesive resin component and the glass transition point of the fiber-forming resin component. The heat treatment is performed at a constant length of 0.5 to 1.3 times, and thereafter heat-treated without tension at a temperature higher by 5 ° C or more than the constant-length heat treatment temperature. The manufacturing method of heat-adhesive conjugate fiber. 熱接着性樹脂成分を構成する主たる結晶性熱可塑性樹脂のメルトフローレイトが繊維形成性樹脂成分のメルトフローレイトより5g/10min以上小さく、150〜1800m/minの紡糸速度で引き取った複合繊維の未延伸糸を熱接着性樹脂成分の主たる結晶性熱可塑性樹脂のガラス転移点と繊維形成性樹脂成分のガラス転移点の双方より高い温度下0.5〜1.3倍で定長熱処理し、その後該定長熱処理温度より5℃以上高い温度において無緊張下で熱処理することを特徴とする、請求項1〜10のいずれか1項記載の熱接着性複合繊維の製造方法。   The melt flow rate of the main crystalline thermoplastic resin constituting the heat-adhesive resin component is 5 g / 10 min or less smaller than the melt flow rate of the fiber-forming resin component, and the composite fiber undrawn at a spinning speed of 150 to 1800 m / min The drawn yarn is subjected to constant length heat treatment at a temperature 0.5 to 1.3 times higher than both the glass transition point of the main crystalline thermoplastic resin of the thermoadhesive resin component and the glass transition point of the fiber-forming resin component, and then The method for producing a thermoadhesive conjugate fiber according to any one of claims 1 to 10, wherein the heat treatment is performed under no tension at a temperature higher by 5 ° C or more than the constant-length heat treatment temperature. 熱接着性樹脂成分が、結晶性熱可塑性樹脂Aが100〜60重量%および結晶性熱可塑性樹脂Bが0〜40重量%からなるポリマーブレンドであり、結晶性熱可塑性樹脂Bの融点が結晶性熱可塑性樹脂Aの融点より20℃以上低く、150〜1800m/minの紡糸速度で引き取った芯鞘型複合未延伸糸を熱接着性樹脂成分の結晶性熱可塑性樹脂Aのガラス転移点と繊維形成性樹脂成分のガラス転移点の双方より高い温度下0.5〜1.3倍で定長熱処理し、その後該定長熱処理温度より5℃以上高い温度において無緊張下で熱処理することを特徴とする、請求項6又は8〜10のいずれか1項記載の熱接着性複合繊維の製造方法。   The thermoadhesive resin component is a polymer blend comprising 100 to 60% by weight of the crystalline thermoplastic resin A and 0 to 40% by weight of the crystalline thermoplastic resin B, and the melting point of the crystalline thermoplastic resin B is crystalline. Glass transition point and fiber formation of crystalline thermoplastic resin A as the thermoadhesive resin component of the core-sheath type composite undrawn yarn which is 20 ° C. or more lower than the melting point of thermoplastic resin A and taken at a spinning speed of 150 to 1800 m / min. A constant length heat treatment at a temperature 0.5 to 1.3 times higher than both glass transition points of the conductive resin component, and then a heat treatment without tension at a temperature 5 ° C. or more higher than the constant length heat treatment temperature. The manufacturing method of the heat bondable composite fiber of any one of Claim 6 or 8-10. 熱接着性樹脂成分が、結晶性熱可塑性樹脂Aが99.8〜90重量%および非晶性熱可塑性樹脂0.2〜10重量%からなるポリマーブレンドであり、非晶性熱可塑性樹脂のガラス転移点が結晶性熱可塑性樹脂Aの融点より20℃以上低く、150〜1800m/minの紡糸速度で引き取った芯鞘型複合未延伸糸を熱接着性樹脂成分の結晶性熱可塑性樹脂Aのガラス転移点と繊維形成性樹脂成分のガラス転移点の双方より高い温度下0.5〜1.3倍で定長熱処理し、その後該定長熱処理温度より5℃以上高い温度において無緊張下で熱処理することを特徴とする、請求項7〜10のいずれか1項記載の熱接着性複合繊維の製造方法。   The thermoadhesive resin component is a polymer blend composed of 99.8 to 90% by weight of crystalline thermoplastic resin A and 0.2 to 10% by weight of amorphous thermoplastic resin, and is a glass of amorphous thermoplastic resin. A glass of crystalline thermoplastic resin A, which is a thermo-adhesive resin component, of a core-sheath type composite undrawn yarn having a transition point lower than the melting point of crystalline thermoplastic resin A by 20 ° C. or more and taken up at a spinning speed of 150 to 1800 m / min. A constant length heat treatment is performed at a temperature 0.5 to 1.3 times higher than both the transition point and the glass transition point of the fiber-forming resin component, and then heat treatment is performed under no tension at a temperature 5 ° C. or more higher than the constant length heat treatment temperature. The method for producing a heat-adhesive conjugate fiber according to any one of claims 7 to 10, wherein: 緊張下の定長熱処理を温水中で、無緊張下の熱処理を熱風中で行うことを特徴とする、請求項10〜14のいずれか1項記載の熱接着性複合繊維の製造方法。   The method for producing a thermoadhesive conjugate fiber according to any one of claims 10 to 14, wherein the constant-length heat treatment under tension is performed in warm water and the heat treatment under no tension is performed in hot air.
JP2006028314A 2006-02-06 2006-02-06 Thermal adhesive composite fiber and method for producing the same Expired - Fee Related JP5021938B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006028314A JP5021938B2 (en) 2006-02-06 2006-02-06 Thermal adhesive composite fiber and method for producing the same
PCT/JP2007/052290 WO2007091662A1 (en) 2006-02-06 2007-02-02 Heat-bondable conjugated fiber and process for production thereof
US12/278,323 US7674524B2 (en) 2006-02-06 2007-02-02 Thermoadhesive conjugate fiber and manufacturing method of the same
KR1020087021687A KR101415384B1 (en) 2006-02-06 2007-02-02 Heat-bondable conjugated fiber and process for production thereof
CN200780004645.0A CN101379232B (en) 2006-02-06 2007-02-02 Thermoadhesive conjugate fiber and manufacturing method of the same
DK07708274.1T DK1985729T3 (en) 2006-02-06 2007-02-02 Heat-adhering conjugated fiber as well as process for its preparation
EP07708274A EP1985729B1 (en) 2006-02-06 2007-02-02 Heat-bondable conjugated fiber and process for production thereof
MYPI20082953A MY146829A (en) 2006-02-06 2007-02-02 Thermoadhesive conjugate fiber and manufacturing method of the same
TW096104131A TW200745393A (en) 2006-02-06 2007-02-05 Heat-bondable conjugated fiber and process for production thereof
HK09103297.5A HK1125142A1 (en) 2006-02-06 2009-04-07 Heat-bondable conjugated fiber and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028314A JP5021938B2 (en) 2006-02-06 2006-02-06 Thermal adhesive composite fiber and method for producing the same

Publications (3)

Publication Number Publication Date
JP2007204901A true JP2007204901A (en) 2007-08-16
JP2007204901A5 JP2007204901A5 (en) 2008-10-02
JP5021938B2 JP5021938B2 (en) 2012-09-12

Family

ID=38484606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028314A Expired - Fee Related JP5021938B2 (en) 2006-02-06 2006-02-06 Thermal adhesive composite fiber and method for producing the same

Country Status (2)

Country Link
JP (1) JP5021938B2 (en)
CN (1) CN101379232B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303035A (en) * 2006-05-12 2007-11-22 Teijin Fibers Ltd Spontaneously elongative and thermo conjugate fiber and method for producing the same
JP2013053387A (en) * 2011-09-02 2013-03-21 Teijin Fibers Ltd Heat-bonding composite fiber and method for producing the same
WO2014050368A1 (en) 2012-09-28 2014-04-03 ユニ・チャーム株式会社 Absorbent article
WO2014050340A1 (en) 2012-09-28 2014-04-03 ユニ・チャーム株式会社 Absorbent article
WO2014192976A1 (en) * 2013-05-31 2014-12-04 Es Fibervisions Co., Ltd. Heat-bondable conjugate fiber with excellent softness and nonwoven fabric using the same
JP2016113734A (en) * 2014-12-18 2016-06-23 花王株式会社 Method for producing nonwoven fabric
JP6228699B1 (en) * 2017-03-31 2017-11-08 Esファイバービジョンズ株式会社 Heat-fusible composite fiber and non-woven fabric using the same
WO2022050189A1 (en) 2020-09-01 2022-03-10 Esファイバービジョンズ株式会社 Heat-bondable composite fiber, manufacturing method for same, and non-woven fabric using heat-bondable composite fiber
WO2022065239A1 (en) 2020-09-24 2022-03-31 Esファイバービジョンズ株式会社 Heat-bondable composite fiber, method for producing same and nonwoven fabric using heat-bondable composite fiber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102932B2 (en) * 2012-09-21 2017-03-29 東レ株式会社 Polyphenylene sulfide composite fiber and non-woven fabric
JP6731284B2 (en) * 2016-05-30 2020-07-29 Esファイバービジョンズ株式会社 Heat-fusible composite fiber, method for producing the same, and non-woven fabric using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167418A (en) * 1981-04-03 1982-10-15 Kuraray Co Ltd Heat bonding composite spun fiber
JP2003119625A (en) * 2001-08-09 2003-04-23 Ube Nitto Kasei Co Ltd Fiber for nonwoven fabric and the resultant nonwoven fabric and method for producing them
JP2004124351A (en) * 2002-09-12 2004-04-22 Daiwabo Co Ltd Method for production of latent crimpable polyester conjugated short fibers, and fiber assembly, and nonwoven fabric
JP2004218183A (en) * 2002-12-24 2004-08-05 Kao Corp Hot-melt conjugate fiber
WO2005021850A1 (en) * 2003-08-28 2005-03-10 Daiwabo Co., Ltd. Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082720A (en) * 1988-05-06 1992-01-21 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
JP2000336526A (en) * 1999-06-01 2000-12-05 Toyobo Co Ltd Thermally adhesive composite fiber and its production
CN100339520C (en) * 2002-12-24 2007-09-26 花王株式会社 Hot-melt conjugate fiber
JP4758804B2 (en) * 2005-04-12 2011-08-31 ダイワボウホールディングス株式会社 Non-woven

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167418A (en) * 1981-04-03 1982-10-15 Kuraray Co Ltd Heat bonding composite spun fiber
JP2003119625A (en) * 2001-08-09 2003-04-23 Ube Nitto Kasei Co Ltd Fiber for nonwoven fabric and the resultant nonwoven fabric and method for producing them
JP2004124351A (en) * 2002-09-12 2004-04-22 Daiwabo Co Ltd Method for production of latent crimpable polyester conjugated short fibers, and fiber assembly, and nonwoven fabric
JP2004218183A (en) * 2002-12-24 2004-08-05 Kao Corp Hot-melt conjugate fiber
WO2005021850A1 (en) * 2003-08-28 2005-03-10 Daiwabo Co., Ltd. Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303035A (en) * 2006-05-12 2007-11-22 Teijin Fibers Ltd Spontaneously elongative and thermo conjugate fiber and method for producing the same
JP2013053387A (en) * 2011-09-02 2013-03-21 Teijin Fibers Ltd Heat-bonding composite fiber and method for producing the same
WO2014050368A1 (en) 2012-09-28 2014-04-03 ユニ・チャーム株式会社 Absorbent article
WO2014050340A1 (en) 2012-09-28 2014-04-03 ユニ・チャーム株式会社 Absorbent article
US9504767B2 (en) 2012-09-28 2016-11-29 Unicharm Corporation Absorbent article
US9724249B2 (en) 2012-09-28 2017-08-08 Unicharm Corporation Absorbent article
WO2014192976A1 (en) * 2013-05-31 2014-12-04 Es Fibervisions Co., Ltd. Heat-bondable conjugate fiber with excellent softness and nonwoven fabric using the same
JP2016113734A (en) * 2014-12-18 2016-06-23 花王株式会社 Method for producing nonwoven fabric
JP6228699B1 (en) * 2017-03-31 2017-11-08 Esファイバービジョンズ株式会社 Heat-fusible composite fiber and non-woven fabric using the same
WO2018179464A1 (en) * 2017-03-31 2018-10-04 イーエス ファイバービジョンズ (スージョウ) カンパニーリミテッド Heat-fusible composite fiber and nonwoven fabric using same
JP2018172827A (en) * 2017-03-31 2018-11-08 Esファイバービジョンズ株式会社 Heat-fusible composite fiber and nonwoven fabric using the same
KR20200055686A (en) * 2017-03-31 2020-05-21 이에스 화이바비젼즈 (수저우) 컴퍼니 리미티드 Heat-sealable composite fiber and non-woven fabric using the same
KR102256324B1 (en) * 2017-03-31 2021-05-26 이에스 화이바비젼즈 (수저우) 컴퍼니 리미티드 Heat-sealable composite fiber and non-woven fabric using the same
TWI776814B (en) * 2017-03-31 2022-09-11 大陸商藝愛絲維順(蘇州)纖維有限公司 Heat-fusible composite fibers and nonwoven fabrics and products using the same
US11519102B2 (en) 2017-03-31 2022-12-06 Es Fibervisions (Suzhou) Co., Ltd. Thermo-fusible conjugated fibers and nonwoven fabric using same
WO2022050189A1 (en) 2020-09-01 2022-03-10 Esファイバービジョンズ株式会社 Heat-bondable composite fiber, manufacturing method for same, and non-woven fabric using heat-bondable composite fiber
KR20230048338A (en) 2020-09-01 2023-04-11 이에스 화이바비젼즈 가부시키가이샤 Thermally adhesive composite fiber, its manufacturing method and nonwoven fabric using thermally adhesive composite fiber
WO2022065239A1 (en) 2020-09-24 2022-03-31 Esファイバービジョンズ株式会社 Heat-bondable composite fiber, method for producing same and nonwoven fabric using heat-bondable composite fiber
JP2022052859A (en) * 2020-09-24 2022-04-05 Esファイバービジョンズ株式会社 Heat adhesive composite fiber, method for producing the same and non-woven fabric using heat adhesive composite fiber

Also Published As

Publication number Publication date
CN101379232A (en) 2009-03-04
JP5021938B2 (en) 2012-09-12
CN101379232B (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5021938B2 (en) Thermal adhesive composite fiber and method for producing the same
JP4820211B2 (en) Self-extensible thermoadhesive conjugate fiber and method for producing the same
KR101415384B1 (en) Heat-bondable conjugated fiber and process for production thereof
JP4027728B2 (en) Nonwoven fabric made of polyester staple fibers
KR100954704B1 (en) Machine crimped synthetic fiber having latent three-dimensional crimpability and method for production thereof
JP4881026B2 (en) Heat-adhesive conjugate fiber for airlaid nonwoven fabric and method for producing the same
JP4856435B2 (en) Thermal adhesive composite fiber and method for producing the same
JP2003003334A (en) Crimped conjugate fiber, method for manufacturing the same and nonwoven fabric using the same
WO2007091665A1 (en) Process for production of polyester fiber for air-laid nonwoven fabrics
JP4323507B2 (en) Polyester short fiber
JP2003171860A (en) Fiber for air laid nonwoven fabric
JP2008169509A (en) Heat-bonding conjugated fiber and method for producing the same
JP2013133571A (en) Thermally adhesive conjugated fiber having high mechanical crimping performance and method for producing the same
JP4955278B2 (en) Polyester fiber for airlaid nonwoven fabric and method for producing the same
JP4310170B2 (en) Thermal adhesive composite fiber for airlaid nonwoven fabric
JP4945004B2 (en) Method for producing polyester fiber for airlaid nonwoven fabric
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JP2011195978A (en) Heat-bonding composite fiber for producing wet nonwoven fabric, and method of producing the same
JP2006118067A (en) Method for producing thermoadhesive conjugate fiber
JP2003155628A (en) Polyester-based thermobonding conjugate fiber and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5021938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees