JP2019069445A - Selection method for selecting valuables from metal waste material - Google Patents

Selection method for selecting valuables from metal waste material Download PDF

Info

Publication number
JP2019069445A
JP2019069445A JP2019010592A JP2019010592A JP2019069445A JP 2019069445 A JP2019069445 A JP 2019069445A JP 2019010592 A JP2019010592 A JP 2019010592A JP 2019010592 A JP2019010592 A JP 2019010592A JP 2019069445 A JP2019069445 A JP 2019069445A
Authority
JP
Japan
Prior art keywords
metal waste
metal
sorting
waste material
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019010592A
Other languages
Japanese (ja)
Other versions
JP6635423B2 (en
Inventor
真 張田
Makoto Harita
真 張田
英樹 寺崎
Hideki Terasaki
英樹 寺崎
茂樹 古屋仲
Shigeki Koyanaka
茂樹 古屋仲
幹夫 葛谷
Mikio Kuzutani
幹夫 葛谷
篤美 高杉
Atsumi Takasugi
篤美 高杉
秀二 大和田
Shuji Owada
秀二 大和田
由章 加藤
Yoshiaki Kato
由章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARITA KINZOKU KK
JAPAN ALUMINIUM ASS
JAPAN ALUMINIUM ASSOCIATION
Waseda University
National Institute of Advanced Industrial Science and Technology AIST
Pellenc Selective Technologies Japan Co Ltd
Chubu University
Original Assignee
HARITA KINZOKU KK
JAPAN ALUMINIUM ASS
JAPAN ALUMINIUM ASSOCIATION
Waseda University
National Institute of Advanced Industrial Science and Technology AIST
Pellenc Selective Technologies Japan Co Ltd
Chubu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARITA KINZOKU KK, JAPAN ALUMINIUM ASS, JAPAN ALUMINIUM ASSOCIATION, Waseda University, National Institute of Advanced Industrial Science and Technology AIST, Pellenc Selective Technologies Japan Co Ltd, Chubu University filed Critical HARITA KINZOKU KK
Priority to JP2019010592A priority Critical patent/JP6635423B2/en
Publication of JP2019069445A publication Critical patent/JP2019069445A/en
Application granted granted Critical
Publication of JP6635423B2 publication Critical patent/JP6635423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sorting Of Articles (AREA)
  • Processing Of Solid Wastes (AREA)
  • Special Conveying (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a method for efficiently selecting valuables from a metal waste.MEANS FOR SOLVING THE PROBLEM: A selection method that selects valuables from a metal waste material containing a collected aluminum alloy includes a position detection part arranged on a material conveyance path which detects a position of a metal waste material mounted on a material conveyance path, and transmits the position information to a light selection part arranged on the material conveyance path. Irradiation means of the light selection part applies a laser beam with an irradiation port facing a fed metal waste material based on the position information from the position detection part. The measurement means of the light selection part receives reflected light of the laser beam of the metal waste material with the irradiation means, and acquires reflectance data of the reflected light of the metal waste material. Determination means of the selection part compares reflectance data of the reflected light acquired by the measurement means to reflectance data inherent to content metal registered in the database, and specifies a metal waste material from a content metal type and a content ratio of the metal waste material.SELECTED DRAWING: Figure 7

Description

本発明は、回収した金属廃材から有価物を選別する選別方法に関するものである。   The present invention relates to a sorting method for sorting valuables from recovered metal waste.

工業製品などの新規生産が活性化する一方で廃棄物も大量に発生しており、一般にこれらの廃棄物は、破砕して有用な金属分を回収し、破砕残渣とした後に残渣を焼却処理して、最後に埋め立て処分するものであった。
特開2005−193095号公報
While new products such as industrial products are activated, a large amount of waste is also generated, and in general, these wastes are crushed to recover useful metals, made into crushing residue, and then incinerated the residue. Finally, they were to be disposed of in landfills.
JP 2005-193095 A

金属廃棄物から再生利用可能な有価物を回収するときは、主として選別装置が使用されている。そして、上記のような選別装置では、おもに送風や篩等を利用し、金属と非鉄その他を分ける大まかな重量選別が行われている。このことから、金属廃棄物からの有価物の回収効率が悪く、破砕残渣の中に金属分が多量に含まれたままであることから、破砕残渣を溶解して成分を確定して再生材料として使用するには、溶解のために大量のエネルギーを消費する問題点があったため、環境にも悪影響を及ぼす懸念があった。さらに、再生材料は質が悪く、限定的な製品への使用に留まるため、広範囲の製品に利用できる代替の材料としては成り立たず、したがって新規の地金に頼らざるを得ない状況に変わりはなく、このことから、新規地金の精錬に要するエネルギーも抑えることができなかった。   When recovering recyclable resources from metal waste, sorting equipment is mainly used. And, in the sorting apparatus as described above, rough weight sorting is performed to separate metal, non-ferrous metal, etc. mainly by using a blower, a sieve or the like. From this, the recovery efficiency of valuables from metal waste is poor, and a large amount of metal remains in the crushing residue, so the crushing residue is dissolved to determine the component and used as a regeneration material In order to solve the problem, there was a concern that the environment was adversely affected as it consumed a large amount of energy for dissolution. Furthermore, recycled materials are of poor quality and limited use in products, so they can not be used as alternative materials for a wide range of products, and so they can not but rely on new metals. Because of this, it was not possible to reduce the energy required to refine new metals.

本発明は以上に述べたような実情に鑑み、金属廃棄物から有価物を効率的に選別するとともに、廃棄物の溶解に要するエネルギーの浪費を抑えて環境の保全を図ることのできる金属廃材から有価物を選別する選別方法を提供することにある。   In view of the circumstances as described above, the present invention efficiently separates valuables from metal waste, and from metal waste that can conserve the environment by suppressing the waste of energy required for dissolving the waste. It is to provide a sorting method for sorting valuables.

本発明の請求項1記載の発明は、回収したアルミ合金を含む金属廃材から有価物を選別する選別方法であって、材料搬送路に配設された位置検知部によって、前記材料搬送路に載置された前記金属廃材の位置を検知し、その位置情報を前記材料搬送路に配設された光選別部に伝えるステップと、前記光選別部の照射手段によって、前記位置検知部からの位置情報に基づき、送り込まれた前記金属廃材に照射口を向けてレーザ光を照射するステップと、前記光選別部の測定手段によって、前記照射手段での前記金属廃材の前記レーザ光の反射光を受光するとともに、前記金属廃材の前記反射光の、赤色光と青色光との反射率比の相違を含まない反射率データを取得するステップと、前記光選別部の判定手段によって、前記測定手段で取得した前記反射光の前記反射率データとデータベースに登録された含有金属固有の反射率データを比較し、前記金属廃材の含有金属種及び含有割合から当該金属廃材を特定するステップと、を備えることを特徴する。   The invention according to claim 1 of the present invention is a sorting method for sorting valuables from metal scraps containing recovered aluminum alloy, which is mounted on the material transport path by a position detection unit disposed in the material transport path. The position information from the position detection unit is detected by detecting the position of the disposed metal waste material and transmitting the position information to the light selection unit disposed in the material conveyance path, and the irradiation unit of the light selection unit. And directing the irradiation port to the metal waste material fed thereto to irradiate the laser beam, and receiving the reflected light of the laser light of the metal waste material in the irradiation means by the measuring means of the light sorting unit. And the step of acquiring reflectance data not including the difference in reflectance ratio between red light and blue light of the reflected light of the metal waste material, and the determination unit of the light selection unit acquires the measurement unit Previous Comparing the reflectance data of the reflected light with the reflectance data unique to the contained metal registered in the database, and identifying the metal waste from the metal type and the content ratio of the metal waste. .

本発明の請求項2記載の発明は、上記金属廃材から有価物を選別する選別方法において、形状選別部の撮影手段によって、搬送路を流れる前記金属廃材を撮影し、撮影データから任意の形状のもののみを選択し、選択した前記金属廃材の縦横寸法と厚みを測定するステップと、前記形状選別部の重量測定手段によって、選択した前記金属廃材の重量を測定するステップと、前記形状選別部の分析手段によって、前記撮影手段で得られた前記金属廃材の体積と、前記重量測定手段で得られた重量とから前記金属廃材の比重を算出し、所望の金属廃材を選別するステップと、を備えることを特徴とする。   The invention according to claim 2 of the present invention is the sorting method for sorting valuables from the metal waste material, wherein the metal waste material flowing in the transport path is photographed by the photographing means of the shape classification unit, and the photographed data is of any shape. Selecting only the material, measuring the vertical and horizontal dimensions and thickness of the selected metal waste material, measuring the weight of the selected metal waste material by the weight measuring means of the shape sorting unit, and selecting the shape sorting unit Calculating specific gravity of the metal waste material from the volume of the metal waste material obtained by the photographing means and the weight obtained by the weight measurement means by analysis means, and sorting out the desired metal waste material It is characterized by

本発明の請求項3記載の発明は、上記金属廃材から有価物を選別する選別方法において、材料送出部によって、選別された前記金属廃材を回収部に送り出すステップと、前記材料送出部によって、前記位置検知部からの前記位置情報に基づき、前記金属廃材の送られてくる位置に該当するパドルを跳ね上げ、もしくは打ち下ろすことで、前記金属廃材を前記回収部に飛ばすステップと、を備えることを特徴とする。   The invention according to claim 3 of the present invention is the sorting method for sorting valuables from the metal waste material, comprising the steps of: delivering the metal waste material sorted by the material delivery part to a recovery part; and the material delivery part And D. flying the metal waste material to the collection part by jumping up or down the paddle corresponding to the position where the metal waste material is sent based on the position information from the position detection part. It features.

本発明の請求項4記載の発明は、上記金属廃材から有価物を選別する選別方法において、材料分級部によって、投入された前記金属廃材を一定の粒度に整え、設定よりも小さな細粒物を除くとともに、設定よりも大きな粗粒物を選別対象として次工程に送り込むステップを備えることを特徴とする。   The invention according to claim 4 of the present invention is the sorting method for sorting valuables from the metal waste material, wherein the metal waste material introduced by the material classification section is prepared to a certain particle size, and fine particles smaller than the set are prepared. The method is characterized by including the step of feeding coarse particles larger than the setting to the next step as sorting objects while removing.

本発明のうち請求項1記載の発明によれば、位置検知部で金属廃材の搬送路における位置を検知し、その位置情報を光選別部に伝える。そして、上記の位置情報に基づいて照射手段から対象となる金属廃材に対して照射口を向けてレーザ光を照射し、その金属廃材から反射する赤色光と青色光との反射率比の相違を含まない光反射率を測定手段で測定する。そして、測定手段で得られた反射率を、判定手段では様々な金属の反射率について登録するデータベースと照合し、得られた金属廃材に含まれる含有金属データから合金を特定し、さらに、選別することで有用な金属を精度よく得ることができる。   According to the invention of claim 1 of the present invention, the position detection unit detects the position of the metal waste material in the transport path, and transmits the position information to the light selection unit. Then, the irradiation port is directed to the target metal waste from the irradiation means based on the position information described above, and the laser light is irradiated, and the difference in reflectance ratio between red light and blue light reflected from the metal waste The light reflectance not included is measured by the measuring means. Then, the determination means compares the reflectance obtained by the measurement means with the database registered for the reflectances of various metals, identifies the alloy from the contained metal data contained in the obtained metal waste material, and further sorts it. Thus, useful metals can be obtained precisely.

本発明のうち請求項2記載の発明によれば、投入された金属廃材を撮影し、その撮影された形状により有用なもののみを選別し、さらに、上記の撮影手段により選別された金属廃材について、分析手段で金属廃材の縦横寸法と厚みの各データ、そして、重量測定手段で得られた重量データから比重を算出し、アルミや他の金属と選別する。これにより、請求項1に記載する方法の処理負担を軽減し、選別効率を高めることができる。   According to the invention described in claim 2 of the present invention, the metal scrap material thrown in is photographed, only useful ones are sorted according to the photographed shape, and further, the metal scrap material sorted by the above-mentioned photographing means The specific gravity is calculated from the data of the vertical dimension and the thickness of the metal waste material by the analysis means and the weight data obtained by the weight measurement means, and the specific gravity is sorted out from aluminum and other metals. Thereby, the processing load of the method described in claim 1 can be reduced, and the sorting efficiency can be enhanced.

本発明のうち請求項3記載の発明によれば、例えば、搬送路の進路最後尾の幅方向に並列に複数のパドルを配置している。これにより、位置検知部で取得した搬送路における特定の位置情報に基づき、選別工程後の有用金属廃材の搬送位置を特定し、その位置情報に該当するパドルを跳ね上げ、もしくは打ち下ろして回収部に送り出すことができる。また、その他の金属廃材は、搬送路にそのまま流す。したがって、有用な金属廃材の選別、送り出しを無駄なく効率的に行えるようになる。   According to the third aspect of the present invention, for example, a plurality of paddles are arranged in parallel in the width direction of the trailing end of the transport path. Thereby, based on the specific position information in the conveyance path acquired by the position detection unit, the conveyance position of the useful metal waste material after the sorting process is specified, and the paddle corresponding to the position information is bounced up or punched down and the recovery unit Can be sent out. In addition, other metal waste materials are allowed to flow through the transport path. Therefore, it becomes possible to efficiently sort and deliver useful metal waste without waste.

本発明のうち請求項4記載の発明は、金属廃材を廃材分級部で一定のサイズに分級し、本選別方法による効率的な選別を実現する為に分級後の一定サイズ以下の細粒品は系外に排出する。それ以外の粗粒品を選別対象として次工程に送り込むことで、選別工程の効率化を図ることができる。   Among the present inventions, the invention according to claim 4 classifies metal waste material into a certain size in the waste material classification part, and in order to realize efficient sorting by the present sorting method, fine particles having a certain size or less after classification are Discharge outside the system. The sorting process can be made more efficient by feeding other coarse-grained products to the next process as sorting targets.

実施形態による選別装置の全体を簡単に示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole of the sorting device by embodiment easily. 実施形態による選別装置の各構成部における選別対象となる金属廃材を示すチャート図である。It is a chart figure which shows the metal waste material used as the sorting object in each composition part of the sorting device by an embodiment. 実施形態による材料分級部を示す(a)は内部を透過して示す側面図であり、(b)は、平面図である。(A) which shows the material classification part by embodiment according to embodiment is a side view which penetrates and shows an inside, (b) is a top view. (a)は、形状選別部を示す内部を透過して示す側面図であり、(b)は、平面図である。(A) is a side view which permeate | transmits and shows the inside which shows a shape selection part, (b) is a top view. 形状選別部の作動状態を簡略化して示す(a)は、選別対象となる金属廃材を選別するときの側面図であり、(b)は、非選別対象となる金属廃材を選別するときの側面図である。(A) showing the operation state of the shape sorting unit in a simplified manner is a side view when sorting metal wastes to be sorted; (b) is a side view when sorting metal wastes to be non-sorted FIG. (a)は、材料種選別部を透過して示す側面図であり、(b)は、平面図である。(A) is a side view which permeate | transmits and shows a material type selection part, (b) is a top view. 材料種選別部の作動状態を示す簡略化した側面図である。It is a simplified side view showing the operation state of a material type separation part. (a)は、測定手段が測定した金属廃材の反射光のスペクトルデータを示す図であり、(b)は、スペクトルデータを数値化して含有金属種を判定した数値データを示す図である。(A) is a figure which shows the spectrum data of the reflected light of the metal waste material which the measurement means measured, (b) is a figure which digitizes spectrum data and shows the numerical data which judged the contained metal kind. 材料送出部の作動状態を示す簡略化した平面図である。It is a simplified top view which shows the operating state of a material delivery part.

実施形態の金属廃材から有価物を選別する選別方法について、以下に説明する。
本実施形態による選別装置は、図1と図2に示すように、材料分級部1と、形状選別部2と、材料種選別部3と、材料送出部4と、材料回収部(回収部)5とから構成している。また、上記の各構成部間は、搬送コンベヤ(材料搬送路)34が配置してあり、材料分級部1に投入された金属廃材Ma,Mb,Mcの中の使用者側が設定する有価物が最終的に材料回収部5で回収される構造となっている。さらに、本実施形態では、選別対象となる有価物として、ダイキャスト品・鋳物を主とするアルミ合金を含む金属廃材Mb、サッシ等の展伸材を主とするアルミ合金を含む金属廃材Ma(Al-Zn-Mg系合金、Al-Cu-Mg系合金、Al-Mg系合金、Al-Mn系合金など)を回収するものである。その他の金属廃材Mcは、選別対象外となる。
A sorting method for sorting valuables from metal wastes of the embodiment will be described below.
The sorting apparatus according to the present embodiment, as shown in FIGS. 1 and 2, includes a material sorting unit 1, a shape sorting unit 2, a material type sorting unit 3, a material delivery unit 4, and a material recovery unit (recovery unit). It consists of five. In addition, a conveyer (material conveyance path) 34 is disposed between the above-described respective constituent parts, and valuables set by the user side among the metal wastes Ma, Mb, and Mc introduced to the material classification part 1 are present. Finally, the material is recovered by the material recovery unit 5. Furthermore, in the present embodiment, as valuables to be sorted, metal scraps Mb containing aluminum alloys mainly composed of die cast products and castings and metal scraps Ma containing aluminum alloys mainly composed of wrought materials such as sash Al-Zn-Mg alloy, Al-Cu-Mg alloy, Al-Mg alloy, Al-Mn alloy, etc. are recovered. The other metal waste Mc is not to be sorted.

材料分級部1は、図3(a)(b)のように、チップコンベヤ6と、投入ホッパー7とを有しており、図1もあわせて参照すると、定量切出装置36で所定の大きさに切り出された回収した金属廃材(展伸材を主とする金属廃材Ma、ダイキャスト・鋳物を主とする金属廃材Mb、その他金属廃材Mcの中から選別対象となる金属廃材Ma,Mb)のみを選別するものである。チップコンベヤ6は、非鉄材を除く金属廃材Ma,Mb,Mcのみを搬送する搬送面8に電磁石を配置し、その搬送面8に金属廃材Ma,Mb,Mcを吸着した状態とし、下方で投入した金属廃材Ma,Mb,Mcを一旦上方に運んで非鉄廃材と選別する構造である。この際、搬送面8に吸着されなかった非鉄廃材は、そのまま下方にある非鉄その他回収部35で回収される。投入ホッパー7は、上記のチップコンベヤ6の搬送終点から落下した金属廃材Ma,Mb,Mcを篩9で受け止め、篩9を振動することにより、所定サイズ以下の金属廃材Mcを篩9の下に落とし、また、所定サイズ以上の金属廃材Ma,Mbを篩9の上から次工程に送り出す構造をなしている。   As shown in FIGS. 3 (a) and 3 (b), the material classification unit 1 has a chip conveyor 6 and an input hopper 7, and referring to FIG. Recovered metal scraps that have been cut out in a narrow area (metal scraps Ma consisting mainly of wrought materials, metal scraps Mb mainly consisting of die castings and castings, and metal scraps Ma and Mb to be sorted out from other metal scraps Mc) Is to sort out only. In the chip conveyor 6, an electromagnet is disposed on the conveyance surface 8 for conveying only the metal waste materials Ma, Mb, and Mc excluding non-ferrous materials, and the metal waste materials Ma, Mb, and Mc are adsorbed on the conveyance surface 8 The metal scraps Ma, Mb, and Mc are temporarily transported upward to be separated from non-ferrous scraps. At this time, the nonferrous waste material which has not been adsorbed on the transport surface 8 is recovered as it is by the nonferrous and other recovery portion 35 located below. The input hopper 7 receives the metal wastes Ma, Mb and Mc dropped from the conveying end point of the chip conveyor 6 by the sieve 9 and vibrates the sieve 9 to place the metal waste Mc having a size equal to or less than a predetermined size under the sieve 9 In addition, metal wastes Ma and Mb having a predetermined size or more are sent out from above the sieve 9 to the next process.

形状選別部2は、図4(a)(b)のように、三次元計測器(撮影手段)10と、オートチェッカ(重量測定手段)11と、分析PC(分析手段)12と、選別パドル13から構成しており、各手段は、搬送コンベヤ34上に設置してある。オートチェッカ11は、搬送コンベヤ34から送られた金属廃材Ma,Mbを計量部に載置し、その重量を計量して分析手段12に重量データを送信する。三次元計測器10は、上記したオートチェッカ11にて計量した金属廃材Ma,Mbに対し、その撮影用レンズを向ける姿勢を変えながら対象物の金属廃材Ma,Mbを撮影し、搬送された金属廃材Ma,Mbの形状と縦横寸法、高さ寸法の各サイズデータを分析手段12に送信する。分析PC12は、上記の三次元計測器10からの金属廃材Ma,Mbの縦横寸法、高さ寸法と、オートチェッカ11からの重量データを取得し、対象の金属廃材Ma,Mbが今回の選別対象のものか否かを判定する。具体的には、取得した金属廃材Ma,Mbの体積データと重量データにより算出された比重と、データベースに登録された各種金属の比重の基準値とを照合し、一致または数値の近いもののみを次工程に送るように選別パドル13に指示する。図5(a)(b)を参照すれば、選別パドル13は、振り分けパドル15と、パドル作動機16と、選別シュート17から構成している。選別パドル13は、上側にパドル作動機16を配し、下側に選別シュート17を配している。そして、振り分けパドル15は、パドル作動機16の下側に取り付けてあり、金属廃材Ma,Mbの搬送方向の前後方向に振り分けパドル15を回動する。選別シュート17は、上側に投入口18を有し、さらに、下側の送出口19,20が搬送方向の前後に分岐しており、搬送方向の前側の送出口19の下方には、選別対象外の金属廃材Mbを回収する回収ボックス21が設置してある。また、搬送方向の後側の送出口20の下方には、搬送コンベヤ34が設置してあり、次工程へと選別対象となる金属廃材Maを送り込む。   As shown in FIGS. 4 (a) and 4 (b), the shape sorting unit 2 includes a three-dimensional measuring instrument (shooting means) 10, an automatic checker (weight measuring means) 11, an analysis PC (analyzing means) 12, and a sorting paddle. 13, each means is installed on the transport conveyor 34. The automatic checker 11 places the metal waste materials Ma and Mb sent from the transport conveyor 34 on the weighing unit, weighs the weight, and transmits weight data to the analysis means 12. The three-dimensional measuring device 10 photographs the metal waste materials Ma and Mb of the object while changing the posture to which the photographing lenses are directed to the metal waste materials Ma and Mb measured by the above-described automatic checker 11, and the transported metal Each size data of the shape, vertical and horizontal dimensions and height dimensions of the waste materials Ma and Mb are transmitted to the analysis means 12. The analysis PC 12 acquires vertical and horizontal dimensions and height dimensions of metal scraps Ma and Mb from the three-dimensional measuring instrument 10 described above and weight data from the automatic checker 11, and the target metal scraps Ma and Mb are to be sorted this time. It is determined whether or not the Specifically, the specific gravity calculated from the acquired volume data of metal waste materials Ma and Mb and the specific gravity calculated from the weight data is compared with the reference value of the specific gravity of various metals registered in the database, The sorting paddle 13 is instructed to send to the next step. Referring to FIGS. 5 (a) and 5 (b), the sorting paddle 13 is composed of a sorting paddle 15, a paddle operating device 16, and a sorting chute 17. The sorting paddle 13 has a paddle actuator 16 on the upper side and a sorting chute 17 on the lower side. And the distribution paddle 15 is attached to the lower side of the paddle operating device 16, and rotates the distribution paddle 15 in the front-rear direction of the transport direction of the metal waste materials Ma and Mb. The sorting chute 17 has an insertion port 18 on the upper side, and the lower delivery ports 19 and 20 are branched to the front and the rear in the transport direction, and the sorting target is below the delivery port 19 on the front side in the transport direction. A collection box 21 for collecting the outer metal waste Mb is installed. Further, below the delivery port 20 on the rear side in the transport direction, a transport conveyor 34 is installed, and the metal waste material Ma to be sorted is fed to the next process.

上記のように構成する形状選別部2の作動状態について、図5(a)(b)に基づいて以下に説明する。
材料分級部1で設定範囲内の大きさに調整された金属廃材Ma,Mbは、搬送コンベヤ34で送られてオートチェッカ11に通され、金属廃材Ma,Mbの重量を計量する。そして、オートチェッカ11で計量された金属廃材Ma,Mbのうち、所定の重量範囲内の金属廃材Ma,Mbのみが次工程への搬送コンベヤ34上を搬送される。三次元計測器10では、オートチェッカ11で重量選別された金属廃材Ma,Mbに対し、撮影した画像データから縦横寸法と厚みを計測し、金属廃材Ma,Mbの体積を算出する。分析PC12では、オートチェッカ11からの重量データと三次元計測器10からの体積データに基づいて金属廃材Ma,Mbの比重を算出し、その算出した比重データとデータベースに登録された各種金属の比重値を照合することにより、次工程での選別対象となる展伸材を主とした金属廃材Maと、それ以外のもの(ダイカスト品、鋳物材等)を主とする金属廃材Mbとを識別する信号を選別パドル13に送る。そして、選別パドル13では、分析PC12からの信号を受けて、今回選別対象となる展伸材を主とする金属廃材Maが搬送されるときには、振り分けパドル15を金属廃材Maの搬送方向後側に回動する。このときに、搬送コンベヤ34上の金属廃材Maは、搬送コンベヤ34の搬送時の勢いを利用して次工程に接続する搬送コンベヤ34に飛ばす。また、今回選別対象外のダイキャスト品・鋳物を主とする金属廃材Mbが搬送されたときには、振り分けパドル15が金属廃材Mbの搬送方向前側に回動する。これにより、搬送コンベヤ34上の金属廃材Mbは、搬送方向に飛ばされるが振り分けパドル15に当たり、下方にある選別シュート17に落下し、非展伸材回収部37に搬送される。
The operation state of the shape selection unit 2 configured as described above will be described below based on FIGS. 5 (a) and 5 (b).
The metal wastes Ma and Mb adjusted to the size within the set range by the material classification unit 1 are sent by the transport conveyor 34 and passed through the automatic checker 11 to measure the weight of the metal wastes Ma and Mb. Then, among the metal wastes Ma and Mb measured by the automatic checker 11, only the metal wastes Ma and Mb within the predetermined weight range are conveyed on the conveyer 34 for the next process. The three-dimensional measuring device 10 measures the dimensions and thickness of the metal scraps Ma and Mb sorted by the automatic checker 11 from the photographed image data to calculate the volumes of the metal scraps Ma and Mb. The analysis PC 12 calculates the specific gravity of the metal scraps Ma and Mb based on the weight data from the auto checker 11 and the volume data from the three-dimensional measuring instrument 10, and calculates the specific gravity data and the specific gravity of various metals registered in the database. By comparing the values, metal scrap Ma mainly containing wrought materials to be sorted in the next step and metal scrap Mb mainly consisting of other things (die-cast products, castings etc.) are identified. A signal is sent to the sorting paddle 13. Then, in the sorting paddle 13, when the metal waste material Ma mainly made of wrought material to be sorted is conveyed in response to the signal from the analysis PC 12, the sorting paddle 15 is on the rear side in the conveyance direction of the metal waste material Ma. Rotate. At this time, the metal waste Ma on the transfer conveyor 34 is blown to the transfer conveyor 34 connected to the next process using the momentum of the transfer conveyor 34 during transfer. In addition, when the metal waste Mb mainly made of die cast products and castings not to be sorted is conveyed, the distribution paddle 15 is pivoted to the front side in the conveyance direction of the metal waste Mb. As a result, the metal waste Mb on the transport conveyor 34 is blown away in the transport direction, but hits the distributing paddle 15, falls onto the sorting chute 17 located below and is transported to the non-expanded material recovery section 37.

材料種選別部3は、図6(a)(b)と図7のように、位置検知部21と、光選別機22とから構成している。
位置検知部21は、搬送コンベヤ34の搬送開始側に設置してあり、搬送コンベヤ34の側部に変位センサを設置している。そして、変位センサでは、搬送コンベヤ34上を流れる金属廃材に対し、光を照射し、そのときに金属廃材が反射する反射光を受光部31で受けることで、金属廃材の位置を測定する。そして、位置検知部21で得た金属廃材の搬送コンベヤ34上の位置データは、光選別部22に送信される。
As shown in FIGS. 6 (a) and 6 (b) and FIG. 7, the material type sorting unit 3 is composed of a position detection unit 21 and a light sorting machine 22.
The position detection unit 21 is installed on the transport start side of the transport conveyor 34, and a displacement sensor is installed on the side of the transport conveyor 34. Then, in the displacement sensor, light is irradiated to the metal waste flowing on the transport conveyor 34, and the reflected light reflected by the metal waste at that time is received by the light receiving unit 31, thereby measuring the position of the metal waste. Then, the position data on the transfer conveyor 34 of the metal waste material obtained by the position detection unit 21 is transmitted to the light selection unit 22.

光選別部22は、レーザ照射機(照射手段)24と、測定PC(測定手段)26と、判定PC(判定手段)27とから構成している。レーザ照射機24は、照射口25と、光位置検出素子30と、受光部31とを有している。照射口25は、その発光を投光レンズに通して集光し、金属廃材Maに対してレーザ光を照射する。このときに、照射口25は、上記の位置検知部21から送られた位置データに基づいて金属廃材Maが通過するポイントに向く。また、照射口25から金属廃材Maに照射されたレーザ光の反射光は、受光部31を通して光スペクトル画像データを判定PC27に送るとともに、光位置検出素子30により金属廃材Maにスポットを結ぶ。測定PC26では、レーザ照射機24から送られた金属廃材の反射光の光スペクトル画像データから反射率を測定する。判定PC27は、様々な金属の基準反射率の個別データを蓄積するデータベースを有している。そして、測定PC26より送られた金属廃材Maの反射光の反射率の測定データは、データベースに登録する各種金属の基準反射率データと照合される。この照合作業により、金属廃材Maを構成する含有金属種とその含有の割合から、金属廃材Maがどのような合金から形成されているのかが判定される。この判定データに基づいて金属廃材Maを次工程に送るか否かの選別をする。   The light sorting unit 22 includes a laser irradiator (irradiation unit) 24, a measurement PC (measurement unit) 26, and a judgment PC (determination unit) 27. The laser irradiator 24 has an irradiation port 25, a light position detection element 30, and a light receiving unit 31. The irradiation port 25 passes the emitted light through a projection lens and condenses it, and irradiates the metal scrap material Ma with a laser beam. At this time, the irradiation port 25 faces the point through which the metal waste material Ma passes based on the position data sent from the position detection unit 21 described above. Further, the reflected light of the laser beam irradiated to the metal waste material Ma from the irradiation port 25 sends the light spectrum image data to the judgment PC 27 through the light receiving part 31, and forms a spot on the metal waste material Ma by the light position detection element 30. The measurement PC 26 measures the reflectance from the light spectrum image data of the reflected light of the metal waste material sent from the laser irradiator 24. The determination PC 27 has a database that stores individual data of reference reflectance of various metals. Then, the measurement data of the reflectance of the reflected light of the metal waste material Ma sent from the measurement PC 26 is collated with the reference reflectance data of various metals registered in the database. By this comparison operation, it is determined from what kind of alloy the metal waste material Ma is formed from the contained metal species that constitute the metal waste material Ma and the content thereof. Based on the determination data, it is determined whether to send the metal waste material Ma to the next step.

材料送出部4は、図9のように、複数の鍵盤状をなす送り出しパドル28から構成している。送り出しパドル28は、複数が並列に配置してあり、パドル制御部33の制御で個々の送り出しパドル28が回動する。また、パドル制御部33では、位置検知部21から送られる位置情報に基づき、金属廃材Maが搬送される位置にある送り出しパドル28を回動し、到着したときに該当の金属廃材Maを跳ね上げる、または叩き落とすことで所望の金属廃材Maとその他の金属廃材Maを選別する。   The material delivery unit 4 is composed of a plurality of keyboard-like delivery paddles 28 as shown in FIG. A plurality of delivery paddles 28 are arranged in parallel, and the control of the paddle control unit 33 causes the individual delivery paddles 28 to rotate. In addition, the paddle control unit 33 rotates the feed paddle 28 at the position where the metal waste material Ma is conveyed based on the position information sent from the position detection unit 21 and bounces the metal waste material Ma when it arrives. The desired metal waste material Ma and the other metal waste material Ma are separated by tapping or tapping.

上記のように構成した本実施による選別方法は、以下に示す作用、効果を奏することになる。
材料分級部1にてチップコンベヤ6で搬送することにより、種々の回収廃材のうちの金属材料Ma,Mbを大量に含むもののみが搬送され、その他の金属廃材Mcは、材料搬送路34から外れる。また、投入ホッパー7では、あらかじめ設定した一定範囲内の重量の金属廃材Ma,Mbのみを選別して次工程に送り出すことにより、以後の各選別工程においての選別作業の負担が軽減できる。次に、形状選別機2では、上記の材料分級部1で選別された設定値以上の金属含有量と所定範囲の重量の金属廃材Ma,Mbを三次元計測器10で計測し、金属廃材Ma,Mbの形状と縦横寸法、厚みのデータを取得する。この金属廃材Ma,Mbの形状データを判定PC27で判定することによって、搬送された金属廃材Ma,Mbが展伸材やダイキャスト品、鋳物等の有用なものか判定ができるようになる。上記のような金属廃材の形状の分析により、選別対象となる展伸材のような特定の形状に選別された金属廃材Maを効率的に選別して回収することができる。そして、材料種選別部3では、上記の形状選別部2から送られた特定形状のものに絞られた金属廃材Maに対し、位置検知部21からの位置情報に基づいてレーザ照射機24の照射口25を向けてレーザ光を照射することにより、金属廃材Maからの赤色光と青色光との反射率比の相違を含まない反射光を受光部31で受ける。そして、上記の反射光は、測定PC26にて反射率を測定されることで、判定PC27で反射光の強さを示す図8(a)のようなスペクトルデータから、金属廃材Maに含まれる様々な金属の含有率を図8(b)に示すような数値に変換して分析し、この分析データをデータベースに登録された様々な合金のスペクトルデータと照合することにより、金属廃材がどのような合金により形成してあるのかを特定する。これにより、使用者側にとって有用な金属廃材Maのみを効率的に得ることが可能となる。さらに、材料送出部4では、図9のように、材料種選別部3の判定PC27にて有価物と特定された金属廃材Maに対し、位置検知部21で得た搬送コンベヤ34上の位置情報に基づいて、対応する送り出しパドル28を回動することで、有用な金属廃材Maの回収効率を高めることができる。
The sorting method according to the present embodiment configured as described above exhibits the following actions and effects.
By conveying by the chip conveyor 6 in the material classification unit 1, only those containing a large amount of metal materials Ma and Mb among various kinds of recovered waste materials are conveyed, and the other metal waste materials Mc are separated from the material conveyance path 34 . In addition, in the input hopper 7, by sorting out only the metal wastes Ma and Mb having weights within a predetermined range set in advance and sending out them to the next process, the burden of the sorting operation in each subsequent sorting process can be reduced. Next, in the shape sorting machine 2, the metal wastes Ma and Mb of the metal content and weight of the predetermined range above the set value sorted by the material sorting unit 1 are measured by the three-dimensional measuring instrument 10, and the metal waste Ma , Mb shape, vertical and horizontal dimensions, and thickness data are acquired. By judging the shape data of the metal wastes Ma and Mb by the judgment PC 27, it is possible to judge whether the conveyed metal wastes Ma and Mb are useful such as wrought materials, die cast articles, castings and the like. By analyzing the shape of the metal waste material as described above, the metal waste material Ma sorted into a specific shape such as a wrought material to be sorted can be efficiently sorted and collected. Then, in the material type sorting unit 3, the metal waste material Ma narrowed down to the specific shape sent from the shape sorting unit 2 described above is irradiated with the laser irradiator 24 based on the position information from the position detection unit 21. By directing the port 25 and irradiating the laser light, the light receiving portion 31 receives reflected light which does not include the difference in reflectance ratio between red light and blue light from the metal waste material Ma. And from the spectrum data like FIG. 8 (a) which shows the intensity | strength of reflected light by determination PC27, the above-mentioned reflected light is measured in reflectance by measurement PC26, and various contained in metal waste material Ma The metal content is converted to numerical values as shown in Fig. 8 (b) and analyzed, and this analysis data is compared with the spectrum data of various alloys registered in the database to find out what kind of metal waste is Identify if it is made of an alloy. This makes it possible to efficiently obtain only metal scrap Ma useful to the user. Further, in the material delivery unit 4, as shown in FIG. 9, the position information on the transport conveyor 34 obtained by the position detection unit 21 with respect to the metal waste material Ma identified as valuable by the judgment PC 27 of the material type selection unit 3. By rotating the corresponding delivery paddle 28 based on the above, the recovery efficiency of the useful metal waste material Ma can be enhanced.

実施形態の金属廃材から有価物を選別する選別方法は、上記の実施形態で説明したものの他、特許請求の範囲に記載する構成の範囲内で変更することができる。具体的に、上記実施形態では、材料分級部1として、チップコンベヤ6を使用しているが、非鉄材との選別、および所定サイズ以上の金属廃材Ma,Mbのみを選別できるものであれば、他の手段を用いてもよい。また、形状選別部2と材料種選別部3の配置順については、いずれを先の工程に設置してもよいが、形状選別部2を先の工程に配することによって、展伸材やダイキャスト部品などの比較的有用なものが多い金属廃材Ma,Mbのみを選別して絞り込んでから次工程に移行できるため、選別工程の効率が向上する。さらに、本発明は、図9のように、材料種選別部3のみでも有用な金属廃材Maを選別することが可能である。また、本発明は、上記実施形態ではアルミ合金を回収するものについて挙げたが、それ以外の金属の回収にも適用できる。   The sorting method for sorting valuables from the metal waste material of the embodiment can be modified within the scope of the configuration described in the claims in addition to the one described in the above embodiment. Specifically, in the above embodiment, the chip conveyor 6 is used as the material classification unit 1, but it is possible to sort out nonferrous materials and sort out only metal scraps Ma and Mb having a predetermined size or more, Other means may be used. In addition, regarding the arrangement order of the shape sorting unit 2 and the material type sorting unit 3, any of them may be installed in the previous process, but by arranging the shape sorting unit 2 in the previous process, wrought material and die The efficiency of the sorting process is improved because only metal scraps Ma and Mb, which are relatively useful such as cast parts, can be sorted and narrowed down before shifting to the next process. Furthermore, according to the present invention, as shown in FIG. 9, it is possible to sort out the metal scrap Ma useful only with the material type sorting unit 3. Moreover, although this invention mentioned about what collect | recovered aluminum alloys in the said embodiment, it is applicable also to collection | recovery of metals other than that.

1 材料分級部
2 形状選別部
3 材料種選別部
4 材料送出部
5 材料回収部
6 チップコンベヤ
7 投入ホッパー
8 搬送面
9 篩
10 三次元計測器(撮影手段)
11 オートチェッカ(重量測定手段)
12 分析PC(分析手段)
13 選別パドル
15 振り分けパドル
16 パドル作動機
17 選別シュート
18 投入口
19 送出口
20 送出口
21 位置検知部
22 光選別部
24 レーザ照射機(照射手段)
25 照射口
26 測定PC(測定手段)
27 判定PC(判定手段)
28 送り出しパドル
30 光位置検出素子
31 受光部
33 パドル制御部
34 搬送コンベヤ(材料搬送路)
35 非鉄その他回収部
36 定量切出装置
37 非展伸材回収部
Ma 展伸材を主とする金属廃材
Mb ダイキャスト・鋳物を主とする金属廃材
Mc その他の金属廃材
DESCRIPTION OF SYMBOLS 1 material classification part 2 shape classification part 3 material type classification part 4 material delivery part 5 material collection part 6 tip conveyor 7 input hopper 8 conveyance surface 9 sieve 10 three-dimensional measuring device (photographing means)
11 Automatic checker (weight measurement means)
12 Analysis PC (analysis means)
13 Sorting Paddle 15 Sorting Paddle 16 Paddle Operating Machine 17 Sorting Chute 18 Input Port 19 Outgoing Port 20 Output Port 21 Position Detector 22 Light Sorting Section 24 Laser Irradiator (Irradiation Means)
25 irradiation port 26 measurement PC (measuring means)
27 Judgment PC (judgment means)
28 delivery paddle 30 light position detection element 31 light receiving unit 33 paddle control unit 34 transport conveyor (material transport path)
35 Non-ferrous other recovery section 36 Fixed quantity extraction device 37 Non-stretched material recovery section Ma Waste metal mainly composed of spread material Mb Waste metal mainly composed of die-casting and casting Mc Other waste metal waste

Claims (4)

回収したアルミ合金を含む金属廃材から有価物を選別する選別方法であって、
材料搬送路に配設された位置検知部によって、前記材料搬送路に載置された前記金属廃材の位置を検知し、その位置情報を前記材料搬送路に配設された光選別部に伝えるステップと、
前記光選別部の照射手段によって、前記位置検知部からの位置情報に基づき、送り込まれた前記金属廃材に照射口を向けてレーザ光を照射するステップと、
前記光選別部の測定手段によって、前記照射手段での前記金属廃材の前記レーザ光の反射光を受光するとともに、前記金属廃材の前記反射光の反射率データを取得するステップと、
前記光選別部の判定手段によって、前記測定手段で取得した赤色光と青色光との反射率比の相違を含まない前記反射光の前記反射率データとデータベースに登録された含有金属固有の反射率データを比較し、前記金属廃材の含有金属種及び含有割合から当該金属廃材を特定するステップと、
を備えることを特徴とする回収したアルミ合金を含む金属廃材から有価物を選別する選別方法。
A sorting method for sorting valuables from metal scrap containing recovered aluminum alloy, comprising:
A step of detecting the position of the metal waste placed on the material conveyance path by the position detection unit disposed on the material conveyance path, and transmitting the position information to the light sorting unit provided on the material conveyance path When,
Irradiating the laser waste to the metal waste material fed based on the position information from the position detection unit by the irradiation unit of the light sorting unit;
Receiving reflected light of the laser beam of the metal waste material by the irradiation means by the measurement means of the light sorting unit, and acquiring reflectance data of the reflected light of the metal waste material;
The reflectance data unique to the contained metal registered in the database and the reflectance data of the reflected light not including the difference in reflectance ratio between red light and blue light acquired by the measurement unit by the determination unit of the light sorting unit Comparing the data, and identifying the metal waste material from the metal species and the content ratio of the metal waste material;
And a method of sorting valuables from metal scraps containing recovered aluminum alloy.
形状選別部の撮影手段によって、搬送路を流れる前記金属廃材を撮影し、撮影データから任意の形状のもののみを選択し、選択した前記金属廃材の縦横寸法と厚みを測定するステップと、
前記形状選別部の重量測定手段によって、選択した前記金属廃材の重量を測定するステップと、
前記形状選別部の分析手段によって、前記撮影手段で得られた前記金属廃材の体積と、前記重量測定手段で得られた重量とから前記金属廃材の比重を算出し、所望の金属廃材を選別するステップと、
を備えることを特徴とする請求項1記載の金属廃材から有価物を選別する選別方法。
Photographing the metal waste material flowing in the transport path by the photographing means of the shape sorting unit, selecting only an arbitrary shape from the photographing data, and measuring the vertical dimension and thickness of the selected metal waste material;
Measuring the weight of the selected metal waste material by the weight measurement means of the shape sorting unit;
The specific gravity of the metal waste is calculated from the volume of the metal waste obtained by the photographing means and the weight obtained by the weight measuring means by the analysis means of the shape sorting unit, and the desired metal waste is sorted. Step and
A sorting method for sorting valuables from metal waste according to claim 1, comprising:
材料送出部によって、選別された前記金属廃材を回収部に送り出すステップと、
前記材料送出部によって、前記位置検知部からの前記位置情報に基づき、前記金属廃材の送られてくる位置に該当するパドルを跳ね上げ、もしくは打ち下ろすことで、前記金属廃材を前記回収部に飛ばすステップと、
を備えることを特徴とする請求項1又は2に記載の金属廃材から有価物を選別する選別方法。
Delivering the metal scrap sorted by the material delivery unit to a recovery unit;
The material delivery unit jumps up or down the paddle corresponding to the position where the metal waste material is sent based on the position information from the position detection unit, thereby flying the metal waste material to the recovery unit Step and
A sorting method for sorting valuables from metal waste according to claim 1 or 2, comprising:
材料分級部によって、投入された前記金属廃材を一定の粒度に整え、設定よりも小さな細粒物を除くとともに、設定よりも大きな粗粒物を選別対象として次工程に送り込むステップを備えることを特徴とする請求項1〜3の何れかに記載の金属廃材から有価物を選別する選別方法。

The material classification section prepares the metal scrap material charged to a certain particle size, removes fine particles smaller than the setting, and feeds the next step as a target to be separated for coarse particles larger than the setting. A sorting method for sorting valuables from metal waste according to any one of claims 1 to 3.

JP2019010592A 2019-01-24 2019-01-24 Sorting method to sort valuable materials from metal waste Active JP6635423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019010592A JP6635423B2 (en) 2019-01-24 2019-01-24 Sorting method to sort valuable materials from metal waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019010592A JP6635423B2 (en) 2019-01-24 2019-01-24 Sorting method to sort valuable materials from metal waste

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
JP2005095842A Division JP2006273518A (en) 2005-03-29 2005-03-29 Volume decreasing vessel
JP2015095842A Division JP6506611B2 (en) 2015-05-08 2015-05-08 Sorting device for sorting valuables from metal waste

Publications (2)

Publication Number Publication Date
JP2019069445A true JP2019069445A (en) 2019-05-09
JP6635423B2 JP6635423B2 (en) 2020-01-22

Family

ID=66440863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019010592A Active JP6635423B2 (en) 2019-01-24 2019-01-24 Sorting method to sort valuable materials from metal waste

Country Status (1)

Country Link
JP (1) JP6635423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113516637A (en) * 2021-06-23 2021-10-19 深圳市小绿人网络信息技术有限公司 Method and device for automatically identifying steel scrap types based on images

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142432B1 (en) * 2020-06-09 2020-08-07 안광석 APPARATUS AND method for the treatment of waste aggregate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256231A (en) * 1994-03-18 1995-10-09 Hitachi Ltd Method and device for selective recovery of metal
JPH10192794A (en) * 1997-01-10 1998-07-28 Hitachi Ltd Metal sorting and recovering system
JP2000292348A (en) * 1999-04-07 2000-10-20 Sanki System Engineering Kk Material determination device
JP2007505733A (en) * 2003-09-20 2007-03-15 キネテイツク・リミテツド Apparatus and method for classifying targets in a waste stream
WO2008032834A1 (en) * 2006-09-14 2008-03-20 Panasonic Corporation Metal identifying device and metal identifying method
JP5263776B2 (en) * 2009-01-28 2013-08-14 独立行政法人産業技術総合研究所 Non-magnetic metal identification method
JP5311376B2 (en) * 2008-04-22 2013-10-09 独立行政法人産業技術総合研究所 Non-magnetic metal identification method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256231A (en) * 1994-03-18 1995-10-09 Hitachi Ltd Method and device for selective recovery of metal
JPH10192794A (en) * 1997-01-10 1998-07-28 Hitachi Ltd Metal sorting and recovering system
JP2000292348A (en) * 1999-04-07 2000-10-20 Sanki System Engineering Kk Material determination device
JP2007505733A (en) * 2003-09-20 2007-03-15 キネテイツク・リミテツド Apparatus and method for classifying targets in a waste stream
WO2008032834A1 (en) * 2006-09-14 2008-03-20 Panasonic Corporation Metal identifying device and metal identifying method
JP5311376B2 (en) * 2008-04-22 2013-10-09 独立行政法人産業技術総合研究所 Non-magnetic metal identification method
JP5263776B2 (en) * 2009-01-28 2013-08-14 独立行政法人産業技術総合研究所 Non-magnetic metal identification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113516637A (en) * 2021-06-23 2021-10-19 深圳市小绿人网络信息技术有限公司 Method and device for automatically identifying steel scrap types based on images

Also Published As

Publication number Publication date
JP6635423B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
RU2753152C1 (en) Automatic sorting system of aircraft aluminum waste based on laser-induced breakdown spectroscopy technology
TWI449578B (en) Plastic classification method and classification device
US20100017020A1 (en) Sorting system
US20130264249A1 (en) Sorting pieces of material based on photonic emissions resulting from multiple sources of stimuli
US20130306765A1 (en) Method for separating mineral impurities from calcium carbonate-containing rocks by x-ray sorting
US20040066890A1 (en) Method and apparatus for analysing and sorting a flow of material
JP2019069445A (en) Selection method for selecting valuables from metal waste material
JP2008142692A (en) Material sorter and its method
KR102242948B1 (en) Sorting device and sorting method
US11097283B2 (en) Systems and methods for municipal solid waste recycling facility
JP2009262009A (en) Method of identifying nonmagnetic metal, and device for identifying and recovering the same
WO2012002255A1 (en) Machine for separating waste materials mixed with metal
DK2862950T3 (en) Process for mechanical machining of aluminum scrap
Kelly et al. Automotive aluminum recycling at end of life: a grave-to-gate analysis
JP6506611B2 (en) Sorting device for sorting valuables from metal waste
JP2021503604A5 (en)
KR101017248B1 (en) Scrap waste screening devices
JP2007504936A (en) How to recycle aluminum alloy wheels
JP3924432B2 (en) Metal sorting and recovery system
JP2024506688A (en) Plant and method for sorting scrap
JP6896698B2 (en) Sorting device and transport route status determination method
JP3642172B2 (en) Body crack grain discrimination method and body crack grain sorting device
JP2014215051A (en) Aluminum alloy discrimination method, and aluminum alloy discrimination facility
JP2004205396A (en) Radioactive waste sorter
US20240133830A1 (en) Correction techniques for material classification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6635423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250