JP2019065919A - Retainer - Google Patents

Retainer Download PDF

Info

Publication number
JP2019065919A
JP2019065919A JP2017190223A JP2017190223A JP2019065919A JP 2019065919 A JP2019065919 A JP 2019065919A JP 2017190223 A JP2017190223 A JP 2017190223A JP 2017190223 A JP2017190223 A JP 2017190223A JP 2019065919 A JP2019065919 A JP 2019065919A
Authority
JP
Japan
Prior art keywords
column
cage
roller
outer diameter
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017190223A
Other languages
Japanese (ja)
Inventor
常智 相賀
Tsunetomo Aiga
常智 相賀
琢也 小津
Takuya Ozu
琢也 小津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2017190223A priority Critical patent/JP2019065919A/en
Priority to PCT/JP2018/036326 priority patent/WO2019065996A1/en
Priority to CN201821606287.2U priority patent/CN209262080U/en
Priority to CN201811146810.2A priority patent/CN109578440A/en
Publication of JP2019065919A publication Critical patent/JP2019065919A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/44Removing or ejecting moulded articles for undercut articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/48Cages for rollers or needles for multiple rows of rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/49Cages for rollers or needles comb-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances

Abstract

To suppress cost for manufacturing a resin comb-shaped retainer that can be used for a double-row roller bearing and reduce deformation at injection molding.SOLUTION: A retainer 10 includes: a single annular part 11; multiple pillar parts 12 extending from one side face of the annular part 11 to one side in an axial direction; and multiple pillar parts 12 extending from the other side face of the annular part 11 to the other side in the axial direction. Those pillar parts on both sides may be arranged in the same phase in a circumferential direction.SELECTED DRAWING: Figure 1

Description

この発明は、ころ軸受に用いられる樹脂製の保持器に関し、特に、自動調心ころ軸受のように、二列のころを有する複列ころ軸受に好適なものに関する。   The present invention relates to a resin cage used for a roller bearing, and more particularly to a multi-row roller bearing having double-row rollers, such as a self-aligning roller bearing.

複列ころ軸受に用いる保持器として、いわゆる“くし形保持器”が知られている。くし形保持器は、単一の円環部と、円環部の側面から延びる複数の柱部とで構成されている。   A so-called "comb type cage" is known as a cage used for double row roller bearings. The comb cage is composed of a single annular portion and a plurality of pillars extending from the side surface of the annular portion.

単一の円環部を有するくし形保持器は、その円環部や各柱部は、軸方向に二分割の金型を用い、溶融樹脂を金型のキャビティに射出する射出成形法で保持器全体を一体に製造することが可能である。   In the case of a cage having a single annular portion, the annular portion and each column portion are held by an injection molding method in which a molten resin is injected into a cavity of a mold using a mold divided into two in the axial direction It is possible to manufacture the entire vessel in one piece.

従来のくし形保持器は、円環部に対して軸方向一方側にのみ複数の柱部を有し、金型の開閉方向(軸方向)に関して非対称であるため、成形収縮が不均一となる。その不均一による保持器変形を抑制するため、成形収縮を見越した金型でくし形保持器を成形し、成形収縮後に適切な保持器形状とすることが提案されている(特許文献1)。   The conventional comb-shaped cage has a plurality of pillars only on one side in the axial direction with respect to the annular portion, and is asymmetric with respect to the opening and closing direction (axial direction) of the mold, resulting in uneven molding shrinkage. . In order to suppress the cage deformation due to the non-uniformity, it has been proposed that the comb-shaped cage be molded with a mold in anticipation of molding shrinkage and to have an appropriate cage shape after molding shrinkage (Patent Document 1).

特許第4537920号公報Patent No. 4537920 gazette

しかしながら、特許文献1に開示された変形抑制手法では、成形収縮の現れ方を探る試作や数値解析を繰り返す高度な金型設計を要し、コスト面で不利になることがある。   However, the deformation suppression method disclosed in Patent Document 1 requires high-level mold design that repeatedly performs trial manufacture and numerical analysis to find out how the molding shrinkage appears, which may be disadvantageous in cost.

上述の背景に鑑み、この発明が解決しようとする課題は、複列ころ軸受に用いることが可能な樹脂製のくし形保持器の製造コストを抑え、射出成形時の変形を小さくすることである。   In view of the above-described background, the problem to be solved by the present invention is to suppress the manufacturing cost of a resin-made comb cage that can be used for a double row roller bearing and to reduce the deformation during injection molding .

上記の課題を達成するため、この発明は、単一の円環部と、前記円環部の一側面から軸方向一方側へ延びる複数の柱部と、前記円環部の他側面から軸方向他方側へ延びる複数の柱部とを有し、周方向に隣り合う前記柱部同士の間が、ころを収容可能なポケットになっており、前記柱部が、前記ころの転動面に接触可能な対向面を有し、前記円環部と、前記一方側の複数の柱部と、前記他方側の複数の柱部とが、樹脂によって一体に形成されている保持器に構成したものである。   In order to achieve the above object, the present invention provides a single annular portion, a plurality of pillar portions extending from one side surface of the annular portion to one side in the axial direction, and an axial direction from the other side surface of the annular portion. A plurality of pillars extending to the other side, and between the pillars adjacent in the circumferential direction is a pocket capable of accommodating a roller, and the pillar contacts the rolling surface of the roller In a cage having a possible opposing surface, the annular portion, the plurality of pillars on the one side, and the plurality of pillars on the other side being integrally formed of resin. is there.

上記構成によれば、円環部の軸方向両側から複数の柱部が延びる保持器形状となるので、円環部をまたぐ体積を同等とし、軸方向に関して保持器の非対称性を緩和することができる。これにより、保持器全体を樹脂で一体に形成する射出成形時、成形収縮に伴う保持器の変形が抑制されるので、保持器の変形を小さくすることができる。また、円環部の両側に複数の柱部を配置するだけで前述の変形抑制を図るので、高度な金型設計を避けて製造コストを抑えることが可能である。また、保持器には、二列のポケットが形成されているので、複列のころを収容することも可能である。このように、上記構成によれば、複列ころ軸受に用いることが可能な樹脂製のくし形保持器の製造コストを抑え、射出成形による変形を小さくすることができる。   According to the above configuration, since the plurality of pillars extend in the axial direction from both sides in the axial direction of the annular portion, the volume across the annular portion is made equal and the asymmetry of the cage in the axial direction is alleviated. it can. Thus, during injection molding in which the entire cage is integrally formed of resin, deformation of the cage due to molding shrinkage is suppressed, so deformation of the cage can be reduced. Moreover, since the above-mentioned deformation | transformation suppression is aimed at only by arrange | positioning a some pillar part on the both sides of a torus, it is possible to avoid a high-level metal mold design and to hold down manufacturing cost. In addition, since two rows of pockets are formed in the cage, it is also possible to accommodate double rows of rollers. Thus, according to the above configuration, it is possible to suppress the manufacturing cost of the resin-made comb-type cage that can be used for the double row roller bearing, and to reduce the deformation due to the injection molding.

前記一方側の複数の柱部と、前記他方側の複数の柱部とが、周方向に同位相で配置されていることが好ましい。このようにすると、円環部をまたぐ保持器の形状を軸方向に関して対称にすることができ、これにより、射出成形時の保持器の変形をより抑制することができる。   It is preferable that the plurality of pillars on one side and the plurality of pillars on the other side are arranged in the same phase in the circumferential direction. In this way, the shape of the cage that straddles the annular portion can be made symmetrical with respect to the axial direction, whereby deformation of the cage during injection molding can be further suppressed.

また、前記柱部の前記対向面がアンダーカット部を有する場合、前記柱部が、前記アンダーカット部の周方向裏側に空間を形成するように凹んだ非アンダーカット部を有することが好ましい。ここで、アンダーカット部は、保持器を金型から取り出す際に型開き方向(軸方向)に対して引っ掛かりとなる表面部分に相当し、非アンダーカット部は、型開き方向に対して引っ掛からない表面部分に相当する。このようにすると、柱部のうち、対向面のアンダーカット部における肉厚を薄くして柔軟性をもたせることができ、これにより、型開き時における金型の無理抜きを容易とし、射出成形時の保持器の変形を抑制することができる。   Moreover, when the said opposing surface of the said pillar part has an undercut part, it is preferable that the said pillar part has a non-undercut part recessed so that space may be formed in the circumferential direction back side of the said undercut part. Here, the undercut portion corresponds to a surface portion that is caught in the mold opening direction (axial direction) when removing the holder from the mold, and the non-undercut portion is not caught in the mold opening direction. It corresponds to the surface part. By doing this, it is possible to make the thickness of the undercut portion of the opposing surface of the column portion thin and to be flexible, thereby facilitating the forced removal of the mold at the time of mold opening, and at the time of injection molding Deformation of the cage can be suppressed.

また、自動調心ころ軸受用の保持器にする場合、凸面ころからなる前記ころを前記ポケットに収容可能になっており、前記柱部の前記対向面が、前記ころの転動面に沿う形状をもった凹面部と、軸方向に前記柱部の先端側に向かって次第に前記ころの転動面から周方向に遠ざかる形状をもった後退面部とを有し、前記凹面部が、前記柱部の基端側で当該柱部の外径側及び内径側に延びかつ当該柱部の先端側で当該柱部の内径側に延びており、前記後退面部が、前記柱部の外径面と前記凹面部と当該柱部の先端部とに連続していることが好ましい。自動調心ころ軸受においては、運転時の凸面ころと保持器の挙動を安定化し、軸受の音響や振動を低減する機能を良くするため、なるべく対向面を凸面ころの転動面に沿った形状にすることが好ましい。一方、射出成形時における保持器変形を抑制するため、なるべく対向面にアンダーカット部を形成しないことが好ましい。ころの転動面に沿う形状の凹面部が柱部の基端側で柱部の外径側及び内径側に延びかつ柱部の先端側で柱部の内径側に延びる広い範囲にあれば、前述の機能を良好に実現することができる。一方、軸方向に柱部の先端側に向かって次第にころの転動面に対して周方向に遠ざかる形状の後退面部が柱部の外径面と凹面部と柱部の先端部とに連続していると、後退面部によってアンダーカット形状を緩和ないし無くし、保持器変形の抑制を図ることができる。すなわち、前述の機能の実現と保持器変形の抑制との両立を図ることが可能である。   In the case of a cage for a self-aligning roller bearing, the roller made of convex rollers can be accommodated in the pocket, and the opposing surface of the column portion follows the rolling surface of the roller. And a receding surface portion having a shape gradually moving away from the rolling surface of the roller in the axial direction toward the tip end side of the column portion, the concave portion being the column portion Extending to the outer diameter side and the inner diameter side of the column portion at the proximal end side and extending to the inner diameter side of the column portion at the tip end side of the column portion, and the receding surface portion is the outer diameter surface of the column portion It is preferable that the concave portion and the tip end portion of the column portion be continuous. In a self-aligning roller bearing, the opposing surface should be shaped along the rolling surface of the convex roller as much as possible in order to stabilize the behavior of the convex roller and cage during operation and to improve the function of reducing the acoustic and vibration of the bearing. It is preferable to On the other hand, in order to suppress cage deformation at the time of injection molding, it is preferable not to form an undercut portion on the opposing surface as much as possible. If the concave portion shaped along the rolling surface of the roller extends to the outer diameter side and the inner diameter side of the column at the base end of the column, and extends to the inner diameter side of the column at the tip of the column, The aforementioned functions can be well realized. On the other hand, the receding surface part which is shaped to move away from the rolling surface of the roller gradually in the axial direction toward the tip side of the column part is continuous with the outer diameter surface of the column part, the concave part and the tip part of the column part In this case, the undercut shape can be alleviated or eliminated by the receding surface portion, and the deformation of the cage can be suppressed. That is, it is possible to achieve both the realization of the above-mentioned function and the suppression of the cage deformation.

より具体的には、前記柱部の前記後退面部が、当該柱部の外径面及び先端部のそれぞれと部分的に連続しているとよい。このようにすると、柱部の外径面と対向面間の境界と、対向面と柱部の先端部の境界とにおいて、ころの転動面から遠ざからない部分を残し、当該境界における転動面との間の最小すきまの大きさを維持することが可能なため、運転時のころと保持器の挙動をより安定化することができる。   More specifically, it is preferable that the receding surface portion of the column portion be partially continuous with each of the outer diameter surface and the tip portion of the column portion. In this manner, in the boundary between the outer diameter surface and the opposing surface of the column portion and the boundary between the opposing surface and the tip portion of the column portion, a portion not far from the rolling surface of the roller is left, and rolling at the boundary Since it is possible to maintain the size of the minimum gap between the surfaces, the behavior of the roller and the cage during operation can be further stabilized.

前記柱部の周方向中央部を通って軸方向に延びかつ当該柱部の外径面から径方向に深さをもった溝状空間が形成されており、前記柱部の内径側における周方向両側の前記対向面間の周方向距離が、前記柱部の外径側における前記溝状空間から前記対向面までの周方向距離の75%以上125%以下の範囲に設定されていることが好ましい。このようにすると、対向面に及ぶ成形収縮の影響が柱部の外径側と内径側とで大きく異ならず、より対向面の変形抑制を図ることができる。   A groove-like space extending axially through the circumferential center of the column and having a depth in the radial direction from the outer diameter surface of the column is formed, and the circumferential direction on the inner diameter side of the column is formed. It is preferable that a circumferential distance between the facing surfaces on both sides is set in a range of 75% or more and 125% or less of a circumferential distance from the groove-like space on the outer diameter side of the column to the facing surface. . In this case, the influence of the molding shrinkage on the opposing surface does not greatly differ between the outer diameter side and the inner diameter side of the column, and deformation of the opposing surface can be further suppressed.

この発明は、上記構成の採用により、複列ころ軸受に用いることが可能な樹脂製のくし形保持器の製造コストを抑え、射出成形による変形を小さくすることができる。   According to the present invention, by adopting the above-described configuration, it is possible to suppress the manufacturing cost of a resin-made comb-type cage that can be used for double row roller bearings, and to reduce the deformation due to injection molding.

この発明の第一実施形態に係る保持器の外観を示す斜視図The perspective view which shows the external appearance of the holder | retainer which concerns on 1st embodiment of this invention 図1の保持器を備える複列ころ軸受を示す縦断正面図Longitudinal front view showing a double row roller bearing provided with the cage of FIG. 1 図1の保持器の右側面図Right side view of the cage in Figure 1 図1の保持器の正面図Front view of the cage of FIG. 1 図3中のV−V線の断面図Sectional view of the V-V line in FIG. 3 図4中のVI−VI線の断面図Sectional view of the VI-VI line in FIG. 4 図4中のVII−VII線の断面図Sectional view of the VII-VII line in FIG. 4 図3のポケット付近の拡大図Enlarged view near the pocket in Figure 3 この発明の第二実施形態に係る保持器の外観を示す斜視図The perspective view which shows the external appearance of the holder | retainer which concerns on 2nd embodiment of this invention 図9の保持器の右側面図Right side view of the cage of FIG. 9 図9の保持器の正面図Front view of the cage of FIG. 9 図10中のXII−XII線の断面図Cross section of line XII-XII in FIG. 10 この発明の第三実施形態に係る保持器の外観を示す斜視図The perspective view which shows the external appearance of the holder | retainer which concerns on 3rd embodiment of this invention 図13の保持器の右側面図Right side view of the cage of FIG. 13 図13の保持器の正面図Front view of the cage of FIG. 13 図15中のXVI−XVI線の断面図Cross section of line XVI-XVI in FIG. 図15中のXVII−XVII線の断面図Cross section of line XVII-XVII in FIG. この発明の第四実施形態に係る保持器の外観を示す斜視図The perspective view which shows the external appearance of the holder | retainer which concerns on 4th embodiment of this invention 図18の保持器の右側面図Right side view of the cage of FIG. 18 図18の保持器の正面図Front view of the cage of FIG. 18 図19中のXXI−XXI線の断面図Cross section of line XXI-XXI in FIG. 図20中のXXII−XXII線の断面図Cross section of line XXII-XXII in FIG. 図20中のXXIII−XXIII線の断面図Cross section of line XXIII-XXIII in FIG. 20 図19のポケット付近の拡大図An enlarged view near the pocket in Figure 19 図18のポケットにころを収容した状態の拡大図The enlarged view of the state which accommodated the roller in the pocket of FIG. 18

この発明の一例としての第一実施形態を図1〜図8に基づいて説明する。
図1に示す保持器10は、単一の円環部11と、円環部11の一側面から軸方向一方側へ延びる複数の柱部12と、円環部11の他側面から軸方向他方側へ延びる複数の柱部12とで構成されたくし形のものとなっている。
A first embodiment as an example of the present invention will be described based on FIGS. 1 to 8.
The cage 10 shown in FIG. 1 includes a single annular portion 11, a plurality of pillar portions 12 extending from one side surface of the annular portion 11 to one side in the axial direction, and the other side surface from the other side surface of the annular portion 11. A plurality of pillars 12 extending to the side form a comb shape.

ここで、「軸方向」は、保持器の中心軸(図示省略)に沿った方向のことをいう。また、保持器の中心軸に対して直角な方向のことを「径方向」といい、保持器の中心軸回りの円周方向のことを「周方向」という。図2、図4中の左右方向が軸方向に相当し、図2、図4中の上下方向が径方向に相当する。   Here, the “axial direction” refers to the direction along the central axis (not shown) of the cage. Further, the direction perpendicular to the central axis of the cage is called "radial direction", and the circumferential direction around the central axis of the cage is called "circumferential direction". The horizontal direction in FIGS. 2 and 4 corresponds to the axial direction, and the vertical direction in FIGS. 2 and 4 corresponds to the radial direction.

図1、図3、図4に示すように、保持器10の円環部11は、周方向全周に連続する保持器部分からなる。柱部12は、円環部11から軸方向に突出量を有する保持器部分からなる。円環部の形状は適宜に変更することができる。   As shown in FIG.1, FIG.3, and FIG.4, the annular part 11 of the holder | retainer 10 consists of a holder | retainer part which follows the circumferential direction whole circumference. The column portion 12 is formed of a cage portion having a projecting amount in the axial direction from the annular portion 11. The shape of the annular portion can be changed as appropriate.

円環部11に対して軸方向一方側に位置する柱部12の総数と、円環部11に対して軸方向他方側に位置する柱部12の総数は、同数となっている。保持器10は、周方向に関して柱部12の数に対応の回転対称性を有する形状となっている。   The total number of the column portions 12 located on one side in the axial direction with respect to the annular portion 11 and the total number of the column portions 12 located on the other side in the axial direction with respect to the annular portion 11 are the same. The cage 10 has a shape having rotational symmetry corresponding to the number of column portions 12 in the circumferential direction.

保持器10を円環部11の軸方向中央を通る仮想ラジアル平面を境として半分に考えたとき、軸方向一方側に位置する保持器半部と、軸方向他方側に位置する保持器半部とは、同一の体積に設定されている。   When the cage 10 is considered in half with the virtual radial plane passing through the axial center of the annular portion 11 as a border, a cage half located on one side in the axial direction and a cage half located on the other side in the axial direction And are set to the same volume.

円環部11と全ての柱部12とは、樹脂によって一体に形成されている。保持器10は、射出成形法によって形成されている。なお、その射出成形において用いられる金型は、軸方向に二分割の雌型と雄型とからなり、軸方向に開閉する一般的なものである。   The annular portion 11 and all the column portions 12 are integrally formed of resin. The holder 10 is formed by an injection molding method. Incidentally, a mold used in the injection molding is a general mold which is composed of a female mold and a male mold which are divided into two parts in the axial direction, and opened and closed in the axial direction.

前述の樹脂としては、例えば、PA(ポリアミド)66や46にガラス繊維や炭素繊維を添加したものが挙げられるが、PPS(ポリフェニレンサルファイド)やPEEK( ポリエーテルエーテルケトン)を採用することもできる。   Examples of the above-mentioned resin include those obtained by adding glass fibers and carbon fibers to PA (polyamide) 66 and 46, but PPS (polyphenylene sulfide) and PEEK (polyether ether ketone) can also be adopted.

周方向に隣り合う柱部12同士の間は、ころ20を収容可能なポケット(空間)13になっている。ポケット13は、円環部11の側面部14と、周方向に隣り合う柱部12同士の対向面15とで形成されている。   A pocket (space) 13 capable of accommodating the roller 20 is formed between the pillars 12 adjacent to each other in the circumferential direction. The pocket 13 is formed by the side surface portion 14 of the annular portion 11 and the opposing surface 15 of the pillar portions 12 adjacent in the circumferential direction.

柱部12の対向面15は、ころ20の転動面21に周方向に臨む柱部12の表面部分であってかつ転動面21と接触可能な表面部分からなる。柱部12は、周方向に対称な配置で当該柱部12の周方向両側に対向面15を有する。   The opposing surface 15 of the column portion 12 is a surface portion of the column portion 12 that faces the rolling surface 21 of the roller 20 in the circumferential direction and is a surface portion that can contact the rolling surface 21. The pillar portion 12 has opposing surfaces 15 on both sides in the circumferential direction of the pillar portion 12 in a symmetrical arrangement in the circumferential direction.

保持器10は、図2に示すように、自動調心ころ軸受用のものとなっている。図2に示す自動調心ころ軸受は、複列の軌道31を有する内輪30と、単一の球面軌道41を有する外輪40と、球面軌道41と軌道31、31間を転がる複列のころ20と、各列のころ20間の周方向間隔を保持する保持器10とを備える。   The cage 10 is for self-aligning roller bearings, as shown in FIG. The self-aligning roller bearing shown in FIG. 2 comprises an inner ring 30 having double rows of raceways 31, an outer ring 40 having a single spherical raceway 41, and double rows of rollers 20 rolling between the spherical raceways 41 and the raceways 31, 31. And a cage 10 for maintaining the circumferential spacing between the rollers 20 of each row.

ころ20は、凸面ころからなる。凸面ころは、凸面状(樽状とも呼ばれる)の転動面21と、ころ端面22とを有する。ころ20の転動面21は、ころ中心軸Cr方向の一部で球面軌道41と軌道31とに接触することができる。   The roller 20 is a convex roller. The convex roller has a convex-shaped (also called barrel-shaped) rolling surface 21 and a roller end surface 22. The rolling surface 21 of the roller 20 can contact the spherical raceway 41 and the raceway 31 in a part of the direction of the roller center axis Cr.

自動調心ころ軸受は、外輪40の中心軸(図示省略)に対して内輪30の中心軸(図示省略)が相対的に傾いたとき、複列の軌道31、31と球面軌道41間で複列のころ20が転動することにより、内輪30と外輪40を同軸へ導く調心性を発揮するようになっている。なお、図2では、内輪30、外輪40および保持器10が同軸に配置された状態(調心角0°の状態)を示している。   The self-aligning roller bearing is configured such that when the central axis (not shown) of the inner ring 30 is relatively inclined with respect to the central axis (not shown) of the outer ring 40 By rolling the rollers 20 in the row, alignment is achieved in which the inner ring 30 and the outer ring 40 are coaxially guided. Note that FIG. 2 shows a state in which the inner ring 30, the outer ring 40, and the cage 10 are coaxially arranged (a state in which the alignment angle is 0 °).

図1、図2に示すように、ポケット13に収容されたころ20は、ころ中心軸Crを保持器10の中心軸に対して傾けた姿勢で内輪30及び外輪40間を転動することになる。   As shown in FIGS. 1 and 2, the roller 20 housed in the pocket 13 rolls between the inner ring 30 and the outer ring 40 in a posture in which the roller center axis Cr is inclined to the center axis of the cage 10. Become.

自動調心ころ軸受の組立てに際し、保持器10を内輪30と同軸に配置し、保持器10の二列のポケットを内輪30の径方向に対向させた状態で各ポケットに対しころ20を保持器外径側から収容する組み立てとなる。   When assembling the self-aligning roller bearing, the cage 10 is disposed coaxially with the inner ring 30, and the two rows of pockets of the cage 10 face the radial direction of the inner ring 30. It will be assembled to accommodate from the outer diameter side.

図1に示す柱部12の対向面15は、ポケット13に収容されたころ20の保持器外径側への脱落を防止可能な形状となっている。この脱落防止機能は、上述の組立ての都合上、要求されている。   The opposing surface 15 of the column 12 shown in FIG. 1 has a shape that can prevent the roller 20 housed in the pocket 13 from falling off to the cage outer diameter side. This drop prevention function is required for the convenience of the above-mentioned assembly.

また、柱部12の対向面15は、図2に示すころ20の姿勢に対応させた形状となっている。保持器10の円環部11の側面部14は、図2の状態においてころ端面22ところ中心軸Crの方向に正対する平面状になっている。軸受運転中、保持器10は、柱部12の対向面15ところ20の転動面との接触によって径方向に案内され、円環部11の側面部14ところ端面22との接触によって軸方向に案内される。ころ20と保持器10の挙動を安定化し、自動調心ころ軸受の音響や振動を低減する機能を良くするため、対向面15は、なるべく広い面積でころ20の転動面21に沿う形状とされている。   Moreover, the opposing surface 15 of the pillar part 12 becomes a shape made to respond | correspond to the attitude | position of the roller 20 shown in FIG. The side surface portion 14 of the annular portion 11 of the cage 10 has a planar shape that faces the roller end surface 22 at the center axis Cr in the state of FIG. 2. During operation of the bearing, the cage 10 is radially guided by contact with the rolling surface of the opposing surface 15 of the column 12 and with the rolling surface of the annular part 11, and axially with the contact of the side surface 14 of the annular portion 11 with the end face 22. You will be guided. In order to stabilize the behavior of the roller 20 and the cage 10 and to improve the function of reducing the sound and vibration of the self-aligning roller bearing, the opposing surface 15 has a shape along the rolling surface 21 of the roller 20 with a wide area as much as possible. It is done.

その対向面15は、図1、図5に示すように、柱部12の基端部から先端部まで連続している。なお、柱部12の基端部は、円環部11との境界上の部分からなる。柱部12の先端部は、円環部11から軸方向に最も遠い部分からなる。柱部12の先端部は、径方向に沿った平面状になっている。   The opposing surface 15 is continuous from the proximal end to the distal end of the column 12 as shown in FIGS. 1 and 5. In addition, the base end part of the pillar part 12 consists of a part on the boundary with the annular part 11. The tip end portion of the column portion 12 is composed of a portion farthest from the annular portion 11 in the axial direction. The tip of the column 12 is flat in the radial direction.

柱部12の対向面15の基端部は、円環部11の側面部14に繋がる隅R状になっている。図5〜図8に示すように、対向面15のうち、対向面15の基端部から柱部12の先端部までの部分は、ころ20の転動面21に沿う形状をもった凹面部15aと、軸方向に沿った仮想円筒面に沿う円弧面部15bとからなる。凹面部15a及び円弧面部15bは、それぞれ対向面15の径方向全域に連続している。   The base end portion of the opposing surface 15 of the column portion 12 has a corner R shape connected to the side surface portion 14 of the annular portion 11. As shown in FIG. 5 to FIG. 8, of the facing surface 15, a portion from the base end of the facing surface 15 to the tip end of the column 12 has a concave portion having a shape along the rolling surface 21 of the roller 20. It comprises an arc surface portion 15b along a virtual cylindrical surface along the axial direction. The concave surface portion 15 a and the arc surface portion 15 b are continuous to the entire area of the facing surface 15 in the radial direction.

図1、図2に示すように、設計上の正規の姿勢を取るころ20がころ中心軸Crの中央がポケット13の中央に位置する状態を基準に対向面15の形状を考えたとき、図5、図8に示す凹面部15aは、凹面部15aを任意の径方向位置で周方向に切断した断面上において当該ころ20の転動面21に沿う曲面状であって(図5参照)、かつ凹面部15aを任意の軸方向位置で径方向に切断した断面上においても当該ころ20の転動面21に沿う曲面状でもある(図6、図7参照)。   As shown in FIG. 1 and FIG. 2, when considering the shape of the opposing surface 15 based on the state that the roller 20 taking a regular posture in design is located at the center of the roller center axis Cr at the center of the pocket 13, 5. The concave portion 15a shown in FIG. 8 is a curved surface along the rolling surface 21 of the roller 20 on the cross section obtained by circumferentially cutting the concave portion 15a at any radial position (see FIG. 5). And it is a curved surface shape which meets the rolling surface 21 of the said roller 20 also on the cross section which cut | disconnected the concave part 15a in radial direction in arbitrary axial positions (refer FIG. 6, FIG. 7).

また、凹面部15aは、軸方向に関して、前述の基準状態におけるころ20の転動面21の最大外径部よりも柱部12の先端部に近い位置まで連続している(図1、図5参照)。凹面部15aのうち、当該転動面21の最大外径部よりも柱部12の先端部に近い部分であって、かつころ中心軸を含む仮想円すい面(図2のころ中心軸Crを周方向に一周することで描かれる円すい面)よりも柱部12の外径側に位置する部分が、アンダーカット部に相当する(図6、図7参照)。   In addition, the concave portion 15a continues to a position closer to the tip end of the column 12 than the maximum outer diameter of the rolling surface 21 of the roller 20 in the above-described reference state in the axial direction (FIGS. 1 and 5) reference). Of the concave portion 15a, it is a portion closer to the tip end portion of the column portion 12 than the largest outer diameter portion of the rolling surface 21 and including the roller center axis (peripheral center axis Cr of FIG. The part located in the outer-diameter side of the pillar part 12 rather than the conical surface drawn by 1 round in a direction corresponds to an undercut part (refer FIG. 6, FIG. 7).

円弧面部15bは、柱部12の先端部と凹面部15aとの間に連続しているが、軸方向に沿った表面部なので、アンダーカット部に相当しない。   The arc surface portion 15b is continuous between the tip end portion of the column portion 12 and the concave portion 15a, but since it is a surface portion along the axial direction, it does not correspond to an undercut portion.

図1、図6〜図8に示すように、柱部12は、凹面部15aに含まれたアンダーカット部の周方向裏側に空間を形成するように凹んだ非アンダーカット部16を有する。   As shown in FIGS. 1 and 6 to 8, the column portion 12 has a non-undercut portion 16 recessed to form a space on the back side in the circumferential direction of the undercut portion included in the concave portion 15 a.

非アンダーカット部16は、柱部12の全長に亘って軸方向に延びる溝状空間を形成する。非アンダーカット部16による溝状空間は、柱部12の周方向中央部を通り、かつ柱部12の外径面17から径方向に深さをもっている。また、非アンダーカット部16と交差する任意の仮想ラジアル平面上において、その溝状空間はV形になっている。   The non-undercut portion 16 forms a groove-like space extending in the axial direction along the entire length of the column 12. The groove-like space formed by the non-undercut portion 16 passes through the circumferential direction central portion of the column 12 and has a depth in the radial direction from the outer diameter surface 17 of the column 12. In addition, on any virtual radial plane intersecting the non-undercut portion 16, the groove-like space is V-shaped.

柱部12の外径面17は、柱部12の表面のうち、保持器10の外周に含まれた部分であってかつ周方向に沿った形状の部分からなる。   The outer diameter surface 17 of the column 12 is a portion of the surface of the column 12 that is included in the outer periphery of the cage 10 and has a shape along the circumferential direction.

ここで、柱部12の内径側における周方向両側の対向面15間の周方向距離(図6中のL参照)は、柱部12の外径側における溝状空間(非アンダーカット部16)から対向面15までの周方向距離(図6中のL参照)の75%以上125%以下の範囲に設定されている。この範囲は、柱部12と交差する任意の仮想ラジアル平面上で満足する。柱部12の内径側と外径側の境界は、任意の仮想ラジアル平面上において柱部12の径方向長さを二等分する仮想円周上である。 Here, (see L 1 in FIG. 6) the circumferential distance between the circumferential sides of the opposing surface 15 in the inner diameter side of the pillar portion 12, a groove-like space in the outer diameter side of the pillar portion 12 (the non-undercut portion 16 ) it is set in the circumferential distance (a range of 75% or more 125% or less of the L reference 2) in FIG. 6 to the opposing surface 15 from. This range is satisfied on any virtual radial plane that intersects the column 12. The boundary between the inner diameter side and the outer diameter side of the column 12 is on an imaginary circumference that bisects the radial length of the column 12 on any virtual radial plane.

図6の切断部端面において、対向面15間の周方向距離は、溝状空間(非アンダーカット部16)と対向面15間の周方向距離の100%程度の長さである。また、図7の切断部端面において、対向面15間の周方向距離は、溝状空間(非アンダーカット部16)と対向面15間の周方向距離の80%程度の長さである。また、図8に現れた対向面15の先端部(柱部12の先端面との境界)上において、対向面15間の周方向距離は、溝状空間(非アンダーカット部16)と対向面15間の周方向距離の75%の長さである。また、図8に現れた対向面15の基端部(円環部11との境界)上において、対向面15間の周方向距離は、溝状空間(非アンダーカット部16)と対向面15間の周方向距離の125%の長さである。   In the end face of the cut portion in FIG. 6, the circumferential distance between the facing surfaces 15 is about 100% of the circumferential distance between the groove space (non-undercut portion 16) and the facing surface 15. Further, at the end face of the cut portion in FIG. 7, the circumferential distance between the facing surfaces 15 is about 80% of the circumferential distance between the groove space (non-undercut portion 16) and the facing surface 15. Further, on the tip end portion of the facing surface 15 (the boundary with the tip end surface of the column portion 12) shown in FIG. 8, the circumferential distance between the facing surface 15 is the grooved space (non-undercut portion 16) and the facing surface The length is 75% of the circumferential distance between the fifteen. Further, on the base end portion (the boundary with the annular portion 11) of the facing surface 15 shown in FIG. 8, the circumferential distance between the facing surfaces 15 is the groove-like space (non-undercut portion 16) and the facing surface 15 125% of the circumferential distance between them.

図1に示す保持器10は上述のようなものであり、円環部11の軸方向両側から複数の柱部12が延びる保持器形状となるので、円環部11をまたぐ体積を同等とし(軸方向一方側の保持器半部と、軸方向他方側の保持器半部との体積を同じにし)、軸方向に関して保持器10の非対称性を緩和することができる。これにより、保持器10の全体を樹脂で一体に形成する射出成形時、成形収縮に伴う保持器10の変形が抑制されるので、射出成形時の保持器10の変形を小さくすることができる。また、円環部11の両側に複数の柱部12を配置するだけで前述の変形抑制を図るので、高度な金型設計を避けて保持器10の製造コストを抑えることが可能である。また、保持器10には、二列のポケット13が形成されているので、複列のころ20を収容することも可能である。このように、保持器10は、自動調心ころ軸受のような複列ころ軸受に用いることが可能な樹脂製のくし形保持器の製造コストを抑え、射出成形による変形を小さくすることができる。   The cage 10 shown in FIG. 1 is as described above, and has a cage shape in which a plurality of pillars 12 extend from both sides in the axial direction of the annular portion 11, so that the volumes straddling the annular portion 11 are made equal ( It is possible to reduce the asymmetry of the cage 10 in the axial direction by making the volume of the cage half on the one axial side equal to the volume of the cage half on the other axial side). Thus, during injection molding in which the entire cage 10 is integrally formed of resin, deformation of the cage 10 accompanying molding shrinkage is suppressed, so deformation of the cage 10 during injection molding can be reduced. Moreover, since the above-mentioned deformation | transformation suppression is aimed at only by arrange | positioning the several pillar part 12 on both sides of the annular ring part 11, it is possible to avoid the advanced metal mold design and to hold down the manufacturing cost of the holder | retainer 10. Moreover, since the two rows of pockets 13 are formed in the holder 10, it is also possible to accommodate double rows of rollers 20. Thus, the cage 10 can reduce the manufacturing cost of a resin-made comb cage that can be used for a double row roller bearing such as a self-aligning roller bearing, and can reduce deformation due to injection molding .

また、保持器10は、図6、図7に示すように、柱部12が対向面15のアンダーカット部の周方向裏側に空間を形成するように凹んだ非アンダーカット部16を有するので、柱部12のうち、対向面15のアンダーカット部における肉厚を薄くして柔軟性をもたせることができる。このため、型開き時、金型によって押圧された対向面15のアンダーカット部が柱部12の周方向中央側へ撓み易くなり、金型の無理抜きが容易となる。これにより、保持器10は、射出成形時の保持器10の変形を抑制することができる。   Further, as shown in FIGS. 6 and 7, the cage 10 has the non-undercut portion 16 recessed so as to form a space on the back side in the circumferential direction of the undercut portion of the opposing surface 15 as shown in FIGS. The thickness of the undercut portion of the facing surface 15 in the column portion 12 can be reduced to provide flexibility. For this reason, at the time of mold opening, the undercut portion of the opposing surface 15 pressed by the mold is easily bent to the circumferential center side of the column portion 12, and the forced removal of the mold is facilitated. Thereby, the holder 10 can suppress the deformation of the holder 10 at the time of injection molding.

また、図1に示す保持器10は、図6、図8に示すように、柱部12の内径側における対向面15間の周方向距離Lが柱部12の外径側における溝状空間(非アンダーカット部16)と対向面15間の周方向距離Lの75%以上125%以下の範囲に設定されているので、対向面15の周方向裏側での肉厚の急激な変化が抑えられ、対向面15に及ぶ成形収縮の影響が柱部12の外径側と内径側とで大きく異ならず、より対向面15の変形抑制を図ることができる。 Further, as shown in FIG. 6 and FIG. 8, the cage 10 shown in FIG. 1 is a groove-like space in which the circumferential distance L 1 between the facing surfaces 15 on the inner diameter side of the column 12 is the outer diameter side of the column 12. because it is set in the circumferential distance range of 75% to 125% or less of the L 2 between the (non-undercut portion 16) and the counter surface 15, an abrupt change in wall thickness in the circumferential direction rear side of the facing surface 15 The deformation of the opposing surface 15 does not differ greatly between the outer diameter side and the inner diameter side of the column 12, and the deformation of the opposing surface 15 can be further suppressed.

この発明の第二実施形態を図9〜図12に基づいて説明する。なお、以下では、第一実施形態との相違点を述べるにとどめ、対応の構成要素に同一の要素名を用い、特に同一の構成要素には同一の符号を引き続き用いる。   A second embodiment of the present invention will be described based on FIGS. In the following, only differences from the first embodiment will be described, and the same element name is used for the corresponding component, and in particular, the same reference numeral is continuously used for the same component.

図9〜図12に示す保持器50は、円環部11から軸方向一方側へ延びる複数の柱部12と、円環部11から軸方向他方側へ延びる複数の柱部12とが、周方向に同位相で配置されている点で第一実施形態と相違する。   In the cage 50 shown in FIGS. 9 to 12, a plurality of column portions 12 extending from the annular portion 11 to one side in the axial direction and a plurality of columnar portions 12 extending to the other side in the axial direction from the annular portion 11 are circumferentially It differs from the first embodiment in that it is arranged in the same phase in the direction.

樹脂を射出するゲート(図9にゲート痕51の位置を示す)は、両列の柱部12間に位置する円環部11の内径面における周方向中央部に配置されている。該当する柱部12間の18か所のうち、9か所に、ゲートを周方向に均等間隔で配置することにより、射出した樹脂がぶつかり合うウェルドがゲート非配置の柱部12の周方向中央に生じるようになっている。   The gate for injecting the resin (the position of the gate mark 51 is shown in FIG. 9) is disposed at the circumferentially central portion of the inner diameter surface of the annular portion 11 located between the column portions 12 in both rows. By arranging the gates at equal intervals in the circumferential direction at nine locations among the 18 locations between the corresponding pillars 12, the weld center at which the injected resin collides is the circumferential center of the pillar 12 where the gate is not disposed Is supposed to occur.

保持器50は、円環部11をまたぐ保持器形状が軸方向に関して対称になっているので(つまり、軸方向一方側の保持器半部と、軸方向他方側の保持器半部とが軸方向に対称形)、射出成形時の保持器50の変形をより抑制することができる。   In the case of the cage 50, the cage shape straddling the annular portion 11 is symmetrical with respect to the axial direction (that is, the cage half on one axial side and the cage half on the other axial side are axial It is possible to further suppress deformation of the holder 50 at the time of injection molding, which is symmetrical in the direction.

この発明の第三実施形態を図13〜図17に基づいて説明する。
図13〜図17に示す保持器60は、非アンダーカット部61が第一実施形態よりも周方向及び径方向に大きく形成されている点で第一実施形態と相違する。
A third embodiment of the present invention will be described on the basis of FIGS.
The cage 60 shown in FIGS. 13 to 17 differs from the first embodiment in that the non-undercut portion 61 is formed larger in the circumferential direction and the radial direction than in the first embodiment.

柱部62の非アンダーカット部61は、周方向に沿う溝底面63を有する。溝底面63は、柱部62の外径面64よりも柱部62の径方向中央に近い位置にある。非アンダーカット部61の周方向長さLは、柱部12の外径側における溝状空間(非アンダーカット部61)と対向面15間の周方向距離Lの2倍を超える大きさに設定されている。このため、柱部62の内径側における対向面15間の周方向距離Lは、柱部62の外径側における溝状空間(非アンダーカット部61)と対向面15間の周方向距離Lよりも明らかに大きく、2倍以上に設定されている。 The non-undercut portion 61 of the column portion 62 has a groove bottom surface 63 along the circumferential direction. The groove bottom surface 63 is closer to the radial center of the column portion 62 than the outer diameter surface 64 of the column portion 62. Circumferential length L 3 of the non-undercut portion 61 is greater than twice the circumferential distance L 2 between the facing surfaces 15 and the groove-shaped space (non-undercut portion 61) at the outer diameter side of the pillar portion 12 size It is set to. Therefore, the circumferential distance L 1 between the facing surfaces 15 in the inner diameter side of the pillar portion 62, the circumferential distance between the groove-like space (non-undercut portion 61) and the counter surface 15 at the outer diameter side of the pillar portion 62 L obviously greater than 2, is set to more than double.

上述のように、保持器60は、周方向及び径方向に比較的大きな非アンダーカット部61が形成されているので、柱部12のうち、対向面15のアンダーカット部における肉厚を第一実施形態よりも一層薄くしてより柔軟性をもたせることができる。このため、保持器60は、射出成形時、より対向面15の変形抑制を図ることができる。   As described above, since the cage 60 is formed with the relatively large non-undercut portion 61 in the circumferential direction and the radial direction, the thickness of the undercut portion of the opposing surface 15 of the column portion 12 is It can be thinner and more flexible than the embodiment. Therefore, the retainer 60 can further suppress deformation of the facing surface 15 at the time of injection molding.

この発明の第四実施形態を図18〜図25に基づいて説明する。
図18〜図20に示す保持器70は、柱部71の対向面72の形状が変更されている点で第一実施形態と相違する。
A fourth embodiment of the present invention will be described on the basis of FIGS.
The cage 70 shown in FIGS. 18 to 20 differs from the first embodiment in that the shape of the facing surface 72 of the column 71 is changed.

柱部71の対向面72は、図18、図21に示すように、ころ20の転動面21に沿う形状をもった凹面部72aと、軸方向に柱部71の先端側に向かって次第にころ20の転動面21から周方向に遠ざかる形状をもった後退面部72bと、軸方向に沿った円弧面部72cとを有する。柱部71の先端部の周囲は面取り状になっており、対向面72の先端部は、柱部71の先端部の面取りに連続している。   As shown in FIGS. 18 and 21, the opposing surface 72 of the column 71 has a concave portion 72 a having a shape along the rolling surface 21 of the roller 20 and an end face of the column 71 gradually in the axial direction. The roller 20 has a receding surface portion 72 b having a shape moving away from the rolling surface 21 of the roller 20 in the circumferential direction, and an arc surface portion 72 c along the axial direction. The periphery of the end of the column 71 is chamfered, and the end of the opposing surface 72 is continuous with the chamfer of the end of the column 71.

対向面72の凹面部72aは、図18、図21、図22に示すように、柱部71の基端側で柱部71の外径側及び内径側に延びている。また、凹面部72aは、柱部71の先端側で柱部71の内径側に延びている。   The concave surface portion 72a of the opposing surface 72 extends to the outer diameter side and the inner diameter side of the column portion 71 at the base end side of the column portion 71, as shown in FIGS. Further, the concave portion 72 a extends to the inner diameter side of the column portion 71 at the tip end side of the column portion 71.

対向面72の後退面部72bは、図18、図21、図23に示すように、凹面部72aよりも周方向に後退しており、柱部71の外径面17と凹面部72aと柱部71の先端部とに連続している。後退面部72bは、柱部71の外径側において第一実施形態のアンダーカット部に相当する部分を除去するように形状及び形成範囲が設定されている。このため、後退面部72bは、凹面部72aと大きな斜辺で繋がる概ね三角形状になっている。   As shown in FIGS. 18, 21 and 23, the receding surface portion 72b of the facing surface 72 recedes in the circumferential direction more than the concave portion 72a, and the outer diameter surface 17 of the column portion 71, the concave portion 72a and the column portion It is continuous with the tip of 71. The shape and formation range of the receding surface portion 72 b are set so as to remove the portion corresponding to the undercut portion of the first embodiment on the outer diameter side of the column portion 71. For this reason, the receding surface portion 72b has a substantially triangular shape connected to the concave portion 72a on a large oblique side.

また、後退面部72bは、図21、図23〜図25に示すように、柱部71の外径面17と部分的に連続している。凹面部72aと柱部71の外径面17との境界となる外径縁e1は、点p1と円環部11との間に連続する縁部分からなる。後退面部72bと柱部71の外径面17との境界となる外径縁e2は、点p1と柱部71の先端部との間に連続する縁部分からなる。凹面部72aの外径縁e1と、ころ20の転動面21との間の最小すきまは、第一実施形態と同じに設定されている。後退面部72bの外径縁e2ところ20の転動面21との間のすきまは、凹面部72aの外径縁e1ところ20の転動面21との間のすきまよりも広い。   The receding surface 72b is partially continuous with the outer diameter surface 17 of the column 71, as shown in FIGS. 21 and 23-25. An outer diameter edge e1 serving as a boundary between the concave portion 72a and the outer diameter surface 17 of the column portion 71 is an edge portion continuous between the point p1 and the annular portion 11. An outer diameter edge e2 that is a boundary between the receding surface portion 72b and the outer diameter surface 17 of the column portion 71 is an edge portion continuous between the point p1 and the tip portion of the column portion 71. The minimum clearance between the outer diameter edge e1 of the concave portion 72a and the rolling surface 21 of the roller 20 is set to be the same as in the first embodiment. The gap between the outer diameter edge e2 and the rolling surface 21 of the recessed surface portion 72b and the rolling surface 21 is wider than the gap between the outer diameter edge e1 and the rolling surface 21 of the concave portion 72a and the rolling surface 21.

また、後退面部72bは、柱部71の先端部と部分的に連続している。後退面部72bと柱部71の先端部との境界となる先端縁e3は、点p2と柱部71の外径面17との間に連続する縁部分からなる。円弧面部72cと柱部71の先端部との境界となる先端縁e4は、点p2と柱部71の先端部との間に連続する縁部分からなる。円弧面部72cの先端縁e4と、ころ20の転動面21との間の最小すきまは、第一実施形態と同じに設定されている。後退面部72bの先端縁e3ところ20の転動面21との間のすきまは、円弧面部72cの先端縁e4ところ20の転動面21との間のすきまよりも広い。   Further, the receding surface portion 72 b is partially continuous with the tip end portion of the column portion 71. The front end edge e3 which is the boundary between the receding surface 72b and the front end of the column 71 is an edge portion continuous between the point p2 and the outer diameter surface 17 of the column 71. The tip end edge e4 which is the boundary between the arc surface portion 72c and the tip end portion of the column portion 71 is an edge portion continuous between the point p2 and the tip portion of the column portion 71. The minimum clearance between the tip end edge e4 of the arc surface portion 72c and the rolling surface 21 of the roller 20 is set to be the same as that in the first embodiment. The clearance between the leading edge e3 and the rolling surface 21 of the receding surface 72b and the rolling surface 21 is wider than the clearance between the leading edge e4 and the rolling surface 21 of the circular arc surface 72c.

対向面72の円弧面部72cは、ころ20の転動面21の最大外径部と周方向に対向する位置で対向面72の凹面部72aと連続している。このため、柱部71の内径側においても第一実施形態のアンダーカット部に相当する部分が除去されている。   The arcuate surface portion 72c of the opposing surface 72 is continuous with the concave surface portion 72a of the opposing surface 72 at a position circumferentially opposed to the largest outer diameter portion of the rolling surface 21 of the roller 20. For this reason, also on the inner diameter side of the column portion 71, a portion corresponding to the undercut portion of the first embodiment is removed.

このように、対向面72は、後退面部72bの採用と円弧面部72cの拡大により、第一実施形態の対向面から全面的にアンダーカット部を除去した形状になっている。したがって、保持器70の射出成形時、無理抜きを伴わずに金型を軸方向に開くことができる。なお、円弧面部72cに代えて、後退面部72bを拡張することでも対向面を全面的に非アンダーカット形状にすることも可能であるが、ころ20の転動面21との間のすきまを第一実施形態と同等に設定できない点で不利となる。   As described above, the facing surface 72 has a shape in which the undercut portion is entirely removed from the facing surface of the first embodiment by adopting the receding surface portion 72b and enlarging the arc surface portion 72c. Therefore, at the time of injection molding of the retainer 70, the mold can be opened in the axial direction without forced removal. It is also possible to make the opposing surface non-undercut over the entire surface by expanding the receding surface portion 72b instead of the arc surface portion 72c, but the clearance between the roller 20 and the rolling surface 21 It is disadvantageous in that it can not be set equal to one embodiment.

保持器70は、前述のように、ころ20の転動面21に沿う形状の凹面部72aが柱部71の基端側で柱部71の外径側及び内径側に延びかつ柱部71の先端側で柱部71の内径側に延びる広い範囲にあるので、運転時の凸面ころと保持器の挙動を安定化し、軸受の音響や振動を低減する機能を良好に実現することができる。また、保持器70は、軸方向に柱部71の先端側に向かって次第にころ20の転動面21に対して周方向に遠ざかる形状の後退面部72bが柱部71の外径面17と凹面部72aと柱部71の先端部とに連続しているので、後退面部72bによって対向面72のアンダーカット形状を緩和ないし無くし、保持器変形の抑制を図ることができる。すなわち、保持器70は、前述の機能の実現と保持器変形の抑制との両立を図ることが可能である。   In the cage 70, as described above, the concave portion 72a shaped along the rolling surface 21 of the roller 20 extends to the outer diameter side and the inner diameter side of the column 71 at the base end of the column 71 and Since the tip end side is in a wide range extending to the inner diameter side of the column portion 71, the behavior of the convex roller and the cage during operation can be stabilized, and the function of reducing the sound and vibration of the bearing can be favorably realized. Further, in the cage 70, a receding surface portion 72b shaped so as to be circumferentially separated from the rolling surface 21 of the roller 20 gradually toward the tip end side of the column portion 71 in the axial direction is a concave surface with the outer diameter surface 17 of the column portion 71 Since the portion 72a and the tip end portion of the column portion 71 are continuous, the undercut shape of the facing surface 72 can be alleviated or eliminated by the receding surface portion 72b, and the cage deformation can be suppressed. That is, the holder 70 can achieve both the realization of the above-mentioned function and the suppression of the holder deformation.

また、保持器70は、柱部71の外径面17と対向面72間の境界と、対向面72と柱部71の先端部の境界とにおいて、ころ20の転動面21から遠ざからない部分である外径縁e1、先端縁e4を残し、当該境界における転動面21との間の最小すきまの大きさを第一実施形態と同等に維持することが可能なため、後退面部のみでアンダーカット部を除去した場合に比して、運転時のころ20と保持器70の挙動をより安定化することができる。   Further, the cage 70 does not move away from the rolling surface 21 of the roller 20 at the boundary between the outer diameter surface 17 and the opposing surface 72 of the column 71 and the boundary between the opposing surface 72 and the tip of the column 71 Since it is possible to keep the size of the minimum gap between the rolling surface 21 at the boundary and the outer diameter edge e1 which is a portion and the tip edge e4 equal to that of the first embodiment, As compared with the case where the undercut portion is removed, the behavior of the roller 20 and the cage 70 during operation can be further stabilized.

今回開示された各実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. Accordingly, the scope of the present invention is shown by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.

10、50、60、70 保持器
11 円環部
12、62、71 柱部
13 ポケット
15、72 対向面
15a、72a 凹面部
16、61 非アンダーカット部
17、64 外径面
20 ころ
21 転動面
72b 後退面部
10, 50, 60, 70 Retainer 11 Ring portion 12, 62, 71 Column portion 13 Pocket 15, 72 Countering surface 15a, 72a Concave portion 16, 61 Non-undercut portion 17, 64 Outer diameter surface 20 Roller 21 Rolling Face 72b Setback face

Claims (6)

単一の円環部と、前記円環部の一側面から軸方向一方側へ延びる複数の柱部と、前記円環部の他側面から軸方向他方側へ延びる複数の柱部とを有し、
周方向に隣り合う前記柱部同士の間が、ころを収容可能なポケットになっており、
前記柱部が、前記ころの転動面に接触可能な対向面を有し、
前記円環部と、前記一方側の複数の柱部と、前記他方側の複数の柱部とが、樹脂によって一体に形成されている保持器。
It has a single annular portion, a plurality of pillars extending axially from one side of the annular portion to one side in the axial direction, and a plurality of columnar portions extending from the other side of the annular portion to the other side in the axial direction ,
Between the pillars adjacent in the circumferential direction are pockets that can accommodate rollers,
The column portion has an opposing surface capable of contacting the rolling surface of the roller;
The holder | retainer in which the said annular part, the several pillar part of the said one side, and the several pillar part of the said other side are integrally formed by resin.
前記一方側の複数の柱部と、前記他方側の複数の柱部とが、周方向に同位相で配置されている請求項1に記載の保持器。   The holder according to claim 1, wherein the plurality of pillars on one side and the plurality of pillars on the other side are disposed in the same phase in a circumferential direction. 前記柱部の前記対向面がアンダーカット部を有し、前記柱部が、前記アンダーカット部の周方向裏側に空間を形成するように凹んだ非アンダーカット部を有する請求項1又は2に記載の保持器。   The said opposing surface of the said pillar part has an undercut part, The said pillar part has a non-undercut part dented so that space may be formed on the circumferential direction back side of the said undercut part. Retainer. 凸面ころからなる前記ころを前記ポケットに収容可能になっており、
前記柱部の前記対向面が、前記ころの転動面に沿う形状をもった凹面部と、軸方向に前記柱部の先端側に向かって次第に前記ころの転動面から周方向に遠ざかる形状をもった後退面部とを有し、前記凹面部が、前記柱部の基端側で当該柱部の外径側及び内径側に延びかつ当該柱部の先端側で当該柱部の内径側に延びており、前記後退面部が、前記柱部の外径面と前記凹面部と当該柱部の先端部とに連続している請求項1又は2に記載の保持器。
The roller consisting of convex rollers can be accommodated in the pocket,
A concave portion having a shape along the rolling surface of the roller, and a shape in which the opposing surface of the pillar portion is gradually separated from the rolling surface of the roller in the axial direction toward the tip side of the columnar portion And the concave portion extends to the outer diameter side and the inner diameter side of the column portion on the base end side of the column portion, and on the inner diameter side of the column portion on the tip side of the column portion. The retainer according to claim 1, wherein the retainer extends, and the receding surface is continuous with the outer diameter surface of the column, the concave portion, and the tip of the column.
前記柱部の前記後退面部が、当該柱部の外径面及び先端部のそれぞれと部分的に連続している請求項4に記載の保持器。   The cage according to claim 4, wherein the receding surface portion of the column portion is partially continuous with each of the outer diameter surface and the tip portion of the column portion. 前記柱部の周方向中央部を通って軸方向に延びかつ当該柱部の外径面から径方向に深さをもった溝状空間が形成されており、前記柱部の内径側における周方向両側の前記対向面間の周方向距離が、前記柱部の外径側における前記溝状空間から前記対向面までの周方向距離の75%以上125%以下の範囲に設定されている請求項1から5のいずれか1項に記載の保持器。   A groove-like space extending axially through the circumferential center of the column and having a depth in the radial direction from the outer diameter surface of the column is formed, and the circumferential direction on the inner diameter side of the column is formed. The circumferential distance between the facing surfaces on both sides is set in the range of 75% to 125% of the circumferential distance from the groove-like space on the outer diameter side of the column to the facing surface. The holder | retainer of any one of to 5.
JP2017190223A 2017-09-29 2017-09-29 Retainer Pending JP2019065919A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017190223A JP2019065919A (en) 2017-09-29 2017-09-29 Retainer
PCT/JP2018/036326 WO2019065996A1 (en) 2017-09-29 2018-09-28 Retainer
CN201821606287.2U CN209262080U (en) 2017-09-29 2018-09-29 Retainer
CN201811146810.2A CN109578440A (en) 2017-09-29 2018-09-29 Retainer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017190223A JP2019065919A (en) 2017-09-29 2017-09-29 Retainer

Publications (1)

Publication Number Publication Date
JP2019065919A true JP2019065919A (en) 2019-04-25

Family

ID=65903278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190223A Pending JP2019065919A (en) 2017-09-29 2017-09-29 Retainer

Country Status (3)

Country Link
JP (1) JP2019065919A (en)
CN (2) CN109578440A (en)
WO (1) WO2019065996A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208075A (en) * 2000-01-20 2001-08-03 Nsk Ltd Double row rolling bearing
JP2007205535A (en) * 2006-02-06 2007-08-16 Nsk Ltd Cage for rolling bearing, and rolling bearing
JP5154986B2 (en) * 2008-03-21 2013-02-27 Ntn株式会社 Retainer for cylindrical roller bearing
DE102008060320A1 (en) * 2008-12-03 2010-06-10 Schaeffler Kg Comb cage for a rolling bearing, in particular a double comb cage for a cylindrical roller bearing, roller bearing and method for producing a comb cage for a rolling bearing
DE102009005389A1 (en) * 2009-01-21 2010-07-22 Schaeffler Technologies Gmbh & Co. Kg Spherical roller bearing with rollers and method for installing the rollers in the spherical roller bearing
FR2956708B1 (en) * 2010-02-24 2012-07-06 Snr Roulements Sa BEARING BEARING COMPRISING A RETAINING CAGE FOR THE ROLLING BODIES
DE102014213634A1 (en) * 2014-07-14 2016-01-14 Schaeffler Technologies AG & Co. KG Plastic comb cage and process for its production

Also Published As

Publication number Publication date
WO2019065996A1 (en) 2019-04-04
CN109578440A (en) 2019-04-05
CN209262080U (en) 2019-08-16

Similar Documents

Publication Publication Date Title
JP5429567B2 (en) Resin cage for angular contact ball bearings
KR20220137079A (en) Tubular retainers and ball bearings for ball bearings
KR20180041185A (en) Manufacturing Method of Conical Roller Bearing and Conical Roller Bearing
JP6222146B2 (en) Manufacturing method of bearing cage
JP5805184B2 (en) Roller bearing cage and needle roller bearing
WO2019065996A1 (en) Retainer
JP2010144794A (en) Retainer, roller with retainer, and retainer set
CN104653624B (en) Divide retainer and roller bearing
JP2012112446A (en) Tapered roller bearing
JP6413728B2 (en) Manufacturing method of bearing cage
JP2017116008A (en) Rolling bearing
JP2020060275A (en) Conical bearing
JP5831120B2 (en) Radial roller bearing cage
JP2011137500A (en) Roller with retainer and molding method of the resin retainer
KR20180105663A (en) Sealing member for rolling bearings and rolling bearing device
JP6988509B2 (en) Manufacturing method of bearing cage
JP2009008274A (en) Ball bearing
JP6658839B2 (en) Bearing cage
JP2016080050A (en) Resin holder for bearing and manufacturing method thereof
JP2014087941A (en) Method for manufacturing snap cage for rolling bearing, snap cage for rolling bearing, and rolling bearing
JP2016114102A (en) Manufacturing method for bearing cage
JP6658841B2 (en) Bearing cage
JPH0313619Y2 (en)
JP6658840B2 (en) Bearing cage
JP6197605B2 (en) Cage for radial needle bearing