JP2019060581A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2019060581A
JP2019060581A JP2017187808A JP2017187808A JP2019060581A JP 2019060581 A JP2019060581 A JP 2019060581A JP 2017187808 A JP2017187808 A JP 2017187808A JP 2017187808 A JP2017187808 A JP 2017187808A JP 2019060581 A JP2019060581 A JP 2019060581A
Authority
JP
Japan
Prior art keywords
temperature
refrigeration cycle
compressor
pressure side
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017187808A
Other languages
English (en)
Inventor
季セン 徐
Ji Sen Xu
季セン 徐
由樹 山岡
Yoshiki Yamaoka
由樹 山岡
一貴 小石原
Kazutaka Koishihara
一貴 小石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017187808A priority Critical patent/JP2019060581A/ja
Publication of JP2019060581A publication Critical patent/JP2019060581A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】内部熱交換量を調節できる内部熱交換器を搭載することで、圧縮機の吐出温度の過昇を抑制できる冷凍サイクル装置を提供する。【解決手段】放熱器12から減圧手段14へと供給される高圧側冷媒と蒸発器15にて吸熱した低圧側冷媒とが熱交換する内部熱交換器13と、圧縮機11の吐出温度を検出する圧縮機吐出側温度センサとを備え、内部熱交換器13の高圧側配管13aに少なくとも一つ以上の流量制御手段13cを設けることにより、内部熱交換器13における内部熱交換量を調節させ、高温沸き上げ運転時の圧縮機の吸入および吐出温度の過昇を抑制でき、減圧手段の絞り量を大きくして吐出圧力を上昇させ、放熱器を効率良く動作させることにより、加熱能力を向上させながらも、冷凍サイクルの効率を向上させることもできる。【選択図】図3

Description

本発明は、冷凍サイクル装置に関するものである。
従来、この種の冷凍サイクル装置は、ヒートポンプにより生成される温熱を利用するヒートポンプ給湯装置などに利用される(例えば、特許文献1参照)。
図6は、特許文献1に記載された従来の冷凍サイクル装置を示すものである。図6に示すように、圧縮機101と、放熱器103と、減圧手段104a、104bと、蒸発器105とが冷媒配管で環状に接続され、前記放熱器103から流出した冷媒と、前記蒸発器105から流出した冷媒とを熱交換する内部熱交換部106を備えている。
特に、内部熱交換部106は、前記放熱器103と蒸発器105との間における高温冷媒と、前記蒸発器105と圧縮機101の吸い込み側1aとの間における低温冷媒との間で、冷凍サイクル内で熱交換を行う。蒸発器105の出口側の低温側の冷媒は高温冷媒から熱をもらい、低温冷媒を効果的に加熱することができる。
これによって、蒸発器105の出口側の冷媒の吸入過熱度を増大させ、圧縮機の吐出側の冷媒温度を上昇させ、放熱器を効率良く動作させることによって、冷凍サイクル装置の効率を向上させることができる。そのため、熱交換器の大型化を伴うことなく、優れた運転効率を発揮することができる。
特開平10−332212号公報
しかしながら、前記従来の冷凍サイクルにおいて、放熱器の圧力が高くなり、冷凍サイクルの効率を最大化しようとすると、吐出温度は非常に高くなる(例えば、115℃以上)。
一方、圧縮機の部品を保護するために、吐出温度の上限温度(例えば、110℃)を設けているため、減圧手段の制御により、吐出温度を低下させざるを得なくなり、そのとき吐出圧力も同時に低下してしまう。
よって、放熱器の効率が低下し、冷凍サイクル装置を高い効率で運転することができなくなるとともに、加熱能力も低下してしまう課題を有していた。
本発明は、前記従来の課題を解決するもので、内部熱交換量を調節できる内部熱交換器を搭載することで、圧縮機の吐出温度の過昇を抑制できる冷凍サイクル装置を提供することを目的とするものである。
前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機と、放熱器と、減圧手段と、蒸発器と、前記放熱器から前記減圧手段へ供給される高圧側冷媒と前記蒸発器にて吸熱した低圧側冷媒とを熱交換する内部熱交換器と、前記圧縮機の吐出温度を検出する温度検出手段と、を備え、前記内部熱交換器の前記高圧側冷媒が流れる複数本の高圧側配管に、少なくとも一つ以上の流量制御手段が設けられていることを特徴とするものである。
これによって、流量制御手段による高圧側配管に流入した冷媒流量を減らすことができるため、内部熱交換量が減少し、吸入過熱度が小さくなり、吐出温度を低下させることができる。
よって、吐出温度が運転範囲の上限温度付近で運転する場合において、減圧手段の絞り量を大きくしても吐出温度の過昇を抑制しながら、吐出圧力を上昇させ、放熱器を効率良く動作させることによって、加熱能力の向上を実現できる。
本発明の冷凍サイクル装置は、内部熱交換量を調節できる内部熱交換器を搭載することで、圧縮機の吐出温度の過昇を抑制できる冷凍サイクル装置を提供できる。
本発明の実施の形態1における内部熱交換器の概要図 (a)図1の内部熱交換器のA−Aでの断面図(b)本発明の他の内部熱交換器の断面図 本発明の実施の形態1における冷凍サイクル装置を用いた給湯装置の回路図 (a)本発明の実施の形態1における吐出圧力が低い場合の放熱器内の流体温度とエンタルピーの特性を示す図(b)本発明の実施の形態1における吐出圧力が高い場合の放熱器内の流体温度とエンタルピーの特性を示す図 本発明と実施の形態に1おける内部熱交換器の圧力損失と複数本の高圧側配管の流量の関係を示す図 従来の冷凍サイクル装置の回路構成図
第1の発明は、圧縮機と、放熱器と、減圧手段と、蒸発器と、前記放熱器から前記減圧手段へ供給される高圧側冷媒と前記蒸発器にて吸熱した低圧側冷媒とを熱交換する内部熱交換器と、前記圧縮機の吐出温度を検出する温度検出手段と、を備え、前記内部熱交換器の前記高圧側冷媒が流れる複数本の高圧側配管に、少なくとも一つ以上の流量制御手段が設けられていることを特徴とする冷凍サイクル装置である。
これによって、内部熱交換器の高圧側配管の流量制御手段により高圧側配管に流入した冷媒流量を減らすことができるため、内部熱交換量が減少し、吸入過熱度が小さくなり、吐出温度を低下させることができる。
なお、吐出温度が運転範囲の上限温度付近で運転する場合において、減圧手段の絞り量を大きくしても吐出温度が上限温度を超えることを抑制できる。したがって、吐出圧力を上昇させ、放熱器を効率良く動作させることによって、放熱器出入口の冷媒温度差拡大におけるエンタルピー差が広がり、加熱能力の向上を実現できる。
第2の発明は、特に、第1の発明の流量制御手段として、開閉弁を配置することを特徴とするものである。
開閉弁は、全開と全閉を素早く切り替えることができる。したがって、流量制御手段として、開閉弁を設置することにより、開閉弁が素早く全閉し、高圧側冷媒配管の一部が流れなくなり、高圧側配管と低圧側配管との間の伝熱面積が減少するため、内部熱交換量も減少し、吸入過熱度が小さくなる。
また、開閉弁が素早く全閉することにより、圧縮機の吸入温度、および吐出温度を迅速に降下させることができるため、圧縮機の部品の耐熱上限温度を超えずに、信頼性の高い状態での長時間運転を実現できる。
第3の発明は、特に、第1の発明の流量制御手段として、流量調整弁を配置することを特徴とするものである。
流量調整弁は、流通する流量を細かく制御できる。高圧側配管を流入する冷媒の流量を細かく増減することにより、高圧側冷媒の圧力損失の状態を調節することができる。
そのため、高圧側冷媒と低圧側冷媒との間の温度差を精確に変更させ、内部熱交換量を精度良く制御することができる。その結果、圧縮機の吸入および吐出温度を最適点に近づけることができ、冷凍サイクルの効率を向上させることもできる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図3は、本発明の実施の形態1における冷凍サイクル装置を備えた給湯装置の回路構成を示すものである。
図3において、冷凍サイクル装置10は、圧縮機11、放熱器12、減圧手段14、蒸発器15を順に冷媒配管で環状に接続して構成されている。圧縮機11の吐出側の冷媒配管温度を検出する圧縮機吐出側温度センサ11aを圧縮機11と放熱器12との間に配設されている。
内部熱交換器13は、高圧側配管13aと低圧側配管13bとを備え、高圧側配管13aは放熱器12と減圧手段14との間に並列に接続され、低圧側配管13bは蒸発器15と圧縮機11との間に接続されて、冷凍サイクル装置10の一部を成す。なお、冷凍サイクル装置10には、冷媒として二酸化炭素が封入されている。
図1に、内部熱交換器13の構成図を示す。内部熱交換器13は、複数本の高圧側配管13aと低圧側配管13bとが略並行に配設され、図2(a)に示すように、高圧側配管13aと低圧側配管13bとは、各接合部13dにてロウ材またははんだにより接合される。
この時、複数本の高圧側配管13a、低圧側配管13bの各々の管軸中心が同心円上に等間隔で並ぶように配設される。また、複数本の高圧側配管13aに、高圧側配管内の冷媒流量を制御するに、少なくとも一つ以上の流量制御手段13cを配置する。
なお、本発明における内部熱交換器は上記図2(a)の構成に限らず、例えば、図2(b)に示すように複数本の高圧側配管が低圧側配管に内蔵し、前記複数本の高圧側配管に少なくとも一つ以上の流量制御手段を配置する場合、本発明の作用・効果も適用される。
図3において、貯湯装置20は、冷凍サイクル装置10によって沸き上げた湯を貯湯する貯湯タンク21と、シャワーなどの給湯端末(図示せず)に湯を温度調節して供給する給湯混合弁28とを備える構成となっている。
以上のように構成された冷凍サイクル装置について、以下、その動作、作用を説明する。
まず、放熱器12において温水を加熱する加熱運転時の動作について説明する。
加熱運転時において、圧縮機11より吐出された高温・高圧の冷媒は、放熱器12において温水と熱交換器して放熱し、低温・高圧となる。加熱された温水は、貯湯タンク21へ供給され、シャワーなどに利用される。
放熱器12から出た低温・高圧の冷媒は、内部熱交換器13の複数本の高圧側配管13aへと分岐して供給され、低圧側配管13bを流れる低圧側冷媒へと放熱して、さらに低温となる。
内部熱交換器13の高圧側配管13aを出た冷媒は、再び互いに合流して減圧手段14において減圧され、低温・低圧の気液二相状態となる。
減圧手段14において減圧された冷媒は、蒸発器15において大気より吸熱して気体単相状態へと蒸発し、さらに、内部熱交換器13の低圧側配管13bにおいて、高圧側配管13aを流れる高圧側冷媒より吸熱して過熱状態となって、圧縮機11へと吸入される。この動作を繰り返すことによって、冷凍サイクル装置10は温水の加熱運転を行う。
次に、高温沸き上げ運転の動作について説明する。
高温沸き上げ運転時における冷媒の流れる順序は、加熱運転時と同じであるので省略する。高温沸き上げ運転においては、放熱器12から流出する温水の目標温度が高く(例えば、出湯温度が90℃)、上記加熱運転時(例えば、出湯温度が65℃)よりも高い吐出温度が必要である。
よって、減圧手段14の絞り量を加熱運転より大きくし、冷媒の蒸発温度を低下させて冷媒の吸入過熱度を大きくする。これにより、圧縮機11から吐出される冷媒の温度を上げ、冷凍サイクル装置10は温水の高温沸き上げを行う。
この時、圧縮機11の吐出側と放熱器12の入口側との間に、圧縮機11の近傍に配設された圧縮機吐出側温度センサ11aで検出した温度(以下、吐出温度と呼ぶ)が所定温度以上を超えると、制御装置16が判断し、流量制御手段13cは、高圧側配管13aを流れる冷媒の流量を少なくする。
その結果、内部熱交換量が減少し、吸入過熱度が小さくなり、吐出温度を低下させる効果を奏する。
これによって、吐出温度が運転範囲の上限温度付近で運転する場合において、減圧手段14の絞り量を大きくしても吐出温度が上限温度を超えることを抑制できる。
また、図4(a)に、吐出圧力が低い場合(例えば9Mpa)、放熱器12を流れる温水41および冷媒42、それぞれの温度とエンタルピーの特性を示す。一方、図4(b)に、吐出圧力が高い場合(例えば12Mpa)、放熱器12を流れる温水43および冷媒44、それぞれの温度とエンタルピーの特性を示す。
図4に示すように、吐出圧力の低い場合は、水の特性41と冷媒の特性42の最小温度差ΔT1が、吐出圧力の高い場合の水の特性43と冷媒の特性44の最小温度差ΔT2より小さく、熱交換しづらい状態になるため、放熱器12出入口の温水エンタルピー差Δh1が吐出圧力の高い場合におけるΔh2より小さく、放熱器の熱交換効率は下がる。
以上のように、流量制御手段13cで吐出温度の過昇を抑制でき、減圧手段14で吐出圧力を上昇させ、放熱器を効率良く動作させることができるため、放熱器出口の冷媒温度が下がり、放熱器出入口の冷媒温度差拡大におけるエンタルピー差が広がり、加熱能力の向上を実現できる。
また、前記流量制御手段13cとして、内部熱交換器13の複数本の高圧側配管13aに少なくとも一つ以上の開閉弁を配置することにより、吐出温度が所定温度以上超える場合は、制御装置16が判断した場合、開閉弁が素早く全閉し、内部熱交換器13の高圧側配管13aの一部を流れなくなり、伝熱面積の減少で内部熱交換量を素早く減少させる。
以上のように、開閉弁を用いることで、吸入温度、および吐出温度を迅速に降下させることができるため、圧縮機の部品の耐熱上限温度を超えずに、信頼性の高い状態での長時間運転を実現できる。
さらに、前記流量制御手段13cとして、内部熱交換器13の複数本の高圧側配管13aに少なくとも一つ以上の流量調節弁を配置することにより、内部熱交換器13における高圧側配管を流入する冷媒の流量を細かく増減することができる。
図5に示すように、高圧側配管13aを流れる冷媒の流量が略同一で偏流がない場合に圧力損失が略最小となるため、流量調節弁で複数本の高圧管の間に、一部の高圧側配管13aを流れる冷媒の流量を変動させることにより、高圧側流路の圧力損失の状態を調節できる。そのため、高圧側冷媒と低圧側冷媒との間の温度差を変更させることとなり、内部熱交換量を精度良く制御することができる。
よって、吐出温度が所定温度以上を超え、制御装置16が判断した場合、吐出温度を運転範囲内の最適温度に近づけるように、流量調節弁が作動し、内部熱交換器13の高圧側配管13aの一部を流れる冷媒の流量を調節する。
なお、圧縮機の吸入および吐出温度を最適に制御することができ、冷凍サイクルの効率を向上させることもできる。
以上のようにして、高温沸き上げ運転にて内部熱交換器13における内部熱交換量を調節させ、圧縮機の吐出温度過昇および能力低下を抑制し、冷凍サイクル装置の加熱能力と冷凍サイクル効率を向上させることができる。
以上のように、本発明にかかる冷凍サイクル装置は、加熱能力かつ冷凍サイクルの効率を向上させることができるので、空気調和装置やヒートポンプ式給湯機・暖房機などの省エネ性向上の用途にも適用できる。
10 冷凍サイクル装置
11 圧縮機
11a 圧縮機吐出側温度センサ
12 放熱器
13 内部熱交換器
13a 高圧側配管
13b 低圧側配管
13c 流量制御手段
13d 接合部
14 減圧手段
15 蒸発器
16 制御装置
20 貯湯装置
21 貯湯タンク
28 給湯混合弁

Claims (3)

  1. 圧縮機と、放熱器と、減圧手段と、蒸発器と、
    前記放熱器から前記減圧手段へ供給される高圧側冷媒と前記蒸発器にて吸熱した低圧側冷媒とを熱交換させる内部熱交換器と、
    前記圧縮機の吐出温度を検出する温度検出手段と、を備え、
    前記内部熱交換器の前記高圧側冷媒が流れる複数本の高圧側配管に、少なくとも一つ以上の流量制御手段が設けられていることを特徴とする冷凍サイクル装置。
  2. 前記流量制御手段として、開閉弁を配置することを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記流量制御手段として、流量調整弁を配置することを特徴とする請求項1に記載の冷凍サイクル装置。
JP2017187808A 2017-09-28 2017-09-28 冷凍サイクル装置 Pending JP2019060581A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187808A JP2019060581A (ja) 2017-09-28 2017-09-28 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187808A JP2019060581A (ja) 2017-09-28 2017-09-28 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2019060581A true JP2019060581A (ja) 2019-04-18

Family

ID=66176526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187808A Pending JP2019060581A (ja) 2017-09-28 2017-09-28 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP2019060581A (ja)

Similar Documents

Publication Publication Date Title
EP2647925B1 (en) Refrigeration cycle apparatus
JP6161005B2 (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
JP2011080634A (ja) 冷凍サイクル装置および温水暖房装置
JP5681787B2 (ja) 2元冷凍サイクル装置
EP2770278B1 (en) Water heater
JP2017155944A (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
JP2009092258A (ja) 冷凍サイクル装置
JP4033788B2 (ja) ヒートポンプ装置
JP4595546B2 (ja) ヒートポンプ装置
JP2009281631A (ja) ヒートポンプユニット
JP2019060581A (ja) 冷凍サイクル装置
JP2006017377A (ja) ヒートポンプ給湯機
JP6024241B2 (ja) ヒートポンプシステム
JP6884213B2 (ja) 冷凍サイクル装置
JP2011214776A (ja) 二元冷凍サイクルによる給湯・温水暖房装置
JP4906885B2 (ja) 冷凍サイクル装置
JP5413594B2 (ja) ヒートポンプ式給湯装置
JP2005351588A (ja) ヒートポンプ給湯装置
WO2016189810A1 (ja) ヒートポンプ装置
KR101286699B1 (ko) 히트펌프를 이용한 냉,난방장치
JP4082389B2 (ja) ヒートポンプ給湯装置
JP2005226859A (ja) ヒートポンプ給湯装置
JP2020008253A (ja) 冷凍サイクル装置
JP2010216715A (ja) ヒートポンプ装置
JP4124164B2 (ja) ヒートポンプ給湯装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121