JP2019049503A - 車軸の超音波探傷方法及びそのシステム - Google Patents

車軸の超音波探傷方法及びそのシステム Download PDF

Info

Publication number
JP2019049503A
JP2019049503A JP2017174522A JP2017174522A JP2019049503A JP 2019049503 A JP2019049503 A JP 2019049503A JP 2017174522 A JP2017174522 A JP 2017174522A JP 2017174522 A JP2017174522 A JP 2017174522A JP 2019049503 A JP2019049503 A JP 2019049503A
Authority
JP
Japan
Prior art keywords
echo
axle
level
unit
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017174522A
Other languages
English (en)
Other versions
JP6970425B2 (ja
Inventor
宗一 柴田
Soichi Shibata
宗一 柴田
嗣喜 西岡
Tsuguyoshi Nishioka
嗣喜 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KJTD Co Ltd
Original Assignee
KJTD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KJTD Co Ltd filed Critical KJTD Co Ltd
Priority to JP2017174522A priority Critical patent/JP6970425B2/ja
Publication of JP2019049503A publication Critical patent/JP2019049503A/ja
Application granted granted Critical
Publication of JP6970425B2 publication Critical patent/JP6970425B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】車軸内部の外周面付近の探傷において、形状エコーによる誤判定を回避できる車軸の超音波探傷方法及びそのシステムを提供する。【解決手段】車軸の超音波探傷では、車軸100の外周面或いは内周面にて、車軸の軸方向及び周方向について超音波探触子1を走査し、超音波を送信しエコーを受信して車軸内部の外周面付近を斜角探傷するものであって、送受信における超音波の到達距離即ちビーム路程に対するエコーの音圧レベルをエコー高さとして検出するものであり、傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、第1レベルよりも低いエコー高さを第2レベルとして、車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも第1レベルにおける波形の太さが傷エコーを示す太さの範囲にあるとき、第2レベルにおける波形の太さを調べることにより、検出したエコーが傷を示す傷エコーであるか否かの判定を行う。【選択図】図1

Description

本願発明は、車軸の超音波探傷方法及びそのシステムに関する。
鉄道車両において、車輪を嵌める車軸の検査には、車両を使用する状態即ち分解せずに検査する交番検査や、台車以外を取り外して検査する台車検査、車両を分解して車軸のみ取り出して検査する全般検査がある。上記各検査において、車軸内部の車軸外周付近に傷がないか検査される。通常、上記交番検査、台車検査及び全般検査において検査する車軸外周面からの深さは異なる。
車軸の上記各検査において、上記傷の検出方法の1つとして超音波探傷法が利用される。
超音波探傷は、超音波を送受信するプローブ即ち超音波探触子を走査することによって行われる。例えば車両の軽量化のため新幹線に採用されている中空の車軸即ち中ぐり車軸では、車軸の中空部内にてプローブを走査することにより、斜角探傷が行われている(特許文献1)。
上記の超音波探傷は、従来使用する超音波探傷装置において、上記プローブの走査にて探傷する範囲の一部へ探傷ゲート即ちエコー収録ゲートを設定して行われている。
図17(A)へ示すAスコープ表示中「ゲート(灰色枠)」と記して、灰色で示す矩形の枠が上記探傷ゲートである。矩形の当該探傷ゲートの上辺が、探傷ゲートにおける閾値となる。また当該矩形の前後の辺が探傷する範囲における探傷ゲートの範囲を規定する。
図17(A)において、横軸は、車軸の内表面即ち車軸の内周面を0点(0位置)とし、当該0点からのビーム路程を示している。図17(A)において、縦軸がエコー高さを示している。図17(A)へ示す通り上記ビーム路程としてプローブ(超音波探触子)から超音波が伝わる距離をmmで表示する。車軸の内周面を0mmとし図17(A)の右へ進むほど内周面から遠くなる。
図17(A)に示す通り、Aスコープではビーム路程に則して超音波の波形が表示される。当該Aスコープでは、車軸の周方向について360度全ての波形を合成して、受信したエコーの最大値と最小値を示している。図17(A)において、白色で示す波線が上記最大値を示し、黒色で示す波線が上記最小値を示している。
車軸の探傷を行うオペレータは、上記Aスコープ波形を記録して、記録した波形を見ながら傷の判定に用いる上記探傷ゲートの位置を設定するのである。図17(A)において「キズの波形」と記されたものが、傷エコーの波形である。
オペレータは、上記探傷ゲートを都度観察したい即ち傷の発生が予想される適切な位置へ設定した後、探傷を行うのであり、一旦設定された探傷ゲートは、探傷範囲中の位置が固定されたものであった。
このため、欠陥即ち傷からのエコーを漏らさない位置へ事前に探傷ゲートを設定する必要があり、探傷ゲートを適切に設定するため多大な手間を要していた。
即ち、人工欠陥(人工傷)を設けたテストピース即ちモデル車軸を用い、当該モデル車軸に対し行った探傷の結果を参考に、オペレータが実際に探傷する車軸ごとに探傷ゲートの設定を行う手間を取っていたのである。
更に、上記の通り固定された探傷ゲートを用いると、形状エコー(図17(B))が探傷ゲート中に入った場合に、車軸外周面の段差に起因する形状エコーが探傷ゲート内で最大ピークを呈すると、欠陥であると誤判定された。
例えば、図17(B)では「キズ」と記された傷エコーが「判定ゲート」と記した探傷ゲート内にあるが、探傷ゲートの右辺に形状エコーが迫っており、走査にて探傷ゲートから傷エコーがずれ出て形状エコーが探傷ゲート内へ侵入すれば、上記誤判定が生じるのである。
鉄道車両の車軸は、軸受けに受けられるジャーナル、油切り座・後ぶた座であるスリンガー、車輪を嵌められるホイルシートや、ベアリングシート、歯車が嵌められるギヤシート、集電座であるアースリングシート、ブレーキディスクを嵌められるブレーキディスクシートなどの、軸方向の各部において、径が異なり上記段差を有するものとなっている。
上記形状エコーは、このような段差からのエコーである。
より具体的に説明すると、形状エコーを傷エコーと誤判定する最大の理由は、上記の通り、従来の欠陥の検出方法では、基本的に探傷ゲート内に現れた探傷ゲートの閾値を超える波形全てを傷エコーと判定するものであったからである。
従来の判定方法では、波形を見て経験から欠陥である傷の生じる場所を予め予想し、当該予想に基づき探傷ゲートを設定しておくものである。
しかし、上記の通り都度適切な位置範囲を決定して探傷ゲートを設定していても、プローブの走査により欠陥の有無を見る上記探傷ゲート内にて捕捉したエコーピーク(音圧レベルの最強点の位置)も軸方向にずれてゆき、エコーの波形の麓、ピーク、麓の順で、探傷ゲートから移動する。探傷ゲート内からピークが通り過ぎ欠陥エコー(傷エコー)の麓のみ残り、形状エコーが入り込むと当該エコーの麓より大きな形状エコーのピークを欠陥の最大エコーと誤判定してしまう。
勿論、探傷ゲートもプローブの走査に伴って、エコーに追従して移動するが、それでも誤判定の生じる可能性が極めて高かった。
また、上記以外の誤判定や判定ばらつき要因としては、波形全般の位置の変動(気温の変化による音速の変化)や探傷ゲートを設定するオペレータの個人差がある。
更に形状エコーが欠陥エコーと誤認される要因の一つとして、嵌め合いでの車軸表面と車輪内周面との接触状態も挙げられる。具体的には、車輪の嵌め合い位置で生じた両者の部分的な接触により、本来ピーク(頂部)において頭が平らなはずの欠陥エコーに図18(A)へ略記する「周方向不連続エコー」として通り部分的にピークが現れて、探傷ゲートの閾値を超え、当該部分を欠陥エコーと判定してしまうのである。尚図18(A)の「周方向評価レベル」は探傷ゲートの上辺(閾値)を車軸の周方向即ち車軸の中心線と直交する特定の線に対しなす角度との関係でみたものである。当該図18(A)へ示す誤判定について、現状の判別方法では、適切な回避策はなかった。
また、車軸が新しいものであるときは、嵌め合いの各位置において車輪と隙間なく接触していても、経時に車輪との嵌め合いに隙間ができて欠陥エコーと誤判定してしまう。欠陥があれば欠陥からのエコーは強い音圧レベルで検出される。
詳しくは、金属製の車軸と金属製の車輪とが軸方向について隙間なく嵌め合わされていると、欠陥がない限り発信した超音波は車軸から車輪側へ抜け減衰し強いエコーは帰ってこない。
ところが、車軸(金属)と上記隙間となる空気との層間では送信した超音波の強い反射が起こり、エコーは欠陥エコーであるとの誤判定が生じる。上記隙間によって形状エコーの音圧レベルが安定せず、誤判定の原因となっていたのである。
特許第3558359号公報
上述した従来技術に関する課題を纏めると、次の通りである。
探傷ゲートに入って閾値を超えたエコーを全て欠陥エコーとしていたため、欠陥の発生を予測した場所をずれて形状エコーが探傷ゲート内に入ってくると、当該形状エコーを欠陥エコーと誤判定していた。このため、同一の車軸の探傷において探傷ゲートへ形状エコーが介入しないよう、探傷を行うごとにモデル車軸を用いて厳密にゲートを設定する手間を採る必要があった。また形状エコーの検出レベルは車軸によって相違する。
特に上記ゲートの設定は、オペレータ間のばらつきを伴うものでもあった。
また、上記の通り、正確に上記傷の発生が予測される位置に探傷ゲートを設定できたとしても、プローブの走査に探傷ゲートの追従のタイミングがずれると、形状エコーが介入して上記誤判定を生じることもあった。更に、季節による気温の変化にて、車軸内を伝わる音速が変化して上記誤判定を誘引した。また、車軸の車輪との嵌め合い位置(座)において、経時に部分的な空隙が生じて空気と金属間におけるエコー(上記嵌め合い位置における形状エコー)が誤判定を誘引した。
本発明は、車軸内部の外周面付近の探傷において、本発明の発明者の知見に基づき、形状エコーに起因する上記各誤判定を回避可能な車軸の超音波探傷方法及びそのシスムを提供せんとするものである。
本発明では、被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷方法について次の構成を採るものを提供する。
即ち、この車軸の超音波探傷方法は、傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおける前記波形の太さが傷エコーを示す太さの範囲にあるとき、前記第2レベルにおける前記波形の太さを調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うことを特徴とする。
また本発明では、被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷方法について次の構成を採るものを提供する。
即ち、この車軸の超音波探傷方法は、傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、
前記車軸の中心線と直交する特定の仮想線に対する角度をx軸に示し、受信したエコーのエコー高さを前記x軸と交差するz軸に示す座標中、前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおけるx軸方向の幅が傷を示す傷エコーの幅の範囲にあるとき、前記第2レベルにおけるx軸方向の幅を調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うことを特徴とする。
更に本発明では、第2レベルにおける前記x軸方向の幅が形状エコーの幅の範囲にあるとき検出した前記エコーを車軸の形状エコーと判定するか、或いは、第2レベルにおける前記x軸方向の幅が形状エコーの幅の範囲にないとき検出した前記エコーを傷エコーと判定するものであり、前記形状エコーは、前記車軸の軸方向の位置により車軸の径が異なることにて車軸の周方向に備えられた段差に起因するエコーであることを特徴とする車軸の超音波探傷方法を提供できた。
また更に本発明では、被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷方法について次の構成を採るものを提供する。
即ち、この車軸の超音波探傷方法は、傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、前記車軸の軸方向の位置をy軸に示し、受信したエコーのエコー高さを前記y軸と交差するz軸に示す座標中、前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおけるy軸方向の幅が傷を示す傷エコーの幅の範囲にあるとき、前記第2レベルにおけるy軸方向の幅を調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うことを特徴とする。
更にまた本発明では、第2レベルにおける前記y軸方向の幅が形状エコーの幅の範囲にあるとき検出した前記エコーを車軸の形状エコーと判定するか、或いは、第2レベルにおける前記y軸方向の幅が形状エコーの幅の範囲にないとき検出した前記エコーを傷エコーと判定するものであり、前記形状エコーは、前記車軸の軸方向の位置により車軸の径が異なることにて車軸の周方向に備えられた段差に起因するエコーであることを特徴とする車軸の超音波探傷方法を提供できた。
また本発明では、被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷方法について次の構成を採るものを提供できた。
即ち、この車軸の超音波探傷方法は、傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、前記車軸の中心線と直交する特定の仮想線に対する角度をx軸に示し、前記車軸の軸方向の位置を前記x軸と交差するy軸に示し、受信したエコーのエコー高さを前記x軸及びy軸と交差するz軸に示す3次元座標中、前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおけるx−y平面へ投影した領域の面積が傷を示す傷エコーの面積の範囲にあるとき、前記第2レベルにおけるx−y平面へ投影した領域の面積を調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うことを特徴とする。
更にまた本発明では、第2レベルにおける前記x−y平面へ投影した領域の面積が形状エコーの面積の範囲にあるとき検出した前記エコーを車軸の形状エコーと判定するか、或いは、第2レベルにおける前記x−y平面へ投影した領域の面積が形状エコーの面積の範囲にないとき検出した前記エコーを傷エコーと判定するものであり、前記形状エコーは、前記車軸の軸方向の位置により車軸の径が異なることにて車軸の周方向に備えられた段差に起因するエコーであることを特徴とする車軸の超音波探傷方法を提供できた。
また更に本発明では、被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷システムについて次の構成を採るものを提供する。
即ち、この車軸の超音波探傷システムは、傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおける前記波形の太さが傷エコーを示す太さの範囲にあるとき、前記第2レベルにおける前記波形の太さを調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うものであり、前記超音波探触子である送信プローブ及び受信プローブと、前記超音波探触子の走査を行う走査部と、位置検出部と、Aスコープデータ取得部と、Cスコープ展開部と、所定の音圧レベルを閾値として保持する閾値格納部と、エコー抽出部と、エコー指定部と、ピーク値取得部と、第1レベル設定部と、第1レベル規定部と、第1範囲規定部と、第2レベル設定部と、第2レベル規定部と、第2範囲規定部と、第1判定部と、第2判定部とを備え、前記Aスコープデータ取得部は、前記位置検出部の検出したプローブの走査位置におけるビーム路程と、前記ビーム路程の略全域について前記受信プローブが受信したエコーのエコー高さとから当該エコーの波形のAスコープデータを順次取得して収容し、前記Cスコープ展開部は、Aスコープデータ取得部の収容する前記波形のデータについて、前記車軸の中心線と直交する特定の仮想線に対する角度をx軸に示し、前記車軸の軸方向の位置を前記x軸と交差するy軸に示し、受信したエコーのエコー高さを当該高さに応じ色分けして示すデータをCスコープデータとして収容し、前記エコー抽出部は、閾値格納部の保持する前記閾値を参照し前記Cスコープ展開部の取得したデータの中から前記閾値を越える全てのエコーの波形を抽出し前記抽出した各波形を識別する識別データを収容するものであり、前記エコー指定部は自動的に又はオペレータの操作を受け付け、前記エコー抽出部の抽出した前記Cスコープ展開部中の任意の波形のデータを指定するものであり、前記ピーク値取得部は、前記Cスコープ展開部を参照し前記エコー指定部にて指定された波形のピークのエコー高さのデータを取得するものであり、前記第1レベル設定部は、エコー高さのデータから前記第1レベルとするエコー高さのデータを算定することが可能な算定用基準を保持し、前記第1範囲規定部は、前記第1レベルにおいて傷エコーの判定に用いる波形の太さに関するデータの上限値と下限値を保持し、前記第2レベル設定部は、エコー高さのデータから前記第2レベルとするエコー高さのデータを算定することが可能な算定用基準を保持し、前記第2範囲規定部は、前記第2レベルにおいて形状エコーの判定に用いる波形の太さに関するデータの少なくとも下限値を保持し、前記第1レベル規定部は、前記エコー指定部にて指定された波形について、前記第1レベル設定部を参照して第1レベルとするエコー高さのデータを取得するものであり、前記第1判定部は、エコー指定部にて指定された前記波形について、前記第1レベル規定部と前記Cスコープ展開部と前記第1範囲規定部とを参照し、算定された前記第1レベルおける前記指定された波形の太さに関するデータが、前記第1範囲規定部の規定する範囲にあるか否かの判定を自動的に行い、前記第2レベル規定部は、前記エコー指定部にて指定された波形について、前記第2レベル設定部を参照して第2レベルとするエコー高さのデータを取得するものであり、前記第2判定部は、少なくとも前記第1判定部にて傷エコーとする太さの範囲にあると判定された波形について、前記第2レベル規定部と前記Cスコープ展開部と前記第2範囲規定部とを参照し、算定された前記第2レベルにおける前記指定された波形の太さに関するデータが、前記第2範囲規定部の規定する範囲にあるか否かの判定を自動的に行うものであり、前記波形の太さに関するデータは、波形の前記x軸方向の幅と、波形の前記y軸方向の幅と、波形の前記x−y平面へ投影した領域の面積の、少なくとも何れか1つであることを特徴とする車軸の超音波探傷システムを提供できた。
尚、上記色分けとは、彩色による他、輝度(明暗)や濃淡による識別も含み、有彩色に限らず区別できる限り無彩色も含む。
また本発明では、前記波形の太さに関するデータは、波形の前記x軸方向の幅と、波形の前記y軸方向の幅と、波形の前記x−y平面へ投影した領域の面積と、前記x軸方向に現れる全波形の幅の総和の、少なくとも何れか1つであり、前記x軸方向に現れる全波形の幅の総和は、前記x軸方向の幅が連続する単一の波形であるか不連続な複数の波形であるかを問わず前記x軸方向に現れる波形の全ての幅の総和であることを特徴とする超音波探傷システムを提供できた。
更に本発明では、前記送信プローブは前記受信プローブを兼ねる送受信プローブであり、
前記送受信プローブは、車軸の周方向に沿って複数の振動子が環状に配列されたアレイプローブであり、前記送受信プローブは、個々の前記振動子が車軸の中心線に対し斜めに超音波を発するように配置され且つ環状の前記アレイプローブを構成する振動子のうち隣り合う所定数の振動子のグループから一度に超音波を発するフェーズドアレイであり、車軸の周方向に対する前記送受信プローブの走査は、環状の前記アレイプローブの周方向について一度に超音波を発する前記グループを順次ずらして行くことにより行われ、前記送受信プローブは前記軸方向の前後に2つ配置され、前記軸方向について前記送受信プローブの一方は、前記送受信プローブの他の一方と反対側に向けられたものであり、前記両送受信プローブは前記軸方向について一体に走査され、前記周方向の走査と共に前記軸方向の走査によって、車軸に対してスパイラル状に前記両送受信プローブが超音波を発信するものであることを特徴とする車軸の超音波探傷システムを提供できた。
また更に本発明では、第1範囲設定部と、第2範囲設定部とを備え、実際の車軸即ち実車軸の探傷に先立ち、前記実車軸と同じ寸法、形状及び材質のモデル車軸であり且つ所定の形状及び大きさの人工傷を所定の位置へ設けられたものについて、探傷を行うものであり、
前記Aスコープデータ取得部は、前記モデル車軸の探傷にて、前記モデル車軸の前記Aスコープデータを順次取得して収容し、前記Cスコープ展開部は、前記Aスコープデータ取得部の収用したモデル車軸の前記波形のデータについて、前記Cスコープデータを取得して収容し、前記エコー抽出部は、閾値格納部の保持する前記閾値を参照し前記Cスコープ展開部の収容した前記モデル車軸のデータの中から前記閾値を越える全てのエコーの波形を抽出して前記抽出した各波形を識別する識別データを収容するものであり、前記第1レベル設定部は、第1判定部の判定対象とする波形のピークのエコー高さに対する第1レベルとするエコー高さの比率、閾値格納部の前記閾値に対する第1レベルとするエコー高さの比率、第1判定部の判定対象とする波形のピークに対する第1レベルの音圧レベルの差の値、前記閾値に対する第1レベルの音圧レベルの差の値の何れかを前記算定用基準として保持するものであり、前記第2レベル設定部は、第2判定部の判定対象とする波形のピークのエコー高さに対する第2レベルとするエコー高さの比率、閾値格納部の前記閾値に対する第2レベルとするエコー高さの比率、第2判定部の判定対象とする波形のピークに対する第2レベルの音圧レベルの差の値、前記閾値に対する第2レベルの音圧レベルの差の値の何れかを前記算定用基準として保持するものであり、オペレータの前記エコー指定部の操作によりモデル車軸の前記エコー抽出部の抽出した前記Cスコープ展開部中の波形のデータの夫々を順次指定することにて、前記ピーク値取得部は、指定された波形のエコー高さのピーク値を取得し、前記第1レベル規定部は、前記第1レベル設定部とピーク値取得部とを参照して、モデル車軸の前記指定された波形について第1レベルのエコー高さの値を取得するものであり、前記第2レベル規定部は、前記第2レベル設定部とピーク値取得部とを参照して、モデル車軸の前記指定された波形について第2レベルのエコー高さの値を取得するものであり、オペレータの前記エコー指定部の操作によりモデル車軸の前記エコー抽出部の抽出した前記Cスコープ展開部中の波形のデータの夫々を順次指定することにて、前記第1範囲設定部は、指定された波形の第1レベルにおける太さに関するデータの全てが範囲内となるよう自動的に前記第1範囲規定部の前記上限値と下限値を設定するものであり、オペレータの前記エコー指定部の操作によりモデル車軸の前記エコー抽出部の抽出した前記Cスコープ展開部中の波形のデータの夫々を順次指定することにて、前記第2範囲設定部は、指定された波形の第2レベルにおける太さに関するデータの全てが範囲内となるよう自動的に前記第2範囲規定部の前記下限値を設定するものであり、モデル車軸にて取得した上記第1範囲規定部及び第2範囲規定部における上限値と下限値の夫々を、前記第1判定部と第2判定部が実車軸の判定に参照するものであることを特徴とする車軸の超音波探傷システムを提供できた。
本発明は、従来の探傷ゲートを利用して当該探傷ゲートに現れたエコーを直ちに傷エコーとするものと異なり、車軸の形状エコーの特徴を利用することで形状エコーを傷エコーと誤判定することを回避できるものとした。
特に本発明では、車軸の探傷する範囲の局部に探傷ゲートを設定して、当該局部のみを観察するのではなく、車軸の探傷する範囲即ちビーム路程の全般にて閾値を超えた高さのエコーを取得するものであり、探傷ゲートを傷エコーの予想される位置にのみ設定するという従来必要とした多大な手間を不要とした。また探傷ゲートを設定するオペレータによるばらつきについても危惧する必要がなくなった。
具体的には、本発明の発明者は、鋭意研究の末、図18(B)へ示すCスコープデータの3次元表示の通り、形状エコーは、麓が太く広がり頂点側が細い三角形状に現れるのに対して、傷エコーは柱状に現れ麓と頂部側で太さは殆ど変わらないことを知得した(図18(B)において、xが上記x軸、yが上記y軸を、zが上記z軸を示している)。この知見に基づき、本発明の発明者は、本発明を完成させたものであり、従来の探傷ゲートを排し、或いは、従来探傷ゲートの設定について探傷ゲートを車軸の探傷する範囲の一部に設定するものであったものを、ビーム路程についての探傷ゲートの始点と終点をビーム路程の全般即ち、車軸の探傷する範囲の全域に設定するものとして、ピークが閾値を超える波形のピークを基準に、当該ピークから低い少なくとも上下2段のエコー高さを決め、上段を第1レベルとし下段を第2レベルとして、少なくとも第1レベルでの判定で傷エコーの太さに該当するとされたエコーについて、当該エコーの第2レベルにおける太さから傷エコーか形状エコーかを判定するものとした。当該判定にて、本発明は、形状エコーを傷エコーと誤判定することを抑制できた。
上記第1及び第2レベルの夫々における太さについては、少なくとも、上記x軸方向の幅、y軸方向の幅或いはx−y平面へ投影した面積の何れかとすることかできる。
上記知見により本発明において、例えば第2レベルで規定する太さの範囲を形状エコーとするに相当する範囲即ち第1レベルに規定した太さの範囲よりも太い相当の範囲に規定しておき、第2レベルの範囲に入るエコーについては形状エコーと判定することで、形状エコーを傷エコーとする誤判定を抑制することを可能とした。勿論第2レベルに規定する太さの範囲を傷エコーに相当する範囲即ち第1レベルに規定した範囲と同程度の範囲とし、第1レベルで傷エコーの範囲に入るエコーを第2レベルでの判定で直接傷エコーであるか否か判定するものとしてもよい。
特に本発明では、一つの実車軸の探傷においてテストピースとなるモデル車軸で第1レベル及び第2レベルにおける判定条件を原則一度設定すればよく、同一の車軸でも探傷ごとに毎回同じモデル車軸を用いて事前に探傷ゲートの設定を行うという従来の手間を採る必要がない。従って本発明によりモデル車軸による設定の時間も短縮できた。
また、本発明では、探傷ゲートの厳密な設定が不要であるので、オペレータの個人差による判定のばらつきも生じ難いものとした。
本発明の一実施の形態に係るシステムの全体説明図。 本発明の一実施の形態に係るシステムのデータ処理を中心とする説明図。 (A)及び(B)は図2の要部説明図。 (A)は本発明の一実施の形態に係るハードウエアを中心とする説明図、(B)は(A)の変更例を示す説明図。 図4(A)(B)の要部拡大略縦断面図。 図5のプローブの走査を示す車軸の軸方向に沿った略縦断面図。 図5のプローブの走査を示す車軸の周方向に沿った略横断面図。 (A)は本発明に係るシステムのCスコープの概念を示す説明図、(B)は(A)の概念に基づくモデル車軸のCスコープ表示とモデル車軸の切欠正面図とを併記した説明図。 図8(A)(B)のCスコープデータとしての傷エコーと形状エコーを示すx−y(角度−軸方向)座標の説明図。 図8(A)(B)のCスコープデータとしての不連続に現れた形状エコーを示すx−y(角度−軸方向)座標の説明図。 本発明の一実施の形態に係る探傷システムの実探傷における運用手順のフローを示す説明図。 (A)(B)は、図11の要部説明図。 本発明の一実施の形態に係る探傷システムを用いた実探傷前の設定におけるフローを示す説明図。 本発明の一実施の形態に係る探傷システム運用の全体のフローを示す説明図。 本発明の一実施の形態に係る探傷システムの操作画面の例を示す説明図。 (A)は本発明の探傷ヘッドの他の実施の形態を示す略縦断面図、(B)は本発明に係る探傷装置の走査部の他の実施の形態を示す略正面図。 (A)(B)は従来の探傷方法による問題のAスコープ表示による説明図。 (A)は車軸の周方向の不連続エコーを示す説明図、(B)は傷エコーと形状エコーのCスコープデータに基づく3次元の立体表示を示す斜視図。
以下、図面を参照して本発明の好ましい実施の形態について例示する。
(探傷方法の概要)
この発明は、被検材が中実車軸の場合車軸100の外周面にて、被検材が中ぐり車軸100の場合車軸の外周面或いは内周面にて、車軸100の軸方向及び周方向について超音波探触子1を走査し、超音波を送信しエコーを受信して車軸100内部の車軸100外周面付近を斜角探傷し、超音波の前記送受信における超音波の到達距離即ちビーム路程に対するエコー高さを検出する車軸100の超音波探傷方法に関するものである。
特に、この発明は、車軸100の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、所定の音圧レベル即ち所定のエコー高さを第1レベルとし、当該第1レベルよりも所定高さ低いエコー高さを第2レベルとして、上記第1レベルにおける前記波形の太さが傷エコーを示す太さの範囲にあるとき、上記第2レベルにおける前記波形の太さを調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行う。上記において第1レベルで傷エコーの太さの範囲にあるときのみ上記第2レベルにおける波形の太さを調べるものとしても、第1レベルと共に第2レベルの波形の太さを調べるものとしてもよい。
そして、検出した上記波形の第2レベルにおける太さが形状エコーの幅の範囲にあるとき検出したエコーを車軸の形状エコーと判定するか、又は、検出した上記波形の第2レベルにおける太さが形状エコーの幅の範囲にないとき検出した前記エコーを傷エコーと判定する。
上記の形状エコーは、前記車輪の軸方向の位置により車軸の径が異なることにて車軸の周方向に備えられた段差に起因するエコーである。
(超音波探傷システム)
中ぐり車軸を探傷する場合を例に採り、本願発明を実施するに最適な装置の例を示す。
図1〜図4へ示す通り、本発明に係る超音波探傷システムは、機構部600と、探傷部800とを備える。
図1及び図2へ示す通り、機構部600は、超音波探触子1と、走査部500と、位置検出部60とを備える。更に機構部600は、媒介供給部510と、センサ部520とを備える。媒介供給部510は、超音波の媒介となる水や油などの液体を超音波探触子1と車軸100との間へ供給する。この例では、超音波の媒介は油であり、媒介供給部510は給油ポンプである。センサ部520については、この例では、原点センサと、インタロックセンサと、温度センサとを備える。
上記原点センサは、車軸100に対する超音波探触子1(プローブ)の位置を特定するための原点となる位置を検出するセンサである。原点センサは、この例では、磁気を検出する磁気センサである。但し、上記原点となる位置を検出することができれば、投光した光を受光することにて上記位置を検出する光センサを用いるものとしても、電波の送受信にて上記位置を検出するセンサを用いるものとしてもよい。
また、上記インタロックセンサについては、後述する車軸取付け部7が車軸100へ適切に装着されているか否かを検出する物理センサ即ち車軸100への車軸取付け部7の接触状態が適切か否かを検出する接触型のセンサである。上記インタロックセンサにて超音波探触子1(の探触子保持部2)の車軸100への装着前に走査部500が超音波探触子1(探触子保持部2)を駆動しないように設けられている。但し、上記インタロックセンサについては設けずに実施してもよい。
上記温度センサは、超音波の媒介液の温度を検出するセンサである。上記温度センサはこの例では、超音波の媒介液として用いられる油の給油タンク内に設けられた油温センサである。
従来の探傷ゲートを厳密に設定する探傷方法では油温の変化によっても探傷ゲートを調整する必要が生じたので上記温度センサは必須の構成であるが、本発明の探傷方法では探傷ゲートの設定が不要であるので、上記温度センサを設けずに実施することができる。
探傷部800は電装部であり、超音波探触子1へ接続された探傷器8と、コンピュータ9と、コンピュータ9へ上記位置検出部60、走査部500、媒介供給部510及びセンサ部520を接続するインターフェース82とを備える。
上記の探傷器8と、コンピュータ9と、導入された探傷システムのソフトウエアとは、本発明に係る探傷システムの主として探傷部800を構築する(図2)。探傷部800の詳細については、後述する。
(装置構成)
先ず、図4〜図7を用いて本発明に係る探傷システムの装置構成即ちハードウエアについて説明する。
図5へ示す通り、超音波探触子1は、超音波を送信する送信プローブと超音波を受信する受信プローブである。この例では、上記送信プローブは、受信プローブを兼ねる送受信プローブであり、超音波の送信と受信の双方を行う。但し、送信プローブと受信プローブとは別々に形成されたものでもよい。
この探傷方法は、超音波探触子1から、車軸100の中心線(仮想線/図4〜図6において図示は省略する。)に対して斜めに超音波を送信する、即ち中心ビームを上記中心線に対し斜めとする斜角探傷を行うものである。
超音波探触子1については、車軸100の軸方向と共に車軸100の周方向についての走査が物理的に行われるシングルプローブとしてもよいが、ここでは、車軸100の周方向について複数の振動子1pを環状に配置し周方向への走査は電子走査にて行われる即ち環状に配置された振動子1pを順次振動させるアレイプローブを用いる。
具体的には、図5へ示す通り、超音波探触子1は、送受信プローブを上記アレイプローブとし、車軸の中空部103へ車軸100の内周面へ沿って環状に配置された個々の上記振動子1pが、上記中心線に対し斜めに超音波を発する。図5のμはビーム路程を示している。
この例では、図5へ示す超音波探触子1を構成する振動子1pは円錐状に形成され、当該アレイプローブを構成する個々の振動子1pは、上記中心線と直交する平面(図5の破線)に対し50度の角度θ即ち上記中心線に対し130度の角度を以て超音波を発信する。
但し上記角度θは、35度〜75度の範囲において変更することが可能である。尚角度θを35度未満とすると、発信した超音波(横波)を適切に反射させることができない。
上記の電子走査は、環状に配置された振動子1pのうち1度に振動させる振動子1pを一つとし、上記周方向に沿って順次振動する当該1つ振動子1pをずらして行くものであってもよいが、ここでは、上記アレイプローブを構成する振動子1pのうち隣り合う所定数の振動子1pのグループから一度に超音波を発するフェーズドアレイ方式を採用する。当該フェーズドアレイ方式においては、送受信プローブの走査は、環状の前記アレイプローブの一度に超音波を発する上記グループを車軸100の周方向即ち環状の周方向について順次ずらして行くことにより行われる。
本発明では、図7へ示す通り、超音波探触子1として、振動子1pが車軸100と同心となるよう環状に配置されたアレイプローブを用いるものであるが、直線的にフェーズドアレイプローブを配置し上記のように発振するグループをずらして行くリニアアレイと同様である。より具体的には先行するグループg1の振動子1pの発振後、振動子1pが1個分ずれた次のグループg2の振動子1pが発振する。このように車軸100の周方向へ沿って順次振動子1pのグループをずらして振動させることにより、上記中空部103から車軸100の内部の表面付近に向けて超音波を発振し、フェーズドアレイによる車軸100の探傷を行う。図7へ示す例では、1つのアレイプローブにおいて環状に配置された振動子1pは64個であり、後述の通り前後2つの環状のアレイプローブにて合計128個の振動子1pが配置される。
また、上記1グループとして6個の振動子1pを同時発振する。但し個々のアレイプローブの振動子1pの数は64個に限定するものではなく、振動子1pの数はコンピュータ9の処理能力に応じて変更することができる。また同時発信する振動子1pについても上記の6個に限定するものではなく、探傷する車軸によって変更可能である。例えば7個以上の振動子1pを同時発振するものとしてもよい。フェーズドアレイにより上記64個の振動子1p中最大32個の波形情報を合成することができる。
フェーズドアレイ方式を採用する利点としては、所望の波形を合成した超音波を車軸100内へ発信できることである。例えば、上記フェーズドアレイ方式では、平らな平面波や曲面波を簡単に合成することができ、被検材である車軸内の広い範囲を一度に探傷できる。
上記において、1つのグループ内にて、一度に振動する振動子1pを同時に振動させるものとしたが、1つのグループ内で振動子1p間にディレイ(遅延)をかけて振動するタイミングをずらして角度を変えるセクタースキャンを行うものとしてもよい。
超音波探触子1に上記シングルプローブを採用する場合とフェーズドアレイを含むアレイプローブを採用する場合の何れの場合も、車軸100の軸方向についての走査は、超音波探触子1と車軸100の何れか一方又は双方を物理的に移動させることにより行われる。上記走査に関する具体例については、走査部500の説明にて述べる。
図6の102は、車輪101、101の圧入された圧入部を示している。
この例では、図5へ示す通り、超音波探触子1即ち上記送受信プローブは、軸方向の前後に2つ配置されている。即ち軸方向の走査の進行方向を前方(図5及び図6の左側)として、斜め前方を向くプローブ1aと、斜め後方を向くプローブ1bとにて構成されている。この点について、図6を用いて詳しく説明する。車軸100の中空部103にて図6の右側から左側へ超音波探触子1を走査する場合、例えば探傷範囲を前方向きの斜線Vとする上記プローブ1aでは、車軸における車輪101との嵌め合い部分即ち上記圧入部102の左コーナーBの探傷は行えるが右コーナーAには超音波を適切に向けられず探傷が行えない。このため、上記プローブ1aと背中合わせに逆向きのもう一つの上記プローブ1bを配置するのである。プローブ1bは、探傷範囲を後方向きの斜線Wの領域とするので上記コーナーAの探傷を行うことができる。
即ち、超音波探触子1の上記プローブ1aの発する超音波(斜線V)は、車軸100の左コーナーB付近が探傷可能な方向性を有するものであり、逆にプローブ1bが発する超音波(斜線W)は、車軸100の右コーナーA付近が探傷可能な方向性を有するものである。両プローブ1a,1bには、機能・構成について同じものを用いる。
車軸100の左右のコーナーA,Bによって前後のプローブ1a,1bを使い分ければよい。
上記前後の両プローブ1a,1bは、車軸100の軸方向について一体に走査される。従って、超音波探触子1は、前記周方向の電子走査と共に上記軸方向の物理的な走査によって、車軸100に対してスパイラル状に即ち螺旋状の軌跡を描いて超音波を発信しエコーを受信して行く。
円錐状の前後のプローブ1a,1bの振動子1pは一体に固定されて算盤玉のような形態を有する。その外側は(図5において灰色の振動子1pと接する白色の部分)はプローブ1a,1bの一部をなす樹脂である。即ち当該樹脂は振動子1pの外側を覆って探触子保持部2の呈する円柱の一部をなしている。当該樹脂表面と車軸100内周面との間に超音波の媒介となる油が供給される。
図示は省略するが、探触子保持部2においてプローブ1a,1bの前後に上記媒介の供給口が設けられ、プローブ1a,1bの近傍に当該媒介の回収口が設けられている。探触子保持部2の軸方向について上記供給口と回収口の前方及び後方へパッキンが嵌められており、当該パッキンはプローブ1a,1b近傍へ超音波の上記媒介を留める。
図4(A)及び図5の2はプローブ1a,1bを保持する円筒状の探触子保持部2を示す。探触子保持部2にフレキシブルチューブ4の一端(先端)が取り付けられプロープ1a,1bと電気的に接続されている。また、フレキシプルチューブ4内には探触子保持部2の外部から探触子保持部2へ上記超音波の媒介を導く管が設けられている。
ここで図4(A)を用いて走査部500について説明する。
図4(A)へ示す通り、車輪101が圧入された状態の中ぐりの車軸100の一端から、探触子保持部2が、車軸100内部へ配される。上記の通り探触子保持部2は、フレキシブルチューブ4の一端(先端)に設けられている。このフレキシブルチューブ4については、探触子保持部2が、車軸100内のどの位置に入り込んでも、充分追従できる長さを有するものである。
先ず車軸100の端部(図4(A)において左端)には、車軸取付け部7が嵌められている。車軸取付け部7は、フレキシブルチューブ4を通す案内部材である。
フレキシブルチューブ4の他端(基端)側は、車軸100の外部へ設けられたプーリー等の巻取り手段5へ繋がれている。即ち、フレキシブルチューブ4の基端側は、巻き取り手段5へ物理的に接続されている。
図4(A)の40は、フレキシブルチューブ4の摺動方向を変えるための補助プーリーを示している。この巻取り手段5により、フレキシブルチューブ4を巻き取ることによって、探触子保持部2は、図4(A)の左側に移動し、フレキシブルチューブ4を巻き解くことによって、探触子保持部2は、図4(A)の右側に移動する。そしてこのフレキシブルチューブ4は、車軸取付け部7に挿通された状態に配されている。車軸取付け部7は、車軸100の端部に固定され、フレキシブルチューブ4の摺動位置を検出して、探傷位置の情報を得る位置検出部60として位置センサ70を備える。位置センサ70にはエンコーダーを採用することができる。例えば、上記エンコーダーとして、巻き取り手段の回転モーターを制御するロータリーエンコーダを利用することができる。位置センサ70は、回転モーターの回転を計測し或いはフレキシブルチューブ4の引き出し長さを計測することでき、軸方向の超音波探触子1の位置を検出することができる。
尚巻取り手段5は、移動が容易なようにキャスター50等の移動手段を備えたものであれば、装置の重量等に係わらず、作業環境に応じて迅速な設置位置の移動が行え、便利である。
探傷器8は、上記フレキシブルチューブ4内を通る配線(図示しない。)を介して超音波探触子1へ物理的且つ電気的に接続されたものである。前記配線は、車軸100に向けた超音波送信の際に探傷器8側から超音波探触子1へ向け超音波探触子1の振動子1pを振動させるスパイク電圧を印加する信号を送信し、車軸100から反射してきたエコー受信の際に前記振動子1pの振動により受信したエコーの電気変換された信号を受ける。
このように上記フレキシブルチューブ4自身は、内部にプローブ1a,1b及び探触子保持部2から送られてくる情報を伝達するための配線がなされており、巻取り手段5から、これら情報は、探傷器8やコンピュータ9に転送される。データの処理に応じて、蓄積されたデータ或いはリアルタイムに得たデータを打ち出すためのプリンタ90を接続して実施することも可能である。
また図4(A)へ示すフレキシブルチューブ4に代えて、図4(B)へ示すケーブルベア(登録商標)46と走査用チェーン47とを用いて探触子保持部2を走査するものとしてもよい。
図4(B)へ示す例では、作業者の操作により走行することができる電動式の自走車49に、上記走査部500や探傷部800が設けられている。
上記のケーブルベア(登録商標)46は、可動部即ち探触子保持部2に接続されたケーブルなどを保護・案内するための部材(ケーブル保護部材)であり、一般に産業用機械や工作用機械などに使用される周知のものである。 ケーブルベア(登録商標)46は、チェーンのように小さな部品を連結したものであり、自由な長さの設定と柔軟な動きを実現することができる。図4(B)へ示す通り、 ケーブルベア(登録商標)46の先端は探触子保持部2に連結されている。中空のケーブルベア(登録商標)46の内部へ超音波探触子1と探傷器8や更にはコンピュータ9を接続する信号線が通されている。
ケーブルベア(登録商標)46は、図4(B)へ示す通り九十九(つづら)折りにされた状態から伸ばすことによって、車軸100内部(中空部103)へ挿入して行くことができる。
上記走査用チェーン47は、上記ケーブルベア(登録商標)46を載せて車軸100に対しケーブルベア(登録商標)46を移動させるチェーンである。図4(B)の48は走査用チェーン47の巻き取り装置である。巻き取り装置48をモーターにて回転駆動することにより、走査用チェーン47を引き出し或いは引き戻すことができる。巻き取り装置48から走査用チェーン47を引き出すことにて、車軸100の中空部103内へ上記の通り走査用チェーン47へ載せられたケーブルベア(登録商標)46を挿入することができる。走査用チェーン47には、周知のプラグロックチェーン(商品名)を採用することができる。
自走車49には、リフタが設けられている(図示しない)。上記リフタは、巻き取り装置48から走査用チェーン47を引き出して超音波探触子1(探触子保持部2)を車軸100へ装着する際、車軸100のある位置まで探触子保持部2を連結しているケーブルベア(登録商標)46の先端部分及び走査用チェーン47を上昇させる周知の昇降装置である。上記リフタは、探傷後車軸100から引き出されたケーブルベア(登録商標)46及び走査用チェーン47を降下させて自走車49へケーブルベア(登録商標)46及び走査用チェーン47を収容する。
図4(B)へ示す例では、センサ部520(図1)は前述した他のセンサと共にリフタ上下限センサを備えている。
上記リフタ上下限センサは、上記リフタの動作範囲即ち昇降の上限と下限とを検出するセンサである。上記リフタ上下限センサには、上記原点センサと同様の位置センサを用いるものとしてもよいし、上記インタロックセンサと同様の物理センサを用いるものとしてもよい。
尚、図4(B)へ示す例においても特に言及しなかった事項については、図1〜図3、図4(A)、図5〜図15へ示す実施の形態と同様である。
(データ処理構成)
次に図2及び図3を用いて、本発明に係る探傷システムのデータ処理の構成を中心に説明する。即ち、ここでは、前述の探傷部800について詳述する。探傷部800は、上記の探傷器8と当該探傷器8に接続されたコンピュータ9と当該コンピュータ9へ導入された探傷システムのソフトウエアとにて構築されるものであり、探傷部800の構成として、図2へ示す制御部860と、データ処理部81と、表示部840と、操作部850とが構築される。
探傷部800の上記制御部860は、上記超音波探触子1に対する超音波の送信制御とエコーの受信制御を行う。また制御部860は、超音波探触子1を走査する上記走査部500に対する走査制御を行う。更に、制御部860は、上記データ処理部81におけるデータ処理の制御を行う。制御部860は、主としてコンピュータ9の中央情報処理装置とコンピュータ9へ導入された上記ソフトウエア(以下必要に応じて探傷ソフトウエアと呼ぶ。)とにて構成される。
図2へ示す通り、上記データ処理部81は、Aスコープデータ取得部801と、Cスコープ展開部802と、閾値格納部803と、エコー抽出部804と、エコー指定部851と、ピーク値取得部805と、第1判定部810と、第1レベル規定部811と、第1レベル設定部812と、第1範囲規定部813と、第1範囲設定部814と、第1判定結果収容部819と、第2判定部820と、第2レベル規定部821と、第2レベル設定部822と、第2範囲規定部823と、第2範囲設定部824と、第2判定結果収容部829と、合否判定部833と、合否判定結果収容部834と、カウント部835とを備える。
図2へ示すように、上記表示部840は、Aスコープ表示部841と、Cスコープ表示部842と、第1判定結果表示部843と、第2判定結果表示部844と、合否判定結果表示部845とを備える。
上記構成を採る表示部842は、上記コンピュータ9のモニタへ、後述するAスコープと、Cスコープと、第1判定結果と、第2判定結果と、車軸の合否判定結果即ち探傷結果とを表示する。
上記操作部850は、オペレータの操作を受け付けることにてエコー指定部851を通じCスコープ展開部802の任意のエコーの指定することができる。
オペレータは、操作部850を構成するコンピュータ9のマウスやキーボードといった入力装置を用い、表示部840のCスコープ表示部842によりコンピュータ9のモニタへ表示されたCスコープ表示の中から任意のエコー指定することができる。
図15は、表示部840即ちコンピュータ9のモニタに表示された上記操作部850の操作画面を示す。上記エコーの指定について具体的に説明すると、図15の下方の暗色の背景部分に示すCスコープ表示上で、上記入力装置の操作によりカーソルppを移動させ、所望のエコーへカーソルppを合わせて当該エコーを指定することができるのである。尚図15の上方の背景の暗色部分は、Aスコープ表示を示している。また、図15の画面には表示されていないが、車軸100の軸方向と交差する方向の断面を示す即ち車軸100を輪切りと状態にしてエコーを示すBスコープを上記Cスコープと共に表示するものとしてもよい。
図15については、後の本発明に係るシステムの運用のフローと共に詳しく述べる。
上記データ処理部81の各構成について説明する。
Aスコープデータ取得部801は、上記探傷ソフトウエアと、主としてコンピュータ9のメモリやハードディスクなどの記憶域(内部又は外部記憶装置)とにて構成されたもの(Aスコープメモリ)である。探傷器8は、位置検出部60の検出したプローブの走査位置におけるビーム路程と、ビーム路程の略全域についてプローブが受信したエコーのエコー高さとから当該エコーの波形のAスコープデータを順次取得する。制御部860は、当該Aスコープデータを、Aスコープデータ取得部801へ収容する。
尚、探傷器8は、アナログ信号として超音波探触子1の受信した波形をデジタルデータへ変換するA/Dコンバータ(アナログ・デシタル変換機)を備える。Aスコープデータ取得部801は、上記デジタルデータを取得して収容する。
Cスコープ展開部802は、上記探傷ソフトウエアと主としてコンピュータ9のメモリなどの記憶域とにて構成されている。Cスコープ展開部802は、Aスコープデータ取得部801を参照し、Aスコープデータ取得部801の収容する上記波形のデータ(x軸とy軸の直角座標に示すAスコープデータ)について、車軸100の中心線yaと直交する特定の仮想線xaに対する角度をx軸に示し(図8(A)左図)、車軸100の軸方向の位置を当該x軸と交差するy軸に示し、受信したエコーのエコー高さを当該高さに応じ色分けして示すデータをCスコープデータ(図8(B)及び図9)として収容する。詳しくは上記Cスコープデータを表示するCスコープ表示において、Aスコープのエコー高さレベルに応じてグラデーション即ち色調を変えて表示する。
但し、上記色分けについては、Cスコープ表示部842のCスコープ表示を見たオペレータが直観的にエコー高さを把握できるようにしたものであり、Cスコープデータ中、本発明の探傷システムがエコー高さを識別できるものであればよく、表示における色分けの情報(色分けに関するデータ)を上記エコー高さのデータへ付加する必要はない。本発明に係るシステムとしては、Cスコープの上記エコ高さの情報を、上記x軸やy軸と交差するz軸の値(音圧レベルの数値)として取得するものとし、表示部840においてx−y座標上の位置のみ表示するものとしてもよい。
また、上記色分けとは、彩色による他、輝度(明暗)や濃淡により視覚にて識別できる情報であり、この例において、図8(B)から判別し難いが、表示部840のモニタ上の彩色及び輝度の変化にてエコー高さを視認できるものとしている。
図8(B)の上段へ示すCスコープ表示は、図8(A)の右図へ示す状態に図8(A)の左図を展開したものと考えればよい。
Cスコープ表示では図8(A)(B)へ示す通り車軸を展開平面状態に仮想して表示するものであり、平面画像としてNG(欠陥)判定部分の形状を目視で確認することができる。
また図8(B)の下段は、Cスコープと対応する車軸の外観を示している。
上記図8(B)上段のCスコープのグラフは、実際の探傷前にこの探傷システムの調整を行うためのモデル車軸mから得たものである。
モデル車軸mには、図8(B)上段のCスコープへ白く現れる通り、所定位置に所定の人工欠陥即ち人工傷(人工キズ)が設けられている。図8(B)において、上段のCスコープ表示と、下段のモデル車軸mの軸方向各部(即ちジャーナル、スリンガー、ホイルシート、ベアリングシート、ギヤシート、アースリングシート、ブレーキディスクシートなど)の位置関係は対応している。
尚、図9及び図10は、Cスコープのデータを示しており、1升がメモリの1単位(1ビット)と考えればよい。但し、図面の煩雑を避けるため、図9及び図10は実際のメモリよりも間引いて(低解像度に)描いてある。
閾値格納部803は、上記探傷ソフトウエアと主としてコンピュータ9のメモリやハードディスクなどの記憶域とにて構成されている。閾値格納部803は、所定の音圧レベルを閾値として保持する。
上記閾値は、当初より設定された値であり、探傷中は変更されない一定の値である。但しオペレータは必要に応じて操作部850を通じ探傷前に閾値を調整することがてきる。
エコー抽出部804は、上記探傷ソフトウエアと主としてコンピュータ9のメモリやハードディスクなどの記憶域とにて構成されている。
エコー抽出部804は、閾値格納部803が保持する上記閾値を参照しCスコープ展開部802の取得したデータの中から上記閾値を越える全てのエコーの波形のデータを抽出する。当該波形のデータとして、エコー抽出部804は、当該波形を識別する識別データを収容する。例えば、エコー抽出部804は、抽出する波形についてCスコープのx−y座標上の位置を示すデータ(x,y)を上記識別データとして収容することができる。また上記識別データには上記位置データと共にエコー高さ(音圧レベル)を含むものとしてもよい。但し、上記閾値を超えたエコーを識別できれば、エコー抽出部804は他の手段を採るものであってもよい。
エコー指定部851は、実探傷即ち実車軸に対する実際の探傷において、自動的にエコー抽出部804の抽出したエコーを指定(自動指定)する。
エコー指定部851は、実車軸探傷前の波形の太さに関する範囲設定のためのモデル車軸mの探傷においては、オペレータの操作部850の操作にて指定を受け付けたエコーを指定する。但し、実探傷においても、上記自動指定と共に或いは上記自動指定に代えて、エコー指定部851のエコーの指定を、オペレータの操作部850から指定の操作を受け付けて行うものとしてもよい。
第1レベル設定部812は、上記第1レベルを算定するのに必要な算定用の基準(第1算定用基準)を保持する。
第1算定用基準は、波形毎に異なる上記第1レベルを、算定するのに用いられるデータである。第1算定用基準は一定の値のデータである。第1算定用基準は、波形のピークのエコー高さに対する第1レベルとするエコー高さの比率、又は、第1判定部の判定対象とする波形のピークに対する第1レベルの音圧レベルの差とすることができる。
具体的には、波形のピークのエコー高さの80%のエコー高さを上記第1レベルとする場合当該80%という比率が上記第1算定用基準である。また、波形のピークから3dB(デシベル)低いエコー高さを上記第1レベルとする場合−3dBという値が上記第1算定用基準である。従って、第1レベル設定部812の保持する上記第1算定用基準自体は、指定された何れの波形に対しても、オペレータの調整のない限り変わらない。
但し、第1レベル設定部812は、上記に代えて、閾値格納部803の閾値に対する第1レベルとするエコー高さの比率、又は、上記閾値に対する第1レベルの音圧レベルの差の値の何れかを第1算定用基準とするものであってもよい。
第2レベル設定部822は、上記第2レベルを算定するのに必要な算定用の基準(第2算定用基準)を保持する。
第2算定用基準は、波形毎に異なる上記第2レベルを、算定するのに用いられるデータである。第2算定用基準は一定の値のデータである。第2算定用基準は、波形のピークのエコー高さに対する第2レベルとするエコー高さの比率、又は、第2判定部の判定対象とする波形のピークに対する第2レベルの音圧レベルの差とすることができる。
第2レベル規定部821の保持する第2算定用基準も、上記の通り第1算定基準と同種の基準を採用すればよいが、波形の第2レベルのエコー高さが第1レベルのエコー高さよりも低くなるよう第2算定用基準を設定しておく必要がある。
具体的には、波形のピークのエコー高さの60%のエコー高さを上記第2レベルとする場合当該60%という比率が上記第2算定用基準である。また、波形のピークから6dB(デシベル)低いエコー高さを上記第2レベルとする場合−6dBという値が上記第1算定用基準である。従って、第2レベル設定部822の保持する上記第2算定用基準自体は、指定された何れの波形に対しても、オペレータの調整のない限り変わらない。
但し、第2レベル設定部822においても、上記に代えて、閾値格納部803の閾値に対する第2レベルとするエコー高さの比率、又は、上記閾値に対する第2レベルの音圧レベルの差の値の何れかを第2算定用基準とするものであってもよい。
上記第1及び第2レベル設定部812,822の保持する算定用基準は、上述した波形のピーク又は閾値に対する比率や音圧レベルの差の何れか1つとしてもよいし、上述した波形のピーク又は閾値に対する比率や音圧レベルの差の全てを算定用基準として、各レベル設定部812,822が備え、その中からオペレータが選択して算定用基準を設定するものとしてもよい。
尚上記第1レベル設定部812の保持する第1算定用基準は、閾値格納部803の閾値としてもよく、その場合閾値の100%或いは−0dB低い値を第1算定用基準とする。また第1算定用基準を閾値格納部803の閾値とする場合、本発明に係る探傷システムにおいて、第1レベル設定部812と閾値格納部803の一方が他方を兼用するものとしても実施できる。
第1レベル規定部811は、エコー指定部804にて指定された波形について、ピーク値取得部805と第1レベル設定部812を参照して第1レベルとするエコー高さのデータを取得する。
例えば、第1レベル設定部812が、波形のピークのエコー高さに対する第1レベルとするエコー高さの比率80%を第1算定用基準とする場合、第1レベル規定部811は、エコー指定部804にて指定された波形のピークに対し、80%のエコー高さを当該波形の第1レベルとして取得する。上記にて指定された波形のピークが10dBの場合当該波形の第1レベルは10dB×80%=8dBとなり、指定された波形のピークが5dBの場合当該波形の第1レベルは5dB×80%=4dBとなる。
又第1レベル設定部812が、波形のピークのエコー高さから−3dBのエコー高さを第1算定用基準とする場合、上記にて指定された波形のピークが10dBであれば当該波形の第1レベルは10dB−3dB=7dBとなり、指定された波形のピークが8dBであれば当該波形の第1レベルは8dB−3dB=5dBとなる。尚表示部840での表示は、比率(%)でも音圧レベルのデシベル(dB)の何れでもよい。
第2レベル規定部821は、エコー指定部851にて指定された波形について、ピーク値取得部805と第2レベル設定部822を参照して第2レベルとするエコー高さのデータを取得する。第2算定用基準による算定は、上記第1算定用基準によるのと同様である。但し、上述の通り第2レベルが第1レベルよりも低いエコー高さとなるように第2算定用基準は設定されている。
この例では、エコー指定部851にて指定された波形のピークから−3dBを第1レベルとし、当該ピークから−6dBを第2レベルとした。このように第1レベルと第2レベルの差を3dBとするものに限定するものではないが、車軸における図18(B)に示す形状エコーの特性を確実に生かすためには、第1レベルと第2レベルの差を2dB以上特に3dB以上とするのが好ましい。但し、第2レベルを低くし過ぎるとベースノイズを拾うので、第1レベルと第2レベルの差を2dB以上特に3dB以上で尚且つベースノイズを拾わない範囲とするのが好ましい。
オペレータは、操作部850の操作にて、第1及び第2レベル設定部812,822の上記第1算定用基準及び上記第2算定用基準の比率や値を変更することができる。
第1範囲規定部813は、前記第1レベルにおいて傷エコーとする波形の太さに関するデータの上限値と下限値を保持する。具体的には、図3(A)へ示す通り、第1レベルにおいて傷エコーとするx軸方向の幅の下限値を収容するx軸方向幅下限値収容部815aと、第1レベルにおいて傷エコーとする軸方向の幅の上限値を収容するx軸方向幅上限値収容部815bと、第1レベルにおいて傷エコーとするy軸方向の幅の下限値を収容するy軸方向幅下限値収容部816aと、第1レベルにおいて傷エコーとするy軸方向の幅の上限値を収容するy軸方向幅上限値収容部816bと、第1レベルにおいて傷エコーとするx−y平面へ投影した領域の面積の下限値を収容するx−y面積下限値収容部817aと、第1レベルにおいて傷エコーとするx−y平面へ投影した領域の面積の上限値を収容するx−y面積上限値収容部817bと、x軸方向に現れる全波形の幅の総和の下限値を収容する周方向総幅下限値収容部818aと、x軸方向に現れる全波形の幅の総和の上限値を収容する周方向総幅下限値収容部818bとを備える。
上記のx軸方向に現れる全波形の幅の総和は、x軸方向の幅が連続する単一の波形であるか不連続な複数の波形であるかを問わず前記x軸方向に現れる波形の全ての幅の総和である。
図2の第1範囲設定部814は、上記第1範囲規定部813の各収容部の上限値と下限値を自動的に変更するものである。第1範囲設定部814の詳細については後述する。
第2範囲規定部823は、上記第2レベルにおいて傷エコーとする波形の太さに関するデータの上限値と下限値を保持する。具体的には、図3(B)へ示す通り、上記第2レベルにおいて傷エコーとするx軸方向の幅の下限値を収容するx軸方向幅下限値収容部825aと、第2レベルにおいて傷エコーとする軸方向の幅の上限値を収容するx軸方向幅上限値収容部825bと、第12ベルにおいて傷エコーとするy軸方向の幅の下限値を収容するy軸方向幅下限値収容部826aと、第2レベルにおいて傷エコーとするy軸方向の幅の上限値を収容するy軸方向幅上限値収容部826bと、第2レベルにおいて傷エコーとするx−y平面へ投影した領域の面積の下限値を収容するx−y面積下限値収容部827aと、第2レベルにおいて傷エコーとするx−y平面へ投影した領域の面積の上限値を収容するx−y面積上限値収容部827bと、x軸方向に現れる全波形の幅の総和の下限値を収容する周方向総幅下限値収容部828aと、x軸方向に現れる全波形の幅の総和の上限値を収容する周方向総幅下限値収容部828bとを備える。
第2範囲規定部823においても、上記のx軸方向に現れる全波形の幅の総和は、x軸方向の幅が連続する単一の波形であるか不連続な複数の波形であるかを問わず前記x軸方向に現れる波形の全ての幅の総和である。
図2の第2範囲設定部824は、上記第2範囲規定部823の各収容部の上限値と下限値を自動的に変更するものである。第2範囲設定部824の詳細については後述する。
カウント部835は、エコー指定部851の指定した波形について第1レベル及び第2レベルにおける太さの値を検出するものである。
例えば図9のx−y平面上へ示すエコーk1について、カウント部835により第1レベルL1におけるx軸方向の幅(最大幅)x1が6(グラフの升目6個分)であることをカウントし第1レベルL1における上記太さを示す値の1つとしてカウントした値を取得する。また上記エコーk1についてカウント部835により第2レベルL2におけるx軸方向の幅(最大幅)x2が8(グラフの升目8個分)であることをカウントし第2レベルL2における上記太さを示す値の1つとしてカウントした値を取得する。
またこの例ではエコーk1について、カウント部835により第1レベルL1におけるy軸方向の幅(最大幅)y1が4(グラフの升目4個分)であることをカウントし第1レベルL1における上記太さを示す値の1つとして取得する。また上記エコーk1についてカウント部835により第2レベルL2におけるy軸方向の幅(最大幅)y1が6(グラフの升目8個分)であることをカウントし第2レベルL2における上記太さを示す値の1つとして取得する。
またこの例ではエコーk1について、カウント部835により第1レベルL1におけるx−y平面上の面積が20(グラフの升目20個分)であることをカウントし第1レベルL1における上記太さを示す値の1つとして取得する。
また上記エコーk1についてカウント部835により第2レベルL2におけるx−y平面上の面積が43(グラフの升目43個分)であることをカウントし第2レベルL2における上記太さを示す値の1つとして取得する。
更に図9のx−y平面上へ示すエコーk2について、カウント部835により第1レベルL1におけるx軸方向の幅(最大幅)x3が6(グラフの升目6個分)であることをカウントし第1レベルL1における上記太さを示す値の1つとしてカウントした値を取得する。また上記エコーk2についてカウント部835により第2レベルL2におけるx軸方向の幅(最大幅)x4が12(グラフの升目12個分)であることをカウントし第2レベルL2における上記太さを示す値の1つとしてカウントした値を取得する。
またこの例ではエコーk2について、カウント部835により第1レベルL1におけるy軸方向の幅(最大幅)y3が4(グラフの升目4個分)であることをカウントし第1レベルL1における上記太さを示す値の1つとして取得する。また上記エコーk2についてカウント部835により第2レベルL2におけるy軸方向の幅(最大幅)y4が8(グラフの升目8個分)であることをカウントし第2レベルL2における上記太さを示す値の1つとして取得する。
またこの例ではエコーk2について、カウント部835により第1レベルL1におけるx−y平面上の面積が18(グラフの升目18個分)であることをカウントし第1レベルL1における上記太さを示す値の1つとして取得する。
また上記エコーk2についてカウント部835により第2レベルL2におけるx−y平面上の面積が69(グラフの升目69個分)であることをカウントし第2レベルL2における上記太さを示す値の1つとして取得する。
実探傷において、第1及び第2判定部810,820は、カウント部835のカウントした値について、各範囲規定部813,823に規定された範囲に入るか否かを判定する。
図9の例において、例えば第1レベルにおけるx軸方向の幅の下限値が4で上限値が10、第2レベルおけるx軸方向の幅の下限値が11で上限値が20の場合、上記エコーk1の第1レベルにおけるx軸方向幅x1=6は傷の範囲にあり、更に第2レベルにおけるx軸方向幅x2=8は形状エコーの範囲にないので、エコーk1は傷エコーであると判定される。一方エコーk2については、第1レベルにおけるx軸方向幅x3=6は傷エコーの範囲にあるが第2レベルにおけるx軸方向幅x4=12は形状エコーの範囲にあるので、エコーk2は形状エコーであると判定される。
y軸方向幅や、x−y平面上の面積(投影面積)、周方向(x軸方向)幅の総和についても上記x軸方向幅と同様に設定された範囲との対比により傷エコーであるか形状エコーであるかの判定を行う。但し、実探傷において、第1レベルで、x軸方向幅、y軸方向幅、x−y平面上の面積(投影面積)、周方向(x軸方向)幅の総和のうち何れかの項目で欠陥エコー即ち傷エコーと判定された場合、前記項目のうち残りの項目の判定を省略して第2レベルの判定へ移行してもよい。また、第2レベルにおいても、x軸方向幅、y軸方向幅、x−y平面上の面積(投影面積)、周方向(x軸方向)幅の総和のうち何れかの項目で欠陥エコー即ち傷エコーと判定された場合、前記項目のうち残りの項目の判定を省略することができる。
一方、モデル車軸を用いた範囲設定部814,824による範囲規定部813,823の範囲設定において、カウント部851が人工欠陥から順次カウント数を取得し、範囲設定部814,824は、カウント部851取得したカウント数を参照して第1及び第2範囲収容部813,823の有する上記各収容部の下限値と上限値とを更新する。
具体的には、図15のCスコープ表示を見てオペレータは、モデル車軸mに設けられ人工欠陥を順次指定して行き、上記各収容部の下限値と上限値とを更新する。
モデル車軸mを用いた範囲設定部814,824による範囲規定部813,823の範囲設定において、新たにカウント部851のカウントした人工欠陥の太さに関するカウント値が、第1及び第2範囲収容部813,823の有する上記各収容部の下限値より小さい場合、新たにカウントした人工欠陥の当該カウント値を下限値としそれまでの下限値を更新する。同様に、モデル車軸を用いた範囲設定部814,824による範囲規定部813,823の範囲設定において、新たにカウント部851のカウントした人工欠陥の太さに関するカウント値が、第1及び第2範囲収容部813,823の有する上記各収容部の上限値より大きい場合、新たにカウントした人工欠陥の当該カウント値を上限値としそれまでの上限値を更新する。上記の通り人工欠陥の太さに関する各カウント値を集計することにより、上記各収容部の下限値と上限値とが確定され、当該確定された範囲が実車軸の探傷に用いられるのである。
実車軸の探傷において、第1判定部810は、エコー指定部851にて指定された上記波形について、ピーク値取得部805と第1レベル規定部811とCスコープ展開部802と第1範囲規定部813とを参照し、上記第1レベルおける指定された波形の太さに関するデータ即ちx軸方向幅、y軸方向幅、x−y平面投影面積、x軸方向のエコーの幅の総和の夫々が、前記第1範囲規定部の規定する範囲にあるか否かの判定を自動的に行う。
この例では、ピーク値取得部805の取得した波形のピークに対し第1算定用基準を用いて第1レベルを算定するものとした。一方、閾値に対し第1算定用基準を用いて第1レベルを算定する場合、第1判定部810は、エコー指定部851にて指定された上記波形について、ピーク値取得部805に代え閾値格納部803を参照するものとする。
第1判定部810は判定結果のデータ即ち第1レベルの判定データを第1判定結果収容部819へ収容する。表示部840は、第1判定結果表示部843にて第1判定結果収容部819の判定データを表示することができる。
実車軸の探傷において、第2判定部820は、少なくとも第1判定部810にて傷エコーとする太さの範囲にあると判定された波形について、ピーク値取得部805と第2レベル規定部821とCスコープ展開部802と第2範囲規定部823とを参照し、上記第2レベルにおける指定された波形の太さに関するデータが、前記第2範囲規定部の規定する範囲にあるか否かの判定を自動的に行う。即ち第2判定部820は、上記第2レベルおける指定された波形の太さに関するデータとして、x軸方向幅、y軸方向幅、x−y平面投影面積、x軸方向のエコーの幅の総和の夫々が、前記第2範囲規定部の規定する範囲にあるか否かの判定を自動的に行う。
また、この例では、ピーク値取得部805の取得した波形のピークに対し第2算定用基準を用いて第2レベルを算定するものとした。一方、閾値に対し第2算定用基準を用いて第2レベルを算定する場合、第2判定部820は、エコー指定部851にて指定された上記波形について、ピーク値取得部805に代え閾値格納部803を参照するものとする。
第2判定部820は判定結果のデータ即ち第2レベルの判定データを第2判定結果収容部829へ収容する。表示部840は、第2判定結果表示部844にて第2判定結果収容部829の判定データを表示することができる。
この例では、合否判定部833が、第1判定結果収容部819と第2判定結果収容部829を参照して車軸100の合否判定を行い、当該合否判定の結果を合否判定結果収容部834へ収容する。合否判定結果表示部845は、合否判定結果収容部834に収容された上記合否判定の結果を表示する。
但し、第1判定部810及び第2判定部820の判定の表示を車軸の合否判定とし、上記のように別途合否判定部833や合否判定結果収容部834、合否判定結果表示部845を設けずに実施してもよい。
上記各規定部811,813,821,823は、上記探傷ソフトウエアと主としてコンピュータ9のメモリやハードディスクなどの記憶域とにて構成されている。
尚、図示は省略するが、Bスコープ展開部とBスコープ表示部とを併設して、前述の通り表示部840にてBスコープの表示も行うものとしてよい。
上記Bスコープ展開部は、Aスコープデータ取得部801を参照して、車軸100の軸方向と直交する平面にて輪切りにしたエコーを示す。Bスコープ表示において、形状エコーであれば環状又は円弧状に現れ、形状エコーの識別を視覚的に行い易いものとするのに寄与する。
本発明に係るシステムは、実車軸の探傷について、自動的に車軸の欠陥の有無即ち車軸の合否判定まで行うことができる。但し、オペレータが、表示部840のCスコープ表示部842を見ながら、表示された波形のうち傷か否かの判定をしたい波形を操作部850のエコー指定部851の操作により指定することもできる。
(判定のフローの概略)
図11へ示す通り、この超音波探傷方法による実車軸100の探傷は、Aスコープデータ収録ステップS100と、Cスコープ展開ステップS110と、閾値を超えるエコー検出ステップS120と、第1レベル判定ステップS130と、第2レベル判定ステップS140とを遂行し、車軸100の合否の判定を行うものである。
ステップS100では、制御部860の制御により上記の通りAスコープデータ取得部801へ超音波探触子1と位置検出部60から得たAスコープデータを収容する。
ステップS110では、制御部860の制御により上記Aスコープデータ取得部のデータをCスコープ展開部802へCスコープデータとして展開し収容する。
ステップS120では、エコー抽出部804が全ビーム路程から閾値を超えたエコーを抽出し各エコーのデータを識別可能に収容する。
ステップS130では、制御部860の制御の下、第1レベルにおける波形の太さのデータを調べて傷エコーか否か判定する。当該判定の方法は、上述の図9を参照したカウント部851の説明の通りである。
具体的には、第1レベル判定のステップS130において、制御部860の制御の下第1判定部810は、図12(A)へ示すS131〜S134の判定ステップを遂行する。
第1判定部810は、ステップS131にて検出した波形のx軸方向の幅が、第1範囲規定部813の保持する範囲即ちx軸方向幅下限値収容部815aの保持する下限値とx軸方向幅上限値収容部815bの保持する上限値とが規定する範囲にあるか判定する。
第1判定部810は、ステップS131において範囲にないとした波形についてステップS132にてy軸方向の幅が第1範囲規定部813の保持する範囲即ちy軸方向幅下限値収容部825aの保持する下限値とy軸方向幅上限値収容部825bの保持する上限値とが規定する範囲にあるか判定する。
第1判定部810は、ステップS132にて範囲にないとした波形についてステップS133にてx−y平面における投影面積が第1範囲規定部813の保持する範囲即ちx−y面積下限値収容部835aの保持する下限値とx−y面積下限値収容部835abの保持する上限値とが規定する範囲にあるか判定する。
第1判定部810は、ステップS133にて範囲にないとした波形についてステップS134にて第1範囲規定部813の保持する範囲即ち周方向総幅下限値収容部818aの保持する下限値と周方向総幅上限値収容部818bの保持する上限値とが規定する範囲にあるか判定する。
第1判定部810がステップS134にて範囲にあると判定した車軸について合否判定部833は合格即ち欠陥なしと判定する。
上記ステップS131〜S133の何れかで傷の範囲にあると判定されるか或いはステップS134で形状エコーの範囲にないと判定された場合即ち第1レベル判定S130で欠陥有りと判定された場合、制御部860は、第2レベル判定のステップS140の処理に当該探傷システムを移行させる。
ステップS140では、制御部860の制御の下、第2レベルにおける波形の太さのデータを調べて傷エコーか否か判定する。ステップS140において、図12(B)へ示す通り、制御部860の制御の下第2判定部SステップS141〜S144が遂行され、図12(A)と同様にして第2判定部820にて第2レベルにおける各判定がなされる。第1レベルで傷の範囲にあるとされた波形について、上記ステップS141〜S143の何れにおいても傷の範囲にないとされ尚且つステップS144で形状エコーの範囲にないと判定された場合即ち第2レベル判定S140で欠陥なしと判定された場合、図11へ示す通り合否判定部833は、探傷した車軸を合格と判定する。
第1レベルで傷の範囲にあるとされた波形について、上記ステップS141〜S143の何れかで傷の範囲にあると判定されるか或いはステップS144で形状エコーの範囲にないと判定された場合即ち第2レベル判定S130で形状エコーでないと判定された場合、合否判定部833は探傷した車軸を不合格と判定する。
尚、上記ステップS131〜S133の順序は上述のものに限定するものではなく上記と異なる順次で実施することができる。また、ステップS141〜S143の各ステップについても上記と異なる順序にて実施することができる。
図11及び図12へ示す上記フローを遂行することで、Cスコープ展開部802に展開され収容されているCスコープデータにおいて、例えば、図9へ示す通り、エコーk1が現れた場合、第1レベルL1である濃い灰色部分のx方向幅x1、y方向幅y1、面積が夫々第1範囲規定部813の保持する上記範囲にあるか、x方向幅の総和が夫々第1範囲規定部813の保持する上記範囲にないか判定され、上記判定が欠陥を示すものであった場合、第2レベルL2である(濃い灰色部分を含む)薄い灰色部分のx方向幅x2、y方向幅y2、面積、x方向幅の総和の何れかが欠陥を示す範囲に該当しないかが判定される。図9の例では、前述の通りエコーk2は形状エコーである。傷エコーであるエコーk1のx1=6、y1=4、面積20に対し、エコーk2は第1レベルL1においてx方向幅x3=6、y方向幅y3=4、面積18とほぼ同じであるが、第2レベルL2の各数値(マス目の数)は、エコーk1のx2=8,y2=6、面積43に対して、エコーk2はx4=12、y4=8、面積69と太く、エコーk2は図18(B)に示すグラフの傾向が顕著な形状エコーであることが分かる。
上記実車軸の探傷に先立ち、モデル車軸mを用いて図13の各ステップを遂行することで、上述の通り第1及び第2範囲規定部813,823の保持する各範囲を上記傷エコーと形状エコーの違いが判別できる適切な範囲に設定することができる。
尚、図9へ示す例では、第1レベル第2レベル共に何れのエコーk1,k2も連続する一つの波形であったので、エコーのx方向幅の総和は、第1レベルで夫々上記x軸方向幅x1,x3と合致し、第2レベルで夫々上記x軸方向幅x2,x4と合致するものである。
一方、図10へ示すように、不連続な複数のエコーが現れた場合、個々のエコーk3,k4,k5の幅x5,x6,x7は形状エコーの範囲に該当しないものであっても、x方向幅x1の総和の判定において、その総和x8(=x5+x6+x7)が形状エコーの範囲に該当するときは形状エコーと判定する。図10では、図面の煩雑を避けるため第2レベルの領域(薄い灰色)のみ示す。
上記の通り、モデル車軸mにて図13へ示すステップS10〜S16をオペレータの操作及びの制御部860(コンピュータ9)の自動的なデータ処理にて遂行し、図2へ示す各設定部を通じて、図3へ示す各範囲規定部の上限・下限を取得しておく。図13において「(オペレータ)」はオペレータによる操作を必要とするステップを示し、「(PC)」は上記コンピュータ9による処理を示す。尚図13においてステップS13は「(PC)」のみ記され「(オペレータ)」の表示を省略したが、オペレータによるマウス等入力装置の操作にてコンピュータがカーソルppを移動させる。
図13のステップS10〜S16について具体的には、図15へ示すモニタの画面にて、オペレータはモデル車軸mの10個程度ある人工欠陥の夫々をカーソルppで合わせて設定ボタンを押して、各数値を取得し、上記人工欠陥の全て検出できる範囲に各範囲規定部の範囲を各設定部を通じて設定しておく。図15においてカーソルppは、人工欠陥の1つに合わされており、当該人工欠陥を含むように各上限値と下限値とが調整されるのである。
図15はモデル車軸mの人工欠陥からのデータの集計中のモニタ画面を示している。
図15において、Cスコープ表示の下方及び右側の、「判定レベル1」は上記第1レベルを、「判定レベル2」は上記第2レベルを、「軸長方向連続(長)」は上記y軸方向幅を、「周方向連続(点数)」は上記x軸方向幅を、「(レベル超の)面積」は上記x−y平面への投影面積を、「周方向総点数」は上記周方向総幅を、夫々示している。
図15において、Cスコープ表示の左下へ示す通り、第1レベルと第2レベルを定める基準は、閾値(きず判定ゲート)であり、閾値のエコー高さを第1レベル(「判定レベル1」100%)とし、閾値の55%のエコー高さを第2レベル(判定レベル2)としている。従って閾値をシステムが感知し得る最大のエコー高さ(100%)に対し60%となるように感度設定した場合、第1レベルは上記最大のエコー高さ60%、第2レベルは上記エコーの33%となる。但し、上記第1レベルと第2レベルは閾値を超えた波形のピーク(ゲート超最大値)を基準として定めるものでもよい。また、上記基準に対し、第1レベルを所定レベル(図15では上記基準から「−3」dBと表示)低いエコー高さとし、第2レベルを更に所定レベル(図15では上記基準から「−5」dBと表示)低いエコー高さとして定めてもよい。
図15においてカーソルppが指し示す欠陥の太さに関するデータは、Cスコープ表示右側へ、
判定レベル1:100.0[%]
軸長方向連続:4[mm]
周方向連続:6[点]
面積:21[点]
周方向総点数:8[点]
判定レベル2:55.0[%]
軸長方向連続:6[mm]
周方向連続:6[点]
面積:29[点]
周方向総点数:6[点]
として表示されている。
図15のカーソルppの人工欠陥では、上記閾値は上記最大のエコー高さ100.0%である。従って上記最大のエコー高さに対し第1レベルは100.0%であり、第2レベルは55.0%である。
また、図15は人工欠陥による集計の途中であり、y軸方向幅のみ下限値2で上限値8となっている。
図13のステップS14〜S16で、第1及び第2レベルでの波形の太さに関する範囲を用いて、モデル車軸mの各人工欠陥を順次判定し上記集計を行う。
図13の各ステップ完了後、図14へ示すステップS21〜S25を遂行して、モデル車軸及び実車軸で検証を行う。
詳しくは、図14のステップS21〜S22にて、図13のフローで定めた第1レベル及び第2レベルにおける波形の欠陥を示す太さの範囲を用い、モデル車軸mの全ての人工欠陥を検出できるか検証し、全て検出できるまで上記集計を繰り返し上記閾値を調整し、上記集計を繰り返して上記太さを示す範囲を設定し直す。具体的には、閾値がすべての人工欠陥のエコーのピークよりも低くなるように設定し直す。
ステップS21〜S22にて人工欠陥を全て検出できればステップS23において、事前の探傷で傷のないことが確認されている実車軸を用いて誤判定を生じないか即ち傷エコーを検出しないか調べる。ステップS23において、傷エコーを検出しなければ、ステップS26で探傷した実車軸を合格と判定する。ステップS23において、傷エコーが検出されれば、ステップS24で閾値や上記各レベルの算定用基準を調整しステップ25にて上記集計を繰り返し上記太さに関する範囲を設定し直す。
ステップS25終了後再びステップS23へ戻ってステップS23の上記処理を繰り返す。
(変更例)
上述してきた実施の形態において、第1レベルにおける傷エコーとする太さの範囲及び第2レベルにおける傷エコー又は形状エコーとする太さの範囲は、モデル軸の人工欠陥から集計した数値に基づき確定された範囲である。実車軸の探傷時に検出したエコーの波形の第1レベルのエコー高さ及び第2レベルのエコー高さは、多くの場合人工欠陥夫々の第1レベルのエコー高さ及び第2レベルのエコー高さと異なるものであるが、複数ある人工欠陥の太さの集計から傷エコーや形状エコーとする太さの幅を確定し、モデル車軸のモデルとする即ちモデル車軸の対象とする実車軸について一律に当該幅を参照して傷エコーや形状エコーの判定を行うのである。
但し、上記実施の形態のように、第1レベルにおける上記太さの範囲の設定と無関係に第2レベルの太さの範囲を設定するものに限定するものではない。図18(B)へ示すように検出したエコーの波形を3次元表示した場合に、同図において「人工きず」として示す傷エコーの特徴即ちエコーの各高さにおいて太さに大きな変化がなく、同図において「形状」として示す形状エコーの上方から下方に向かうに従って太くなるという特徴を利用して欠陥の判定を行うものであれば、第1レベルと第2レベルの判定に用いる太さの範囲を、他の方法によって決定するものとしてもよい。例えば、第1エコーで傷エコーとする太さの範囲を基準に第2エコーで傷エコー或いは形状エコーとする範囲を決定するものとしてもよい。具体的には、第1レベルにおける太さと第2レベルにおける太さを比較して、所定の比率の範囲で第2レベルにおける太さが第1レベルにおける太さよりも大きい場合形状エコーと判定するものとしてもよい。
また、図2及び図3へ示す例では、指定したエコーが、傷エコーの範囲に入る下限値及び上限値を規定し傷エコーを積極的に検出するものとしたが、この他傷エコーとならない範囲を規定して傷エコーでないこと積極的に検出するものとしてもよい。
形状エコーについても、形状エコーの範囲に入る下限値及び上限値を規定し形状エコーを積極的に検出するものとしたが、この他形状エコーとならない範囲を規定して形状エコーでないことを積極的に検出するものとしてもよい。例えば、第2レベルでの判定で形状エコーとならない範囲を検出することで、第1レベルで傷エコーの疑義が生じたエコーを消極的に傷エコーと判定するものとしてもよい。
更に、第1レベルと第2レベルという上下2段の監視レベル以外に、第3レベル或いは第4レベル以上といったより多段の監視レベルを設けて、上記各判定を行うものとしてもよい。
図4〜図7へ示す実施の形態では、車軸100の中空部103へ環状のアレイプローブを配置し車軸100の径外方向へ向けて超音波を発しフェーズドアレイによる探傷を行うものであった。図示は省略するがこの他、車軸100の径方向外側へ環状のアレイプローブを配置し車軸100の径方向内側に向けて超音波を発しフェーズドアレイによる探傷を行うものとしてもよい。
また、超音波探触子1を上記アレイプローブに代えシングルプローブを車軸100を用いて探傷を行うものとしてもよい。
図16(A)を用いて、超音波探触子1としてシングルプローブを採用した例について説明する。図4(A)へ示す実施の形態と同様、この探触子保持部2の後部は、フレキシブルチューブ4の先端側と接続され、前部には、斜角探傷用の超音波探触子1を設けられた回転ヘッド部10が接続されている。
この超音波探触子1は、二つのプローブ1a,1bによって構成されている。プローブ1a,1bの夫々は送受信を行う振動子を1つ備えたシングルプローブである。
回転ヘッド部10は、軸13を介して探触子保持部2内部に設けられたロータリーコネクター12へ回転自在に軸止されている。ロータリーコネクター12自身は、回転ヘッド10からの信号の伝達を行うものである。軸13の外部は、直接回転ヘッド部10に固着された管状体14内に内包された状態に置かれている。管状体14は、内部にプローブ1a,1bの超音波の媒介となるオイルの給油管15が設けられ、探触子保持部2の給油管16と接続されている。この接続は、回転継ぎ手の組み込みによりなされる(図示しない)。そしてこの管状体14の後方外部にはギア44が設けられている。
探触子保持部2の後方内部において、フレキシブルチューブ4が内包するフレキシブルシャフト41と接続するギア42が設けられている。このギア42は、前述の回転モーター3の回転によって回転するフレキシブルシャフト41の回転を受けて回転するものであり、探触子保持部2が備える回転位置検出器6に軸止されている。ギア42の回転は、両端にギア42とギア44に係合する歯車が設けられたシャフト43を介して、ギア44に伝達される。これにより、回転モーター3の回転を受けて回転ヘッド部10が回転するのである。
回転ヘッド部10は、超音波探触子1即ち2つのプローブ1a,1bが背中合わせの状態で、固定されている。11はプローブ1a,1bが得た検出信号をフレキシブルチューブ4を介して探傷器8へ送るための信号線を示している。
2つのプローブ1a,1bは、その向きが、夫々車軸100の中ぐり部内周面を臨むように回転ヘッド部10に固定されている。プローブ1a,1b間には、発条18が設けられており、両プローブ1a,1bは、夫々車軸100の中ぐり部内周面へ付勢される。
フレキシブルチューブ4の探触子保持部2への固定金具には、軸方向位置検出用ワイヤ17が設けられている。
フレキシブルチューブ4の巻き取り手段5側の端部3(図4(A))には、回転モータが接続されている。
尚、図16(A)では、図4(A)(B)へ示すのとは逆に、探触子保持部2の右端がフレキシブルチューブ4に繋がれ、巻き取り手段5(図示しない。)の巻き取りにより探触子保持部2は右側へ移動するように描かれている。
例えば図16(A)の矢印AZに示す方向へスパイラル状に探触子を走査する場合、上記回転モーターの回転により、矢印AY方向へ回転ヘッド部10を回転させ、巻取り手段5のフレキシブルチューブ4の巻き解き動作により、フレキシブルチューブ4を摺動させてAX方向(左方向)へ探触子保持部2と共に回転ヘッド部10を移送する。上記回転と移送により、中ぐり車軸100の内部を内側からスパイラル状に探傷することができるのである。又矢印AZと逆方向への探傷を行う場合は、巻取り手段5の巻取り動作により、AX方向と逆方向へ探触子保持部2と共に回転ヘッド部10を移送する。このとき、回転モーターを上記と逆に回転させて、回転ヘッド部10を矢印AYと逆方向へ回転させれば、上記と逆の方向へのスパイラル走査が行える。
走査の確実を期す点において、通常の走査の場合上記のようにAX方向とは逆の方向に、即ち巻取り手段5が巻き取る動作によって移動する方向に、探触子保持部2及び回転ヘッド部10を移送して、探傷を行うのが好ましい。
尚、図16(A)へ示す実施の形態においても、フレキシブルチューブ4に代えて図4(B)へ示すケーブルベア(登録商標)46や走査用チェーン47を用いることができる。
上述した実施例においては、中ぐり車軸の探傷に適した装置構成を示したが、中実車軸の探傷に適した装置の構成についても同様の探傷を行うことが可能である。
以下に中実車軸の探傷に適した装置の例を掲げておく。図16(B)へ示すように、車軸100は、車軸100に嵌められた車輪101を支持すると共に回転させるローラ51に、乗せられている。この図16(B)において、上記ローラ51は、2つしか見えないが、左右の車輪101の一つに対して、2つのローラ51が一組となって、左右二組のローラ対、即ち合計4つのローラ51が車輪101,101を支持をするようにすれば、より確実な車輪101の保持が行える。但しローラ51の数は上記に限定するものではなく車軸100を確実に支持することができればローラ51の数は変更可能である。
図16(B)において、上記車軸100の近傍には、門型フレーム52が設置される。
この門型フレーム52は、探触子1を保持するものである。詳述すると、門型フレーム52には、車軸100の外周面107より、車軸100内部を探傷する探触子1xを備える。図16(B)中、108は、車軸100に設けられたギアボックスを示している。
探触子1xは、アクチュエータ20を備え、各位置にて、車軸100表面に押圧されている。アクチュエータ20は、エアーや油圧等の適宜流体圧或いはその他の機械的手段によって、探触子を車軸100表面に押しつけることが可能なものである。
探触子1xは、車軸100の外周面107より車軸100内部を探傷するものであり、車軸100の少なくともスラスト方向e即ち車軸100の軸方向に沿って探触子1xを摺動することが可能な摺動手段53が備わっている。
図示したものについて説明すると、この摺動手段53は、周面が螺刻されたシャフト54と、この一端に設けられたモーター55と、シャフト54に螺合する治具56とを有するものである。シャフト54は、車軸100のスラスト方向eに対し平行に配設されており、このシャフト54に治具56が螺合している。
治具56には、探触子1xのアクチュエータ20が固定されている。上記モーター55の回転によって、シャフト54が回動し、シャフト54に螺合している治具56は、シャフト54の長手方向に摺動するのである。
この結果探触子1xは、車軸100のスラスト方向eに沿って摺動するのである。
摺動手段53は、どのような構成を採るものであっても実施可能であり、図示したものに限定するものではない。
摺動手段53による上記摺動と共に前述のローラ51からの回動を受けることによって、探触子1xは、少なくとも車軸100の外周面107をスパイラル状に走査することができる。
但し、振動子1pを車軸100の軸方向に沿って直線的に配列したアレイプローブを用いて探傷を行うものとしてもよく、図16(B)へ示す例においても、上記摺動手段53にて物理的に探触子1xを走査するものに限定するものではない。
上述してきた各実施例では、中ぐり車軸及び中実車軸のいずれの車軸に対しても、探触子1をスパイラル状に走査するものとしたが、このような走査方法に限定するものではなく、探触子1が車軸に対して他の軌道を描くように走査して実施することも可能である。例えば、探触子1が車軸のスラスト方向に沿って1ピッチを直線的に移動し、この移動後車軸が周方向に回転し、このような動作を1過程として、この過程を適宜回数繰り返すものとしても実施可能である。
(まとめ)
本発明は、被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対するエコー高さを検出する車軸の超音波探傷方法において、予め定めた閾値又は前記車軸の探傷を行う全範囲から検出した閾値を超えたエコーの波形のピークを基準に、当該基準から所定レベル低いエコー高さを第1レベルとし、前記第1レベルよりも更に所定レベル低いエコー高さを第2レベルとして、検出した各エコーの波形について、少なくとも第1レベルにおける波形の太さが傷エコーとの疑義あるものについて、第2レベルにおける波形の太さを調べて、図18(B)において「人工きず」として示す傷エコーの特徴を示すものであるか、同図18(B)において「形状」として示す形状エコーの特徴を示すものであるかの自動判定を可能とし、傷エコーの誤判定を排除せんとする。
1 超音波探触子
1a プローブ
1b プローブ
1p 振動子
1x 探触子(超音波探触子)
2 探触子保持部
3 端部
4 フレキシブルチューブ
5 巻き取り手段
6 回転位置検出器
7 車軸取付け部
8 探傷器
9 コンピュータ
10 回転ヘッド部
17 ワイヤ
18 発条
20 アクチュエータ
40 補助プーリ
41 フレキシブルシャフト
46 ケーブルベア(登録商標)
47 走査用チェーン
48 巻き取り装置
49 自走車
50 キャスタ
51 ローラ
52 門型フレーム
54 シャフト
55 モーター
56 冶具
60 位置検出部
70 位置センサ
81 データ処理部
82 インターフェース
90 プリンタ
100 車軸
101 車輪
102 圧入部
103 中空部
107 (車軸100の)外周面
500 走査部
510 媒介供給部
520 センサ部
600 機構部
800 探傷部(電装部)
801 Aスコープデータ取得部
802 Cスコープ展開部
803 閾値格納部
804 エコー抽出部
805 ピーク値取得部
810 第1判定部
811 第1レベル規定部
812 第1レベル設定部
813 第1範囲規定部
814 第1範囲設定部
815a x軸方向幅下限値収容部
815b x軸方向幅上限値収容部
816a y軸方向幅下限値収容部
816b y軸方向幅上限値収容部
817a x−y面積下限値収容部
817b x−y面積上限値収容部
818a 周方向総幅下限値収容部
818b 周方向総幅上限値収容部
819 第1判定結果収容部
820 第2判定部
821 第2レベル規定部
822 第2レベル設定部
823 第2範囲規定部
824 第2範囲設定部
825a x軸方向幅下限値収容部
825b x軸方向幅上限値収容部
826a y軸方向幅下限値収容部
826b y軸方向幅上限値収容部
827a x−y面積下限値収容部
827b x−y面積上限値収容部
828a 周方向総幅下限値収容部
828b 周方向総幅上限値収容部
829 第2判定結果収容部
833 合否判定部
834 合否判定結果収容部
835 カウント部
840 表示部
841 Aスコープ表示部
842 Cスコープ表示部
843 第1判定結果表示部
844 第2判定結果表示部
845 合否判定結果表示部
850 操作部
851 エコー指定部
860 制御部
A 右コーナー
B 左コーナー
e (車軸100の)スラスト方向(軸方向)
pp カーソル
V 斜線部(探触子のビームの範囲)
W 斜線部(探触子のビームの範囲)

Claims (11)

  1. 被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷方法において、
    傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、
    前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおける前記波形の太さが傷エコーを示す太さの範囲にあるとき、前記第2レベルにおける前記波形の太さを調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うことを特徴とする車軸の超音波探傷方法。
  2. 被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷方法において、
    傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、
    前記車軸の中心線と直交する特定の仮想線に対する角度をx軸に示し、受信したエコーのエコー高さを前記x軸と交差するz軸に示す座標中、前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおけるx軸方向の幅が傷を示す傷エコーの幅の範囲にあるとき、前記第2レベルにおけるx軸方向の幅を調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うことを特徴とする車軸の超音波探傷方法。
  3. 第2レベルにおける前記x軸方向の幅が形状エコーの幅の範囲にあるとき検出した前記エコーを車軸の形状エコーと判定するか、或いは、第2レベルにおける前記x軸方向の幅が形状エコーの幅の範囲にないとき検出した前記エコーを傷エコーと判定するものであり、
    前記形状エコーは、前記車軸の軸方向の位置により車軸の径が異なることにて車軸の周方向に備えられた段差に起因するエコーであることを特徴とする請求項2記載の車軸の超音波探傷方法。
  4. 被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷方法において、
    傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、
    前記車軸の軸方向の位置をy軸に示し、受信したエコーのエコー高さを前記y軸と交差するz軸に示す座標中、前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおけるy軸方向の幅が傷を示す傷エコーの幅の範囲にあるとき、前記第2レベルにおけるy軸方向の幅を調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うことを特徴とする車軸の超音波探傷方法。
  5. 第2レベルにおける前記y軸方向の幅が形状エコーの幅の範囲にあるとき検出した前記エコーを車軸の形状エコーと判定するか、或いは、第2レベルにおける前記y軸方向の幅が形状エコーの幅の範囲にないとき検出した前記エコーを傷エコーと判定するものであり、
    前記形状エコーは、前記車軸の軸方向の位置により車軸の径が異なることにて車軸の周方向に備えられた段差に起因するエコーであることを特徴とする請求項2記載の車軸の超音波探傷方法。
  6. 被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷方法において、
    傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、
    前記車軸の中心線と直交する特定の仮想線に対する角度をx軸に示し、前記車軸の軸方向の位置を前記x軸と交差するy軸に示し、受信したエコーのエコー高さを前記x軸及びy軸と交差するz軸に示す3次元座標中、前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおけるx−y平面へ投影した領域の面積が傷を示す傷エコーの面積の範囲にあるとき、前記第2レベルにおけるx−y平面へ投影した領域の面積を調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うことを特徴とする車軸の超音波探傷方法。
  7. 第2レベルにおける前記x−y平面へ投影した領域の面積が形状エコーの面積の範囲にあるとき検出した前記エコーを車軸の形状エコーと判定するか、或いは、第2レベルにおける前記x−y平面へ投影した領域の面積が形状エコーの面積の範囲にないとき検出した前記エコーを傷エコーと判定するものであり、
    前記形状エコーは、前記車軸の軸方向の位置により車軸の径が異なることにて車軸の周方向に備えられた段差に起因するエコーであることを特徴とする請求項2記載の車軸の超音波探傷方法。
  8. 被検材が中実車軸の場合車軸の外周面にて、被検材が中ぐり車軸の場合車軸の外周面或いは内周面にて、前記車軸の軸方向及び周方向について超音波探触子を走査し、超音波を送信しエコーを受信して車軸内部の車軸外周面付近を斜角探傷するものであって、前記送受信における超音波の到達距離即ちビーム路程に対する前記エコーの音圧レベルをエコー高さとして検出する車軸の超音波探傷システムにおいて、
    傷を示す傷エコーの判定を行うエコー高さを第1レベルとし、前記第1レベルよりも低いエコー高さを第2レベルとして、前記車軸の探傷を行う全範囲から検出した所定高さ以上のエコーの波形について、少なくとも前記第1レベルにおける前記波形の太さが傷エコーを示す太さの範囲にあるとき、前記第2レベルにおける前記波形の太さを調べることにより、検出した前記エコーが傷を示す傷エコーであるか否かの判定を行うものであり、
    前記超音波探触子である送信プローブ及び受信プローブと、前記超音波探触子の走査を行う走査部と、位置検出部と、Aスコープデータ取得部と、Cスコープ展開部と、所定の音圧レベルを閾値として保持する閾値格納部と、エコー抽出部と、エコー指定部と、ピーク値取得部と、第1レベル設定部と、第1レベル規定部と、第1範囲規定部と、第2レベル設定部と、第2レベル規定部と、第2範囲規定部と、第1判定部と、第2判定部とを備え、
    前記Aスコープデータ取得部は、前記位置検出部の検出したプローブの走査位置におけるビーム路程と、前記ビーム路程の略全域について前記受信プローブが受信したエコーのエコー高さとから当該エコーの波形のAスコープデータを順次取得して収容し、
    前記Cスコープ展開部は、Aスコープデータ取得部の収容する前記波形のデータについて、前記車軸の中心線と直交する特定の仮想線に対する角度をx軸に示し、前記車軸の軸方向の位置を前記x軸と交差するy軸に示し、受信したエコーのエコー高さを当該高さに応じ色分けして示すデータをCスコープデータとして収容し、
    前記エコー抽出部は、閾値格納部の保持する前記閾値を参照し前記Cスコープ展開部の取得したデータの中から前記閾値を越える全てのエコーの波形を抽出し前記抽出した各波形を識別する識別データを収容するものであり、
    前記エコー指定部は自動的に又はオペレータの操作を受け付け、前記エコー抽出部の抽出した前記Cスコープ展開部中の任意の波形のデータを指定するものであり、
    前記ピーク値取得部は、前記Cスコープ展開部を参照し前記エコー指定部にて指定された波形のピークのエコー高さのデータを取得するものであり、
    前記第1レベル設定部は、エコー高さのデータから前記第1レベルとするエコー高さのデータを算定することが可能な算定用基準を保持し、
    前記第1範囲規定部は、前記第1レベルにおいて傷エコーの判定に用いる波形の太さに関するデータの上限値と下限値を保持し、
    前記第2レベル設定部は、エコー高さのデータから前記第2レベルとするエコー高さのデータを算定することが可能な算定用基準を保持し、
    前記第2範囲規定部は、前記第2レベルにおいて形状エコーの判定に用いる波形の太さに関するデータの少なくとも下限値を保持し、
    前記第1レベル規定部は、前記エコー指定部にて指定された波形について、前記第1レベル設定部を参照して第1レベルとするエコー高さのデータを取得するものであり、
    前記第1判定部は、エコー指定部にて指定された前記波形について、前記第1レベル規定部と前記Cスコープ展開部と前記第1範囲規定部とを参照し、算定された前記第1レベルおける前記指定された波形の太さに関するデータが、前記第1範囲規定部の規定する範囲にあるか否かの判定を自動的に行い、
    前記第2レベル規定部は、前記エコー指定部にて指定された波形について、前記第2レベル設定部を参照して第2レベルとするエコー高さのデータを取得するものであり、
    前記第2判定部は、少なくとも前記第1判定部にて傷エコーとする太さの範囲にあると判定された波形について、前記第2レベル規定部と前記Cスコープ展開部と前記第2範囲規定部とを参照し、算定された前記第2レベルにおける前記指定された波形の太さに関するデータが、前記第2範囲規定部の規定する範囲にあるか否かの判定を自動的に行うものであり、
    前記波形の太さに関するデータは、波形の前記x軸方向の幅と、波形の前記y軸方向の幅と、波形の前記x−y平面へ投影した領域の面積の、少なくとも何れか1つであることを特徴とする車軸の超音波探傷システム。
  9. 前記波形の太さに関するデータは、波形の前記x軸方向の幅と、波形の前記y軸方向の幅と、波形の前記x−y平面へ投影した領域の面積と、前記x軸方向に現れる全波形の幅の総和の、少なくとも何れか1つであり、
    前記x軸方向に現れる全波形の幅の総和は、前記x軸方向の幅が連続する単一の波形であるか不連続な複数の波形であるかを問わず前記x軸方向に現れる波形の全ての幅の総和であることを特徴とする請求項8記載の車軸の超音波探傷システム。
  10. 前記送信プローブは前記受信プローブを兼ねる送受信プローブであり、
    前記送受信プローブは、車軸の周方向に沿って複数の振動子が環状に配列されたアレイプローブであり、前記送受信プローブは、個々の前記振動子が車軸の中心線に対し斜めに超音波を発するように配置され且つ環状の前記アレイプローブを構成する振動子のうち隣り合う所定数の振動子のグループから一度に超音波を発するフェーズドアレイであり、
    車軸の周方向に対する前記送受信プローブの走査は、環状の前記アレイプローブの周方向について一度に超音波を発する前記グループを順次ずらして行くことにより行われ、
    前記送受信プローブは前記軸方向の前後に2つ配置され、前記軸方向について前記送受信プローブの一方は、前記送受信プローブの他の一方と反対側に向けられたものであり、前記両送受信プローブは前記軸方向について一体に走査され、
    前記周方向の走査と共に前記軸方向の走査によって、車軸に対してスパイラル状に前記両送受信プローブが超音波を発信するものであることを特徴とする請求項8又は9に記載の車軸の超音波探傷システム。
  11. 第1範囲設定部と、第2範囲設定部とを備え、
    実際の車軸即ち実車軸の探傷に先立ち、前記実車軸と同じ寸法、形状及び材質のモデル車軸であり且つ所定の形状及び大きさの人工傷を所定の位置へ設けられたものについて、探傷を行うものであり、
    前記Aスコープデータ取得部は、前記モデル車軸の探傷にて、前記モデル車軸の前記Aスコープデータを順次取得して収容し、
    前記Cスコープ展開部は、前記Aスコープデータ取得部の収用したモデル車軸の前記波形のデータについて、前記Cスコープデータを取得して収容し、
    前記エコー抽出部は、閾値格納部の保持する前記閾値を参照し前記Cスコープ展開部の収容した前記モデル車軸のデータの中から前記閾値を越える全てのエコーの波形を抽出して前記抽出した各波形を識別する識別データを収容するものであり、
    前記第1レベル設定部は、第1判定部の判定対象とする波形のピークのエコー高さに対する第1レベルとするエコー高さの比率、閾値格納部の前記閾値に対する第1レベルとするエコー高さの比率、第1判定部の判定対象とする波形のピークに対する第1レベルの音圧レベルの差の値、前記閾値に対する第1レベルの音圧レベルの差の値の何れかを前記算定用基準として保持するものであり、
    前記第2レベル設定部は、第2判定部の判定対象とする波形のピークのエコー高さに対する第2レベルとするエコー高さの比率、閾値格納部の前記閾値に対する第2レベルとするエコー高さの比率、第2判定部の判定対象とする波形のピークに対する第2レベルの音圧レベルの差の値、前記閾値に対する第2レベルの音圧レベルの差の値の何れかを前記算定用基準として保持するものであり、
    オペレータの前記エコー指定部の操作によりモデル車軸の前記エコー抽出部の抽出した前記Cスコープ展開部中の波形のデータの夫々を順次指定することにて、前記ピーク値取得部は、指定された波形のエコー高さのピーク値を取得し、
    前記第1レベル規定部は、前記第1レベル設定部とピーク値取得部とを参照して、モデル車軸の前記指定された波形について第1レベルのエコー高さの値を取得するものであり、
    前記第2レベル規定部は、前記第2レベル設定部とピーク値取得部とを参照して、モデル車軸の前記指定された波形について第2レベルのエコー高さの値を取得するものであり、
    オペレータの前記エコー指定部の操作によりモデル車軸の前記エコー抽出部の抽出した前記Cスコープ展開部中の波形のデータの夫々を順次指定することにて、前記第1範囲設定部は、指定された波形の第1レベルにおける太さに関するデータの全てが範囲内となるよう自動的に前記第1範囲規定部の前記上限値と下限値を設定するものであり、
    オペレータの前記エコー指定部の操作によりモデル車軸の前記エコー抽出部の抽出した前記Cスコープ展開部中の波形のデータの夫々を順次指定することにて、前記第2範囲設定部は、指定された波形の第2レベルにおける太さに関するデータの全てが範囲内となるよう自動的に前記第2範囲規定部の前記下限値を設定するものであり、
    モデル車軸にて取得した上記第1範囲規定部及び第2範囲規定部における上限値と下限値の夫々を、前記第1判定部と第2判定部が実車軸の判定に参照するものであることを特徴とする請求項8乃至9の何れかに記載の車軸の超音波探傷システム。
JP2017174522A 2017-09-12 2017-09-12 車軸の超音波探傷方法及びそのシステム Active JP6970425B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174522A JP6970425B2 (ja) 2017-09-12 2017-09-12 車軸の超音波探傷方法及びそのシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174522A JP6970425B2 (ja) 2017-09-12 2017-09-12 車軸の超音波探傷方法及びそのシステム

Publications (2)

Publication Number Publication Date
JP2019049503A true JP2019049503A (ja) 2019-03-28
JP6970425B2 JP6970425B2 (ja) 2021-11-24

Family

ID=65905497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174522A Active JP6970425B2 (ja) 2017-09-12 2017-09-12 車軸の超音波探傷方法及びそのシステム

Country Status (1)

Country Link
JP (1) JP6970425B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117451849A (zh) * 2023-12-26 2024-01-26 江苏赛福探伤设备制造有限公司 在役车轴智能超声探伤装置
JP7490531B2 (ja) 2020-10-22 2024-05-27 株式会社東芝 超音波探傷画像判定装置、超音波探傷システムおよび超音波探傷画像判定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601552A (ja) * 1983-06-20 1985-01-07 Mitsubishi Electric Corp 超音波探傷装置
JPS626164A (ja) * 1985-07-03 1987-01-13 Hitachi Ltd 凹形角部の超音波検査方法および装置
JPH06118067A (ja) * 1992-01-17 1994-04-28 Railway Technical Res Inst 中ぐり車軸の斜角探傷方法
WO1999013327A1 (fr) * 1997-09-08 1999-03-18 Osaka Gas Co., Ltd. Sonde de focalisation ultrasonique a ondes longitudinales destinee a l'inspection d'une matiere polymere, et systeme d'evaluation de defauts
JP2002257799A (ja) * 2001-02-28 2002-09-11 Sumitomo Metal Ind Ltd 中実軸部材の探傷方法及び探傷装置
JP2007139684A (ja) * 2005-11-22 2007-06-07 Sumitomo Metal Ind Ltd 内面フィン付き管の超音波探傷方法及び装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601552A (ja) * 1983-06-20 1985-01-07 Mitsubishi Electric Corp 超音波探傷装置
JPS626164A (ja) * 1985-07-03 1987-01-13 Hitachi Ltd 凹形角部の超音波検査方法および装置
JPH06118067A (ja) * 1992-01-17 1994-04-28 Railway Technical Res Inst 中ぐり車軸の斜角探傷方法
WO1999013327A1 (fr) * 1997-09-08 1999-03-18 Osaka Gas Co., Ltd. Sonde de focalisation ultrasonique a ondes longitudinales destinee a l'inspection d'une matiere polymere, et systeme d'evaluation de defauts
EP1014085A1 (en) * 1997-09-08 2000-06-28 Osaka Gas Company Limited Focusing longitudinal wave ultrasonic probe for inspecting polymer material and ultrasonic defect evaluation system
JP2002257799A (ja) * 2001-02-28 2002-09-11 Sumitomo Metal Ind Ltd 中実軸部材の探傷方法及び探傷装置
JP2007139684A (ja) * 2005-11-22 2007-06-07 Sumitomo Metal Ind Ltd 内面フィン付き管の超音波探傷方法及び装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7490531B2 (ja) 2020-10-22 2024-05-27 株式会社東芝 超音波探傷画像判定装置、超音波探傷システムおよび超音波探傷画像判定方法
CN117451849A (zh) * 2023-12-26 2024-01-26 江苏赛福探伤设备制造有限公司 在役车轴智能超声探伤装置
CN117451849B (zh) * 2023-12-26 2024-03-08 江苏赛福探伤设备制造有限公司 在役车轴智能超声探伤装置

Also Published As

Publication number Publication date
JP6970425B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
US5952577A (en) Ultrasonic imaging system
CN106461618B (zh) 改进的超声检查
US8037763B2 (en) Rail section weld inspection scanner
US6957583B2 (en) Ultrasonic array sensor, ultrasonic inspection instrument and ultrasonic inspection method
JP2006284578A (ja) 超音波走査データを用いて物体を検査する方法およびシステム
JP2007187593A (ja) 配管検査装置及び配管検査方法
CN101765768A (zh) 呈现可变的内和外半径剖面的管形车轴的自动无损控制方法和设备
JP2005156305A (ja) 内部欠陥の評価方法
JP2019049503A (ja) 車軸の超音波探傷方法及びそのシステム
US20180277266A1 (en) Device For Controlling And Measuring Welding Defects On A Cylindrical Wall And Method Implementing Same
CN101765769A (zh) 呈现可变的内和外半径剖面的管形车轴的手动无损控制方法和设备
US20150330948A1 (en) Method and device for the non-destructive inspection of a rotationally symmetric workpiect having sections with difference diameters
WO2020175687A1 (ja) 超音波探傷装置
US10564128B2 (en) Method and device for the near surface, nondestructive inspection by means of ultrasound of a rotationally symmetric workpiece having a diameter that changes from section to section
JPH02120659A (ja) 薄肉管溶接部の非破壊的な寸法および欠陥検査
JP3157120B2 (ja) 中実車軸の超音波自動探傷方法及びその装置
US20220313216A1 (en) Augmented reality in ultrasonic inspection
JP3558359B2 (ja) 車軸の斜角探傷方法
US20240044842A1 (en) System and method for inspecting metal parts
JP2691822B2 (ja) 中ぐり車軸の斜角探傷方法
JP4118487B2 (ja) 鋼管の腐食診断方法
JP3916603B2 (ja) 超音波斜角探傷方法とその装置
JP2000180387A (ja) X線検査装置及びx線検査方法
RU2149393C1 (ru) Способ ультразвукового контроля цилиндрических изделий
CN106802325A (zh) 声轴偏斜角的测试装置和检测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R150 Certificate of patent or registration of utility model

Ref document number: 6970425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150