JP2019045844A - Fluorescent member, optical component, and light-emitting device - Google Patents

Fluorescent member, optical component, and light-emitting device Download PDF

Info

Publication number
JP2019045844A
JP2019045844A JP2018104451A JP2018104451A JP2019045844A JP 2019045844 A JP2019045844 A JP 2019045844A JP 2018104451 A JP2018104451 A JP 2018104451A JP 2018104451 A JP2018104451 A JP 2018104451A JP 2019045844 A JP2019045844 A JP 2019045844A
Authority
JP
Japan
Prior art keywords
fluorescent member
phosphor particles
fluorescent
light
voids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018104451A
Other languages
Japanese (ja)
Other versions
JP6627914B2 (en
Inventor
徹 ▲高▼曽根
徹 ▲高▼曽根
Toru Takasone
佐野 雅彦
Masahiko Sano
雅彦 佐野
祐之 井上
Hiroyuki Inoue
祐之 井上
正一 山田
Shoichi Yamada
正一 山田
卓史 杉山
Takashi Sugiyama
卓史 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to US16/118,209 priority Critical patent/US10442987B2/en
Priority to CN201811000488.2A priority patent/CN109424860B/en
Priority to EP18191881.4A priority patent/EP3450413B1/en
Publication of JP2019045844A publication Critical patent/JP2019045844A/en
Application granted granted Critical
Publication of JP6627914B2 publication Critical patent/JP6627914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a fluorescent member that offers high luminance and a certain strength.SOLUTION: A fluorescent member 10 comprises a plurality of phosphor particles 11 and an inorganic binder 12, and has an upper surface designated as a light extraction surface. The fluorescent member 10 contains a plurality of voids 13 and, in a cross-section that is parallel to the upper surface of the fluorescent member 10 and cuts through both the phosphor particles 11 and the voids 13, the plurality of voids 13 are more densely distributed near at least one phosphor particle 11 of the plurality of phosphor particles 11.SELECTED DRAWING: Figure 5

Description

本発明は、蛍光部材、蛍光部材を含む光学部品、及び蛍光部材を含む発光装置に関する。   The present invention relates to a fluorescent member, an optical component including the fluorescent member, and a light emitting device including the fluorescent member.

特許文献1に記載の波長変換部材は、蛍光体とセラミックスバインダーとの焼成物からなる。   The wavelength conversion member described in Patent Document 1 is made of a fired product of a phosphor and a ceramic binder.

WO2017−064951WO2017-064951

従来の波長変換部材には、その輝度と強度を高いレベルで両立できる余地がある。   Conventional wavelength conversion members have room for both brightness and strength at a high level.

本発明の一形態に係る蛍光部材は、複数の蛍光体粒子と、無機バインダーとを含み、光取出し面となる上面を有する。また、前記蛍光部材は複数の空隙を含み、前記上面と平行であり、且つ、前記蛍光体粒子及び前記空隙の双方を横切る一断面において、前記複数の空隙は、前記複数の蛍光体粒子のうちの少なくとも一つの蛍光体粒子の近傍に偏在している。   The fluorescent member according to one embodiment of the present invention includes a plurality of phosphor particles and an inorganic binder, and has an upper surface serving as a light extraction surface. Further, the fluorescent member includes a plurality of voids, is parallel to the upper surface, and in a cross section that crosses both the phosphor particles and the voids, the plurality of voids are included in the plurality of phosphor particles. In the vicinity of at least one phosphor particle.

上記によれば、輝度を高くして、且つ、一定の強度を維持した蛍光部材とすることができる。   According to the above, it is possible to obtain a fluorescent member with high luminance and a constant strength.

図1は、実施形態1に係る発光装置の概略図である。FIG. 1 is a schematic view of a light emitting device according to the first embodiment. 図2は、光学部品の上面図である。FIG. 2 is a top view of the optical component. 図3は、図2のIII−III線における断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、図3の点線枠内における断面図である。FIG. 4 is a cross-sectional view in the dotted frame of FIG. 図5は、図3のV−V線における断面図の一部を拡大した図である。FIG. 5 is an enlarged view of a part of a cross-sectional view taken along line VV in FIG. 図6は、実施例に係る蛍光部材のSEM画像である。FIG. 6 is an SEM image of the fluorescent member according to the example. 図7は、比較例に係る蛍光部材のSEM画像である。FIG. 7 is an SEM image of the fluorescent member according to the comparative example. 図8は、実施例に係る蛍光部材の照度を測定したデータである。FIG. 8 is data obtained by measuring the illuminance of the fluorescent member according to the example. 図9は、比較例に係る蛍光部材の照度を測定したデータである。FIG. 9 is data obtained by measuring the illuminance of the fluorescent member according to the comparative example. 図10は、実施形態2に係る光学部品の上面図である。FIG. 10 is a top view of the optical component according to the second embodiment. 図11は、図10のXI−XI線における断面図である。11 is a cross-sectional view taken along line XI-XI in FIG. 図12は、実施形態2に係る光学部品の変形例の断面図である。FIG. 12 is a cross-sectional view of a modification of the optical component according to the second embodiment.

本発明を実施するための形態を、図面を参照しながら以下に説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するためのものであって、本発明を限定するものではない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。また、同一の名称、符号については、同一もしくは同質の部材を示しているため、重複した説明は適宜省略する。   A mode for carrying out the present invention will be described below with reference to the drawings. However, the form shown below is for embodying the technical idea of the present invention, and does not limit the present invention. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Moreover, since the same name and code | symbol have shown the member same or the same quality, the overlapping description is abbreviate | omitted suitably.

<実施形態1>
図1に本実施形態に係る発光装置1000の概略図を示す。図2に光学部品100の上面図を示し、図3に図2のIII−III線における断面図を示す。また、図4に図3の点線枠内の拡大図を示し、図5に図3のV−V線における断面図の一部を拡大した図を示す。
<Embodiment 1>
FIG. 1 shows a schematic diagram of a light emitting device 1000 according to the present embodiment. 2 shows a top view of the optical component 100, and FIG. 3 shows a cross-sectional view taken along line III-III in FIG. 4 shows an enlarged view in the dotted frame in FIG. 3, and FIG. 5 shows an enlarged view of a part of the sectional view taken along the line VV in FIG.

図1に示すように、発光装置1000は、蛍光部材10を含む光学部品100と、蛍光部材10に照射する励起光を出射する光源200と、光源200からの励起光を蛍光部材10に向けて反射するミラー300と、蛍光部材10からの光を平行光束となるように結像するレンズ400と、を備える。   As shown in FIG. 1, the light-emitting device 1000 includes an optical component 100 including a fluorescent member 10, a light source 200 that emits excitation light that irradiates the fluorescent member 10, and directs excitation light from the light source 200 toward the fluorescent member 10. The mirror 300 which reflects, and the lens 400 which images the light from the fluorescent member 10 so that it may become a parallel light beam are provided.

図2〜図5に示すように、蛍光部材10は、複数の蛍光体粒子11と、無機バインダー12と、を含み、光取出し面となる上面を有する。また、図5に示すように、蛍光部材10は複数の空隙13を含み、蛍光部材の上面と平行であり、且つ、蛍光体粒子11及び空隙13の双方を横切る一断面において、複数の空隙13は、複数の蛍光体粒子11のうちの少なくとも一つの蛍光体粒子11の近傍に偏在している。   As shown in FIGS. 2 to 5, the fluorescent member 10 includes a plurality of phosphor particles 11 and an inorganic binder 12 and has an upper surface serving as a light extraction surface. In addition, as shown in FIG. 5, the fluorescent member 10 includes a plurality of voids 13, which is parallel to the top surface of the fluorescent member and crosses both the phosphor particles 11 and the voids 13. Are unevenly distributed in the vicinity of at least one of the plurality of phosphor particles 11.

上記の蛍光部材10によれば、蛍光体粒子11からの光の横方向(図3における左右の方向)への広がりを低減しながら、蛍光部材の強度を確保することができる。以下、この点について説明する。   According to the fluorescent member 10 described above, the strength of the fluorescent member can be ensured while reducing the spread of light from the phosphor particles 11 in the lateral direction (left and right direction in FIG. 3). Hereinafter, this point will be described.

蛍光体粒子と無機バインダーとを含む蛍光部材が知られている。蛍光体粒子からの光は無機バインダーにおいて横方向に伝搬して広がるため、通常であれば上方から観測した場合の輝度はある程度低下してしまう。そこで、蛍光部材の内部に複数の空隙を設けて屈折率の異なる領域を増やして散乱させやくすることにより、蛍光体粒子からの光の伝搬を抑制することが考えられる。しかしながら、蛍光部材において、輝度を高くするために空隙の数を多くすると蛍光部材の強度が低下し、強度を確保するために空隙の数を少なくすると蛍光体粒子からの伝搬を低減しにくくなる。   A fluorescent member including phosphor particles and an inorganic binder is known. Since the light from the phosphor particles propagates and spreads in the lateral direction in the inorganic binder, the luminance when observed from above usually decreases to some extent. Therefore, it is conceivable to suppress the propagation of light from the phosphor particles by providing a plurality of voids inside the fluorescent member to increase the number of regions having different refractive indexes to facilitate scattering. However, in the fluorescent member, if the number of voids is increased in order to increase the luminance, the strength of the fluorescent member is reduced, and if the number of voids is decreased in order to ensure the strength, it is difficult to reduce propagation from the phosphor particles.

そこで本実施形態では、蛍光体粒子11に近い領域に複数の空隙13を偏在させている。これにより、蛍光体粒子11から遠く、空隙の少ない領域で蛍光部材10の強度を確保しながら、蛍光体粒子11に近く、空隙の多い領域で蛍光体粒子11からの光の伝搬を防ぐことができる。したがって、輝度を高くしつつ、一定の強度を維持した蛍光部材10とすることができる。   Therefore, in the present embodiment, a plurality of voids 13 are unevenly distributed in a region close to the phosphor particles 11. Thereby, while ensuring the intensity | strength of the fluorescent member 10 in the area | region far from the fluorescent substance particle 11 and with few space | gaps, propagation of the light from the fluorescent substance particle 11 is prevented in the area | region close | similar to the fluorescent substance particle 11 and there are many space | gaps. it can. Therefore, it is possible to obtain the fluorescent member 10 that maintains a certain strength while increasing the luminance.

以下、発光装置1000の構成要素について説明する。   Hereinafter, components of the light emitting device 1000 will be described.

(光学部品100)
図2及び図3に示すように、光学部品100は、基部50と、基部50の上面に接合された蛍光部材10と、を含む。蛍光部材10の下面には反射膜20が設けられている。そして、反射膜20の下面には拡散防止層30が設けられており、拡散防止層30の下面と基部50の上面とが接合部材40により接合されている。
(Optical component 100)
As shown in FIGS. 2 and 3, the optical component 100 includes a base 50 and a fluorescent member 10 bonded to the upper surface of the base 50. A reflective film 20 is provided on the lower surface of the fluorescent member 10. A diffusion prevention layer 30 is provided on the lower surface of the reflection film 20, and the lower surface of the diffusion prevention layer 30 and the upper surface of the base portion 50 are joined by the joining member 40.

(蛍光部材10)
図3に示すように蛍光部材10は、光取出し面となる上面と、上面と反対側に位置する下面と、上面と下面とをつなぐ側面と、を有する。蛍光部材10は、複数の蛍光体粒子11と、無機バインダー12と、複数の空隙13と、を含む。そして、図5に示すように、蛍光部材10の上面と平行であり、且つ、蛍光体粒子11及び空隙13の双方を横切る一断面(以下「横断面X」という。)において、複数の空隙13が蛍光体粒子11の近傍に偏在している。これにより、蛍光部材10において光の伝搬を抑制して輝度を高くすることができるため、空隙がない場合に比較して、コントラスト比の高い蛍光部材10とすることができる。コントラスト比は、例えば、蛍光部材10の上面における発光強度分布をみて、最大輝度と、そこから1mm離れた位置における輝度と、の比として認識できる。上述の「偏在」とは、例えば、走査型電子顕微鏡(SEM)により蛍光体粒子11が10個明確に確認できるスケールで撮影した写真を観察して、少なくとも1つの蛍光体粒子11において、蛍光体粒子11の表面と、そこから離間距離が0.1μmである線とで挟まれた領域における空隙13の密度が、それよりも外側の領域における空隙13の密度よりも高いことを指す。また、「蛍光部材10の上面と平行」には、蛍光部材10の上面に完全に平行なものはもちろんのこと、±10度傾いているものも含まれることとする。また、蛍光部材10の上面が微視的に見て粗面である場合は、横断面Xは、巨視的に見たときの蛍光部材10の平坦な上面と平行な一断面とする。
(Fluorescent member 10)
As shown in FIG. 3, the fluorescent member 10 has an upper surface serving as a light extraction surface, a lower surface located on the opposite side of the upper surface, and a side surface connecting the upper surface and the lower surface. The fluorescent member 10 includes a plurality of phosphor particles 11, an inorganic binder 12, and a plurality of voids 13. Then, as shown in FIG. 5, the plurality of voids 13 in one section (hereinafter referred to as “cross section X”) that is parallel to the upper surface of the fluorescent member 10 and that crosses both the phosphor particles 11 and the voids 13. Are unevenly distributed in the vicinity of the phosphor particles 11. Thereby, since the brightness | luminance can be made high by suppressing propagation of light in the fluorescent member 10, it can be set as the fluorescent member 10 with a high contrast ratio compared with the case where there is no space | gap. The contrast ratio can be recognized as, for example, a ratio between the maximum luminance and the luminance at a position 1 mm away from the emission intensity distribution on the upper surface of the fluorescent member 10. The above-mentioned “uneven distribution” refers to, for example, observing a photograph taken with a scanning electron microscope (SEM) on a scale at which 10 phosphor particles 11 can be clearly confirmed, and at least one phosphor particle 11 It means that the density of the voids 13 in a region sandwiched between the surface of the particle 11 and a line having a separation distance of 0.1 μm is higher than the density of the voids 13 in the region outside it. Further, “parallel to the upper surface of the fluorescent member 10” includes not only those that are completely parallel to the upper surface of the fluorescent member 10 but also those that are inclined ± 10 degrees. In addition, when the upper surface of the fluorescent member 10 is rough when viewed microscopically, the cross section X is a cross section parallel to the flat upper surface of the fluorescent member 10 when viewed macroscopically.

複数の空隙13は、蛍光部材10の上面から深さ方向に設けてもよい。つまり、図4に示すように、蛍光部材10の上面と垂直をなし、且つ、蛍光体粒子11及び空隙13の双方を横切る一断面(以下「縦断面Y」という。)においても、複数の空隙13が設けられていてもよい。また、蛍光部材10の上面から内部に入る光の伝搬も抑制できることから、例えば、10μm以上離れた複数の横断面Xにおいて、蛍光体粒子11の近傍に複数の空隙13が偏在していることが好ましい。   The plurality of gaps 13 may be provided in the depth direction from the upper surface of the fluorescent member 10. That is, as shown in FIG. 4, a plurality of voids are formed even in one section (hereinafter referred to as “longitudinal section Y”) that is perpendicular to the upper surface of the fluorescent member 10 and that crosses both the phosphor particles 11 and the voids 13. 13 may be provided. Further, since propagation of light entering from the upper surface of the fluorescent member 10 can also be suppressed, for example, a plurality of voids 13 are unevenly distributed in the vicinity of the phosphor particles 11 in a plurality of cross sections X separated by 10 μm or more. preferable.

蛍光部材10の形状は、蛍光部材10を作製しやすいことから、一方向に長い直方体、又は立方体とすることができ、直方体とすることが好ましい。直方体である場合は、上方から見て、蛍光部材10の左右方向の長さ(蛍光部材10の幅であり図2の横方向の長さに該当する。)は10mm以上15mm以下の範囲内とすることが好ましく、蛍光部材10の上下方向の長さ(蛍光部材10の奥行きであり、図2の縦方向の長さに該当する。)は2mm以上5mm以下の範囲内とすることが好ましい。前述の下限値以上の長さとすることにより、励起光が照射される領域を変えることができ、前述の上限値以下の長さとすることにより必要以上に蛍光部材10の面積が大きくなりすぎることを抑制することができる。   Since the shape of the fluorescent member 10 is easy to produce the fluorescent member 10, it can be a rectangular parallelepiped or a cube that is long in one direction, and is preferably a rectangular parallelepiped. In the case of a rectangular parallelepiped, when viewed from above, the length of the fluorescent member 10 in the left-right direction (the width of the fluorescent member 10 and corresponds to the horizontal length of FIG. 2) is in the range of 10 mm to 15 mm. It is preferable that the length of the fluorescent member 10 in the vertical direction (the depth of the fluorescent member 10 corresponds to the length in the vertical direction in FIG. 2) is preferably in the range of 2 mm to 5 mm. By setting the length equal to or longer than the aforementioned lower limit, the region irradiated with the excitation light can be changed. By setting the length equal to or shorter than the aforementioned upper limit, the area of the fluorescent member 10 becomes excessively large. Can be suppressed.

蛍光部材10の厚み(図3の上下方向の長さ)は、50μm以上200μm以下の範囲内にすることが好ましく、70μm以上130μm以下の範囲内にすることがさらに好ましい。前述の下限値以上の厚みとすることにより励起光と蛍光との混色光の色度の調整がしやすくなり、前述の上限値以下の厚みとすることにより、発熱しやすい上面側の蛍光体粒子11から基部50までの距離を短くすることができるため、蛍光部材10で生じる熱を基部50に発散しやすくなる。   The thickness of the fluorescent member 10 (vertical length in FIG. 3) is preferably in the range of 50 μm to 200 μm, and more preferably in the range of 70 μm to 130 μm. By making the thickness equal to or greater than the aforementioned lower limit, it becomes easier to adjust the chromaticity of the mixed light of excitation light and fluorescence, and by making the thickness less than the aforementioned upper limit, the phosphor particles on the upper surface side that tend to generate heat Since the distance from 11 to the base 50 can be shortened, the heat generated in the fluorescent member 10 is easily dissipated to the base 50.

図1に示すように、蛍光部材10において、蛍光体粒子11を励起する励起光の入射面と蛍光体粒子11からの蛍光を取り出す光取出面とは同じ面であり、且つ、その面に対して励起光が斜め方向から入射する光学部品100であることが好ましい。このような光学部品100は励起光が上方(真上)から取り出されにくいため、蛍光部材10の上方から取り出される光において蛍光の色が強く励起光の色が弱くなりやすい。例えば励起光が青色であり、蛍光が黄色である場合は黄色の強い光が取り出されやすくなる。これに対して、蛍光部材10によれば、励起光を空隙13で散乱させることができるため、最終的に得られる混色光において励起光の色を増やすことができる。   As shown in FIG. 1, in the fluorescent member 10, the excitation light incident surface for exciting the phosphor particles 11 and the light extraction surface for extracting the fluorescence from the phosphor particles 11 are the same surface, and with respect to the surface. Thus, the optical component 100 in which excitation light is incident from an oblique direction is preferable. In such an optical component 100, since the excitation light is difficult to be extracted from above (directly above), the fluorescence color is strong in the light extracted from above the fluorescent member 10, and the excitation light color tends to be weak. For example, when the excitation light is blue and the fluorescence is yellow, strong yellow light is easily extracted. On the other hand, according to the fluorescent member 10, since the excitation light can be scattered by the gap 13, the color of the excitation light can be increased in the finally obtained mixed color light.

(蛍光体粒子11)
蛍光体粒子11としては、例えば、YAG(Yttrium Aluminum Garnet)系蛍光体、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al−SiO)蛍光体、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)蛍光体、αサイアロン蛍光体、βサイアロン蛍光体を用いることができる。中でも特に、YAG系蛍光体を用いることが好ましい。YAG系蛍光体は、比較的耐熱性の高い材料であるため、励起光による劣化を低減できるためである。ここで、YAG系蛍光体には、例えばYの少なくとも一部をTbに置換したものや、Yの少なくとも一部をLuに置換したものも含まれる。また、YAG系蛍光体は、組成中にGdやGa等が含まれるものであってもよい。
(Phosphor particles 11)
Examples of the phosphor particles 11 include a YAG (Yttrium Aluminum Garnet) phosphor, a nitrogen-containing calcium aluminosilicate (CaO—Al 2 O 3 —SiO 2 ) phosphor activated by europium and / or chromium, and activated by europium. Silicate ((Sr, Ba) 2 SiO 4 ) phosphor, α sialon phosphor, and β sialon phosphor can be used. Among them, it is particularly preferable to use a YAG phosphor. This is because the YAG phosphor is a material having a relatively high heat resistance, so that deterioration due to excitation light can be reduced. Here, the YAG phosphor includes, for example, those in which at least a part of Y is substituted with Tb and those in which at least a part of Y is substituted with Lu. In addition, the YAG phosphor may contain Gd or Ga in the composition.

蛍光体粒子11の粒径は、例えば、1μm以上20μm以下の範囲内とすることが好ましく、3μm以上6μm以下の範囲内とすることがさらに好ましい。前述の下限値以上の粒径とすることにより空隙13を設けやすくなり、前述の上限値以下の粒径とすることにより蛍光部材10に蛍光体粒子11を満遍なく配置しにくくなる。粒径の測定方法としては、例えば、蛍光体粒子が10個写るスケールのSEM画像で、円形に近い形状の蛍光体粒子11の最短と最長の平均を求めることにより測定することができる。   The particle diameter of the phosphor particles 11 is preferably in the range of 1 μm to 20 μm, for example, and more preferably in the range of 3 μm to 6 μm. By setting the particle size to be equal to or larger than the above lower limit value, it becomes easy to provide the gap 13, and by setting the particle size to be equal to or smaller than the above upper limit value, it becomes difficult to uniformly arrange the phosphor particles 11 on the fluorescent member 10. As a measuring method of the particle size, for example, it can be measured by obtaining the shortest and longest average of the phosphor particles 11 having a shape close to a circle by using an SEM image of a scale in which 10 phosphor particles are captured.

蛍光部材10における蛍光体粒子11は、40質量%以上70質量%以下の範囲内にあることが好ましく、45%質量以上60%質量以下の範囲内にあることがさらに好ましい。前述の下限値以上の質量%とすることにより、空隙13を形成しやすくして蛍光体粒子11の伝搬を抑制しやすくすることができる。また、前述の上限値以下の質量%とすることにより、無機バインダー12の質量%を確保することができるため蛍光部材10の強度の低下を抑制しやすくなり、且つ、蛍光体粒子11が発する熱を発散しやすくなる。特に、蛍光体粒子11を励起する励起光の入射面と蛍光体粒子11からの蛍光を取り出す光取出面とは同じ面である光学部品100においては、蛍光体粒子11の質量%が低いと、蛍光部材10に入射した光が蛍光体粒子11に当たらずに反射膜20に用いられる金属で吸収される可能性があるが、蛍光体粒子11の質量を一定以上確保することにより金属で吸収される励起光を減らすことができる。   The phosphor particles 11 in the fluorescent member 10 are preferably in the range of 40% by mass to 70% by mass, and more preferably in the range of 45% by mass to 60% by mass. By setting it as the mass% more than the above-mentioned lower limit, the space | gap 13 can be formed easily and propagation of the fluorescent substance particle 11 can be made easy to be suppressed. Moreover, since the mass% of the inorganic binder 12 can be ensured by setting the mass% to the above upper limit value or less, it is easy to suppress a decrease in the strength of the fluorescent member 10 and the heat generated by the phosphor particles 11. It becomes easy to diverge. In particular, in the optical component 100 in which the incident surface of excitation light that excites the phosphor particles 11 and the light extraction surface that extracts fluorescence from the phosphor particles 11 are the same surface, if the mass% of the phosphor particles 11 is low, The light incident on the fluorescent member 10 may be absorbed by the metal used for the reflective film 20 without hitting the phosphor particles 11, but is absorbed by the metal by ensuring a certain mass of the phosphor particles 11. Excitation light can be reduced.

(無機バインダー12)
無機バインダー12は、蛍光体粒子11を結着するものである。無機バインダー12は、蛍光部材10の熱膨張係数に近い熱膨張係数である材料からなることが好ましい。無機バインダー12としては、酸化アルミニウム、酸化イットリウム等を用いることができる。
(Inorganic binder 12)
The inorganic binder 12 binds the phosphor particles 11. The inorganic binder 12 is preferably made of a material having a thermal expansion coefficient close to that of the fluorescent member 10. As the inorganic binder 12, aluminum oxide, yttrium oxide, or the like can be used.

(空隙13)
複数の空隙13は蛍光体粒子11の近傍に偏在して設けられる。空隙13は、真空、大気等により構成される。
(Void 13)
The plurality of voids 13 are provided unevenly in the vicinity of the phosphor particles 11. The gap 13 is constituted by a vacuum, the atmosphere, or the like.

図5に示すように、横断面Xにおいて、複数の空隙13の一部は蛍光体粒子11に沿うように設けられていることが好ましい。これにより、蛍光体粒子11からの光の伝搬を抑制しやすくすることができる。横断面Xにおいて、複数の空隙13は蛍光体粒子11の全周の1/2以上にわたって設けられることが好ましく、1/3以上にわたって設けられることがさらに好ましい。   As shown in FIG. 5, in the cross section X, it is preferable that some of the plurality of voids 13 are provided along the phosphor particles 11. Thereby, propagation of light from the phosphor particles 11 can be easily suppressed. In the cross section X, the plurality of voids 13 are preferably provided over 1/2 or more of the entire circumference of the phosphor particles 11, and more preferably provided over 1/3 or more.

空隙13の屈折率は、無機バインダー12の屈折率よりも低く、無機バインダー12の屈折率は蛍光体粒子11の屈折率よりも低いことが好ましい。これにより、空隙13及び無機バインダー12の界面と、無機バインダー12及び蛍光体粒子11の界面と、のそれぞれで励起光を全反射しやすくなるため、励起光を取り出しやすくすることができる。このとき、複数の空隙13のうちの一部の空隙13は、蛍光体粒子11に直接接していることがさらに好ましい。空隙13及び蛍光体粒子11の屈折率差は、無機バインダー12及び蛍光体粒子11の屈折率差よりも大きいため、蛍光体粒子11からの光の伝搬を抑制しやすくすることができる。   The refractive index of the gap 13 is preferably lower than the refractive index of the inorganic binder 12, and the refractive index of the inorganic binder 12 is preferably lower than the refractive index of the phosphor particles 11. Thereby, since it becomes easy to totally reflect excitation light by each of the interface of the space | gap 13 and the inorganic binder 12, and the interface of the inorganic binder 12 and the fluorescent substance particle 11, it can make it easy to take out excitation light. At this time, it is more preferable that some of the plurality of voids 13 are in direct contact with the phosphor particles 11. Since the refractive index difference between the gap 13 and the phosphor particles 11 is larger than the refractive index difference between the inorganic binder 12 and the phosphor particles 11, it is possible to easily suppress the propagation of light from the phosphor particles 11.

横断面Xにおいて、1つの空隙13の面積は、1つの蛍光体粒子11の面積よりも小さいことが好ましい。面積の小さい空隙13が複数あることにより、蛍光部材10の強度を保ちつつ、蛍光体粒子11からの光を反射しやすくできるためである。面積は、例えば、SEMにより蛍光体粒子11が10個写るスケールで撮影した写真を観察して、すべての空隙13が、すべての蛍光体粒子11よりも小さいことをいう。空隙13の面積は、例えば、0.01μm以上2μm以下とする。 In the cross section X, the area of one void 13 is preferably smaller than the area of one phosphor particle 11. This is because the plurality of voids 13 having a small area can easily reflect the light from the phosphor particles 11 while maintaining the strength of the fluorescent member 10. The area means, for example, that all the voids 13 are smaller than all the phosphor particles 11 by observing a photograph taken with a SEM at a scale where ten phosphor particles 11 are captured. The area of the gap 13 is, for example, 0.01 μm 2 or more and 2 μm 2 or less.

(反射膜20)
蛍光部材10の下面には、反射膜20が設けられている。これにより、蛍光部材10から下面に向かう光を上方に向けて反射することができる。
(Reflective film 20)
A reflective film 20 is provided on the lower surface of the fluorescent member 10. Thereby, the light which goes to the lower surface from the fluorescent member 10 can be reflected upward.

反射膜20としては、金属膜及び誘電体膜の少なくとも一方を含むことができる。金属膜及び誘電体膜は、単層でも積層でもよい。金属膜としては、例えば、Al、Agを用いることができる。また、誘電体膜としては、例えば、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ニオブを用いることができる。金属膜及び誘電体膜の双方を用いる場合は、蛍光部材10の下面側から誘電体膜、金属膜をこの順に有することができる。   The reflective film 20 can include at least one of a metal film and a dielectric film. The metal film and the dielectric film may be a single layer or a stacked layer. As the metal film, for example, Al or Ag can be used. As the dielectric film, for example, silicon oxide, titanium oxide, aluminum oxide, or niobium oxide can be used. When both the metal film and the dielectric film are used, the dielectric film and the metal film can be provided in this order from the lower surface side of the fluorescent member 10.

(拡散防止層30)
反射膜20が金属膜を含む場合は、反射膜20の下面に拡散防止層30が設けられることが好ましい。これにより、接合部材40が金属膜に拡散することを低減することができる、拡散防止層30としては、例えば、Ti、Pt、Au、Pd、及びTaの少なくも一種を含むものを用いることができる。
(Diffusion prevention layer 30)
When the reflective film 20 includes a metal film, it is preferable that the diffusion prevention layer 30 is provided on the lower surface of the reflective film 20. Thereby, it is possible to reduce the diffusion of the bonding member 40 into the metal film. As the diffusion prevention layer 30, for example, a material including at least one of Ti, Pt, Au, Pd, and Ta is used. it can.

(接合部材40)
接合部材40は、蛍光部材10と基部50とを固定するものである。接合部材40としては、例えば、AuSn、Ag、Al、Au、などを主成分とする部材又は散乱材が入った樹脂を用いることができる。なかでも接合強度の高さから、AuSn等の共晶合金を用いることが好ましい。
(Joining member 40)
The joining member 40 fixes the fluorescent member 10 and the base 50. As the bonding member 40, for example, a member mainly containing AuSn, Ag, Al, Au, or the like, or a resin containing a scattering material can be used. In particular, it is preferable to use a eutectic alloy such as AuSn because of high bonding strength.

(基部50)
基部50は、蛍光部材10よりも熱伝導率が高い材料からなり、蛍光部材10の下面と基部50の上面とが接続されている。これにより、蛍光部材10からの熱を基部50に発散しやすくなるため、蛍光体粒子11の劣化を低減することができる。反射膜20と基部50とが直接接合されている場合は、接合部材40を介することなく蛍光部材10と基部50とは接合される。
(Base 50)
The base 50 is made of a material having a higher thermal conductivity than the fluorescent member 10, and the lower surface of the fluorescent member 10 and the upper surface of the base 50 are connected. Thereby, the heat from the fluorescent member 10 is easily dissipated to the base 50, so that deterioration of the phosphor particles 11 can be reduced. When the reflective film 20 and the base 50 are directly joined, the fluorescent member 10 and the base 50 are joined without the joining member 40 interposed therebetween.

基部50は、金属及び拡散反射性のセラミックスの少なくとも一方を含む。金属としては、例えば、Cu、CuMo、CuWを用いることができ、光拡散性のセラミックスとしては例えば酸化アルミニウム、窒化アルミニウムを用いることができる。   The base 50 includes at least one of a metal and a diffuse reflective ceramic. For example, Cu, CuMo, or CuW can be used as the metal, and aluminum oxide or aluminum nitride can be used as the light diffusing ceramic.

基部50の厚みは、例えば、1mm以上3mm以下の範囲内にすることが好ましい。1mm以上とすることにより光学部品を取り扱いやすくなり、3mm以下とすることにより光学部品が大きくなりすぎることを防ぐことができる。   The thickness of the base portion 50 is preferably in the range of 1 mm or more and 3 mm or less, for example. When the thickness is 1 mm or more, the optical component can be easily handled, and when the thickness is 3 mm or less, the optical component can be prevented from becoming too large.

(保護膜60)
蛍光部材10の上面には保護膜60を設けてもよい。保護膜60としては、例えば、酸化ケイ素、酸化ニオブを用いる。
(Protective film 60)
A protective film 60 may be provided on the upper surface of the fluorescent member 10. As the protective film 60, for example, silicon oxide or niobium oxide is used.

(光学部品100の製造方法)
光学部品に含まれる蛍光部材10は、例えば、以下の方法により作製することができる。
(Method for manufacturing optical component 100)
The fluorescent member 10 included in the optical component can be manufactured by the following method, for example.

蛍光部材10の製造方法は、蛍光体粒子11とセラミックス粒子とを混合する工程と、蛍光体粒子11の近傍に複数の空隙13が偏在するようにセラミックス粒子を焼結して一体にすることにより、蛍光体粒子11と無機バインダー12と空隙13とを有する蛍光部材10を得る工程と、を含む。ここではさらに、蛍光部材10を熱処理する工程と、蛍光部材10をスライスする工程と、蛍光部材10の上面を研磨・研削する工程と、を含む。なお、本明細書では、説明を簡便にするため、スライス又は個片化前の蛍光部材も、個片化した後の蛍光部材もまとめて「蛍光部材10」という。以下で、蛍光部材10の製造方法に含まれる各工程について説明する。   The manufacturing method of the fluorescent member 10 includes the step of mixing the phosphor particles 11 and the ceramic particles, and sintering and integrating the ceramic particles so that the plurality of voids 13 are unevenly distributed in the vicinity of the phosphor particles 11. And obtaining the fluorescent member 10 having the phosphor particles 11, the inorganic binder 12, and the gaps 13. Here, it further includes a step of heat-treating the fluorescent member 10, a step of slicing the fluorescent member 10, and a step of polishing and grinding the upper surface of the fluorescent member 10. In addition, in this specification, in order to simplify description, the fluorescent member before slicing or singulation and the fluorescent member after singulation are collectively referred to as “fluorescent member 10”. Below, each process included in the manufacturing method of the fluorescent member 10 is demonstrated.

まず、蛍光体粒子11と後に無機バインダー12となるセラミックス粒子と、を混合する。このとき、セラミックス粒子として、蛍光体粒子11の焼結温度よりも低い焼結温度のセラミックス粒子を用いる。これにより、蛍光体粒子11の熱による劣化を低減しながらセラミックス粒子を焼結することができる。セラミックス粒子の粒径は、蛍光体粒子11の粒径よりも小さいことが好ましい。これにより、蛍光体粒子11との密着力が高くなりやすい。セラミックス粒子の粒径は、例えば、蛍光体粒子11の1/15以上1/2以下の範囲内にあることが好ましく、1/12以上1/5の範囲内にあることがさらに好ましい。例えば、0.1μm以上2μm以下の範囲内とすることが好ましく、0.3μm以上1μm以下の範囲内とすることがさらに好ましい。前述の下限値以上の粒径とすることにより、安定的に作製することができ、前述の上限値以下の粒径とすることにより蛍光体粒子11との密着力を確保することができる。   First, phosphor particles 11 and ceramic particles to be inorganic binder 12 later are mixed. At this time, ceramic particles having a sintering temperature lower than the sintering temperature of the phosphor particles 11 are used as the ceramic particles. Thereby, ceramic particles can be sintered while reducing deterioration of the phosphor particles 11 due to heat. The particle diameter of the ceramic particles is preferably smaller than the particle diameter of the phosphor particles 11. Thereby, the adhesive force with the phosphor particles 11 tends to be high. The particle size of the ceramic particles is, for example, preferably in the range of 1/15 or more and 1/2 or less of the phosphor particles 11, and more preferably in the range of 1/12 or more and 1/5. For example, it is preferably in the range of 0.1 μm to 2 μm, and more preferably in the range of 0.3 μm to 1 μm. By setting the particle size to be equal to or larger than the above-mentioned lower limit value, it can be stably produced.

次に、セラミックス粒子を焼結して蛍光体粒子11と一体にすることにより、蛍光体粒子11と無機バインダー12とを含む蛍光部材10を得る。焼結する方法としては、例えば、放電プラズマ焼結(Spark Plasma Sinterning、SPS)法、ホットプレス(HP)法を用いることができる。このとき、蛍光部材10の焼結密度が高くなりすぎないように、焼結温度及び時間を調整して焼結する。   Next, the ceramic particles are sintered and integrated with the phosphor particles 11 to obtain the phosphor member 10 including the phosphor particles 11 and the inorganic binder 12. As a method for sintering, for example, a spark plasma sintering (SPS) method or a hot press (HP) method can be used. At this time, sintering is performed by adjusting the sintering temperature and time so that the sintered density of the fluorescent member 10 does not become too high.

セラミックス粒子を焼結する際に、セラミックス粒子は近くにある他のセラミックス粒子と結合しながら収縮する。このとき、蛍光体粒子11から遠い領域においては、セラミックス粒子が周囲全体に満遍なくあるため、セラミックス粒子同士が結合しやすいが、蛍光体粒子11の近傍領域においては蛍光体粒子11の存在に起因してセラミックス粒子同士が結合しにくくなる。これにより、蛍光体粒子11の近傍に空隙13が偏在しやすくなると考えられる。   When the ceramic particles are sintered, the ceramic particles shrink while being bonded to other nearby ceramic particles. At this time, in the region far from the phosphor particles 11, the ceramic particles are evenly distributed over the entire periphery, so that the ceramic particles are easily bonded to each other. However, in the region near the phosphor particles 11, the phosphor particles 11 are present. This makes it difficult for the ceramic particles to bond together. Thereby, it is considered that the voids 13 are likely to be unevenly distributed in the vicinity of the phosphor particles 11.

ここでの焼結温度及び時間は、セラミックス粒子の表面が焼結し、且つ、蛍光体粒子11が焼結しない温度及び時間とする。例えば、蛍光体粒子11としてYAG系蛍光体、セラミックス粒子として酸化アルミニウムを用い、SPS法を用いて焼結する場合は、1200度以上1500度以下の範囲内の温度で、その温度での保持時間は1分以上20分以下の範囲内の時間行うことが好ましい。   The sintering temperature and time here are the temperature and time at which the surface of the ceramic particles is sintered and the phosphor particles 11 are not sintered. For example, when a YAG phosphor is used as the phosphor particle 11 and aluminum oxide is used as the ceramic particle and sintering is performed using the SPS method, the holding time at the temperature is in the range of 1200 degrees to 1500 degrees. Is preferably performed for a time in the range of 1 minute to 20 minutes.

蛍光部材10の焼結密度は、90%以上98%以下の範囲とすることが好ましく、93.5%以上96%以下の範囲とすることがさらに好ましい。前述の下限値以上とすることにより強度を確保しやすく、前述の上限値以下とすることにより焼結密度が比較的高いものと比較して輝度の低下を低減できるとともに光束を高くすることができる。光束を高くできる理由は、空隙13があることにより蛍光部材10の下面に近い側まで光が入りにくくなるため反射膜の金属等による光の吸収を低減することができるためであると考えられる。焼結密度の測定方法の一例として、アルキメデスの法則を利用したものを以下に示す。まず、秤で蛍光部材10の重さAを求める。次に、容器に入った水に蛍光部材10を容器の底に触れないように入れ、水中で容器及び水を除く重さBを求める。そして、重さAを重さBで除算し(C)、蛍光部材10に含まれる蛍光体粒子11及びセラミックス粒子の真比重(D)を求めて、CをDで除算することにより、蛍光部材10の焼結密度を求めることができる。   The sintered density of the fluorescent member 10 is preferably in the range of 90% to 98%, and more preferably in the range of 93.5% to 96%. By making it not less than the above lower limit value, it is easy to ensure the strength, and by making it not more than the above upper limit value, it is possible to reduce the decrease in luminance and to increase the luminous flux as compared with those having a relatively high sintering density. . The reason why the luminous flux can be increased is considered to be that light is difficult to enter to the side close to the lower surface of the fluorescent member 10 due to the presence of the air gap 13, and thus light absorption by the metal of the reflective film can be reduced. As an example of a method for measuring the sintered density, a method using Archimedes' law is shown below. First, the weight A of the fluorescent member 10 is obtained with a scale. Next, the fluorescent member 10 is put in the water contained in the container so as not to touch the bottom of the container, and the weight B excluding the container and water in water is obtained. Then, the weight A is divided by the weight B (C), the true specific gravity (D) of the phosphor particles 11 and the ceramic particles contained in the fluorescent member 10 is obtained, and C is divided by D to obtain the fluorescent member. A sintered density of 10 can be determined.

一般的に、SPS法やHP法に用いる焼結型には炭素が含まれるため、焼結する際に酸化物に浸炭して還元反応を生じさせやく、炭素での光の吸収が起こる。そこで、本実施形態では、SPS法等によって得られる蛍光部材10を最終的に酸化雰囲気で熱処理している。これにより、酸化物に含有された炭素を除去して欠損した酸素を戻すことができる。   In general, since a sintering mold used in the SPS method or HP method contains carbon, it easily carburizes into an oxide during sintering to cause a reduction reaction, and light is absorbed by carbon. Therefore, in the present embodiment, the fluorescent member 10 obtained by the SPS method or the like is finally heat-treated in an oxidizing atmosphere. Thereby, the oxygen contained in the oxide can be removed to return the deficient oxygen.

熱処理する工程は、1200度以上1450度以下の範囲内の温度で、1時間以上40時間以下の範囲内の時間行うことが好ましい。前述の下限値以上とすることで無機バインダー12に含まれる酸化物に酸素を戻しやすくなり、前述の上限値以下とすることで蛍光体粒子の劣化を防ぐことができる。   The heat treatment step is preferably performed at a temperature in the range of 1200 ° C. to 1450 ° C. for a time in the range of 1 hour to 40 hours. Oxygen can be easily returned to the oxide contained in the inorganic binder 12 by setting it to the above lower limit value or more, and deterioration of the phosphor particles can be prevented by setting it to the upper limit value or less.

得られた蛍光部材10はそのまま用いてもよいが、蛍光部材10が所望の蛍光部材10よりも厚い場合は、ワイヤー等を用いて、所定の厚みよりも少し厚くなるように蛍光部材10をスライスする。この厚みの蛍光部材10が複数得られるように、複数回スライスしてもよい。更に研磨・研削により所定の厚みになるまで加工してもよい。   The obtained fluorescent member 10 may be used as it is, but when the fluorescent member 10 is thicker than the desired fluorescent member 10, the fluorescent member 10 is sliced to be slightly thicker than a predetermined thickness using a wire or the like. To do. You may slice several times so that the fluorescent member 10 of this thickness may be obtained two or more. Furthermore, you may process until it becomes predetermined thickness by grinding | polishing and grinding.

次に、蛍光部材10の下面に反射膜20及び拡散防止層30をスパッタ法等により形成する。次に、蛍光部材10を所望の形状となるようにブレイド等により切断して個片化する。   Next, the reflective film 20 and the diffusion prevention layer 30 are formed on the lower surface of the fluorescent member 10 by sputtering or the like. Next, the fluorescent member 10 is cut into individual pieces by cutting with a blade or the like so as to have a desired shape.

次に、蛍光部材10の下面と基部50の上面との間に接合部材40を配置して蛍光部材10と基部50とを固着する。このとき、接合部材40としてAuSn箔を用いて熱圧着することが好ましい。これにより、AuSnはんだを用いる場合に比べて接合部材40にボイドが形成されにくくなるため、蛍光部材10で生じる熱を発散しやすくすることができる。   Next, the bonding member 40 is disposed between the lower surface of the fluorescent member 10 and the upper surface of the base portion 50 to fix the fluorescent member 10 and the base portion 50 together. At this time, it is preferable to perform thermocompression bonding using an AuSn foil as the bonding member 40. Thereby, since it becomes difficult to form a void in the joining member 40 compared with the case where AuSn solder is used, the heat generated in the fluorescent member 10 can be easily dissipated.

次に、蛍光部材10を個片化する際に付着したごみを除去するために、蛍光部材10の上面を洗浄する。洗浄する前に、蛍光部材10の上面に励起光を照射して蛍光部材10からの光の色度を測定することが好ましい。例えば、蛍光体粒子11がYAG系蛍光体であって、測定により得られた色度が所望の色度よりも黄色寄りにずれている場合は、リン酸等による酸洗浄を行う。これにより、蛍光部材10の表面の蛍光体粒子11が削られやすくなるため、蛍光部材10の色度を励起光の色寄りにして所望の色度に合わせることができる。測定により得られた色度が所定の色度の範囲内である場合は、超音波洗浄により蛍光部材10の上面を洗浄する。   Next, the upper surface of the fluorescent member 10 is washed in order to remove dust attached when the fluorescent member 10 is separated. Before washing, it is preferable to measure the chromaticity of light from the fluorescent member 10 by irradiating the upper surface of the fluorescent member 10 with excitation light. For example, when the phosphor particle 11 is a YAG-based phosphor and the chromaticity obtained by measurement is shifted to a yellow side from the desired chromaticity, acid cleaning with phosphoric acid or the like is performed. Thereby, since the phosphor particles 11 on the surface of the fluorescent member 10 are easily scraped, the chromaticity of the fluorescent member 10 can be made closer to the color of the excitation light to match the desired chromaticity. When the chromaticity obtained by the measurement is within a predetermined chromaticity range, the upper surface of the fluorescent member 10 is cleaned by ultrasonic cleaning.

(光源200)
光源200としては、例えば、発光ダイオード素子や半導体レーザ素子を含む。特に半導体レーザ素子を含むことが好ましい。半導体レーザ素子は指向性に富む光であるため、蛍光部材10を高輝度にできる効果が顕著となるためである。半導体レーザ素子は発光ダイオード素子に比べて出力が高く蛍光部材10が発熱しやすいため、図1に示すような反射型の光学部品100の使用に適している。光源200は複数の半導体レーザ素子を含んでいてもよい。また、発光装置1000は複数の光源200を含んでいてもよい。
(Light source 200)
Examples of the light source 200 include a light emitting diode element and a semiconductor laser element. In particular, it is preferable to include a semiconductor laser element. This is because the semiconductor laser element is light with a high directivity, so that the effect of increasing the brightness of the fluorescent member 10 becomes remarkable. Since the semiconductor laser element has a higher output than the light emitting diode element and the fluorescent member 10 easily generates heat, the semiconductor laser element is suitable for use in a reflective optical component 100 as shown in FIG. The light source 200 may include a plurality of semiconductor laser elements. In addition, the light emitting device 1000 may include a plurality of light sources 200.

半導体レーザ素子又は発光ダイオード素子は可視領域の励起光を照射するものであることが好ましい。例えば、窒化物半導体を含み、発光ピーク波長が430nm〜480nmの範囲にあるものを用いる。ここでは、図1に示すように、半導体レーザ素子からの励起光が蛍光部材10の光取出し面に対して斜めから入射するように配置されている。斜めから入射する場合は、正反射方向に励起光が抜けやすくなるため、蛍光部材10の上方から取り出される光は蛍光色の強い光になりやすい。光学部品100によれば、空隙13により励起光を反射させて取り出すことができるため、蛍光部材10の上方から取り出される励起光の色を増やすことができる。   The semiconductor laser element or light emitting diode element is preferably one that emits excitation light in the visible region. For example, a nitride semiconductor that has an emission peak wavelength in the range of 430 nm to 480 nm is used. Here, as shown in FIG. 1, the excitation light from the semiconductor laser element is disposed so as to enter the light extraction surface of the fluorescent member 10 at an angle. When the light is incident obliquely, the excitation light is likely to escape in the regular reflection direction, so that the light extracted from above the fluorescent member 10 is likely to be light with a strong fluorescent color. According to the optical component 100, since the excitation light can be reflected and extracted by the gap 13, the color of the excitation light extracted from above the fluorescent member 10 can be increased.

(ミラー300)
ミラー300は励起光を蛍光部材10に向けて反射するものである。ミラー300としては例えば、MEMS(Micro Electro-Mechanical Systems)を用いることができる。これにより、光を走査しながら蛍光部材10に励起光を照射することができる。
(Mirror 300)
The mirror 300 reflects the excitation light toward the fluorescent member 10. As the mirror 300, for example, MEMS (Micro Electro-Mechanical Systems) can be used. Thereby, excitation light can be irradiated to the fluorescent member 10 while scanning light.

(レンズ400)
蛍光部材10からの光はレンズ400を通って外部に出射される。レンズ400としては、石英ガラスを用いることができる。蛍光部材10からの光が広がりすぎるとレンズ400に入射する光が減るが、蛍光部材10によれば輝度を高くすることができるため、蛍光部材10からの光をレンズ400に入射させやすい。
(Lens 400)
Light from the fluorescent member 10 is emitted to the outside through the lens 400. As the lens 400, quartz glass can be used. If the light from the fluorescent member 10 spreads too much, the light incident on the lens 400 is reduced. However, since the luminance can be increased according to the fluorescent member 10, the light from the fluorescent member 10 can easily enter the lens 400.

<実施形態2>
図10及び11に示すように、実施形態2では、実施形態1とは、蛍光部材10の下面に反射膜20が設けられておらず、基部50の上面に反射膜20が設けられている点が異なる。また、蛍光部材10の下面が少なくとも1つの凹部を有し、蛍光部材10と基部50とを透明接合部材40aで接続している点が異なる。それ以外については、実施形態1と同様である。
<Embodiment 2>
As shown in FIGS. 10 and 11, the second embodiment is different from the first embodiment in that the reflective film 20 is not provided on the lower surface of the fluorescent member 10 and the reflective film 20 is provided on the upper surface of the base 50. Is different. Moreover, the lower surface of the fluorescent member 10 has at least one recess, and the fluorescent member 10 and the base 50 are connected by the transparent bonding member 40a. The rest is the same as in the first embodiment.

実施形態1のように、蛍光部材10の下面に直接反射膜20を成膜した場合、反射膜20に含まれる金属が蛍光部材10に向けてマイグレーションを起こすことがある。この場合、蛍光部材10の内部に金属の一部が侵入して、蛍光部材10からの光取出し量が低下してしまう。これは、蛍光部材10に侵入した金属が、蛍光体粒子11及び/又は無機バインダー12を変色させてしまうためであると考えられる。また、蛍光部材10に侵入した金属自体が光を吸収してしまうことも理由として考えられる。そこで、図11に示すように、実施形態2に係る光学部品100では、蛍光部材10の下面ではなく、基部50の上面に反射膜20を設けるとともに、蛍光部材10と基部50とを透明接合部材40aで接続している。これにより、蛍光部材10の下面には透明接合部材40aが配置されるため、透明接合部材40aの下方に配置される反射膜20に含まれる金属が蛍光部材10に向けてマイグレーションすることを抑制することができる。この結果、蛍光部材10からの光取出し量の低下を抑制することができる。   When the reflective film 20 is directly formed on the lower surface of the fluorescent member 10 as in the first embodiment, the metal contained in the reflective film 20 may cause migration toward the fluorescent member 10. In this case, a part of the metal enters the inside of the fluorescent member 10 and the amount of light extracted from the fluorescent member 10 decreases. This is considered to be because the metal that has entered the fluorescent member 10 discolors the phosphor particles 11 and / or the inorganic binder 12. Another possible reason is that the metal itself that has entered the fluorescent member 10 absorbs light. Therefore, as shown in FIG. 11, in the optical component 100 according to Embodiment 2, the reflective film 20 is provided on the upper surface of the base 50 instead of the lower surface of the fluorescent member 10, and the fluorescent member 10 and the base 50 are connected to the transparent bonding member. 40a is connected. Thereby, since the transparent joining member 40a is arrange | positioned at the lower surface of the fluorescent member 10, it suppresses that the metal contained in the reflecting film 20 arrange | positioned under the transparent joining member 40a migrates toward the fluorescent member 10. FIG. be able to. As a result, a reduction in the amount of light extracted from the fluorescent member 10 can be suppressed.

実施形態2ではさらに、蛍光部材10の下面が少なくとも1つの凹部を有する。蛍光部材10は複数の空隙13を有するため、蛍光部材10の下面をスライス、研磨及び研削の1以上を用いて所定の厚みになるように加工したときに、1つの空隙13の一部領域が蛍光部材10の下面近傍に配置されることがある。この場合、複数の空隙13を有する蛍光部材10の下面には、少なくとも1つの凹部ができる。   In Embodiment 2, the lower surface of the fluorescent member 10 further has at least one recess. Since the fluorescent member 10 has a plurality of gaps 13, when the lower surface of the fluorescent member 10 is processed to have a predetermined thickness using one or more of slicing, polishing, and grinding, a partial region of one gap 13 is formed. It may be arranged near the lower surface of the fluorescent member 10. In this case, at least one recess is formed on the lower surface of the fluorescent member 10 having the plurality of gaps 13.

蛍光部材10の下面が凹部を有する場合において、蛍光部材10の下面に直接反射膜20を成膜した場合、蛍光部材10の下面が凹部を有さない場合と比較して、反射膜20に含まれる金属がマイグレーションをさらに起こしやすい。これにより、蛍光部材10の内部に金属の一部が侵入して、蛍光部材10の上方からの光取出し量が低下してしまう。そこで、実施形態2では、蛍光部材10の下面ではなく、基部50の上面に反射膜20を設けるとともに、蛍光部材10の下面の少なくとも1つの凹部が透明接合部材40aで充填されるようにして、蛍光部材10と基部50とを透明接合部材40aで接続している。これにより、透明接合部材40aの下方に配置される反射膜20に含まれる金属が蛍光部材10に向けてマイグレーションすることを抑制することができる。この結果、蛍光部材10の上方からの光取出し量の低下を抑制することができる。   In the case where the lower surface of the fluorescent member 10 has a concave portion, when the reflective film 20 is formed directly on the lower surface of the fluorescent member 10, it is included in the reflective film 20 as compared with the case where the lower surface of the fluorescent member 10 does not have a concave portion. Metal is more prone to migration. As a result, part of the metal enters the inside of the fluorescent member 10 and the amount of light extracted from above the fluorescent member 10 decreases. Therefore, in the second embodiment, the reflective film 20 is provided on the upper surface of the base 50 instead of the lower surface of the fluorescent member 10, and at least one concave portion on the lower surface of the fluorescent member 10 is filled with the transparent bonding member 40a. The fluorescent member 10 and the base 50 are connected by a transparent bonding member 40a. Thereby, it can suppress that the metal contained in the reflecting film 20 arrange | positioned under the transparent joining member 40a migrates toward the fluorescent member 10. FIG. As a result, a decrease in the amount of light extracted from above the fluorescent member 10 can be suppressed.

透明接合部材40aとしては、透明樹脂(シリコーン樹脂、エポキシ樹脂)、ガラス、セラミック等を用いることができる。中でも、シリコーン樹脂を用いることが好ましい。これにより、透明接合部材40aで凹部を充填しやすくすることができる。また、シリコーン樹脂は、樹脂の中では耐熱性及び光透過率が比較的高いため好ましい。なお、本実施形態では透明接合部材40aを用いて凹部を充填しているが、透明部材を凹部に充填して、接合部材を別に設けることもできる。   As the transparent bonding member 40a, transparent resin (silicone resin, epoxy resin), glass, ceramic, or the like can be used. Among these, it is preferable to use a silicone resin. Thereby, it can be made easy to fill a recessed part with the transparent joining member 40a. Silicone resins are preferred because of their relatively high heat resistance and light transmittance. In this embodiment, the concave portion is filled using the transparent bonding member 40a. However, the bonding member may be provided separately by filling the concave portion with the transparent member.

基部50の上面に設けられる反射膜20としては、実施形態1において蛍光部材10の下面に設けることができる反射膜20と同じ材料を用いることができる。なお、基部50が反射性を有する場合には、基部50の上面に反射膜20を設けずに、蛍光部材10と基部50とを透明接合部材40aで接続してもよい。ここで、反射性を有するとは、蛍光部材10で波長変換された光の80%以上を基部50が反射することをいう。このような反射性を有する反射膜20としては、例えば、Ag、Al、Auが挙げられる。   As the reflective film 20 provided on the upper surface of the base 50, the same material as the reflective film 20 that can be provided on the lower surface of the fluorescent member 10 in the first embodiment can be used. When the base 50 has reflectivity, the fluorescent member 10 and the base 50 may be connected by the transparent bonding member 40 a without providing the reflective film 20 on the upper surface of the base 50. Here, having the reflectivity means that the base 50 reflects 80% or more of the light wavelength-converted by the fluorescent member 10. Examples of the reflective film 20 having such reflectivity include Ag, Al, and Au.

蛍光部材10の下面の少なくとも1つの凹部の幅又は直径は、蛍光体粒子11の粒径と同様である。   The width or diameter of at least one recess on the lower surface of the fluorescent member 10 is the same as the particle diameter of the phosphor particles 11.

蛍光部材10の下面に透明接合部材40aを配置した場合、透明接合部材40aの一部が蛍光部材10の側面を這い上がり、蛍光部材10の上面に回り込むことがある。この場合、蛍光部材10の発光効率が低下してしまう。また、蛍光部材10の信頼性も低下してしまう。そこで、図12に示すように、基部の上面の一部を凸部として、基部の凸部の上面に、反射膜20と、透明接合部材40aと、蛍光部材10とを下方から順に配置することができる。これにより、透明接合部材40aは、重力の影響により蛍光部材10の側面よりも、基部50の凸部の側面へ進行しやすいため、透明接合部材40aの蛍光部材10の上面への回り込みを抑制することができる。   When the transparent bonding member 40 a is disposed on the lower surface of the fluorescent member 10, a part of the transparent bonding member 40 a may climb up the side surface of the fluorescent member 10 and wrap around the upper surface of the fluorescent member 10. In this case, the luminous efficiency of the fluorescent member 10 is reduced. Moreover, the reliability of the fluorescent member 10 will also fall. Therefore, as shown in FIG. 12, a part of the upper surface of the base portion is a convex portion, and the reflective film 20, the transparent bonding member 40a, and the fluorescent member 10 are sequentially arranged on the upper surface of the convex portion of the base portion from below. Can do. Thereby, since the transparent joining member 40a is more likely to travel to the side surface of the convex portion of the base 50 than the side surface of the fluorescent member 10 due to the influence of gravity, the transparent joining member 40a is prevented from wrapping around the upper surface of the fluorescent member 10. be able to.

<実施例>
以下の製造方法により光学部品を作製した。まず、粒径が5μmのYAG蛍光体からなる蛍光体粒子11と、粒径が0.5μmのAlからなるセラミックス粒子と、を50質量%ずつ準備して混合した。次に、混合したものを、1310℃で10分、SPS法により加熱してセラミックス粒子を焼結した。得られた蛍光部材10の焼結密度は、93.7%であった。次に得られた蛍光部材10を市販のワイヤーソーでスライスした。そして、蛍光部材10の上面側から厚みが100μmになるまで研磨及び研削を行った。
<Example>
An optical component was manufactured by the following manufacturing method. First, phosphor particles 11 made of a YAG phosphor having a particle size of 5 μm and ceramic particles made of Al 2 O 3 having a particle size of 0.5 μm were prepared and mixed by 50 mass%. Next, the mixture was heated at 1310 ° C. for 10 minutes by the SPS method to sinter the ceramic particles. The sintered density of the obtained fluorescent member 10 was 93.7%. Next, the obtained fluorescent member 10 was sliced with a commercially available wire saw. Then, polishing and grinding were performed from the upper surface side of the fluorescent member 10 until the thickness became 100 μm.

次に、蛍光部材10の下面に、Al(1μm)の反射膜20、及び、第1層31がTi(0.2μm)、第2層32がPt(0.2μm)、第3層33がAu(0.5μm)の拡散防止層30を、蛍光部材10の下面に近い側から順に、スパッタ法により形成した。次に、上面側から見て、長手方向の長さが12mm、短手方向の長さが3mmとなるようにブレイドにより蛍光部材を個片化した。   Next, the reflective film 20 made of Al (1 μm), the first layer 31 is Ti (0.2 μm), the second layer 32 is Pt (0.2 μm), and the third layer 33 is formed on the lower surface of the fluorescent member 10. A diffusion preventing layer 30 of Au (0.5 μm) was formed by sputtering from the side closer to the lower surface of the fluorescent member 10. Next, as viewed from the upper surface side, the fluorescent member was separated into individual pieces with a blade so that the length in the longitudinal direction was 12 mm and the length in the lateral direction was 3 mm.

次に、主成分がCuからなり、表面に2μmのNiと100nmのAuめっきとが施された基部50を準備した。基部50は、上面から見て、長手方向の長さが30mm、短手方向の長さが12mmであり、厚みが1.5mmである。まず、基部50を250度に加熱し、基部50の上面と蛍光部材10の下面との間にAuSn箔(Au22%、Sn78%)を配置する。そして、AuSn箔を溶かしながら荷重をかけて280度まで加熱した。そして、280度到達後に250度まで冷却し接合を完了させた。このように熱圧着により、基部50と蛍光部材10と接合した。   Next, a base 50 was prepared, the main component of which was made of Cu, and the surface was provided with 2 μm Ni and 100 nm Au plating. The base 50 has a length in the longitudinal direction of 30 mm, a length in the lateral direction of 12 mm, and a thickness of 1.5 mm as viewed from above. First, the base 50 is heated to 250 degrees, and an AuSn foil (Au 22%, Sn 78%) is disposed between the upper surface of the base 50 and the lower surface of the fluorescent member 10. And it heated to 280 degree | times, applying a load, melt | dissolving AuSn foil. Then, after reaching 280 degrees, it was cooled to 250 degrees to complete the joining. Thus, the base 50 and the fluorescent member 10 were joined by thermocompression bonding.

次に、発光ピーク波長が450nmのレーザ光を蛍光部材10に照射して蛍光部材10から上方に取り出される光の色度を測定した。そして、130度に加熱したりん酸溶液により蛍光部材10の表面をエッチングすることで所望の色度を得た。   Next, the chromaticity of light extracted upward from the fluorescent member 10 was measured by irradiating the fluorescent member 10 with laser light having an emission peak wavelength of 450 nm. And the desired chromaticity was obtained by etching the surface of the fluorescent member 10 with the phosphoric acid solution heated at 130 degree | times.

<比較例>
比較例は、1450℃で15分焼結した以外は実施例と実質的に同様である。得られた蛍光部材の焼結密度は99.5%であった。
<Comparative example>
The comparative example is substantially the same as the example except that it was sintered at 1450 ° C. for 15 minutes. The sintered density of the obtained fluorescent member was 99.5%.

実施例に係る蛍光部材10について横断面XをSEMにより観察した画像を図6に示し、比較例に係る蛍光部材について横断面をSEMにより観察した画像を図7に示す。図6及び図7からわかるように、実施例に係る蛍光部材10においては複数の空隙13が蛍光体粒子11の近傍に偏在しているのに対して、比較例に係る蛍光部材には空隙が存在しないことを確認した。実施例に係る蛍光部材10は、焼結密度が高い比較例に係る蛍光部材と同様に、基部50に蛍光部材10を熱圧着する際に、蛍光部材10の破損が起こらなかったことから、蛍光部材10の強度を確保できていることが確認できた。   FIG. 6 shows an image obtained by observing the cross section X of the fluorescent member 10 according to the example with an SEM, and FIG. 7 shows an image obtained by observing the cross section of the fluorescent member 10 according to the comparative example with an SEM. As can be seen from FIGS. 6 and 7, in the fluorescent member 10 according to the example, the plurality of voids 13 are unevenly distributed in the vicinity of the phosphor particles 11, whereas the fluorescent member according to the comparative example has voids. Confirmed that it does not exist. In the fluorescent member 10 according to the example, the fluorescent member 10 was not damaged when the fluorescent member 10 was thermocompression bonded to the base 50 in the same manner as the fluorescent member according to the comparative example having a high sintered density. It was confirmed that the strength of the member 10 was secured.

また実施例に係る蛍光部材10の照度を測定したデータを図8に示し、比較例に係る蛍光部材の照度を測定したデータを図9に示す。ここでは、発光ピーク波長が445nmのレーザ光を蛍光部材の上面に対して斜め方向から、上面視で蛍光部材の長手方向に沿うように照射し(図3の左側斜め上から照射し)、上面視で最も明るく発光している箇所を短手方向に横切る線上の照度を測定した。具体的には、蛍光部材の上方から取り出される光を、Radiant Vision Systems社製 ProMetric 輝度計により測定した。図8及び図9に示すように、比較例に係る蛍光部材は照度のピークから±1mの範囲外でも一定以上発光しているのに対して、実施例に係る蛍光部材10は照度のピークから±1mの範囲内で発光している。このことから、実施例に係る蛍光部材10では、蛍光部材10における伝搬を抑制できていることが確認できた。また、照度のピークから±1mの範囲内で比較した場合に、実施例に係る蛍光部材10では、比較例に係る蛍光部材よりも照度が高くなっている。このことから、実施例に係る蛍光部材10は比較例に係る蛍光部材よりも高輝度であることが確認できた。   Moreover, the data which measured the illumination intensity of the fluorescent member 10 which concerns on an Example are shown in FIG. 8, and the data which measured the illumination intensity of the fluorescent member which concerns on a comparative example are shown in FIG. Here, laser light having an emission peak wavelength of 445 nm is irradiated from the oblique direction with respect to the upper surface of the fluorescent member so as to be along the longitudinal direction of the fluorescent member as viewed from above (irradiated from the upper left side in FIG. 3). The illuminance on a line crossing the brightest light emitting point in the lateral direction was measured. Specifically, the light extracted from above the fluorescent member was measured with a ProMetric luminance meter manufactured by Radiant Vision Systems. As shown in FIGS. 8 and 9, the fluorescent member according to the comparative example emits light above a certain level even outside the range of ± 1 m from the peak of illuminance, whereas the fluorescent member 10 according to the example from the peak of illuminance. Light is emitted within a range of ± 1 m. From this, in the fluorescent member 10 which concerns on an Example, it has confirmed that the propagation in the fluorescent member 10 could be suppressed. Moreover, when compared within the range of ± 1 m from the peak of illuminance, the illuminance of the fluorescent member 10 according to the example is higher than that of the fluorescent member according to the comparative example. From this, it was confirmed that the fluorescent member 10 according to the example had higher brightness than the fluorescent member according to the comparative example.

実施形態に記載の蛍光部材は、プロジェクター、照明、車両用灯具等に使用することができる。   The fluorescent member described in the embodiments can be used for projectors, lighting, vehicular lamps, and the like.

10…蛍光部材
11…蛍光体粒子
12…無機バインダー
13…空隙
20…反射膜
30…拡散防止層
31…第1層
32…第2層
33…第3層
40…接合部材
40a…透明接合部材
50…基部
60…保護膜
100…光学部品
200…光源
300…ミラー
400…レンズ
1000…発光装置
DESCRIPTION OF SYMBOLS 10 ... Fluorescent member 11 ... Phosphor particle 12 ... Inorganic binder 13 ... Gap 20 ... Reflective film 30 ... Diffusion prevention layer 31 ... First layer 32 ... Second layer 33 ... Third layer 40 ... Joining member 40a ... Transparent joining member 50 ... Base 60 ... Protective film 100 ... Optical component 200 ... Light source 300 ... Mirror 400 ... Lens 1000 ... Light emitting device

Claims (16)

複数の蛍光体粒子と、無機バインダーとを含み、光取出し面となる上面を有する蛍光部材であって、
前記蛍光部材は複数の空隙を含み、
前記上面と平行であり、且つ、前記蛍光体粒子及び前記空隙の双方を横切る一断面において、前記複数の空隙は、前記複数の蛍光体粒子のうちの少なくとも一つの蛍光体粒子の近傍に偏在していることを特徴とする蛍光部材。
A fluorescent member comprising a plurality of phosphor particles and an inorganic binder, and having an upper surface serving as a light extraction surface,
The fluorescent member includes a plurality of voids;
In a cross section that is parallel to the upper surface and that crosses both the phosphor particles and the voids, the plurality of voids are unevenly distributed in the vicinity of at least one phosphor particle of the plurality of phosphor particles. The fluorescent member characterized by the above-mentioned.
前記一断面において、前記複数の空隙の一部は前記蛍光体粒子に沿うように設けられていることを特徴とする請求項1に記載の蛍光部材。   2. The fluorescent member according to claim 1, wherein a part of the plurality of voids is provided along the phosphor particles in the one cross section. 前記一断面において、前記空隙の面積は、前記蛍光体粒子の面積よりも小さいことを特徴とする請求項1又は2に記載の蛍光部材。   3. The fluorescent member according to claim 1, wherein an area of the gap is smaller than an area of the phosphor particles in the one cross section. 前記空隙の屈折率は、前記無機バインダーの屈折率よりも低く、
前記無機バインダーの屈折率は、前記蛍光体粒子の屈折率よりも低く、
前記複数の空隙のうちの一部の空隙は、前記蛍光体粒子に直接接していることを特徴とする請求項1〜3のいずれか1項に記載の蛍光部材。
The refractive index of the void is lower than the refractive index of the inorganic binder,
The refractive index of the inorganic binder is lower than the refractive index of the phosphor particles,
The fluorescent member according to claim 1, wherein some of the plurality of voids are in direct contact with the phosphor particles.
前記蛍光部材における前記蛍光体粒子は40質量%以上70質量%以下の範囲にあり、
前記蛍光部材において、前記蛍光体粒子を励起する励起光の入射面と前記光取出し面となる上面とは同じ面であることを特徴とする請求項1〜4のいずれか1項に記載の蛍光部材。
The phosphor particles in the fluorescent member are in the range of 40% by mass to 70% by mass,
5. The fluorescence according to claim 1, wherein in the fluorescent member, an incident surface of excitation light for exciting the phosphor particles and an upper surface serving as the light extraction surface are the same surface. Element.
前記蛍光体粒子の粒径は、1μm以上20μm以下の範囲にあることを特徴とする請求項1〜5のいずれか1項に記載の蛍光部材。   6. The fluorescent member according to claim 1, wherein a particle diameter of the phosphor particles is in a range of 1 μm to 20 μm. 前記蛍光部材の焼結密度は、90%以上98%以下の範囲にあることを特徴とする請求項1〜6のいずれか1項に記載の蛍光部材。   The fluorescent member according to any one of claims 1 to 6, wherein a sintered density of the fluorescent member is in a range of 90% to 98%. 前記空隙の面積は、0.01μm以上2μm以下の範囲にあることを特徴とする請求項1〜7のいずれか1項に記載の蛍光部材。 Area of the gap, the fluorescent member according to claim 1, characterized in that in the range of 0.01 [mu] m 2 or more 2 [mu] m 2 or less. 前記複数の空隙は、前記蛍光体粒子の全周の1/3以上にわたって設けられていることを特徴とする請求項1〜8のいずれか1項に記載の蛍光部材。   The fluorescent member according to claim 1, wherein the plurality of voids are provided over 1/3 or more of the entire circumference of the phosphor particles. 請求項1〜請求項9のいずれか1項に記載の蛍光部材であって、前記上面と反対側に位置する下面を有する蛍光部材と、
前記蛍光部材の下面と接続され、前記蛍光部材よりも熱伝導率が高い基部とを備えることを特徴とする光学部品。
The fluorescent member according to any one of claims 1 to 9, wherein the fluorescent member has a lower surface located on the side opposite to the upper surface,
An optical component comprising: a base connected to a lower surface of the fluorescent member and having a higher thermal conductivity than the fluorescent member.
前記基部は、金属及び拡散反射性のセラミックスの少なくとも一方を含むことを特徴とする請求項10に記載の光学部品。   The optical component according to claim 10, wherein the base includes at least one of a metal and a diffuse reflective ceramic. 前記基部は、反射性を備えた上面を有し、
前記蛍光部材の下面と前記基部の上面とは透明接合部材で接続されていることを特徴とする請求項10又は11に記載の光学部品。
The base has a reflective upper surface;
The optical component according to claim 10 or 11, wherein the lower surface of the fluorescent member and the upper surface of the base are connected by a transparent bonding member.
前記基部の上面は、反射膜が成膜されていることを特徴とする請求項12に記載の光学部品。   The optical component according to claim 12, wherein a reflective film is formed on an upper surface of the base portion. 前記蛍光部材の下面は、少なくとも1つの凹部を有し、
前記少なくとも1つの凹部が前記透明接合部材で充填されており、前記蛍光部材の下面と前記基部の上面とが前記透明接合部材で接続されていることを特徴とする請求項12又は13に記載の光学部品。
The lower surface of the fluorescent member has at least one recess,
The said at least 1 recessed part is filled with the said transparent joining member, The lower surface of the said fluorescent member and the upper surface of the said base are connected with the said transparent joining member, The Claim 12 or 13 characterized by the above-mentioned. Optical component.
請求項1〜請求項9のいずれか1項に記載の蛍光部材、又は、請求項10〜請求項14のいずれか1項に記載の光学部品と、
前記蛍光部材に対して可視領域の励起光を照射する半導体レーザ素子と、を備え、
前記半導体レーザ素子は、前記励起光が前記蛍光部材の上面に対して斜めから入射するように配置されている発光装置。
The fluorescent member according to any one of claims 1 to 9, or the optical component according to any one of claims 10 to 14,
A semiconductor laser element that irradiates the fluorescent member with excitation light in a visible region,
The semiconductor laser element is a light emitting device in which the excitation light is arranged so as to be incident on the upper surface of the fluorescent member from an oblique direction.
前記半導体レーザ素子からの前記励起光を、前記蛍光部材の上面に向けて反射するミラーをさらに備えることを特徴とする請求項15に記載の発光装置。   The light emitting device according to claim 15, further comprising a mirror that reflects the excitation light from the semiconductor laser element toward an upper surface of the fluorescent member.
JP2018104451A 2017-08-31 2018-05-31 Fluorescent member, optical component, and light emitting device Active JP6627914B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/118,209 US10442987B2 (en) 2017-08-31 2018-08-30 Fluorescent member, optical component, and light emitting device
CN201811000488.2A CN109424860B (en) 2017-08-31 2018-08-30 Fluorescent member, optical component, and light-emitting device
EP18191881.4A EP3450413B1 (en) 2017-08-31 2018-08-31 Fluorescent member, optical component, and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017166519 2017-08-31
JP2017166519 2017-08-31

Publications (2)

Publication Number Publication Date
JP2019045844A true JP2019045844A (en) 2019-03-22
JP6627914B2 JP6627914B2 (en) 2020-01-08

Family

ID=65814322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018104451A Active JP6627914B2 (en) 2017-08-31 2018-05-31 Fluorescent member, optical component, and light emitting device

Country Status (1)

Country Link
JP (1) JP6627914B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262311A1 (en) * 2019-06-28 2020-12-30 デンカ株式会社 Phosphor plate, and light-emitting device using same
JP2021028704A (en) * 2019-08-09 2021-02-25 株式会社タムラ製作所 Wavelength conversion member
JP2021064546A (en) * 2019-10-16 2021-04-22 日亜化学工業株式会社 Lighting device
US20230213172A1 (en) * 2020-06-08 2023-07-06 Ngk Spark Plug Co., Ltd. Fluorescent plate, wavelength conversion member, and light source device
US11868034B2 (en) 2020-08-27 2024-01-09 Seiko Epson Corporation Phosphor particle, wavelength conversion element, light source device, method of manufacturing phosphor particle, method of manufacturing wavelength conversion element, and projector

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180504A (en) * 1990-11-15 1992-06-26 Sumitomo Heavy Ind Ltd Manufacture of high speed tool steel
JPH1040724A (en) * 1996-07-23 1998-02-13 Toshiba Lighting & Technol Corp Fluorescent lamp device
JP2003243727A (en) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd Light emitting apparatus
JP2007308338A (en) * 2006-05-18 2007-11-29 Tosoh Corp Powder for black zirconia sintered compact, sintered compact thereof and coloring agent
JP2010280523A (en) * 2009-06-03 2010-12-16 Konica Minolta Opto Inc Fluorescent substance-dispersed glass and method for producing the same
JP2012104267A (en) * 2010-11-08 2012-05-31 Stanley Electric Co Ltd Light source device and lighting system
CN103035410A (en) * 2011-10-08 2013-04-10 索尼公司 Dye-sensitized photoelectric conversion device and manufacturing method thereof and metal oxide slurry
JP2013247067A (en) * 2012-05-29 2013-12-09 Nichia Chem Ind Ltd Inorganic molding article for color conversion, method of manufacturing the same and light-emitting device
WO2014147570A1 (en) * 2013-03-20 2014-09-25 Koninklijke Philips N.V. Encapsulated quantum dots in porous particles
JP2015001709A (en) * 2013-06-18 2015-01-05 日亜化学工業株式会社 Light source device and projector
JP2016180076A (en) * 2015-03-25 2016-10-13 日亜化学工業株式会社 Method for producing phosphor molding, and light emitting device
JP2016204563A (en) * 2015-04-24 2016-12-08 太平洋セメント株式会社 Fluorescent member, manufacturing method therefor and light emitting device
WO2017098730A1 (en) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 Wavelength converter, wavelength conversion member, and light-emitting device
JP2017120753A (en) * 2015-12-25 2017-07-06 日亜化学工業株式会社 Wavelength conversion member and light source device using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180504A (en) * 1990-11-15 1992-06-26 Sumitomo Heavy Ind Ltd Manufacture of high speed tool steel
JPH1040724A (en) * 1996-07-23 1998-02-13 Toshiba Lighting & Technol Corp Fluorescent lamp device
JP2003243727A (en) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd Light emitting apparatus
JP2007308338A (en) * 2006-05-18 2007-11-29 Tosoh Corp Powder for black zirconia sintered compact, sintered compact thereof and coloring agent
JP2010280523A (en) * 2009-06-03 2010-12-16 Konica Minolta Opto Inc Fluorescent substance-dispersed glass and method for producing the same
JP2012104267A (en) * 2010-11-08 2012-05-31 Stanley Electric Co Ltd Light source device and lighting system
CN103035410A (en) * 2011-10-08 2013-04-10 索尼公司 Dye-sensitized photoelectric conversion device and manufacturing method thereof and metal oxide slurry
JP2013247067A (en) * 2012-05-29 2013-12-09 Nichia Chem Ind Ltd Inorganic molding article for color conversion, method of manufacturing the same and light-emitting device
WO2014147570A1 (en) * 2013-03-20 2014-09-25 Koninklijke Philips N.V. Encapsulated quantum dots in porous particles
JP2016516853A (en) * 2013-03-20 2016-06-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Encapsulated quantum dots in porous particles
JP2015001709A (en) * 2013-06-18 2015-01-05 日亜化学工業株式会社 Light source device and projector
JP2016180076A (en) * 2015-03-25 2016-10-13 日亜化学工業株式会社 Method for producing phosphor molding, and light emitting device
JP2016204563A (en) * 2015-04-24 2016-12-08 太平洋セメント株式会社 Fluorescent member, manufacturing method therefor and light emitting device
WO2017098730A1 (en) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 Wavelength converter, wavelength conversion member, and light-emitting device
JP2017120753A (en) * 2015-12-25 2017-07-06 日亜化学工業株式会社 Wavelength conversion member and light source device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262311A1 (en) * 2019-06-28 2020-12-30 デンカ株式会社 Phosphor plate, and light-emitting device using same
US11807791B2 (en) 2019-06-28 2023-11-07 Denka Company Limited Phosphor plate and light emitting device using the same
JP2021028704A (en) * 2019-08-09 2021-02-25 株式会社タムラ製作所 Wavelength conversion member
JP7157898B2 (en) 2019-08-09 2022-10-21 株式会社タムラ製作所 Wavelength conversion member
JP2021064546A (en) * 2019-10-16 2021-04-22 日亜化学工業株式会社 Lighting device
JP7044979B2 (en) 2019-10-16 2022-03-31 日亜化学工業株式会社 Lighting equipment
US20230213172A1 (en) * 2020-06-08 2023-07-06 Ngk Spark Plug Co., Ltd. Fluorescent plate, wavelength conversion member, and light source device
US11796156B2 (en) * 2020-06-08 2023-10-24 Niterra Co., Ltd. Fluorescent plate, wavelength conversion member, and light source device
US11868034B2 (en) 2020-08-27 2024-01-09 Seiko Epson Corporation Phosphor particle, wavelength conversion element, light source device, method of manufacturing phosphor particle, method of manufacturing wavelength conversion element, and projector

Also Published As

Publication number Publication date
JP6627914B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP6627914B2 (en) Fluorescent member, optical component, and light emitting device
JP7072037B2 (en) Light source device and lighting device
JP6253392B2 (en) Light emitting device and light source for projector using the same
JP6955151B2 (en) Optical components, light emitting devices using optical components, and methods for manufacturing optical components
US10442987B2 (en) Fluorescent member, optical component, and light emitting device
JP6529713B2 (en) Light emitting device
KR20110031994A (en) An optical element for a light emitting device and a method of manufacturing thereof
TWI696685B (en) Optical wavelength conversion device and optical composite device
US10468852B2 (en) Method of manufacturing light emitting device
JP2017149929A (en) Manufacturing method of phosphor-containing member
JPWO2017043122A1 (en) Wavelength conversion member and light emitting device
JP5781367B2 (en) Light source device and lighting device
JP2020052234A (en) Wavelength conversion member composite, light emitting device and method for manufacturing wavelength conversion member composite
CN108224366B (en) Light-emitting element and method for manufacturing light-emitting element
JP6660484B2 (en) Phosphor element and lighting device
JP7053984B2 (en) Manufacturing method of optical parts and light emitting device, as well as optical parts and light emitting device
JP7387898B2 (en) Fluorescent screen, wavelength conversion member, and light source device
JP7274050B2 (en) Improving Thermal Management and Efficiency for High Intensity Laser Pumped Sources
JP7244297B2 (en) Optical wavelength conversion parts
JP2018163828A (en) Phosphor element and illumination device
JP2022071260A (en) Method for manufacturing light-emitting device
JP2021173925A (en) Wavelength conversion member and method of manufacturing light-emitting device
JP2022086988A (en) Translucent member, manufacturing method therefor, optical member, and light-emitting device
JP2018107006A (en) Light-emitting element and fluorescent light source device
JP2020031044A (en) Fluorescent module and illumination device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250