JP2017149929A - Manufacturing method of phosphor-containing member - Google Patents

Manufacturing method of phosphor-containing member Download PDF

Info

Publication number
JP2017149929A
JP2017149929A JP2016222875A JP2016222875A JP2017149929A JP 2017149929 A JP2017149929 A JP 2017149929A JP 2016222875 A JP2016222875 A JP 2016222875A JP 2016222875 A JP2016222875 A JP 2016222875A JP 2017149929 A JP2017149929 A JP 2017149929A
Authority
JP
Japan
Prior art keywords
light reflecting
fluorescent
phosphor
main surface
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016222875A
Other languages
Japanese (ja)
Other versions
JP6536540B2 (en
Inventor
正一 山田
Shoichi Yamada
正一 山田
若木 貴功
Takakatsu Wakagi
貴功 若木
佐野 雅彦
Masahiko Sano
雅彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to GB1716774.3A priority Critical patent/GB2554226B/en
Priority to GB1702843.2A priority patent/GB2548706B/en
Priority to DE102017103709.8A priority patent/DE102017103709A1/en
Priority to US15/440,292 priority patent/US10400993B2/en
Publication of JP2017149929A publication Critical patent/JP2017149929A/en
Application granted granted Critical
Publication of JP6536540B2 publication Critical patent/JP6536540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture, relatively easily and with high reproducibility, a phosphor-containing member having a phosphor member 10 provided with a light reflection member 20 at the circumference.SOLUTION: Provided is a manufacturing method related to an embodiment of a phosphor-containing member 100 including: a process where prepared is a phosphor member 10 which includes a phosphor, and in which a plurality of projecting parts is provided at the side of a first main face; a process where a powdery light reflection member 20 is prepared; a process where the powdery light reflection member 20 is arranged between a plurality of projection parts in the phosphor member 10; a process where the powdery light reflection member 20 is sintered to obtain a sintered body in which the phosphor member 10 and the light reflection member 20 are integrally formed; and a process where a part of the sintered body is removed from at least either side of the first main face side or a second main face side in the phosphor member 10 so as to obtain the phosphor-containing member 100 in which the face of the first main face side is made of both of the phosphor member 10 and the light reflection member 20, and the face of the second main face side is made of the phosphor member 10 only or made of both of the phosphor member 10 and the light reflection member 20.SELECTED DRAWING: Figure 1

Description

本発明は、蛍光体含有部材の製造方法に関する。   The present invention relates to a method for producing a phosphor-containing member.

特許文献1に記載の発光装置において、セラミック製の波長変換部材(本明細書の「蛍光部材」に相当する。)がホルダ(本明細書の「光反射部材」に相当する。)の貫通孔に接着剤を用いて固定されている。   In the light-emitting device described in Patent Document 1, a ceramic wavelength conversion member (corresponding to a “fluorescent member” in the present specification) is a through hole of a holder (corresponding to a “light reflecting member” in the present specification). It is fixed using an adhesive.

特開2014−67961JP2014-67961A

このような部材を製造するには、ホルダに貫通孔を形成するとともに、波長変換部材を貫通孔の形状に合わせて加工した上で、加工された波長変換部材をホルダの貫通孔に精度よく固定しなければならない。つまり、煩雑な工程が必要となる上、波長変換部材の形状とホルダにおける貫通孔の形状を合わせる必要があるため再現性よく製造することが難しい。   In order to manufacture such a member, a through hole is formed in the holder, the wavelength conversion member is processed according to the shape of the through hole, and then the processed wavelength conversion member is accurately fixed to the through hole of the holder. Must. That is, a complicated process is required, and the shape of the wavelength conversion member and the shape of the through hole in the holder need to be matched, so that it is difficult to manufacture with good reproducibility.

本発明の一形態に係る蛍光体含有部材の製造方法は、複数の凸部が第1主面の側に設けられた、蛍光体を含む蛍光部材を準備する工程と、粉末状の光反射部材を準備する工程と、前記蛍光部材における複数の凸部の間に前記粉末状の光反射部材を配置する工程と、前記粉末状の光反射部材を焼結して、前記蛍光部材と前記光反射部材とが一体に形成された焼結体を得る工程と、前記第1主面の側の面が前記蛍光部材及び前記光反射部材の双方からなり、且つ前記第2主面の側の面が前記蛍光部材のみからなる又は前記蛍光部材及び前記光反射部材の双方からなる蛍光体含有部材が得られるように、前記蛍光部材の前記第1主面の側又は前記第2主面の側の少なくとも一方の側から前記焼結体の一部を除去する工程と、を備える。   The method for producing a phosphor-containing member according to one aspect of the present invention includes a step of preparing a phosphor member including a phosphor, in which a plurality of convex portions are provided on the first main surface side, and a powdery light reflecting member A step of arranging the powdery light reflecting member between a plurality of convex portions of the fluorescent member, and sintering the powdery light reflecting member to thereby provide the fluorescent member and the light reflecting member. A step of obtaining a sintered body integrally formed with the member, the surface on the first main surface side is composed of both the fluorescent member and the light reflecting member, and the surface on the second main surface side is At least on the first main surface side or the second main surface side of the fluorescent member so as to obtain a phosphor-containing member consisting of only the fluorescent member or both the fluorescent member and the light reflecting member. Removing a part of the sintered body from one side.

本発明の別の形態に係る蛍光体含有部材の製造方法は、複数の凹部が第1主面の側に設けられた光反射部材を準備する工程と、蛍光体を含む粉末状の蛍光部材を準備する工程と、前記光反射部材における複数の凹部に前記粉末状の蛍光部材を配置する工程と、前記粉末状の蛍光部材を焼結して、前記光反射部材と前記蛍光部材とが一体に形成された焼結体を得る工程と、前記光反射部材の前記第1主面と反対側にある第2主面の側の面が前記蛍光部材及び前記光反射部材の双方からなり、且つ、前記第1主面の側の面が前記蛍光部材のみからなる又は前記蛍光部材及び前記光反射部材の双方からなる蛍光体含有部材が得られるように、少なくとも前記光反射部材の前記第2主面の側から前記焼結体の一部を除去する工程と、を備える。   The method for producing a phosphor-containing member according to another aspect of the present invention includes a step of preparing a light reflecting member in which a plurality of recesses are provided on the first main surface side, and a powdery phosphor member containing the phosphor. A step of preparing, a step of arranging the powdery fluorescent member in a plurality of recesses in the light reflecting member, and sintering the powdery fluorescent member so that the light reflecting member and the fluorescent member are integrated. A step of obtaining a formed sintered body, a surface of the light reflecting member on the side of the second principal surface opposite to the first principal surface is composed of both the fluorescent member and the light reflecting member, and At least the second main surface of the light reflecting member so that a phosphor-containing member can be obtained in which the surface on the first main surface side consists of only the fluorescent member or both the fluorescent member and the light reflecting member. And removing a part of the sintered body from the side.

本発明のさらに別の形態に係る蛍光体含有部材の製造方法は、互いに反対側にある第1主面及び第2主面を貫通する複数の貫通孔が設けられた光反射部材を準備する工程と、蛍光体を含む粉末状の蛍光部材を準備する工程と、前記複数の貫通孔に前記粉末状の蛍光部材を配置する工程と、前記粉末状の蛍光部材を焼結して、前記光反射部材と前記蛍光部材とが一体に形成された焼結体を得る工程と、前記第1主面の側の面又は前記第2主面の側の面の一方の面が前記蛍光部材及び前記光反射部材の双方からなり、且つ、前記第1主面の側の面又は前記第2主面の側の面の他方の面が前記蛍光部材のみからなる又は前記蛍光部材及び前記光反射部材の双方からなる蛍光体含有部材が得られるように、前記蛍光部材の前記第1主面の側又は前記第2主面の側の少なくとも一方の側から前記焼結体の一部を除去する工程と、を備える。   The manufacturing method of the fluorescent substance containing member which concerns on another form of this invention is a process of preparing the light reflection member provided with the several through-hole which penetrates the 1st main surface and 2nd main surface which are mutually opposite sides. And a step of preparing a powdery fluorescent member including a phosphor, a step of arranging the powdery fluorescent member in the plurality of through holes, and sintering the powdery fluorescent member to provide the light reflection A step of obtaining a sintered body in which the member and the fluorescent member are integrally formed, and one surface of the first main surface side or the second main surface side surface is the fluorescent member and the light. It consists of both reflecting members, and the other surface of the surface on the first main surface side or the second main surface side consists of only the fluorescent member or both the fluorescent member and the light reflecting member In order to obtain a phosphor-containing member comprising: the first main surface side of the fluorescent member or the first From at least one side of the side of the main surface and a step of removing a portion of the sintered body.

これにより、蛍光部材の周囲に光反射部材が配置された蛍光体含有部材を比較的簡単にかつ再現性良く製造することができる。   Thereby, the fluorescent substance containing member by which the light reflection member is arrange | positioned around the fluorescent member can be manufactured comparatively easily and with good reproducibility.

図1は、第1実施形態に係る蛍光体含有部材の上面図である。FIG. 1 is a top view of the phosphor-containing member according to the first embodiment. 図2は、図1のX−X線における断面図である。2 is a cross-sectional view taken along line XX of FIG. 図3Aは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3A is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図3Bは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3B is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図3Cは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3C is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図3Dは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3D is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図3Eは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3E is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図3Fは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3F is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図3Gは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3G is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図3Hは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3H is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図3Iは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3I is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図3Jは、第1実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 3J is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the first embodiment. 図4Aは、蛍光部材を準備する工程の他の方法を説明するための断面図である。FIG. 4A is a cross-sectional view for explaining another method of preparing a fluorescent member. 図4Bは、蛍光部材を準備する工程の他の方法を説明するための断面図である。FIG. 4B is a cross-sectional view for explaining another method for preparing the fluorescent member. 図4Cは、蛍光部材を準備する工程の他の方法を説明するための断面図である。FIG. 4C is a cross-sectional view for explaining another method for preparing the fluorescent member. 図5は、焼結体の一部を除去する工程の他の例を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining another example of the step of removing a part of the sintered body. 図6は、第1実施形態に係る個片化後の蛍光体含有部材と発光素子とを組み合わせた発光装置の模式図である。FIG. 6 is a schematic view of a light-emitting device that combines a phosphor-containing member after singulation and a light-emitting element according to the first embodiment. 図7は、第2実施形態に係る蛍光体含有部材の上面図である。FIG. 7 is a top view of the phosphor-containing member according to the second embodiment. 図8は、図7のY−Y線における断面図である。8 is a cross-sectional view taken along line YY of FIG. 図9Aは、第2実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 9A is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the second embodiment. 図9Bは、第2実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 9B is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the second embodiment. 図9Cは、第2実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 9C is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the second embodiment. 図9Dは、第2実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 9D is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the second embodiment. 図9Eは、第2実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 9E is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the second embodiment. 図9Fは、第2実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 9F is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the second embodiment. 図9Gは、第2実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 9G is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the second embodiment. 図9Hは、第2実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 9H is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the second embodiment. 図10は、第2実施形態に係る蛍光体含有部材と発光素子とを組み合わせた発光装置の断面図である。FIG. 10 is a cross-sectional view of a light-emitting device that combines a phosphor-containing member and a light-emitting element according to the second embodiment. 図11Aは、第3実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 11A is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the third embodiment. 図11Bは、第3実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 11B is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the third embodiment. 図11Cは、第3実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 11C is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the third embodiment. 図11Dは、第3実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 11D is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the third embodiment. 図11Eは、第3実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 11E is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the third embodiment. 図11Fは、第3実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 11F is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the third embodiment. 図11Gは、第3実施形態に係る蛍光体含有部材の製造方法を説明するための断面図である。FIG. 11G is a cross-sectional view for explaining the method for manufacturing the phosphor-containing member according to the third embodiment. 図12は、第3実施形態における焼結体の一部を除去する工程の他の例を説明するための断面図である。FIG. 12 is a cross-sectional view for explaining another example of the step of removing a part of the sintered body in the third embodiment.

本発明を実施するための形態を、以下に図面を参照しながら説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するためのものであって、本発明を限定するものではない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。   A mode for carrying out the present invention will be described below with reference to the drawings. However, the form shown below is for embodying the technical idea of the present invention, and does not limit the present invention. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.

本明細書では、例えば「粉末状の蛍光部材」や「焼結体からなる蛍光部材」なる用語を用いており、蛍光部材であればその状態にかかわらず「蛍光部材」なる用語を用いている。同様に、本明細書では、例えば「粉末状の光反射部材」や「焼結体からなる光反射部材」なる用語を用いており、光反射部材であればその状態にかかわらず「光反射部材」なる用語を用いている。また、本明細書では、個片化の有無にかかわらず「蛍光体含有部材」なる用語を用いている。   In this specification, for example, the terms “powdered fluorescent member” and “sintered fluorescent member” are used, and the term “fluorescent member” is used regardless of the state of the fluorescent member. . Similarly, in this specification, for example, the terms “powdered light reflecting member” and “light reflecting member made of a sintered body” are used. Is used. Further, in this specification, the term “phosphor-containing member” is used regardless of the presence or absence of individualization.

<第1実施形態>
図1に本実施形態に係る製造方法により得られる蛍光体含有部材100を第1主面の側から見た図(上面図)を示す。また、図2は、図1のX−X線における断面図である。図3A〜図3Iは、蛍光体含有部材100の製造方法を説明するためのものである。さらに、図3Jは、蛍光体含有部材100を個片化して、蛍光体含有部材100aを得る工程を示す。
<First Embodiment>
FIG. 1 shows a view (top view) of a phosphor-containing member 100 obtained by the manufacturing method according to the present embodiment as viewed from the first main surface side. 2 is a cross-sectional view taken along line XX in FIG. 3A to 3I are for explaining a method of manufacturing the phosphor-containing member 100. FIG. Further, FIG. 3J shows a process of obtaining the phosphor-containing member 100a by dividing the phosphor-containing member 100 into individual pieces.

蛍光体含有部材100の製造方法は、複数の凸部が第1主面の側に設けられた、蛍光体を含む蛍光部材10を準備する工程と、粉末状の光反射部材20を準備する工程と、蛍光部材10における複数の凸部の間に粉末状の光反射部材20を配置する工程と、粉末状の光反射部材20を焼結して、蛍光部材10と光反射部材20とが一体に形成された焼結体を得る工程と、第1主面の側の面が蛍光部材10及び光反射部材20の双方からなり、且つ第2主面の側の面が蛍光部材10のみからなる又は蛍光部材10及び光反射部材20の双方からなる蛍光体含有部材100が得られるように、蛍光部材10の第1主面の側又は第2主面の側の少なくとも一方の側から焼結体の一部を除去する工程と、を備える。   The method for manufacturing the phosphor-containing member 100 includes a step of preparing a fluorescent member 10 including a phosphor, in which a plurality of convex portions are provided on the first main surface side, and a step of preparing a powdery light reflecting member 20. And the step of disposing the powdery light reflecting member 20 between the plurality of convex portions in the fluorescent member 10, and sintering the powdery light reflecting member 20 so that the fluorescent member 10 and the light reflecting member 20 are integrated. A step of obtaining the sintered body formed on the first main surface, the surface on the first main surface side is composed of both the fluorescent member 10 and the light reflecting member 20, and the surface on the second main surface side is composed of only the fluorescent member 10. Alternatively, the sintered body is formed from at least one of the first main surface side and the second main surface side of the fluorescent member 10 so that the phosphor-containing member 100 including both the fluorescent member 10 and the light reflecting member 20 is obtained. A step of removing a part thereof.

これにより、蛍光部材10と、蛍光部材10を囲む光反射部材20と、を有する蛍光体含有部材100を比較的容易にかつ再現性良く製造することができる   Thereby, the phosphor-containing member 100 having the fluorescent member 10 and the light reflecting member 20 surrounding the fluorescent member 10 can be manufactured relatively easily and with good reproducibility.

従来の蛍光体含有部材の製造方法では、光反射部材に貫通孔を形成し、焼結された蛍光部材を貫通孔の形状に加工した上で、加工された蛍光部材を接着剤を用いて光反射部材の内壁に固定する。しかし、この方法によると、光反射部材に貫通孔を形成する工程、蛍光部材を焼結する工程、蛍光部材を加工する工程、及び蛍光部材を光反射部材に固定する工程、が必要となるため工程が煩雑になり蛍光体含有部材の製造に時間を要する。また、光反射部材の貫通孔の形状と、蛍光部材の形状と、を精度よく合わせる必要があるため、再現性良く蛍光体含有部材を製造することが難しい。   In the conventional method for producing a phosphor-containing member, a through hole is formed in a light reflecting member, the sintered fluorescent member is processed into a shape of a through hole, and then the processed fluorescent member is optically bonded using an adhesive. It fixes to the inner wall of a reflective member. However, this method requires a step of forming a through hole in the light reflecting member, a step of sintering the fluorescent member, a step of processing the fluorescent member, and a step of fixing the fluorescent member to the light reflecting member. The process becomes complicated and it takes time to manufacture the phosphor-containing member. Moreover, since it is necessary to match | combine the shape of the through-hole of a light reflection member with the shape of a fluorescent member accurately, it is difficult to manufacture a fluorescent substance containing member with sufficient reproducibility.

これに対して、本実施形態の製造方法では、蛍光部材10における複数の凸部の間に粉末状の光反射部材20を配置してから粉末状の光反射部材20を焼結することで、蛍光部材10と光反射部材20とが一体に形成された焼結体を形成し、さらにその焼結体の一部を除去することで蛍光体含有部材100を製造している。つまり、粉末状の光反射部材20を用いることで、光反射部材20を特定の形状に加工することなく蛍光体含有部材100を製造することができるので、工程を簡便化することができる。さらに、粉末状の光反射部材20を用いることにより、蛍光部材10と光反射部材20の位置合わせを必要としないので、再現性良く蛍光体含有部材を製造することができる。特に、本実施形態の製造方法では粉末状の光反射部材20を用いて焼結させているので、それにより得られる蛍光体含有部材100において蛍光部材10と光反射部材20とが直接接合している。つまり、蛍光部材10と光反射部材20との間に蛍光部材10及び光反射部材20以外の部材(例えば、接着剤)を介していない。これにより、蛍光部材10に光が当たった際に生じる熱を光反射部材20に効率よく逃がすこともできる。   On the other hand, in the manufacturing method of the present embodiment, the powdery light reflecting member 20 is sintered after the powdery light reflecting member 20 is disposed between the plurality of convex portions in the fluorescent member 10, The phosphor-containing member 100 is manufactured by forming a sintered body in which the fluorescent member 10 and the light reflecting member 20 are integrally formed, and further removing a part of the sintered body. That is, by using the powdery light reflecting member 20, the phosphor-containing member 100 can be manufactured without processing the light reflecting member 20 into a specific shape, so that the process can be simplified. Furthermore, since the powdery light reflecting member 20 is used, it is not necessary to align the fluorescent member 10 and the light reflecting member 20, so that the phosphor-containing member can be manufactured with good reproducibility. In particular, in the manufacturing method of the present embodiment, since the powdery light reflecting member 20 is used for sintering, the fluorescent member 10 and the light reflecting member 20 are directly joined in the phosphor-containing member 100 obtained thereby. Yes. That is, no member (for example, adhesive) other than the fluorescent member 10 and the light reflecting member 20 is interposed between the fluorescent member 10 and the light reflecting member 20. Thereby, the heat generated when light hits the fluorescent member 10 can be efficiently released to the light reflecting member 20.

(蛍光部材10を準備する前の工程)
本実施形態では、図3Aに示すように、蛍光部材10を準備する工程の前に、容器に緩衝部材30として粉末状の材料(例えば、光反射部材20と同様の材料)を配置する。本実施形態では、焼結ダイ40と下側のパンチ50とを容器として用いている。緩衝部材30は必須ではないが、緩衝部材30を用いることで、焼結体からなる蛍光部材10を用いる場合であっても、後に光反射部材20を焼結する際に蛍光部材10かかる圧力を実質的に均等にすることができるため、焼結体からなる蛍光部材10の割れ等を低減することができる。
(Process before preparing the fluorescent member 10)
In this embodiment, as shown to FIG. 3A, before the process of preparing the fluorescent member 10, a powdery material (for example, material similar to the light reflection member 20) is arrange | positioned as the buffer member 30 in a container. In the present embodiment, the sintered die 40 and the lower punch 50 are used as containers. Although the buffer member 30 is not essential, even if the fluorescent member 10 made of a sintered body is used, the pressure applied to the fluorescent member 10 can be reduced when the light reflecting member 20 is sintered later. Since it can be made substantially uniform, cracks and the like of the fluorescent member 10 made of a sintered body can be reduced.

次に、後の工程において容器から蛍光部材10及び光反射部材20からなる焼結体を取り出しやすくするために、図3Bに示すように、緩衝部材30の上方に、離形シート60を配置する。離形シート60として、例えば、ポリエチレンシート、又はカーボンシートを用いることができる。   Next, in order to make it easier to take out the sintered body composed of the fluorescent member 10 and the light reflecting member 20 from the container in the subsequent process, as shown in FIG. 3B, the release sheet 60 is disposed above the buffer member 30. . As the release sheet 60, for example, a polyethylene sheet or a carbon sheet can be used.

(蛍光部材10を準備する工程)
次に、図3Eに示すように、複数の凸部が第1主面の側に設けられた蛍光部材10を準備する。
(Process of preparing fluorescent member 10)
Next, as shown in FIG. 3E, a fluorescent member 10 having a plurality of convex portions provided on the first main surface side is prepared.

本実施形態では、蛍光部材10を準備する工程において、粉末状の蛍光体と、光反射部材と同一の材料を含む粉末状の焼結助剤と、を混合した後で焼結し、複数の凸部が第1主面の側に設けられた焼結体からなる蛍光部材10を得ている。本実施形態では、蛍光部材10としてYAl12:Ce(イットリウム・アルミニウム・ガーネット系(YAG系))の蛍光体及び酸化アルミニウムからなる焼結助剤を用い、光反射部材20として酸化アルミニウムを用いている。 In the present embodiment, in the step of preparing the fluorescent member 10, the powdered phosphor and the powdery sintering aid containing the same material as the light reflecting member are mixed and then sintered, The fluorescent member 10 made of a sintered body having a convex portion provided on the first main surface side is obtained. In the present embodiment, a sintering aid made of Y 3 Al 5 O 12 : Ce (yttrium, aluminum, garnet (YAG)) phosphor and aluminum oxide is used as the fluorescent member 10, and the light reflecting member 20 is oxidized. Aluminum is used.

本実施形態では、蛍光部材10を準備する工程において、焼結体からなる蛍光部材10に複数の凸部を形成することにより、複数の凸部が第1主面の側に設けられた蛍光部材10を得ている。つまり、まず図3Cに示すように焼結体からなる板状の蛍光部材10を作製し、その後に図3Dに示すように板状の焼結体に複数の凸部を形成している。これにより、凸部の形状を比較的自由に設計することができる。なお、複数の凸部が形成されるように所定の形状の焼結型(上側のパンチ50、下側のパンチ50、及び焼結ダイ40)を用いて粉末状の蛍光部材を焼結することにより、複数の凸部が設けられた焼結体からなる蛍光部材10を形成してもよい。   In the present embodiment, in the step of preparing the fluorescent member 10, the plurality of convex portions are formed on the first main surface side by forming the plurality of convex portions on the fluorescent member 10 made of a sintered body. 10 is earned. That is, first, a plate-like fluorescent member 10 made of a sintered body is produced as shown in FIG. 3C, and then a plurality of convex portions are formed on the plate-like sintered body as shown in FIG. 3D. Thereby, the shape of a convex part can be designed comparatively freely. In addition, sintering a powdery fluorescent member using a predetermined shape of a sintering die (upper punch 50, lower punch 50, and sintering die 40) so that a plurality of convex portions are formed. Thus, the fluorescent member 10 made of a sintered body provided with a plurality of convex portions may be formed.

蛍光部材10の1つの凸部の側面と隣り合う凸部の側面との最短距離は、0.7mm以上にするのが好ましい。これにより、粉末状の光反射部材20を配置する工程において、隣り合う凸部の間に光反射部材20を充填しやすくすることができる。   The shortest distance between the side surface of one convex portion of the fluorescent member 10 and the side surface of the adjacent convex portion is preferably 0.7 mm or more. Thereby, in the process of arrange | positioning the powdery light reflection member 20, it can be made easy to fill the light reflection member 20 between adjacent convex parts.

凸部の形状は、上方から視て、円、楕円、矩形等にすることができ、本実施形態では、円である。このとき、凸部の頂部における幅が凸部の底部(付け根)における幅よりも小さくなっている。つまり、凸部の幅が底部となる下方から頂部となる上方に向かうにつれて小さくなるように凸部の側面を傾斜させている。例えば、凸部の頂部の幅は、0.1mm以上1.2mm以下の範囲とすることができる。また、凸部の底部の幅は、0.5mm以上10mm以下の範囲とすることができる。凸部は、マシニングセンタを用いて形成するのが好ましい。これにより、凸部の幅が比較的小さいものや、凸部の側面が傾斜しているものを高精度に加工することができる。   The shape of the convex portion can be a circle, an ellipse, a rectangle, or the like when viewed from above, and is a circle in this embodiment. At this time, the width at the top of the convex portion is smaller than the width at the bottom (base) of the convex portion. That is, the side surface of the convex portion is inclined so that the width of the convex portion becomes smaller from the lower portion that becomes the bottom portion toward the upper portion that becomes the top portion. For example, the width of the top of the convex portion can be in the range of 0.1 mm to 1.2 mm. Moreover, the width | variety of the bottom part of a convex part can be made into the range of 0.5 mm or more and 10 mm or less. The convex portion is preferably formed using a machining center. Thereby, the thing with the comparatively small width | variety of a convex part and the thing in which the side surface of a convex part inclines can be processed with high precision.

本実施形態では、蛍光部材10を準備する工程において、焼結体からなる蛍光部材10を準備しているが、図4A〜図4Cに示すように、粉末状の蛍光部材10を準備することもできる。この場合は、蛍光部材10を準備する工程は、容器に蛍光体を含む粉末状の蛍光部材10を充填する工程(図4A)と、複数の凹部が設けられた押圧部材51で粉末状の蛍光部材10を押圧することにより、複数の凸部が設けられた蛍光部材10を作製する工程(図4B、図4C)と、を含み、焼結体を得る工程において、蛍光部材10及び光反射部材20の両方を焼結している。複数の凹部が設けられた押圧部材51を用いることで、粉末状ではあるが全体として一定の形状(複数の凸部が設けられた形状)を保持した蛍光部材10を形成することができる。これにより、焼結体からなる板状の蛍光部材10を用いる場合と比較して、工程を簡略化することができる。   In the present embodiment, in the step of preparing the fluorescent member 10, the fluorescent member 10 made of a sintered body is prepared. However, as shown in FIGS. 4A to 4C, the powdered fluorescent member 10 may be prepared. it can. In this case, the step of preparing the fluorescent member 10 includes the step of filling the container with the powdered fluorescent member 10 containing the phosphor (FIG. 4A) and the pressing member 51 provided with a plurality of recesses. A step of manufacturing the fluorescent member 10 provided with a plurality of convex portions by pressing the member 10 (FIGS. 4B and 4C), and obtaining a sintered body. In the step of obtaining the sintered body, the fluorescent member 10 and the light reflecting member Both 20 are sintered. By using the pressing member 51 provided with a plurality of recesses, it is possible to form the fluorescent member 10 that is in a powder form but retains a constant shape (a shape provided with a plurality of protrusions) as a whole. Thereby, a process can be simplified compared with the case where the plate-shaped fluorescent member 10 which consists of a sintered compact is used.

押圧部材51の凹部の開口形状は、円、楕円、矩形等にすることができる。押圧部材51の凹部の開口は、凹部の底面から離れるにしたがって広くなるように形成されるのが好ましい。つまり、蛍光部材10を押圧する側の面から離れるに従って凹部の幅は大きくなるのが好ましい。これにより、蛍光部材10と押圧部材51とが離形しやすくなる。押圧部材51と粉末状の蛍光部材10との間には、離形シートを介在させてもよい。これにより、蛍光部材10と押圧部材51とを離形する際に凹部に蛍光部材10が残存しにくくなる。   The opening shape of the concave portion of the pressing member 51 can be a circle, an ellipse, a rectangle, or the like. It is preferable that the opening of the concave portion of the pressing member 51 is formed so as to become wider as the distance from the bottom surface of the concave portion increases. That is, it is preferable that the width of the concave portion increases as the distance from the surface on the side pressing the fluorescent member 10 increases. Thereby, the fluorescent member 10 and the pressing member 51 are easily separated. A release sheet may be interposed between the pressing member 51 and the powdery fluorescent member 10. Thereby, when the fluorescent member 10 and the pressing member 51 are separated, the fluorescent member 10 hardly remains in the recess.

蛍光部材10に含まれる蛍光体は、求められる蛍光色に応じて適宜選択することができる。例えば、Y、Lu、Sc、La、Tb及びGdからなる群から選択された少なくとも1つの元素と、Al、Ga及びInからなる群から選択された少なくとも1つの元素と、を備え、Ce、Cr、Nd、Euからなる群から選択された少なくとも1つの元素で付括されたガーネット系の蛍光体を用いることができる。光反射部材20に酸化アルミニウムを含む場合は、蛍光部材10は、Alを含む酸化物の蛍光体を含むことが好ましい。これにより、蛍光部材10と光反射部材20とに同様の材料が含まれることになるため、両者の接合強度を高くすることができる。Alを含む酸化物の蛍光体としては、例えば、YAG系の蛍光体が挙げられる。   The phosphor contained in the fluorescent member 10 can be appropriately selected according to the required fluorescent color. For example, it comprises at least one element selected from the group consisting of Y, Lu, Sc, La, Tb and Gd and at least one element selected from the group consisting of Al, Ga and In, and includes Ce, Cr A garnet-based phosphor combined with at least one element selected from the group consisting of Nd, Eu can be used. When the light reflecting member 20 contains aluminum oxide, the fluorescent member 10 preferably contains an oxide phosphor containing Al. Thereby, since the same material is contained in the fluorescent member 10 and the light reflecting member 20, the bonding strength between them can be increased. Examples of oxide phosphors containing Al include YAG phosphors.

蛍光部材10は、蛍光体のみで構成してもよいし、蛍光体及び他の部材で構成してもよい。他の部材としては、例えば焼結助剤を用いることができる。この場合は、焼結助剤は、光反射部材20に含まれる材料と同じ材料を含むことが好ましい。これにより、蛍光部材10と光反射部材20との接合強度をさらに高くすることができる。   The fluorescent member 10 may be composed of only a phosphor, or may be composed of a phosphor and other members. As the other member, for example, a sintering aid can be used. In this case, the sintering aid preferably contains the same material as that contained in the light reflecting member 20. Thereby, the joint strength between the fluorescent member 10 and the light reflecting member 20 can be further increased.

(光反射部材20を準備する工程)
次に、粉末状の光反射部材20を準備する。光反射部材20は、添加材を含むことができる。添加材を含む場合は、光反射部材の主成分となる母材(例えば、酸化アルミニウム)よりも高屈折率の材料を用いるのが好ましい。これにより、光反射部材20の反射率(蛍光部材からの蛍光及び/又は発光素子からの光に対する反射率)を向上させることができ、透過率を抑えることができる。高屈折率の材料としては、例えば、窒化ホウ素、酸化イットリウム、酸化ルテチウム、酸化ジルコニウム、酸化ランタンを用いることができる。しかしこれらは難焼結性の材料であるため光反射部材20の強度が低減するおそれがある。この場合は、さらに、添加材として母材よりも融点の低い硝子材料(例えば、酸化ホウ素を含む硝子材料)を用いることができる。これにより、硝子材料が液相化して光反射部材20における母材と硝子材料を除く添加材との間に入るため、両者の結合を強くすることができる。なお、添加材として融点の低い硝子材料を用いる場合は光反射部材の2質量%以下で添加するものとし、本明細書では2質量%以下の硝子材料を含有していても「焼結体」という。
(Step of preparing the light reflecting member 20)
Next, a powdery light reflecting member 20 is prepared. The light reflecting member 20 can include an additive. When an additive is included, it is preferable to use a material having a refractive index higher than that of a base material (for example, aluminum oxide) that is a main component of the light reflecting member. Thereby, the reflectance (the reflectance with respect to the fluorescence from the fluorescent member and / or the light from the light emitting element) of the light reflecting member 20 can be improved, and the transmittance can be suppressed. As a material having a high refractive index, for example, boron nitride, yttrium oxide, lutetium oxide, zirconium oxide, or lanthanum oxide can be used. However, since these are hardly sinterable materials, the strength of the light reflecting member 20 may be reduced. In this case, a glass material having a lower melting point than that of the base material (for example, a glass material containing boron oxide) can be used as the additive. As a result, the glass material becomes a liquid phase and enters between the base material in the light reflecting member 20 and the additive material excluding the glass material, so that the coupling between the two can be strengthened. When a glass material having a low melting point is used as an additive, it is added at 2% by mass or less of the light reflecting member. In this specification, even if the glass material contains 2% by mass or less, “sintered body” That's it.

(光反射部材20を配置する工程)
次に、蛍光部材10における複数の凸部の間に粉末状の光反射部材20を配置する。粉末状の光反射部材20を用いることで、隣り合う凸部間に蛍光部材10を充填しやすくなり、蛍光部材10と光反射部材20との隙間を実質的になくすことができる。本実施形態では、図3Fに示すように、凸部が上方を向くように蛍光部材10を配置し、上方から粉末状の光反射部材20を配置することで、蛍光部材10の凸部の間に光反射部材20を配置している。
(Process of arranging the light reflecting member 20)
Next, the powdery light reflecting member 20 is disposed between the plurality of convex portions in the fluorescent member 10. By using the powdery light reflecting member 20, the fluorescent member 10 can be easily filled between the adjacent convex portions, and the gap between the fluorescent member 10 and the light reflecting member 20 can be substantially eliminated. In the present embodiment, as shown in FIG. 3F, the fluorescent member 10 is arranged so that the convex portion faces upward, and the powdery light reflecting member 20 is arranged from above, so that the convex portion of the fluorescent member 10 is located between the convex portions. The light reflecting member 20 is disposed on the surface.

図3Fでは、焼結体からなる蛍光部材10を下方に配置し、粉末状の光反射部材20を上方に配置しているが、配置の順序を逆にすることもできる。つまり、まず容器に粉末状の光反射部材20を配置し、次にその上方において焼結体からなる蛍光部材10をその凸部が下方を向くように配置して、必要に応じて押圧することもできる。このようにしても、蛍光部材10における複数の凸部の間に光反射部材20を配置することができる。   In FIG. 3F, the fluorescent member 10 made of a sintered body is disposed below and the powdery light reflecting member 20 is disposed above, but the arrangement order can be reversed. That is, the powdery light reflecting member 20 is first arranged in the container, and then the fluorescent member 10 made of a sintered body is arranged above the convex member so that the convex portion faces downward, and is pressed as necessary. You can also. Even in this case, the light reflecting member 20 can be disposed between the plurality of convex portions of the fluorescent member 10.

(焼結体を得る工程)
次に、図3Gに示すように、粉末状の光反射部材20を焼結して、蛍光部材10と光反射部材20とが一体に形成された焼結体を得る。一般的に、焼結体とは粉末状の材料を融点よりも低い温度で加熱して固まったものを指す。しかしながら、本実施形態のように、すでに焼結されている蛍光部材10と、まだ焼結されていない粉末状の光反射部材20と、を加熱処理する場合であっても、焼結体からなる蛍光部材10の表面と粉末状の光反射部材20の表面とにおいては、同様の現象が起こっていると考えられる。したがって、本実施形態では、焼結体からなる蛍光部材10と粉末状の光反射部材20とを一体に形成したものも焼結体という。
(Step of obtaining a sintered body)
Next, as shown in FIG. 3G, the powdery light reflecting member 20 is sintered to obtain a sintered body in which the fluorescent member 10 and the light reflecting member 20 are integrally formed. In general, a sintered body refers to a powdered material that is solidified by heating at a temperature lower than the melting point. However, even in the case where the fluorescent member 10 that has already been sintered and the powdery light reflecting member 20 that has not been sintered are heat-treated as in the present embodiment, it is made of a sintered body. It is considered that the same phenomenon occurs on the surface of the fluorescent member 10 and the surface of the powdery light reflecting member 20. Therefore, in the present embodiment, the one in which the fluorescent member 10 made of a sintered body and the powdery light reflecting member 20 are integrally formed is also called a sintered body.

蛍光部材10及び光反射部材20を加圧しながら焼結するのが好ましい。これにより、蛍光部材10と光反射部材20との接合強度を向上させることができる。焼結法としては、例えば放電プラズマ焼結法(SPS法:spark plasma sintering法)又はホットプレス焼結法(HP法:hot pressing法)を用いることができ、SPS法を用いるのが好ましい。SPS法は上側及び下側のパンチ50を用いて加圧しつつパルス通電により加熱する方法である。SPS法によれば、パルス通電で比較的短時間で急速昇温が可能であるため、光反射部材20の粒成長を制御しやすい。加圧しながら焼結する場合は、例えば、圧力を10MPa以上50MPa以下の範囲に設定することができる。前述の下限値以上とすることで蛍光部材10と光反射部材20との接合強度を向上させることができ、前述の上限値以下とすることで光反射部材20の粒成長を制御しやすくなるので、光反射部材20の粒径が大きくなる(つまり透過率が高くなって光反射性を損なう)のを抑制しやすくなる。   It is preferable to sinter the fluorescent member 10 and the light reflecting member 20 while applying pressure. Thereby, the joint strength between the fluorescent member 10 and the light reflecting member 20 can be improved. As the sintering method, for example, a discharge plasma sintering method (SPS method: spark plasma sintering method) or a hot press sintering method (HP method: hot pressing method) can be used, and the SPS method is preferably used. The SPS method is a method of heating by pulse energization while applying pressure using the upper and lower punches 50. According to the SPS method, rapid temperature rise is possible in a relatively short time by applying a pulse, so that the grain growth of the light reflecting member 20 can be easily controlled. When sintering while applying pressure, for example, the pressure can be set in a range of 10 MPa to 50 MPa. By setting it to the above lower limit value or more, the bonding strength between the fluorescent member 10 and the light reflecting member 20 can be improved, and by setting it to the above upper limit value or less, grain growth of the light reflecting member 20 can be easily controlled. Further, it becomes easy to suppress an increase in the particle size of the light reflecting member 20 (that is, the transmittance increases and the light reflectivity is impaired).

本実施形態では、粉末状の蛍光部材と粉末状の光反射部材を一工程で焼結しているのではなく、あらかじめ焼結体からなる蛍光部材10を準備し、その後で蛍光部材10の凸部間に配置した粉末状の光反射部材を焼結している。そして、焼結助剤と光反射部材の少なくとも一部とを同じ材料(酸化アルミニウム)とし、粉末状の光反射部材20を焼結する際の焼結温度を、蛍光部材10を得る際の焼結温度(粉末状の蛍光体と粉末状の焼結助剤とを混合して焼結する際の焼結温度)よりも低くしている。以下、その理由について説明する。   In this embodiment, the powdery fluorescent member and the powdery light reflecting member are not sintered in one step, but the fluorescent member 10 made of a sintered body is prepared in advance, and then the convexity of the fluorescent member 10 is prepared. The powdery light reflecting member disposed between the parts is sintered. The sintering aid and at least a part of the light reflecting member are made of the same material (aluminum oxide), and the sintering temperature for sintering the powdery light reflecting member 20 is set to the sintering temperature for obtaining the fluorescent member 10. The sintering temperature is lower than the sintering temperature (sintering temperature when the powdered phosphor and the powdery sintering aid are mixed and sintered). The reason will be described below.

蛍光部材10は光を取り出しやすくする必要があるため、一定以上の透過率(蛍光部材10からの蛍光及び/又は発光素子からの光に対する透過率)が必要となる。例えば、高温で焼結し、蛍光部材10に含まれる焼結助剤の粒成長を促すことにより、蛍光部材の透過率を上げることができる。一方、光反射部材20は光を反射しやすくする必要があるため、一定以上の反射率が必要となる。例えば、光反射部材20をある程度低温で焼結し、光反射部材20の粒成長を抑制することで、光反射部材20の反射率を上げることができる。これらの理由により、粉末状の蛍光部材10と粉末状の光反射部材20を一工程で焼結する場合、蛍光部材10の透過率を上げるために高温で焼結すると光反射部材20の透過率が下がってしまう。一方で、光反射部材20の反射率を上げるために低温で焼結すると、蛍光部材の透過率が下がってしまう。そこで、本実施形態では、まず、粉末状の蛍光体と粉末状の焼結助剤とを高温で焼結した焼結体からなる蛍光部材10を得て、その後で蛍光部材10の凸部間に配置した粉末状の光反射部材20を低温で焼結している。つまり、蛍光部材10を焼結する際には光反射部材20の反射率の低下を考慮することなく高温で焼結することができ、光反射部材20を焼結する際には蛍光部材10の透過率を維持しつつ低温で焼結することができる。これにより、蛍光部材10の透過率の向上と、光反射部材20の反射率の向上と、を両立させることが可能となる。   Since the fluorescent member 10 needs to make it easy to extract light, a certain level of transmittance (transmittance with respect to fluorescence from the fluorescent member 10 and / or light from the light emitting element) is required. For example, the transmittance of the fluorescent member can be increased by sintering at a high temperature and promoting the grain growth of the sintering aid contained in the fluorescent member 10. On the other hand, since the light reflecting member 20 needs to make it easy to reflect light, the reflectance of a certain level or more is required. For example, the reflectance of the light reflecting member 20 can be increased by sintering the light reflecting member 20 at a certain low temperature to suppress the grain growth of the light reflecting member 20. For these reasons, when the powdered fluorescent member 10 and the powdered light reflecting member 20 are sintered in one step, the transmittance of the light reflecting member 20 is increased by sintering at a high temperature in order to increase the transmittance of the fluorescent member 10. Will go down. On the other hand, if the light reflecting member 20 is sintered at a low temperature in order to increase the reflectance, the transmittance of the fluorescent member is lowered. Therefore, in the present embodiment, first, a fluorescent member 10 made of a sintered body obtained by sintering a powdered phosphor and a powdery sintering aid at a high temperature is obtained, and thereafter, between the convex portions of the fluorescent member 10. The powdery light reflecting member 20 arranged in the above is sintered at a low temperature. That is, when the fluorescent member 10 is sintered, the fluorescent member 10 can be sintered at a high temperature without considering a decrease in the reflectance of the light reflecting member 20, and when the light reflecting member 20 is sintered, It can be sintered at a low temperature while maintaining the transmittance. Thereby, it becomes possible to achieve both the improvement of the transmittance of the fluorescent member 10 and the improvement of the reflectance of the light reflecting member 20.

粉末状の光反射部材20は、1100℃以上1400℃以下の範囲で焼結することができる。焼結体からなる蛍光部材10を用いる場合は、焼結体を得る工程(粉末状の光反射部材20を焼結する工程)において、1100℃以上1200℃以下の範囲で焼結するのが好ましく、1130℃以上1170℃以下の範囲で焼結するのがより好ましい。前述の下限値以上とすることで光反射部材20の強度を向上させることができ、前述の上限値以下とすることで光反射部材20が過度に粒成長することによる反射率の低下を低減することができる。   The powdery light reflecting member 20 can be sintered in the range of 1100 ° C. or higher and 1400 ° C. or lower. When using the fluorescent member 10 made of a sintered body, it is preferable to sinter in the range of 1100 ° C. or more and 1200 ° C. or less in the step of obtaining the sintered body (step of sintering the powdery light reflecting member 20). It is more preferable to sinter in the range of 1130 ° C or higher and 1170 ° C or lower. The strength of the light reflecting member 20 can be improved by setting it to the above lower limit value or more, and the decrease in reflectance due to excessive grain growth of the light reflecting member 20 can be reduced by setting it to the above upper limit value or less. be able to.

本実施形態では、焼結体を得る工程の後に、焼結体を酸化雰囲気(例えば、大気雰囲気)で熱処理している。一般的に、SPS法やHP法に用いる焼結型には炭素が含まれる。光反射部材20に酸化物を含む場合は、焼結型の炭素が光反射部材20に含まれる酸化物に浸炭又は還元反応を生じさせ、光反射部材20の反射率が低下するおそれがある。そこで、焼結体を酸化雰囲気で熱処理することにより、酸化物に含有された炭素を除去しやすくなり欠損した酸素を戻すことができるため、光反射部材20の反射率を向上することができる。   In the present embodiment, after the step of obtaining the sintered body, the sintered body is heat-treated in an oxidizing atmosphere (for example, an air atmosphere). Generally, carbon is contained in the sintering mold used for the SPS method and the HP method. When the light reflecting member 20 includes an oxide, the sintered carbon may cause carburization or reduction reaction of the oxide included in the light reflecting member 20, and the reflectance of the light reflecting member 20 may be reduced. Therefore, by heat-treating the sintered body in an oxidizing atmosphere, the carbon contained in the oxide can be easily removed and the lost oxygen can be returned, so that the reflectance of the light reflecting member 20 can be improved.

熱処理する工程において、1000℃以上1500℃以下の範囲で熱処理を行うことができる。焼結体からなる蛍光部材10を用いる場合は、1000℃以上1200℃以下の範囲で熱処理を行うのが好ましく、1050℃以上1150℃以下の範囲で熱処理を行うのがより好ましい。前述の下限値以上とすることで光反射部材20に含まれる酸化物に酸素を戻しやすくなり、前述の上限値以下とすることで光反射部材20の反射率の低下を低減することができる。   In the heat treatment step, the heat treatment can be performed in the range of 1000 ° C. to 1500 ° C. When the fluorescent member 10 made of a sintered body is used, the heat treatment is preferably performed in the range of 1000 ° C. or more and 1200 ° C. or less, more preferably in the range of 1050 ° C. or more and 1150 ° C. or less. Oxygen can be easily returned to the oxide contained in the light reflecting member 20 by setting it to the above lower limit value or more, and lowering the reflectance of the light reflecting member 20 can be reduced by setting it to the above upper limit value or less.

(焼結体の一部を除去する工程)
次に、第1主面の側の面が蛍光部材10及び光反射部材20の双方からなり、且つ前記第2主面の側の面が蛍光部材10のみからなる又は蛍光部材及び光反射部材の双方からなる蛍光体含有部材が得られるように、蛍光部材10の第1主面の側又は第2主面の側の少なくとも一方の側から焼結体の一部を除去する。
(Step of removing part of the sintered body)
Next, the surface on the first main surface side is composed of both the fluorescent member 10 and the light reflecting member 20, and the surface on the second main surface side is composed only of the fluorescent member 10, or the fluorescent member and the light reflecting member A part of the sintered body is removed from at least one of the first main surface side and the second main surface side of the fluorescent member 10 so that a phosphor-containing member composed of both is obtained.

本実施形態において、図3Gで得られる焼結体は、第1主面の側の面が光反射部材20のみからなり、第2主面の側の面が蛍光部材10のみからなる。つまり、蛍光部材10の凸部の頂部が光反射部材20に埋没している。この場合は、図3Hに示すように、少なくとも、焼結体の第1主面の側から蛍光部材10の凸部の頂部まで焼結体の一部を除去することで蛍光部材10及び光反射部材20を露出させる。これにより、第1主面の側の面が蛍光部材10及び光反射部材20の双方からなる蛍光体含有部材とすることができる。本実施形態では、さらに、図3Iに示すように、焼結体の第2主面側方から蛍光部材10の凸部の底部まで焼結体の一部を除去している。これにより、第1主面の側の面及び第2主面の側の面が蛍光部材10及び光反射部材20の双方からなる蛍光体含有部材100を得ている。   In the present embodiment, in the sintered body obtained in FIG. 3G, the surface on the first main surface side is composed only of the light reflecting member 20, and the surface on the second main surface side is composed only of the fluorescent member 10. That is, the top of the convex portion of the fluorescent member 10 is buried in the light reflecting member 20. In this case, as shown in FIG. 3H, at least a part of the sintered body is removed from the side of the first main surface of the sintered body to the top of the convex portion of the fluorescent member 10 to thereby reflect the fluorescent member 10 and the light reflection. The member 20 is exposed. Thereby, it can be set as the fluorescent substance containing member which the surface by the side of the 1st main surface consists of both the fluorescent member 10 and the light reflection member 20. FIG. In the present embodiment, as shown in FIG. 3I, a part of the sintered body is removed from the side of the second main surface of the sintered body to the bottom of the convex portion of the fluorescent member 10. Thus, the phosphor-containing member 100 is obtained in which the first main surface side surface and the second main surface side surface are both the fluorescent member 10 and the light reflecting member 20.

なお、図5に示すように、蛍光部材10の第2主面の側から蛍光部材10の凸部の底部に達しないように焼結体の一部を除去してもよい。つまり第2主面の側の面が蛍光部材10のみからなるように焼結体の一部を除去してもよい。これにより、第1主面の側から見て蛍光部材10の周囲に光反射部材20が配置され、第2主面の側から見て蛍光部材10のみが存在する蛍光体含有部材とすることができる。このような蛍光体含有部材を、例えば、発光素子70の上面側に、発光素子70の上面と蛍光体含有部材の第2主面とが向かい合うように配置する。これにより、発光素子70からの光を、蛍光部材10の第2主面の側に入射させ、第2主面よりも面積の小さい第1の主面の側から取り出すことができるため、発光装置の輝度を向上させやすくなる。   In addition, as shown in FIG. 5, you may remove a part of sintered compact so that it may not reach the bottom part of the convex part of the fluorescent member 10 from the 2nd main surface side of the fluorescent member 10. FIG. That is, a part of the sintered body may be removed so that the surface on the second main surface side is made only of the fluorescent member 10. As a result, the light reflecting member 20 is disposed around the fluorescent member 10 when viewed from the first main surface side, and the phosphor-containing member includes only the fluorescent member 10 when viewed from the second main surface side. it can. For example, such a phosphor-containing member is arranged on the upper surface side of the light-emitting element 70 so that the upper surface of the light-emitting element 70 and the second main surface of the phosphor-containing member face each other. Accordingly, light from the light emitting element 70 can be incident on the second main surface side of the fluorescent member 10 and can be extracted from the first main surface side having a smaller area than the second main surface. It becomes easy to improve the brightness.

本実施形態では、図3Gで得られる焼結体は蛍光部材10の凸部の頂部が光反射部材20に埋没されているが、光反射部材を配置する工程において図3Hに示すような凸部の間にのみ光反射部材を配置し、焼結体を得る工程において凸部の間にのみ光反射部材が存在する焼結体を得ることもできる。つまり、第1面の側の面が蛍光部材及び光反射部材の双方からなる焼結体を得ることもできる。このとき、第1主面の側から焼結体の一部を除去する場合は、凸部の底部に達しないように焼結体の一部を除去する。また、第2主面の側から焼結体の一部を除去する場合は、凸部の底部に達するまで焼結体の一部を除去してもよいし、凸部の底部に達しない程度で焼結体の一部を除去してもよい。   In the present embodiment, the sintered body obtained in FIG. 3G has the top of the convex portion of the fluorescent member 10 buried in the light reflecting member 20, but in the step of arranging the light reflecting member, the convex portion as shown in FIG. 3H. It is also possible to obtain a sintered body in which the light reflecting member exists only between the convex portions in the step of arranging the light reflecting member only between them and obtaining the sintered body. That is, it is possible to obtain a sintered body in which the surface on the first surface side is composed of both the fluorescent member and the light reflecting member. At this time, when a part of the sintered body is removed from the first main surface side, a part of the sintered body is removed so as not to reach the bottom of the convex portion. Moreover, when removing a part of sintered compact from the 2nd main surface side, you may remove a part of sintered compact until it reaches the bottom part of a convex part, and the extent which does not reach the bottom part of a convex part A part of the sintered body may be removed.

蛍光部材10を準備する工程において、焼結体からなる蛍光部材10を用いる場合は、第1主面と第2主面とは実質的に平行とするのがよい。そして、蛍光部材10の第2主面を設置面にして、光反射部材20側(図3Hの上方)から焼結体の一部を除去するのが好ましい。これにより、焼結体の下面と平行に除去していけばすべての蛍光部材10を露出させることができるため、除去を容易に行うことができる。   In the step of preparing the fluorescent member 10, when the fluorescent member 10 made of a sintered body is used, it is preferable that the first main surface and the second main surface be substantially parallel. And it is preferable to make a 2nd main surface of the fluorescent member 10 into an installation surface, and to remove a part of sintered compact from the light reflection member 20 side (above FIG. 3H). Thereby, if it removes in parallel with the lower surface of a sintered compact, since all the fluorescent members 10 can be exposed, removal can be performed easily.

焼結体の一部を除去する方法としては例えば、研削、化学機械研磨(CMP:Chemical Mechanical Polishing)を用いることができる。上方及び下方から焼結体の一部を除去する場合は、除去した後の面がそれぞれ異なる粗さとなるようにするのが好ましい。例えば、蛍光体含有部材100の上面又は下面の一方が粗面で他方が実質的に鏡面となるようにするのが好ましい。そして、図6に示すように、発光素子70と組み合わせて発光装置とする場合に、鏡面側を発光素子70からの光入射面とし粗面側を発光装置の光取出面とするのがよい。これにより、蛍光部材10から発光素子70に戻る光を低減しつつ、蛍光部材10から外部に向かう光の全反射を低減できるため、発光装置としての光取出し効率低下を抑制することができる。   As a method for removing a part of the sintered body, for example, grinding or chemical mechanical polishing (CMP) can be used. When a part of the sintered body is removed from above and below, it is preferable that the surfaces after the removal have different roughnesses. For example, it is preferable that one of the upper surface and the lower surface of the phosphor-containing member 100 is a rough surface and the other is substantially a mirror surface. As shown in FIG. 6, when the light emitting device is combined with the light emitting element 70, the mirror surface side is preferably a light incident surface from the light emitting element 70 and the rough surface side is a light extraction surface of the light emitting device. Thereby, since the total reflection of the light which goes outside from the fluorescent member 10 can be reduced, reducing the light which returns from the fluorescent member 10 to the light emitting element 70, the light extraction efficiency fall as a light-emitting device can be suppressed.

(個片化する工程)
図3Jに示すように、焼結体の一部を除去する工程の後に、第1主面の側から見て光反射部材20に囲まれる蛍光部材10が少なくとも1つ含まれるように焼結体を個片化することができる。これにより、蛍光部材10の周囲に光反射部材20が配置された所望の大きさの蛍光体含有部材100aを得ることができる。例えば、スクライブ、ダイシング、ブレイクにより焼結体を個片化することができる。蛍光部材10を露出させてから個片化することで作業効率を向上させることができるが、焼結体を個片化してから蛍光部材10を露出させてもよい。
(Process to divide into pieces)
As shown in FIG. 3J, after the step of removing a part of the sintered body, the sintered body includes at least one fluorescent member 10 surrounded by the light reflecting member 20 when viewed from the first main surface side. Can be singulated. Thereby, the fluorescent substance containing member 100a of the desired magnitude | size by which the light reflection member 20 is arrange | positioned around the fluorescent member 10 can be obtained. For example, the sintered body can be separated into pieces by scribing, dicing, or breaking. Although the working efficiency can be improved by separating the fluorescent member 10 after being exposed, the fluorescent member 10 may be exposed after the sintered body is separated.

(その他)
蛍光体含有部材100は発光素子70と組み合わせて発光装置とすることができる。図6では、発光素子70としてLD(レーザダイオード)を用いており、LDと個片化した蛍光体含有部材100aとを組み合わせて発光装置400としている。LDを用いる場合は、LDから生じる熱と蛍光部材10から生じる熱との排熱性を考慮して、図6に示すように両者を離間して配置するのが好ましい。例えば光ファイバを介することによりLDと蛍光部材10とを離間させることもできる。なお、蛍光体含有部材100を光反射体の上面に載置して、LDからの蛍光部材10に入射する光を光反射体で反射させるようにすることもできる。
(Other)
The phosphor-containing member 100 can be combined with the light emitting element 70 to form a light emitting device. In FIG. 6, an LD (laser diode) is used as the light emitting element 70, and the light emitting device 400 is formed by combining the LD and the individual phosphor-containing member 100 a. In the case of using the LD, it is preferable to dispose both of them separately as shown in FIG. 6 in consideration of the exhaust heat property between the heat generated from the LD and the heat generated from the fluorescent member 10. For example, the LD and the fluorescent member 10 can be separated by using an optical fiber. Note that the phosphor-containing member 100 may be placed on the upper surface of the light reflector so that the light incident on the fluorescent member 10 from the LD is reflected by the light reflector.

<第2実施形態>
図7に、本実施形態に係る製造方法により得られる蛍光体含有部材200の上面図を示す。また、図8は、図7のY−Y線における断面図である。さらに、図9A〜図9Hは、蛍光体含有部材200の製造方法を説明するための図である。
Second Embodiment
In FIG. 7, the top view of the fluorescent substance containing member 200 obtained by the manufacturing method which concerns on this embodiment is shown. 8 is a cross-sectional view taken along line YY of FIG. Furthermore, FIGS. 9A to 9H are views for explaining a method of manufacturing the phosphor-containing member 200. FIG.

蛍光体含有部材200の製造方法は、複数の凹部が第1主面の側に設けられた光反射部材20を準備する工程(図9A〜図9D)と、蛍光体を含む粉末状の蛍光部材10を準備する工程と、光反射部材20における複数の凹部に粉末状の蛍光部材10を配置する工程(図9E)と、粉末状の蛍光部材10を焼結して、光反射部材20と蛍光部材10とが一体に形成された焼結体を得る工程(図9F)と、第1主面と反対側にある第2主面の側の面が蛍光部材10及び光反射部材20の双方からなり、且つ、第1主面の側の面が蛍光部材10のみからなる又は蛍光部材10及び光反射部材20の双方からなる蛍光体含有部材100が得られるように、少なくとも光反射部材20の第2主面の側から焼結体の一部を除去する工程(図9G)と、を備える。   The method for manufacturing the phosphor-containing member 200 includes a step of preparing the light reflecting member 20 in which a plurality of concave portions are provided on the first main surface side (FIGS. 9A to 9D), and a powdery phosphor member containing the phosphor. 10, a step of arranging the powdery fluorescent member 10 in a plurality of recesses in the light reflecting member 20 (FIG. 9E), a sintering of the powdery fluorescent member 10, and the light reflecting member 20 and the fluorescent member The step of obtaining a sintered body integrally formed with the member 10 (FIG. 9F), and the surface on the second main surface side opposite to the first main surface are from both the fluorescent member 10 and the light reflecting member 20. And at least the first reflecting surface of the light reflecting member 20 so that the phosphor-containing member 100 composed of only the fluorescent member 10 or both the fluorescent member 10 and the light reflecting member 20 is obtained. (2) removing a part of the sintered body from the principal surface side (FIG. 9G); Obtain.

本実施形態においても第1実施形態と同様の効果を得ることができる。蛍光体含有部材200の製造方法は、次に説明する事項以外は、第1実施形態において説明した事項と実質的に同一である。   In this embodiment, the same effect as that of the first embodiment can be obtained. The manufacturing method of the phosphor-containing member 200 is substantially the same as that described in the first embodiment, except for the items described below.

まず、第1主面に複数の凹部が設けられた光反射部材20を準備する。本実施形態では、光反射部材20を準備する工程は、焼結型となる容器に粉末状の光反射部材20を充填する工程(図9A)と、複数の凸部が設けられた押圧部材52で、粉末状の光反射部材20を押圧することにより、複数の凹部が設けられた光反射部材20を作製する工程(図9B〜図9D)と、を含む。これにより、粉末状ではあるが一定の形状(複数の凹部が設けられた形状)を保持した光反射部材20を比較的簡便な方法で形成することができる。なお、この工程では焼結体からなる光反射部材20を準備してもよい。   First, the light reflecting member 20 provided with a plurality of recesses on the first main surface is prepared. In the present embodiment, the step of preparing the light reflecting member 20 includes a step of filling the powdery light reflecting member 20 into a sintered container (FIG. 9A), and a pressing member 52 provided with a plurality of convex portions. Thus, the step of producing the light reflecting member 20 provided with a plurality of recesses by pressing the powdery light reflecting member 20 (FIGS. 9B to 9D) is included. Thereby, although it is powdery, the light reflection member 20 holding a fixed shape (a shape provided with a plurality of recesses) can be formed by a relatively simple method. In this step, a light reflecting member 20 made of a sintered body may be prepared.

本実施形態では、凹部の開口形状は上方から見て四角である。凹部の大きさは組み合わせる発光素子70に合わせて適宜変更することができる。例えば、発光素子70としてLEDチップを用いる場合は、凹部の底部の一辺の長さを0.1mm以上3mm以下の範囲にすることが好ましく、0.5mm以上2mm以下とするのがより好ましい。前述の下限値以上とすることで、凹部に蛍光部材10を充填しやすくすることができ、前述の上限値以下とすることで個片化する前の蛍光体含有部材に含まれる蛍光部材10の数を増やすことができる。   In the present embodiment, the opening shape of the recess is a square when viewed from above. The size of the recess can be appropriately changed according to the light emitting element 70 to be combined. For example, when an LED chip is used as the light emitting element 70, the length of one side of the bottom of the recess is preferably in the range of 0.1 mm to 3 mm, and more preferably 0.5 mm to 2 mm. By setting it to the above lower limit value or more, the fluorescent member 10 can be easily filled in the concave portion, and by setting it to the above upper limit value or less, the fluorescent member 10 included in the phosphor-containing member before being singulated is made. You can increase the number.

次に、蛍光体を含む粉末状の蛍光部材10を準備する。そして、光反射部材20における複数の凹部に粉末状の蛍光部材10を配置する(図9E)。つまり、本実施形態では、粉末状の光反射部材20の上方に粉末状の蛍光部材10が配置されている。なお、焼結体からなる光反射部材20を準備する場合は、光反射部材20及び蛍光部材10の配置の順序は限定されない。つまり、焼結体からなる光反射部材20を下方に配置し、粉末状の蛍光部材10を上方に配置してもよいし、配置の順序を逆にすることもできる。   Next, a powdery fluorescent member 10 containing a phosphor is prepared. And the powdery fluorescent member 10 is arrange | positioned to the several recessed part in the light reflection member 20 (FIG. 9E). That is, in the present embodiment, the powdery fluorescent member 10 is disposed above the powdery light reflecting member 20. In addition, when preparing the light reflection member 20 which consists of a sintered compact, the order of arrangement | positioning of the light reflection member 20 and the fluorescence member 10 is not limited. That is, the light reflecting member 20 made of a sintered body may be disposed below, the powdery fluorescent member 10 may be disposed above, or the order of arrangement may be reversed.

本実施形態では、一工程において、粉末状の蛍光部材10及び粉末状の光反射部材20の両方を焼結して、蛍光部材10と光反射部材20とが一体に形成された焼結体を得ている。このとき、蛍光部材10に含まれる焼結助剤の透過率を高くする必要があるため、焼結温度は第1実施形態よりも高くしている。例えば、1100℃以上1400℃以下の範囲で焼結するのが好ましく、1200℃以上1350℃以下の範囲で焼結するのがより好ましい。前述の下限値以上とすることで焼結助剤の透過率を高くすることができ、前述の上限値以下とすることで光反射部材20の反射率の低減をある程度抑えることができる。   In this embodiment, in one step, both the powdery fluorescent member 10 and the powdery light reflecting member 20 are sintered, and a sintered body in which the fluorescent member 10 and the light reflecting member 20 are integrally formed is obtained. It has gained. At this time, since it is necessary to increase the transmittance of the sintering aid contained in the fluorescent member 10, the sintering temperature is set higher than that in the first embodiment. For example, the sintering is preferably performed in the range of 1100 ° C. or higher and 1400 ° C. or lower, and more preferably sintered in the range of 1200 ° C. or higher and 1350 ° C. or lower. By setting it to the above lower limit or higher, the transmittance of the sintering aid can be increased, and by setting it to the upper limit or lower, reduction of the reflectance of the light reflecting member 20 can be suppressed to some extent.

また、熱処理する工程において、1200℃以上1500℃以下の範囲で熱処理をすることができる。このとき、焼結助剤の透過率を向上させる場合は、1350℃以上1450℃以下の範囲で熱処理するのが好ましい。なお、光反射部材20の反射率を向上させることを優先させる場合は、実施形態1に記載の範囲で熱処理するのがよい。   In the heat treatment step, the heat treatment can be performed in the range of 1200 ° C. or higher and 1500 ° C. or lower. At this time, when improving the transmittance | permeability of a sintering auxiliary agent, it is preferable to heat-process in the range of 1350 degreeC or more and 1450 degrees C or less. In addition, when giving priority to improving the reflectance of the light reflecting member 20, heat treatment is preferably performed within the range described in the first embodiment.

本実施形態では、蛍光部材10を配置する工程の後に、離形シート60を介して緩衝部材30を配置してもよい。このとき、光反射部材20の厚みと同じ厚みになるように緩衝部材30を配置するのが好ましい。   In the present embodiment, the buffer member 30 may be disposed via the release sheet 60 after the step of arranging the fluorescent member 10. At this time, it is preferable to arrange the buffer member 30 so as to have the same thickness as the light reflecting member 20.

本実施形態では、図9Hに示すように、光反射部材20の第1主面の側の面が蛍光部材10と光反射部材20とからなるように焼結体の一部を除去している。これに限らず、光反射部材20の第1主面の側から、光反射部材20が露出しないように、焼結体の一部を除去してもよい。つまり、第1主面の側から除去した後の第1主面の側の面が蛍光部材10のみからなるように焼結体の一部を除去してもよい。第1主面の側の面が蛍光部材10のみからなる蛍光体含有部材を個片化する場合は、第2主面の側から見て光反射部材に囲まれる蛍光部材が少なくとも1つ含まれるように焼結体を個片化する。   In the present embodiment, as shown in FIG. 9H, a part of the sintered body is removed so that the surface on the first main surface side of the light reflecting member 20 includes the fluorescent member 10 and the light reflecting member 20. . Not limited to this, a part of the sintered body may be removed from the first main surface side of the light reflecting member 20 so that the light reflecting member 20 is not exposed. That is, you may remove a part of sintered compact so that the surface by the side of the 1st main surface after removing from the 1st main surface side may consist only of the fluorescent member 10. FIG. When the phosphor-containing member whose surface on the first main surface side is composed of only the fluorescent member 10 is separated, at least one fluorescent member surrounded by the light reflecting member as viewed from the second main surface side is included. Thus, the sintered body is separated into pieces.

(その他)
本実施形態では、発光素子70としてLEDチップを用いており、基体90の上面に配置された複数のLEDチップと蛍光体含有部材200とを組み合わせて発光装置500としている(図10)。このとき、1つのLEDチップからの光が1つの蛍光部材10に入射するように蛍光体含有部材200を設けるのが好ましい。LEDチップの上面に蛍光体含有部材200を設ける方法は、表面活性化接合法又は原子拡散接合法を用いるのが好ましく、表面活性化接合法を用いるのがより好ましい。表面活性化接合法によれば、LEDチップと蛍光部材10との間に他の部材を介することがなくなるため、他の部材での光の吸収をなくすことができるためである。また、隣り合うLEDチップ間は遮光部材80等により遮光されているのが好ましい。これにより、点灯しているLEDチップの上方に位置する蛍光部材10のみを発光させることができる。
(Other)
In this embodiment, an LED chip is used as the light emitting element 70, and a plurality of LED chips arranged on the upper surface of the substrate 90 and the phosphor-containing member 200 are combined to form the light emitting device 500 (FIG. 10). At this time, it is preferable to provide the phosphor-containing member 200 so that light from one LED chip is incident on one fluorescent member 10. As a method of providing the phosphor-containing member 200 on the upper surface of the LED chip, it is preferable to use a surface activated bonding method or an atomic diffusion bonding method, and it is more preferable to use a surface activated bonding method. This is because according to the surface activated bonding method, since no other member is interposed between the LED chip and the fluorescent member 10, light absorption by the other member can be eliminated. Further, it is preferable that the adjacent LED chips are shielded from light by the light shielding member 80 or the like. Thereby, only the fluorescent member 10 located above the LED chip which is lit can be made to emit light.

<第3実施形態>
図11A〜図11Gに本実施形態に係る蛍光体含有部材300の製造方法を示す。蛍光体含有部材300の製造方法は、次に説明する事項以外は、第2実施形態において記載した事項と実質的に同一である。
<Third Embodiment>
11A to 11G show a method for manufacturing the phosphor-containing member 300 according to this embodiment. The manufacturing method of the phosphor-containing member 300 is substantially the same as that described in the second embodiment except for the items described below.

本実施形態では、光反射部材20を準備する工程において、互いに反対側にある第1主面及び第2主面を貫通する複数の貫通孔が設けられた光反射部材20を準備する(図11A〜図11D)。そして、複数の貫通孔に粉末状の蛍光部材10を配置し(図11E)、粉末状の蛍光部材10を焼結して、光反射部材20と蛍光部材10とが一体に形成された焼結体を得る(図11F)。さらに、第1主面の側の面又は第2主面の側の面の一方の面が蛍光部材10及び光反射部材20の双方からなり、且つ、第1主面の側の面又は第2主面の側の面の他方の面が蛍光部材10のみからなる又は蛍光部材10及び光反射部材20の双方からなる蛍光体含有部材が得られるように、蛍光部材10の第1主面の側又は第2主面の側の少なくとも一方の側から焼結体の一部を除去する(図11G)。なお、光反射部材20を準備する工程において焼結体からなる光反射部材20を準備する場合は、容器に粉末状の蛍光部材10を配置し、焼結体からなる光反射部材20を押圧して配置することで、貫通孔に蛍光部材10を配置してもよい。   In this embodiment, in the step of preparing the light reflecting member 20, the light reflecting member 20 provided with a plurality of through holes penetrating the first main surface and the second main surface on the opposite sides is prepared (FIG. 11A). To FIG. 11D). Then, the powdery fluorescent member 10 is arranged in the plurality of through holes (FIG. 11E), the powdery fluorescent member 10 is sintered, and the light reflecting member 20 and the fluorescent member 10 are integrally formed. A body is obtained (FIG. 11F). Further, one surface of the first main surface side or the second main surface side is composed of both the fluorescent member 10 and the light reflecting member 20, and the first main surface side surface or the second main surface side surface. The first main surface side of the fluorescent member 10 so that the other surface of the main surface side is made only of the fluorescent member 10 or a phosphor-containing member made of both the fluorescent member 10 and the light reflecting member 20 is obtained. Alternatively, a part of the sintered body is removed from at least one side of the second main surface (FIG. 11G). When preparing the light reflecting member 20 made of a sintered body in the step of preparing the light reflecting member 20, the powdery fluorescent member 10 is arranged in a container and the light reflecting member 20 made of the sintered body is pressed. The fluorescent member 10 may be disposed in the through hole.

本実施形態においても第2実施形態と同様の効果を得ることができる。   In this embodiment, the same effect as that of the second embodiment can be obtained.

本実施形態では、焼結体を得る工程において、上面は蛍光部材10のみからなり、下面は蛍光部材10及び光反射部材20の双方からなる焼結体を得ている。この場合において、下面の側から焼結体の一部を除去する場合は、少なくとも光反射部材20の上面に達しないように焼結体の一部を除去する。また、上面の側から焼結体の一部を除去する場合は、図11Gに示すように光反射部材20が露出するまで焼結体の一部を除去してもよいし、光反射部材20が露出しないように焼結体の一部を除去してもよい。   In the present embodiment, in the step of obtaining the sintered body, the upper surface is made of only the fluorescent member 10 and the lower surface is made of the fluorescent member 10 and the light reflecting member 20. In this case, when removing a part of the sintered body from the lower surface side, a part of the sintered body is removed so as not to reach at least the upper surface of the light reflecting member 20. Moreover, when removing a part of sintered compact from the upper surface side, as shown to FIG. 11G, you may remove a part of sintered compact until the light reflection member 20 is exposed, or the light reflection member 20 may be removed. A part of the sintered body may be removed so as not to be exposed.

なお、蛍光部材を配置する工程において、光反射部材の上面及び下面を覆うように蛍光部材を配置する場合は、焼結体を得る工程において、図12に示すように、光反射部材の上面及び下面が蛍光部材に覆われる焼結体が得られる。この場合は、上面の側の面又は下面の側の面の一方の面が蛍光部材及び光反射部材からなるように上面の側又は下面の側の一方の側から焼結体の一部を除去する。このとき、上面の側又は下面の側の他方の側からさらに焼結体の一部を除去してもよい。上面の側又は下面の側の他方の側から焼結体の一部を除去する場合は、除去した後の面が蛍光部材及び光反射部材からなるように焼結体の一部を除去してもよいし、除去した後の面が蛍光部材のみからなるように焼結体の一部を除去してもよい。   In the step of arranging the fluorescent member, when the fluorescent member is arranged so as to cover the upper surface and the lower surface of the light reflecting member, in the step of obtaining the sintered body, as shown in FIG. A sintered body whose lower surface is covered with the fluorescent member is obtained. In this case, a part of the sintered body is removed from one side of the upper surface side or the lower surface side so that one surface of the upper surface side or the lower surface side is made of a fluorescent member and a light reflecting member. To do. At this time, a part of the sintered body may be further removed from the other side of the upper surface side or the lower surface side. When removing a part of the sintered body from the other side of the upper surface side or the lower surface side, remove a part of the sintered body so that the surface after the removal consists of a fluorescent member and a light reflecting member. Alternatively, a part of the sintered body may be removed so that the surface after the removal is made of only the fluorescent member.

以下、各実施例の蛍光体含有部材について説明する。
<実施例1>
まず、図3Cに示すように、蛍光部材10としてYAl12:Ceと酸化アルミニウムとを含む焼結体からなる板状の蛍光部材10を準備した。そして、図3Dに示すように、ダイシング装置を用いて焼結体からなる板状の蛍光部材10(以下、「YAG板」という。)の上面に複数の凸部を形成した。なお、図3Dでは、凸部の形状は上方から見て円であるが、本実施例では一辺が1mmの正方形である。1つの凸部と隣り合う凸部との間の距離は1mmとした。
Hereinafter, the phosphor-containing member of each example will be described.
<Example 1>
First, as shown in FIG. 3C, a plate-like fluorescent member 10 made of a sintered body containing Y 3 Al 5 O 12 : Ce and aluminum oxide was prepared as the fluorescent member 10. Then, as shown in FIG. 3D, a plurality of convex portions were formed on the upper surface of a plate-like fluorescent member 10 (hereinafter referred to as “YAG plate”) made of a sintered body using a dicing apparatus. In FIG. 3D, the shape of the convex portion is a circle when viewed from above, but in the present embodiment, it is a square having a side of 1 mm. The distance between one convex part and the adjacent convex part was 1 mm.

次に、図3A及び図3Bに示すように、焼結型に粉末状の酸化アルミニウムからなる緩衝部材30を充填し、カーボンシートを配置した。そして、図3Eに示すように、凸部が設けられた側が上方を向くようにYAG板10を配置した。   Next, as shown in FIGS. 3A and 3B, a buffer member 30 made of powdered aluminum oxide was filled in a sintered mold, and a carbon sheet was disposed. And as shown to FIG. 3E, the YAG board 10 was arrange | positioned so that the side in which the convex part was provided may face upward.

次に、図3Fに示すように、焼結型に酸化アルミニウムからなる粉末状の光反射部材20を充填した。このとき、緩衝部材30と光反射部材20との厚みが同じになるようにした。そして、図3Gに示すように、光反射部材20を30MPaの圧力で1100℃でSPS法により焼結し、蛍光部材10と光反射部材20とが一体である焼結体を得た。   Next, as shown in FIG. 3F, the sintered light mold was filled with a powdery light reflecting member 20 made of aluminum oxide. At this time, the buffer member 30 and the light reflecting member 20 were made to have the same thickness. And as shown to FIG. 3G, the light reflection member 20 was sintered by SPS method at 1100 degreeC with the pressure of 30 Mpa, and the sintered compact with which the fluorescent member 10 and the light reflection member 20 were united was obtained.

次に、焼結型から焼結体を取り出してカーボンシートを配置した位置で焼結体を離形した。そして、得られた焼結体を大気雰囲気において1100℃で熱処理した。   Next, the sintered body was taken out from the sintering mold, and the sintered body was released at the position where the carbon sheet was disposed. And the obtained sintered compact was heat-processed at 1100 degreeC in the atmospheric condition.

次に、図3H及び図3Iに示すように、得られた焼結体の上方及び下方から焼結体の一部を除去することで、除去した後の面において蛍光部材10及び光反射部材20を露出させた。   Next, as shown in FIGS. 3H and 3I, by removing a part of the sintered body from above and below the obtained sintered body, the fluorescent member 10 and the light reflecting member 20 are removed on the surface after the removal. Was exposed.

<実施例2>
実施例2は、1200℃で焼結した以外は実施例1と実質的に同様である。
<Example 2>
Example 2 is substantially the same as Example 1 except that it is sintered at 1200 ° C.

<実施例3>
実施例3は、1150℃で焼結し、1000℃で熱処理した以外は実施例1と実質的に同様である。
<Example 3>
Example 3 is substantially the same as Example 1 except that it is sintered at 1150 ° C. and heat treated at 1000 ° C.

<実施例4>
実施例4は、次に説明する事項以外は実施例3と実質的に同様である。まず、図3Cに示すように焼結体からなる板状の蛍光部材10を準備し、図3Dに示すようにマシニングセンタを用いて焼結体からなる板状の蛍光部材10の上面に複数の凸部を形成した。上方から見て凸部の形状は円であり、凸部の内径が下方から上方に向かうにつれて小さくなるように側面は傾斜している。凸部の頂部の内径は0.3mmとし凸部の底部の内径は0.5mmとした。また、凸部の底部と隣り合う凸部の底部との最短距離は、5mmとした。そして熱処理の温度を1100℃とした。
<Example 4>
The fourth embodiment is substantially the same as the third embodiment except for the items described below. First, a plate-like fluorescent member 10 made of a sintered body is prepared as shown in FIG. 3C, and a plurality of projections are formed on the upper surface of the plate-like fluorescent member 10 made of a sintered body using a machining center as shown in FIG. 3D. Part was formed. The shape of the convex portion is a circle when viewed from above, and the side surface is inclined so that the inner diameter of the convex portion decreases from the lower side to the upper side. The inner diameter of the top of the protrusion was 0.3 mm, and the inner diameter of the bottom of the protrusion was 0.5 mm. The shortest distance between the bottom of the convex part and the bottom of the convex part adjacent to the convex part was 5 mm. And the temperature of heat processing was 1100 degreeC.

<実施例5>
実施例5は、光反射部材20として、80質量%の酸化アルミニウムと20質量%の窒化ホウ素とを用い、熱処理の温度を1100℃とした以外は実施例3と実質的に同様である
<Example 5>
Example 5 is substantially the same as Example 3 except that 80% by mass of aluminum oxide and 20% by mass of boron nitride are used as the light reflecting member 20, and the temperature of the heat treatment is 1100 ° C.

<実施例6>
まず、図3Aに示すように焼結型に粉末状の酸化アルミニウムからなる緩衝部材30を充填し、図3Bに示すようにカーボンシートを配置した。
<Example 6>
First, as shown in FIG. 3A, a buffer member 30 made of powdered aluminum oxide was filled in a sintered mold, and a carbon sheet was placed as shown in FIG. 3B.

次に、図4Aに示すように、YAl12:Ceと酸化アルミニウムとを含む粉末状の蛍光部材10を充填した。そして、図4B〜図4Dに示すように、複数の凹部が設けられた押圧部材51で、蛍光部材10を押圧して複数の凸部が設けられた蛍光部材10を作製した。凸部は上方から見て1辺の長さが1mmの正方形とした。また、1つの凸部と隣り合う凸部との間の距離は1mmとした。 Next, as shown in FIG. 4A, a powdery fluorescent member 10 containing Y 3 Al 5 O 12 : Ce and aluminum oxide was filled. Then, as shown in FIGS. 4B to 4D, the fluorescent member 10 was manufactured by pressing the fluorescent member 10 with the pressing member 51 provided with a plurality of concave portions. The convex portion was a square having a side length of 1 mm as viewed from above. Moreover, the distance between one convex part and the adjacent convex part was 1 mm.

次に、図3Fに示すように、焼結型に酸化アルミニウムからなる粉末状の光反射部材20を充填した。なお、図3Fは第1実施形態の説明においては焼結体からなる蛍光部材10としているが、本実施例では粉末状であるが一定の形状(複数の凸部が設けられた形状)の蛍光部材10である。このとき、緩衝部材30と光反射部材20との厚みが同じになるようにした。そして、図3Gに示すように、蛍光部材10及び光反射部材20の両方を50MPaの圧力で1250℃でSPS法により焼結し、蛍光部材10と光反射部材20とが一体である焼結体を得た。   Next, as shown in FIG. 3F, the sintered light mold was filled with a powdery light reflecting member 20 made of aluminum oxide. In FIG. 3F, the fluorescent member 10 made of a sintered body is used in the description of the first embodiment, but in this example, the fluorescent material is in a powder form but has a certain shape (a shape provided with a plurality of convex portions). This is the member 10. At this time, the buffer member 30 and the light reflecting member 20 were made to have the same thickness. Then, as shown in FIG. 3G, both the fluorescent member 10 and the light reflecting member 20 are sintered by the SPS method at 1250 ° C. at a pressure of 50 MPa, and the sintered body in which the fluorescent member 10 and the light reflecting member 20 are integrated. Got.

次に、焼結型から焼結体を取り出してカーボンシートを配置した位置で焼結体を離形した。そして、得られた焼結体を大気雰囲気において1400℃で熱処理し、さらに窒素雰囲気において1400℃で熱処理した。   Next, the sintered body was taken out from the sintering mold, and the sintered body was released at the position where the carbon sheet was disposed. The obtained sintered body was heat-treated at 1400 ° C. in an air atmosphere, and further heat-treated at 1400 ° C. in a nitrogen atmosphere.

次に、図3Hおよび図3Iに示すように、得られた焼結体の上方及び下方から焼結体の一部を除去することで、除去した後の面において蛍光部材10及び光反射部材20を露出させた。   Next, as shown in FIG. 3H and FIG. 3I, by removing a part of the sintered body from above and below the obtained sintered body, the fluorescent member 10 and the light reflecting member 20 are removed on the surface after the removal. Was exposed.

<実施例7>
実施例7は、まず、図8Aに示すように、焼結型に酸化アルミニウムからなる光反射部材20を充填した。そして、図8B〜図8Dに示すように、複数の凸部が設けられた押圧部材52で光反射部材20を押圧して複数の凹部が設けられた光反射部材20を作製した。凹部は上方から見て1辺の長さが1mmの正方形とした。また、1つの凹部と隣り合う凹部との間の距離は1mmとした。
<Example 7>
In Example 7, first, as shown in FIG. 8A, a light reflecting member 20 made of aluminum oxide was filled in a sintered mold. Then, as shown in FIGS. 8B to 8D, the light reflecting member 20 provided with a plurality of concave portions was manufactured by pressing the light reflecting member 20 with the pressing member 52 provided with the plurality of convex portions. The concave portion was a square having a side length of 1 mm as viewed from above. The distance between one recess and the adjacent recess was 1 mm.

次に、図8Eに示すように、YAl12:Ceと酸化アルミニウムとを含む粉末状の蛍光部材10を焼結型に充填した。 Next, as shown in FIG. 8E, a powdery fluorescent member 10 containing Y 3 Al 5 O 12 : Ce and aluminum oxide was filled into a sintered mold.

次に、蛍光部材10の上面にカーボンシートを配置した。そして、光反射部材20の厚みと実質的に同じ厚さになるように、カーボンシートの上面に、酸化アルミニウムからなる緩衝部材30を配置した。そして、図8Fに示すように、蛍光部材10及び光反射部材20を50MPaの圧力で1250℃でSPS法により焼結した。   Next, a carbon sheet was disposed on the upper surface of the fluorescent member 10. And the buffer member 30 which consists of aluminum oxide was arrange | positioned on the upper surface of a carbon sheet so that it might become substantially the same thickness as the thickness of the light reflection member 20. As shown in FIG. Then, as shown in FIG. 8F, the fluorescent member 10 and the light reflecting member 20 were sintered by the SPS method at 1250 ° C. at a pressure of 50 MPa.

次に、焼結型から焼結体を取り出してカーボンシートを配置した位置で焼結体を離形した。そして、得られた焼結体を大気雰囲気において1400℃で熱処理し、さらに窒素雰囲気において1400℃で熱処理した。   Next, the sintered body was taken out from the sintering mold, and the sintered body was released at the position where the carbon sheet was disposed. The obtained sintered body was heat-treated at 1400 ° C. in an air atmosphere, and further heat-treated at 1400 ° C. in a nitrogen atmosphere.

次に、図8G及び図8Hに示すように、得られた焼結体の上方及び下方から焼結体の一部を除去することで、除去した後の面において蛍光部材10及び光反射部材20を露出させた。   Next, as shown in FIGS. 8G and 8H, by removing a part of the sintered body from above and below the obtained sintered body, the fluorescent member 10 and the light reflecting member 20 are removed on the surface after the removal. Was exposed.

<実施例8>
実施例8は、光反射部材20として、80質量%の酸化アルミニウムと20質量%の窒化ホウ素とを用いている以外は実施例7と実質的に同様である。
<Example 8>
Example 8 is substantially the same as Example 7 except that 80 wt% aluminum oxide and 20 wt% boron nitride are used as the light reflecting member 20.

<評価>
各実施例において蛍光部材10と光反射部材20とは十分な接合強度が得られていた。また、各実施例と実質的に同じ条件で形成した焼結体からなる光反射部材20を、「強度」、「反射率」、及び「透過率」の3つの観点で評価した結果を表1に示す。なお、表1において、試料の番号と実施例の番号が対応している(例えば、試料1は実施例1に対応している。)。強度の評価は、各試料を手で割ったときの割れにくさを比較して、割れにくいものから割れやすいものまでを5段階(割れにくいものほど値が大きい)で評価した。反射率の評価は、分光測色計による測定結果に基づいて行った。具体的には、まず、厚みを5mmにした試料(光反射部材20)を土台に配置した。次に、試料面に対して370nm〜740nmの測定光を照射して、試料面からの反射光の反射率を測定した。そして、440nmにおける各試料の反射率の結果を比較して、反射率の高いものから低いものまでを5段階(反射率の高いものほど値が大きい)で評価した。また、透過率の評価は、照度計による測定結果に基づいて行った。具体的には、まず、反射率の測定に用いた試料を厚みが1mmになるまで研磨し、土台に試料を配置した。次に、445nmの光を照射して、試料を透過した光を照度計により測定した。そして、各試料の結果を比較して、透過率の低いものから高いものまでを5段階(透過率の低いものほど値が大きい)で評価した。なお、反射率の測定においては土台からの反射率の影響を受けにくくするために試料の厚みを大きくする必要があるが、透過率の測定においては試料の厚みが大きすぎるとその差を比較しにくくなるため、反射率の測定と透過率の測定とで試料の厚みを変えている。
<Evaluation>
In each example, sufficient bonding strength was obtained between the fluorescent member 10 and the light reflecting member 20. Table 1 shows the results of evaluating the light reflecting member 20 made of a sintered body formed under substantially the same conditions as in each example from the three viewpoints of “strength”, “reflectance”, and “transmittance”. Shown in In Table 1, sample numbers correspond to example numbers (for example, sample 1 corresponds to example 1). The evaluation of strength was made by comparing the resistance to cracking when each sample was divided by hand, and evaluated from five levels (from the ones that are difficult to crack to the ones that are easy to crack) to have a higher value. The reflectance was evaluated based on the measurement result obtained by the spectrocolorimeter. Specifically, first, a sample (light reflecting member 20) having a thickness of 5 mm was placed on the base. Next, the sample surface was irradiated with measurement light of 370 nm to 740 nm, and the reflectance of reflected light from the sample surface was measured. And the result of the reflectance of each sample in 440 nm was compared, and the thing from a thing with a high reflectance to a low thing was evaluated in five steps (a thing with a higher reflectance has a larger value). In addition, the transmittance was evaluated based on the measurement result by the illuminometer. Specifically, first, the sample used for the measurement of reflectance was polished until the thickness became 1 mm, and the sample was placed on the base. Next, light having a wavelength of 445 nm was irradiated, and light transmitted through the sample was measured with an illuminometer. And the result of each sample was compared, and the thing from the thing with a low transmittance | permeability to the high thing was evaluated in five steps (a value is so large that the thing with a low transmittance | permeability). In the measurement of reflectance, it is necessary to increase the thickness of the sample in order to make it less susceptible to the reflectance from the base, but in the measurement of transmittance, the difference is compared if the thickness of the sample is too large. Therefore, the thickness of the sample is changed between the reflectance measurement and the transmittance measurement.

Figure 2017149929
Figure 2017149929

表1に示すとおり、試料1〜試料5は、反射率が高く、試料1、試料3〜5は、透過率も抑制されていた。これは、光反射部材の焼結温度が低かったことに起因すると考えられる。なお、試料2では、反射率において良好な結果が得られているにも関わらず透過率が高かった。これは、試料2においては何らかの理由により光反射部材20における光吸収率が低くなったためであると考えられる。   As shown in Table 1, Samples 1 to 5 had high reflectance, and Samples 1 and 3 to 5 had suppressed transmittance. This is considered due to the fact that the sintering temperature of the light reflecting member was low. In Sample 2, the transmittance was high even though good results were obtained in reflectance. This is considered to be because the light absorptance of the light reflecting member 20 in the sample 2 is low for some reason.

一方、試料2〜試料4、及び、試料6〜試料8については、強度も高かった。これは、光反射部材20に難焼結性の添加材が含まれていなかったことや、一定以上の温度で焼結することにより、光反射部材20の粒成長が促されたためと考えられる。   On the other hand, the strength of Samples 2 to 4 and Samples 6 to 8 was high. This is presumably because the light-reflecting member 20 did not contain a hardly sinterable additive, or the grain growth of the light-reflecting member 20 was promoted by sintering at a certain temperature or higher.

各実施形態に記載の蛍光体含有部材は、車載、照明等に使用することができる。   The phosphor-containing member described in each embodiment can be used for in-vehicle use, illumination, and the like.

10・・・蛍光部材
20・・・光反射部材
30・・・緩衝部材
40・・・焼結ダイ
50・・・パンチ
51、52・・・押圧部材
60・・・離形シート
70・・・発光素子
80・・・遮光部材
90・・・基体
100、200、300・・・蛍光体含有部材
400、500・・・発光装置
DESCRIPTION OF SYMBOLS 10 ... Fluorescent member 20 ... Light reflecting member 30 ... Buffer member 40 ... Sintering die 50 ... Punch 51, 52 ... Pressing member 60 ... Release sheet 70 ... Light-emitting element 80 ... light-shielding member 90 ... base 100, 200, 300 ... phosphor-containing member 400, 500 ... light-emitting device

Claims (15)

複数の凸部が第1主面の側に設けられた、蛍光体を含む蛍光部材を準備する工程と、
粉末状の光反射部材を準備する工程と、
前記蛍光部材における複数の凸部の間に前記粉末状の光反射部材を配置する工程と、
前記粉末状の光反射部材を焼結して、前記蛍光部材と前記光反射部材とが一体に形成された焼結体を得る工程と、
前記第1主面の側の面が前記蛍光部材及び前記光反射部材の双方からなり、且つ前記第2主面の側の面が前記蛍光部材のみからなる又は前記蛍光部材及び前記光反射部材の双方からなる蛍光体含有部材が得られるように、前記蛍光部材の前記第1主面の側又は前記第2主面の側の少なくとも一方の側から前記焼結体の一部を除去する工程と、を備えることを特徴とする蛍光体含有部材の製造方法。
A step of preparing a fluorescent member including a phosphor, wherein a plurality of convex portions are provided on the first main surface side;
Preparing a powdery light reflecting member;
Arranging the powdery light reflecting member between a plurality of convex portions in the fluorescent member;
Sintering the powdery light reflecting member to obtain a sintered body in which the fluorescent member and the light reflecting member are integrally formed; and
The surface on the first main surface side is composed of both the fluorescent member and the light reflecting member, and the surface on the second main surface side is composed only of the fluorescent member, or of the fluorescent member and the light reflecting member. Removing a part of the sintered body from at least one side of the first main surface side or the second main surface side of the fluorescent member so that a phosphor-containing member composed of both is obtained; The manufacturing method of the fluorescent substance containing member characterized by the above-mentioned.
複数の凹部が第1主面の側に設けられた光反射部材を準備する工程と、
蛍光体を含む粉末状の蛍光部材を準備する工程と、
前記光反射部材における複数の凹部に前記粉末状の蛍光部材を配置する工程と、
前記粉末状の蛍光部材を焼結して、前記光反射部材と前記蛍光部材とが一体に形成された焼結体を得る工程と、
前記第1主面と反対側にある第2主面の側の面が前記蛍光部材及び前記光反射部材の双方からなり、且つ、前記第1主面の側の面が前記蛍光部材のみからなる又は前記蛍光部材及び前記光反射部材の双方からなる蛍光体含有部材が得られるように、少なくとも前記光反射部材の前記第2主面の側から前記焼結体の一部を除去する工程と、を備えることを特徴とする蛍光体含有部材の製造方法。
Preparing a light reflecting member provided with a plurality of recesses on the first main surface side;
A step of preparing a powdery fluorescent member containing a phosphor;
Arranging the powdery fluorescent member in a plurality of recesses in the light reflecting member;
Sintering the powdery fluorescent member to obtain a sintered body in which the light reflecting member and the fluorescent member are integrally formed;
A surface on the second main surface side opposite to the first main surface is composed of both the fluorescent member and the light reflecting member, and a surface on the first main surface side is composed of only the fluorescent member. Or removing a part of the sintered body from at least the second main surface side of the light reflecting member so that a phosphor-containing member composed of both the fluorescent member and the light reflecting member is obtained; The manufacturing method of the fluorescent substance containing member characterized by the above-mentioned.
互いに反対側にある第1主面及び第2主面を貫通する複数の貫通孔が設けられた光反射部材を準備する工程と、
蛍光体を含む粉末状の蛍光部材を準備する工程と、
前記複数の貫通孔に前記粉末状の蛍光部材を配置する工程と、
前記粉末状の蛍光部材を焼結して、前記光反射部材と前記蛍光部材とが一体に形成された焼結体を得る工程と、
前記第1主面の側の面又は前記第2主面の側の面の一方の面が前記蛍光部材及び前記光反射部材の双方からなり、且つ、前記第1主面の側の面又は前記第2主面の側の面の他方の面が前記蛍光部材のみからなる又は前記蛍光部材及び前記光反射部材の双方からなる蛍光体含有部材が得られるように、前記蛍光部材の前記第1主面の側又は前記第2主面の側の少なくとも一方の側から前記焼結体の一部を除去する工程と、を備えることを特徴とする蛍光体含有部材の製造方法。
Preparing a light reflecting member provided with a plurality of through holes penetrating the first main surface and the second main surface on opposite sides;
A step of preparing a powdery fluorescent member containing a phosphor;
Arranging the powdery fluorescent member in the plurality of through holes;
Sintering the powdery fluorescent member to obtain a sintered body in which the light reflecting member and the fluorescent member are integrally formed;
One surface of the first main surface side or the second main surface side surface is composed of both the fluorescent member and the light reflecting member, and the first main surface side surface or the The first main surface of the fluorescent member is obtained such that the other surface of the second main surface side is made of only the fluorescent member or a phosphor-containing member made of both the fluorescent member and the light reflecting member. And a step of removing a part of the sintered body from at least one of the surface side and the second main surface side.
前記焼結体の一部を除去する工程において、前記第1主面の側の面及び前記第2主面の側の面のそれぞれが前記蛍光部材及び前記光反射部材の双方からなるように、第1主面及び第2主面の少なくとも一方の主面の側から前記焼結体の一部を除去することを特徴とする請求項1〜3のいずれか1項に記載の蛍光体含有部材の製造方法。   In the step of removing a part of the sintered body, each of the surface on the first main surface side and the surface on the second main surface side is composed of both the fluorescent member and the light reflecting member. The phosphor-containing member according to any one of claims 1 to 3, wherein a part of the sintered body is removed from at least one of the first main surface and the second main surface. Manufacturing method. 前記焼結体を得る工程において、放電プラズマ焼結法又はホットプレス焼結法により焼結することを特徴とする請求項1〜4のいずれか1項に記載の蛍光体含有部材の製造方法。   The method for producing a phosphor-containing member according to any one of claims 1 to 4, wherein in the step of obtaining the sintered body, sintering is performed by a discharge plasma sintering method or a hot press sintering method. 前記蛍光部材はAlを含む酸化物の蛍光体を含み、
前記光反射部材は酸化アルミニウムを含むことを特徴とする請求項1〜5のいずれか1項に記載の蛍光体含有部材の製造方法。
The fluorescent member includes an oxide phosphor containing Al,
The said light reflection member contains aluminum oxide, The manufacturing method of the fluorescent substance containing member of any one of Claims 1-5 characterized by the above-mentioned.
前記蛍光部材は、焼結助剤として酸化アルミニウムを含むことを特徴とする請求項6に記載の蛍光体含有部材の製造方法。   The said fluorescent member contains aluminum oxide as a sintering auxiliary agent, The manufacturing method of the fluorescent substance containing member of Claim 6 characterized by the above-mentioned. 前記焼結体を得る工程の後に、前記焼結体を酸化雰囲気で熱処理する工程を備えることを特徴とする請求項6又は7に記載の蛍光体含有部材の製造方法。   The method for producing a phosphor-containing member according to claim 6 or 7, further comprising a step of heat-treating the sintered body in an oxidizing atmosphere after the step of obtaining the sintered body. 前記蛍光部材を準備する工程は、
容器に蛍光体を含む粉末状の蛍光部材を充填する工程と、
複数の凹部が設けられた押圧部材で前記粉末状の蛍光部材を押圧することにより、前記複数の凸部が設けられた蛍光部材を作製する工程と、を含み、
前記焼結体を得る工程において、前記蛍光部材及び前記光反射部材を焼結することを特徴とする請求項1又は請求項1を引用する請求項4〜8のいずれか1項に記載の蛍光体含有部材の製造方法。
The step of preparing the fluorescent member includes
Filling a container with a powdery fluorescent member containing a phosphor;
Producing a fluorescent member provided with the plurality of convex portions by pressing the powdery fluorescent member with a pressing member provided with a plurality of concave portions,
The fluorescence according to any one of claims 4 to 8, wherein the fluorescent member and the light reflecting member are sintered in the step of obtaining the sintered body. A method for producing a body-containing member.
前記押圧部材は、その凹部の開口が底面から離れるにしたがって広くなるように形成されていることを特徴とする請求項9に記載の蛍光体含有部材の製造方法。   The method for manufacturing a phosphor-containing member according to claim 9, wherein the pressing member is formed so that the opening of the concave portion becomes wider as the distance from the bottom surface increases. 前記蛍光部材を準備する工程は、粉末状の蛍光体と、前記光反射部材と同一の材料を含む粉末状の焼結助剤と、を混合した後で焼結し、前記複数の凸部が第1主面の側に設けられた焼結体からなる蛍光部材を得る工程を有し、
前記粉末状の光反射部材を焼結する際の焼結温度は、前記粉末状の蛍光体と前記粉末状の焼結助剤とを混合した後で焼結する際の焼結温度よりも低いことを特徴とする請求項1又は請求項1を引用する請求項4〜8のいずれか1項に記載の蛍光体含有部材の製造方法。
In the step of preparing the fluorescent member, the powdery phosphor and a powdery sintering aid containing the same material as the light reflecting member are mixed and then sintered. Having a step of obtaining a fluorescent member made of a sintered body provided on the first main surface side,
The sintering temperature when sintering the powdery light reflecting member is lower than the sintering temperature when sintering after mixing the powdered phosphor and the powdery sintering aid. The method for producing a phosphor-containing member according to any one of claims 4 to 8, which refers to claim 1 or claim 1.
前記蛍光部材を準備する工程において、焼結体からなる蛍光部材に複数の凸部を形成することにより、前記複数の凸部が第1主面の側に設けられた蛍光部材を得ることを特徴とする請求項1、請求項1を引用する請求項4〜8のいずれか1項、又は請求項11に記載の蛍光体含有部材の製造方法。   In the step of preparing the fluorescent member, by forming a plurality of convex portions on the fluorescent member made of a sintered body, a fluorescent member in which the plurality of convex portions are provided on the first main surface side is obtained. The manufacturing method of the fluorescent substance containing member of any one of Claims 4-8 which cites Claim 1 and Claim 1 which are to be referred to, or Claim 11. 前記凸部を形成する工程において、マシニングセンタを用いて前記凸部を形成することを特徴とする請求項12に記載の蛍光体含有部材の製造方法。   The method for producing a phosphor-containing member according to claim 12, wherein in the step of forming the convex portion, the convex portion is formed using a machining center. 前記焼結体の一部を除去する工程の後に、前記焼結体を個片化する工程を備え、
前記個片化する工程において、個片化した後に、前記第1主面の側の面又は前記第2主面の側の面の少なくとも一方の面において前記蛍光部材の周囲に前記光反射部材が配置された前記蛍光体含有部材を得ることを特徴とする請求項1〜13のいずれか1項に記載の蛍光体含有部材の製造方法。
After the step of removing a part of the sintered body, comprising a step of dividing the sintered body into pieces,
In the step of dividing into pieces, the light reflecting member is formed around the fluorescent member on at least one surface of the first main surface side or the second main surface side after being divided into pieces. The method for producing a phosphor-containing member according to claim 1, wherein the phosphor-containing member arranged is obtained.
前記光反射部材を準備する工程は、
容器に粉末状の光反射部材を充填する工程と、
複数の凸部が設けられた押圧部材で前記粉末状の光反射部材を押圧することにより、前記複数の凹部が設けられた光反射部材を作製する工程と、を含み、
前記焼結体を得る工程において、前記蛍光部材及び前記光反射部材を焼結する、ことを特徴とする請求項2又は請求項2を引用する請求項4〜8のいずれか1項に記載の蛍光体含有部材の製造方法。
The step of preparing the light reflecting member includes:
Filling the container with a powdery light reflecting member;
Producing a light reflecting member provided with the plurality of recesses by pressing the powdery light reflecting member with a pressing member provided with a plurality of protrusions,
9. The method according to claim 4, wherein in the step of obtaining the sintered body, the fluorescent member and the light reflecting member are sintered. 9. A method for producing a phosphor-containing member.
JP2016222875A 2016-02-24 2016-11-16 Method of manufacturing phosphor-containing member Active JP6536540B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1716774.3A GB2554226B (en) 2016-02-24 2017-02-22 Method of manufacturing fluorescent-material-containing member
GB1702843.2A GB2548706B (en) 2016-02-24 2017-02-22 Method of manufacturing fluorescent-material-containing member
DE102017103709.8A DE102017103709A1 (en) 2016-02-24 2017-02-23 Process for the preparation of a fluorescent material-containing element
US15/440,292 US10400993B2 (en) 2016-02-24 2017-02-23 Method of manufacturing fluorescent-material-containing member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032775 2016-02-24
JP2016032775 2016-02-24

Publications (2)

Publication Number Publication Date
JP2017149929A true JP2017149929A (en) 2017-08-31
JP6536540B2 JP6536540B2 (en) 2019-07-03

Family

ID=59741400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222875A Active JP6536540B2 (en) 2016-02-24 2016-11-16 Method of manufacturing phosphor-containing member

Country Status (2)

Country Link
JP (1) JP6536540B2 (en)
GB (1) GB2554226B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052741A (en) * 2018-11-07 2020-05-15 엘지전자 주식회사 Phosphor for laser lightsource and method for producing the same
WO2020161167A1 (en) * 2019-02-06 2020-08-13 Osram Opto Semiconductors Gmbh Method to reduce darkening in phosphor in glass (pig) made by sps
US10775023B2 (en) 2018-09-27 2020-09-15 Nichia Corporation Wavelength conversion member complex, light emitting device, and method for manufacturing wavelength conversion member complex
US11920068B2 (en) 2020-07-13 2024-03-05 Nichia Corporation Method of manufacturing wavelength conversion member and wavelength conversion member
US11939667B2 (en) 2020-04-28 2024-03-26 Nichia Corporation Method for manufacturing wavelength conversion member and light emitting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335835B2 (en) 2017-12-20 2022-05-17 Lumileds Llc Converter fill for LED array
US10910433B2 (en) * 2018-12-31 2021-02-02 Lumileds Llc Pixelated LED array with optical elements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101367A (en) * 2002-09-10 2004-04-02 Hitachi Medical Corp Phosphor, radiation detector, and medical image diagnostic equipment
JP2011021062A (en) * 2009-07-13 2011-02-03 Koito Mfg Co Ltd Fluorescent substance, light-emitting module and lighting fixture for vehicle
JP2011091068A (en) * 2009-10-20 2011-05-06 Sony Corp Luminescent color conversion member and method of manufacturing the same, and light-emitting element
US20110157865A1 (en) * 2009-12-28 2011-06-30 Sharp Kabushiki Kaisha Illumination device
US20110235339A1 (en) * 2007-12-20 2011-09-29 San-Woei Shyu Molded Fluorescence Plastic Lens and Manufacturing Method Thereof
KR20140054626A (en) * 2012-10-29 2014-05-09 연세대학교 산학협력단 Led package having structure capable of improving luminescence efficiency and method of manufacturing the same
JP2014107351A (en) * 2012-11-26 2014-06-09 Stanley Electric Co Ltd Semiconductor light-emitting device, manufacturing method of the same and light device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503676B2 (en) * 2006-07-26 2009-03-17 Kyocera Corporation Light-emitting device and illuminating apparatus
US9373761B2 (en) * 2014-09-23 2016-06-21 Osram Sylvania Inc. Patterned thin-film wavelength converter and method of making same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101367A (en) * 2002-09-10 2004-04-02 Hitachi Medical Corp Phosphor, radiation detector, and medical image diagnostic equipment
US20110235339A1 (en) * 2007-12-20 2011-09-29 San-Woei Shyu Molded Fluorescence Plastic Lens and Manufacturing Method Thereof
JP2011021062A (en) * 2009-07-13 2011-02-03 Koito Mfg Co Ltd Fluorescent substance, light-emitting module and lighting fixture for vehicle
JP2011091068A (en) * 2009-10-20 2011-05-06 Sony Corp Luminescent color conversion member and method of manufacturing the same, and light-emitting element
US20110157865A1 (en) * 2009-12-28 2011-06-30 Sharp Kabushiki Kaisha Illumination device
KR20140054626A (en) * 2012-10-29 2014-05-09 연세대학교 산학협력단 Led package having structure capable of improving luminescence efficiency and method of manufacturing the same
JP2014107351A (en) * 2012-11-26 2014-06-09 Stanley Electric Co Ltd Semiconductor light-emitting device, manufacturing method of the same and light device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10775023B2 (en) 2018-09-27 2020-09-15 Nichia Corporation Wavelength conversion member complex, light emitting device, and method for manufacturing wavelength conversion member complex
KR20200052741A (en) * 2018-11-07 2020-05-15 엘지전자 주식회사 Phosphor for laser lightsource and method for producing the same
KR102652590B1 (en) 2018-11-07 2024-04-01 엘지전자 주식회사 Phosphor for laser lightsource and method for producing the same
WO2020161167A1 (en) * 2019-02-06 2020-08-13 Osram Opto Semiconductors Gmbh Method to reduce darkening in phosphor in glass (pig) made by sps
US11046607B2 (en) 2019-02-06 2021-06-29 Osram Opto Semiconductors Gmbh Method to reduce darkening in phosphor in glass (PIG) made by SPS
US11939667B2 (en) 2020-04-28 2024-03-26 Nichia Corporation Method for manufacturing wavelength conversion member and light emitting device
US11920068B2 (en) 2020-07-13 2024-03-05 Nichia Corporation Method of manufacturing wavelength conversion member and wavelength conversion member

Also Published As

Publication number Publication date
GB2554226B (en) 2019-11-20
GB2554226A (en) 2018-03-28
JP6536540B2 (en) 2019-07-03
GB201716774D0 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6536540B2 (en) Method of manufacturing phosphor-containing member
JP6430123B2 (en) Wavelength converter and light emitting device using the same
JP6044073B2 (en) Wavelength conversion device and light emitting device using the same
JP6912737B2 (en) Optical parts and manufacturing method of optical parts
JP6511766B2 (en) Light emitting device
CN108139523A (en) Wavelength changing element and light-emitting device
JP6627914B2 (en) Fluorescent member, optical component, and light emitting device
US11162645B2 (en) Light emitting device including heat dissipation member
JP2009096653A (en) Manufacturing method of color converting member
EP3450413B1 (en) Fluorescent member, optical component, and light emitting device
EP3553573A1 (en) Method for manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
JP2016157905A (en) Optical component
JP2018077535A (en) Wavelength conversion member and light source device using the same
US10400993B2 (en) Method of manufacturing fluorescent-material-containing member
JP2020052234A (en) Wavelength conversion member composite, light emitting device and method for manufacturing wavelength conversion member composite
US11920068B2 (en) Method of manufacturing wavelength conversion member and wavelength conversion member
JP7053984B2 (en) Manufacturing method of optical parts and light emitting device, as well as optical parts and light emitting device
CN110494776B (en) Wavelength conversion member and light emitting device
JP2018018912A (en) Method for manufacturing light emitting device
JP7322306B1 (en) ceramic phosphor array

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6536540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250