JP2019044220A - Demolding method for cylindrical member - Google Patents

Demolding method for cylindrical member Download PDF

Info

Publication number
JP2019044220A
JP2019044220A JP2017167146A JP2017167146A JP2019044220A JP 2019044220 A JP2019044220 A JP 2019044220A JP 2017167146 A JP2017167146 A JP 2017167146A JP 2017167146 A JP2017167146 A JP 2017167146A JP 2019044220 A JP2019044220 A JP 2019044220A
Authority
JP
Japan
Prior art keywords
film
matrix
electroformed film
electroformed
cylindrical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017167146A
Other languages
Japanese (ja)
Inventor
幸司 花島
Koji Hanashima
幸司 花島
若林 孝幸
Takayuki Wakabayashi
孝幸 若林
高橋 純一
Junichi Takahashi
純一 高橋
義文 岡本
Yoshibumi Okamoto
義文 岡本
久 酒巻
Hisashi Sakamaki
久 酒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2017167146A priority Critical patent/JP2019044220A/en
Publication of JP2019044220A publication Critical patent/JP2019044220A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a demolding method in which a member is easy to demold from a matrix regardless of the size of a gap between the matrix and an electroformed film.SOLUTION: A demolding method for a cylindrical member comprises: a step in which an insulation material is arranged on part of a cylindrical metal matrix for molding a cylindrical member; a step in which an electroformed film is formed so that the insulation material includes a hole on the side face of the cylindrical metal matrix; and a step in which the electroformed film is demolded from the cylindrical matrix using the hole. The insulation material may be one of metal oxide films, masking tapes, rubbers, and resists.SELECTED DRAWING: Figure 1

Description

本発明は、金属母型へ電鋳法により形成された円筒部材を製造するに際して、母型からの電鋳膜の離型方法に関する。   The present invention relates to a method for releasing an electroformed film from a matrix when manufacturing a cylindrical member formed by electroforming a metal matrix.

電鋳プロセスにおいて、母型や電鋳金型等に電気メッキにより所定厚みの電鋳膜を形成後、母型から電鋳膜を離型する方法として離型被膜を形成する方法が主に用いられている。離型被膜の形成方法として、ワックスやグリ−スなどを塗布する機械的処理方法や10%NaOH溶液中での陽極電解やクロム酸溶液等の化学処理液により形成する化学的処理被膜方法等がある。   In the electroforming process, after forming an electroformed film of a predetermined thickness by electroplating on a matrix mold or an electroforming mold, a method of forming a mold release coating is mainly used as a method of releasing the electroformed film from the matrix. ing. As a method of forming a release film, a mechanical treatment method of applying wax, grease or the like, a chemical treatment film method of forming by anodic electrolysis in a 10% NaOH solution or a chemical treatment solution such as a chromic acid solution is there.

また、端面処理後に密着している電鋳膜内へ圧縮空気を供給することで離型を行う方法等(例えば特許文献1参照)が提案されている。   In addition, there has been proposed a method of releasing the mold by supplying compressed air into the electroformed film in close contact after the end surface treatment (see, for example, Patent Document 1).

特開平5−98487号公報Unexamined-Japanese-Patent No. 5-98487

特許文献1の離型方法では、圧縮空気等の流体を供給する隙間が必要となってしまう。例えば、電鋳膜を厚膜化や高強度化していくと、流体を供給する隙間が狭くなってしまう場合がある。   In the mold release method of Patent Document 1, a gap for supplying a fluid such as compressed air is required. For example, when the electroformed film is thickened or strengthened, the gap for supplying the fluid may be narrowed.

そこで本発明は母型と電鋳膜の隙間の大きさに関わらず母型から離型し易い脱型方法を提供する。   Therefore, the present invention provides a method for easily removing molds from the matrix regardless of the size of the gap between the matrix and the electroformed film.

上記課題を解決する為に、本発明の円筒部材の離型方法は、円筒部材を成形する円筒状金属母型の一部分に絶縁材料を配置する工程と、前記円筒状金属母型の側面に前記絶縁材料によって穴形状を含むように電鋳膜を形成する工程と、前記穴形状を用いて、前記電鋳膜を前記円筒形状母型から離型する工程とを有することを特徴とする。   In order to solve the above-mentioned subject, in the mold release method of the cylindrical member of the present invention, the process of arranging insulating material in a part of cylindrical metal matrix which molds a cylindrical member, and the side of the cylindrical metal matrix The method further comprises the steps of: forming an electroformed film so as to include a hole shape by using an insulating material; and releasing the electroformed film from the cylindrical mold using the hole shape.

本発明によれば、母型から電鋳膜を容易に離型することができる。   According to the present invention, the electroformed film can be easily released from the matrix.

(a)本発明の実施形態にかかる離型方法に関する円筒部材及び絶縁処理の一例を示す断面図である。(b)絶縁処理後の母型1の斜視図である。(A) It is sectional drawing which shows an example of the cylindrical member regarding the mold release method concerning embodiment of this invention, and an insulation process. (B) It is a perspective view of the mother die 1 after the insulation process. 円筒部材及び離型装置の離型時における断面図である。It is sectional drawing at the time of mold release of a cylindrical member and a mold release apparatus. 実施例2における絶縁処理後の母型1の斜視図である。FIG. 10 is a perspective view of a mother die 1 after insulation processing in Example 2; 絶縁処理材周辺の電鋳膜析出状態図である。It is an electroforming film precipitation state figure around an insulation treatment material. (a)実施例2の母型及び円筒部材の断面図である。(b)実施例3の母型及び円筒部材の断面図である。(A) It is sectional drawing of the matrix and cylindrical member of Example 2. FIG. (B) It is sectional drawing of the matrix and cylindrical member of Example 3. FIG. (a)実施例4の母型及び円筒部材の断面図である。(b)実施例5における母型及び円筒部材の断面図である。(A) It is sectional drawing of the mother die of Example 4, and a cylindrical member. (B) It is sectional drawing of the matrix in Example 5, and a cylindrical member. レジストを用いて形成した絶縁材料の形状断面図である。It is shape sectional drawing of the insulating material formed using the resist. 実施例8における母型及び円筒部材の断面図である。FIG. 18 is a cross-sectional view of a matrix and a cylindrical member in Example 8;

本発明の実施形態について図面を用いて説明する。図1(a)は本発明の実施形態における断面図を示しており、離型前の構成の一例である。円筒状金属性母型である母型1の両端部に絶縁リング2をセットする。そして、電鋳膜に対して穴形状を形成したい部分に対し、絶縁材料3を配置する処理を行う。その後、電鋳法により電鋳膜4を析出させることにより円筒部材を形成し、絶縁リング2及び、絶縁材料3を除去する。図1(b)は、図1(a)の斜視図である。   Embodiments of the present invention will be described using the drawings. FIG. 1A shows a cross-sectional view of the embodiment of the present invention, which is an example of the configuration before releasing the mold. Insulating rings 2 are set on both ends of a mold 1 which is a cylindrical metal mold. And the process which arrange | positions the insulating material 3 is performed with respect to the part which wants to form a hole shape with respect to an electroforming film. Thereafter, the electroformed film 4 is deposited by electroforming to form a cylindrical member, and the insulating ring 2 and the insulating material 3 are removed. FIG. 1 (b) is a perspective view of FIG. 1 (a).

図1(a)では、母型1の端部に電鋳膜4が形成されないように絶縁リング2を用いている。他の方法としては、母型1の端部を、例えば陽極酸化により絶縁膜が形成可能な金属材料であるアルミニウム、チタン、タングステンのような材料で構成してもよい。また、母型1の表面に陽極酸化可能な前述の金属材料からなる薄膜を形成し陽極酸化により表面を酸化しても良い。この場合は、側面ではなく底面にのみ陽極酸化可能な上記の金属材料からなる薄膜を形成し、陽極酸化により表面を酸化することもできる。   In FIG. 1A, the insulating ring 2 is used so that the electroformed film 4 is not formed at the end of the matrix 1. As another method, the end of the mold 1 may be made of, for example, a material such as aluminum, titanium or tungsten which is a metal material capable of forming an insulating film by anodic oxidation. Alternatively, a thin film made of the above-described metal material that can be anodized may be formed on the surface of the mold 1 and the surface may be oxidized by anodization. In this case, a thin film made of the above-described metal material that can be anodized can be formed not on the side surface but on the bottom surface, and the surface can be oxidized by anodization.

電鋳膜4(電析被膜)に対して穴を形成する部分に対して実施する絶縁処理に関しては、上記酸化膜による絶縁方法の他に、マスキングテ−プ、ゴム、レジスト等の絶縁材料を用いることもできる。   With regard to the insulation processing performed on the portion forming holes in the electroformed film 4 (electrodeposited film), an insulating material such as a masking tape, rubber, resist, etc. in addition to the insulating method using the oxide film described above It can also be used.

絶縁材料に関しては、電鋳浴の種類に応じて、耐酸性や耐アルカリ性に優れた材料を選定する必要がある。   With regard to the insulating material, it is necessary to select a material having excellent acid resistance and alkali resistance depending on the type of electroforming bath.

マスキングテ−プであれば、例えば、優れた耐食性・耐熱性を持つポリイミド製のテ−プを用いることができる。マスキングテ−プであれば、母型1に対して、容易に絶縁処理を施すことができる。   If it is a masking tape, the tape made from the polyimide which has the outstanding corrosion resistance and heat resistance, for example can be used. In the case of the masking tape, the mother die 1 can be easily subjected to the insulation treatment.

また、電鋳膜に対して、付与したい穴形状が微小である場合や、複雑な形状を付与したい場合、寸法公差が厳しい場合等は、レジストを使用すれば良い。レジストに関しては、液状、フィルム状、電着レジスト等があるが、いずれを用いても良い。母型1への塗布に関しては、フォトリソグラフィ−法や印刷法を用いることで、マスキングテ−プでは形成が困難な形状の絶縁処理を施すことができる。   Further, a resist may be used in the case where the hole shape to be provided is minute for the electroformed film, in the case where it is desired to give a complicated shape, in the case where the dimensional tolerance is strict, The resist may be in the form of liquid, film, electrodeposition resist or the like, and any of them may be used. With respect to the application to the mold 1, by using a photolithography method or a printing method, it is possible to apply an insulating process of a shape that is difficult to form with a masking tape.

電鋳膜に対して穴を形成する部分に対して実施した絶縁材料の剥離に関しては、マスキングテ−プであれば、電鋳後の特別な処理は不要で、容易に剥離することができる。一方、レジストを用いる場合には、各種レジストに適合する剥離液を使用することで、容易に剥離することができる。   With regard to the peeling of the insulating material carried out to the portion forming the hole in the electroformed film, if it is a masking tape, special treatment after electroforming is unnecessary and it can be easily peeled off. On the other hand, in the case of using a resist, peeling can be easily performed by using a peeling solution compatible with various resists.

電鋳法で形成する電鋳膜の材質はニッケル、ニッケル−鉄、ニッケル−鉄−コバルト、ニッケル−コバルト、ニッケル−リン、ニッケル−鉄−リン合金等がある。その他、例えば、鉄、またはその合金、銅またはその合金、コバルトまたはその合金、タングステン合金、微粒子分散金属などを用いることもできる。母型1の材質としては鉄またはその合金、ステンレス合金、アルミまたはその合金、銅またはその合金、タングステン合金などに必要に応じて耐摩耗性や耐食性等の表面処理を施したものを適宜使用すれば良い。   The material of the electroformed film formed by the electroforming method includes nickel, nickel-iron, nickel-iron-cobalt, nickel-cobalt, nickel-phosphorus, nickel-iron-phosphorus alloy and the like. In addition, for example, iron or an alloy thereof, copper or an alloy thereof, cobalt or an alloy thereof, a tungsten alloy, a fine particle dispersed metal or the like can also be used. As the material of matrix 1, iron or its alloy, stainless alloy, aluminum or its alloy, copper or its alloy, tungsten alloy, etc. with surface treatment such as wear resistance or corrosion resistance as needed can be appropriately used. Just do it.

被膜の厚さはベルトの形態として、10〜1000μmであることが好ましい。10μm以下では膜厚が薄すぎるため、離型時に電鋳膜が破れてしまう。1000μm以上では、電鋳膜の応力が高くなりすぎるため、母型への密着性が高くなる。加えて、電鋳膜自体の剛性が強くなるため、離型時の抵抗が増し、離型時に電鋳膜が変形する。円筒部材を金型として使用する場合、100μm未満では電鋳膜の剛性が不十分であり、金型として十分な耐久性が得られない。一方、1000μm以上では、上記理由から離型が難しくなるという問題がある。よって、円筒部材を金型として使用する場合には、電鋳膜の厚さとしては、100〜1000μmの範囲がより好ましい。   The thickness of the coating is preferably 10 to 1000 μm in the form of a belt. If the thickness is 10 μm or less, the film thickness is too thin, so the electroformed film is broken at the time of mold release. When the thickness is 1000 μm or more, the stress of the electroformed film becomes too high, and the adhesion to the matrix becomes high. In addition, since the rigidity of the electroformed film itself becomes strong, the resistance at the time of mold release is increased, and the electroformed film is deformed at the time of mold release. When the cylindrical member is used as a mold, if the thickness is less than 100 μm, the rigidity of the electroformed film is insufficient and sufficient durability as a mold can not be obtained. On the other hand, at 1000 μm or more, there is a problem that the mold release becomes difficult due to the above reason. Therefore, when using a cylindrical member as a metal mold | die, as thickness of an electroforming film, the range of 100-1000 micrometers is more preferable.

母型1に対して、絶縁リング2を両端から25mmの部分まで絶縁処理を施す。電鋳膜に穴形状を付与するため、図1(b)に示すように、母型1の周方向に対して、点対称の位置となるように、90°ピッチで、合計4か所、円形の絶縁材料3を配置する絶縁処理を施す。その後、母型1に電鋳処置を行い、絶縁処理を施していない部分に対して、電鋳ニッケル−鉄合金の電鋳膜4を形成する。絶縁材料を除去し、電鋳膜4を離型することで、穴を4か所備えた電鋳膜からなる円筒部材が得られる。このときの穴の形状は、大きすぎると円筒部材の剛性が小さくなり、小さすぎると、脱型するためにひっかけにくい、そのため、穴形状の直径の大きさは、母型1の直径の大きさに対して、0.01〜0.04が好ましい。より好ましくは、穴形状の直径の大きさは、母型1の直径の大きさに対して、0.025〜0.035が好ましい。   The insulating ring 2 is subjected to the insulating treatment to the portion of 25 mm from both ends of the mother die 1. In order to give a hole shape to the electroformed film, as shown in FIG. 1 (b), four points in total at 90 ° pitch so as to be point symmetrical with respect to the circumferential direction of the matrix 1 An insulation process is performed to arrange a circular insulating material 3. Thereafter, electroforming treatment is performed on the matrix 1, and an electroforming film 4 of electroforming nickel-iron alloy is formed on a portion which is not subjected to the insulation treatment. By removing the insulating material and releasing the electroformed film 4, a cylindrical member made of an electroformed film provided with four holes can be obtained. At this time, when the shape of the hole is too large, the rigidity of the cylindrical member becomes small, and when it is too small, it is difficult to catch because of demolding. Therefore, the diameter of the hole shape is the diameter of the master 1 However, 0.01 to 0.04 is preferable. More preferably, the diameter of the hole shape is preferably 0.025 to 0.035 with respect to the diameter of the matrix 1.

電鋳膜の組成として、ニッケル−鉄合金を用いた。ニッケル−鉄合金を用いた理由としては、ニッケル単体よりも硬度、引っ張り強度が上昇するため、電鋳金型として使用する際に優れた性能を示す為である。他にもニッケル−リン合金、ニッケル−鉄−リン合金、ニッケル−コバルト合金、ニッケル−鉄−コバルト合金等を選択することにより、金型として使用する際、ニッケル単体よりも優れた性能を示す。一方で、合金化されることにより、電鋳膜の応力調整が難しくなり、電鋳膜を母型から離型しにくくなる。そのため、複数の応力調整剤の添加や、薬品濃度を精密に維持する必要があり、めっき浴の管理が難しくなる。本発明を用いることで、めっき浴の複雑な管理をすることなく、容易に母型から電鋳膜を脱型することができる。   A nickel-iron alloy was used as the composition of the electroformed film. The reason why the nickel-iron alloy is used is that hardness and tensile strength are higher than that of nickel alone, and therefore, it shows excellent performance when used as an electroforming mold. In addition, by selecting a nickel-phosphorus alloy, a nickel-iron-phosphorus alloy, a nickel-cobalt alloy, a nickel-iron-cobalt alloy, etc., when used as a mold, it exhibits better performance than nickel alone. On the other hand, by alloying, stress adjustment of the electroformed film becomes difficult, and it becomes difficult to release the electroformed film from the matrix. Therefore, it is necessary to add a plurality of stress modifiers and maintain the chemical concentration precisely, which makes it difficult to control the plating bath. By using the present invention, the electroformed film can be easily removed from the matrix without complicated management of the plating bath.

本発明における電鋳膜中の鉄含有量は1〜70wt%である。硬度及び強度を高めるためには、5〜50wt%とすることが好ましい。更に、電鋳膜に柔軟性を付与したい場合には、鉄含有量を10〜30wt%とすることがより好ましい。電鋳膜中の鉄含有量を10〜30wt%とすることで、硬度及び強度を高めつつ、柔軟性を付与することができる。   The iron content in the electroformed film in the present invention is 1 to 70 wt%. In order to increase hardness and strength, 5 to 50 wt% is preferable. Furthermore, when it is desired to impart flexibility to the electroformed film, it is more preferable to set the iron content to 10 to 30 wt%. By setting the iron content in the electroformed film to 10 to 30 wt%, flexibility can be imparted while enhancing hardness and strength.

また、本発明における電鋳膜には、不純物として硫黄、炭素、マンガンが含まれる可能性が有る。しかし、硫黄含有量0.1wt%以下、炭素含有量0.01wt%以下、マンガン含有量0.1wt%以下であれば、電鋳膜の物性に影響を与えないため、許容できる。また、熱膨張率を小さくする場合には、インバ−合金となる組成を選択することもできる。即ち、鉄に36wt%のニッケルを加え、0.7wt%程のマンガンと、0.2wt%未満の炭素が含まれる。   In addition, the electroformed film in the present invention may contain sulfur, carbon and manganese as impurities. However, a sulfur content of 0.1 wt% or less, a carbon content of 0.01 wt% or less, and a manganese content of 0.1 wt% or less are acceptable because they do not affect the physical properties of the electroformed film. Moreover, when making a thermal expansion coefficient small, the composition used as an invar alloy can also be selected. That is, 36 wt% of nickel is added to iron, and about 0.7 wt% of manganese and less than 0.2 wt% of carbon are contained.

電鋳膜4の被膜特性は下記のようになった。   The film properties of the electroformed film 4 were as follows.

<電鋳ニッケル−鉄合金 被膜特性>
硬度 Hv(0.1kg)500〜600
引っ張り強度 1500〜2100MPa
<Characteristics of electroformed nickel-iron alloy film>
Hardness Hv (0.1 kg) 500 to 600
Tensile strength 1500-2100 MPa

以下本発明を実施例によりさらに具体的に説明する。但し本発明は係る実施例のみに限定されるものではない。   Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited to only such embodiments.

(実施例1)
実施例1において、母型1の寸法は、直径200mm、長さ850mmであり、両端から25mmの部分まで絶縁処理を施す。電鋳膜に穴形状を付与するため、図1(b)の斜視図に示すように、直径6.5mmの円の中心が上端部から125mmに絶縁材料3を配置する。円形の絶縁材料3を母型1の中心軸を対称中心として、点対称の位置となるように、90°ピッチで、合計4か所配置する絶縁処理を施す。その後、母型1に電鋳法を用いて、絶縁処理を施していない部分に対して、電鋳ニッケル−鉄合金の電鋳膜4を形成する。絶縁材料3を除去し、電鋳膜4を離型することで、長さ800mm、内径200mm、Φ6.5mmの穴を4か所備えた円筒部材が得られる。
Example 1
In Example 1, the dimensions of the matrix die 1 are 200 mm in diameter and 850 mm in length, and insulation processing is applied up to 25 mm from both ends. In order to impart a hole shape to the electroformed film, as shown in the perspective view of FIG. 1 (b), the insulating material 3 is disposed such that the center of the circle having a diameter of 6.5 mm is 125 mm from the upper end. An insulation process is performed in which four circular insulation materials 3 are arranged at 90 ° pitch so as to be point-symmetrical with the center axis of the matrix 1 as the center of symmetry. Thereafter, an electroforming film 4 made of an electroformed nickel-iron alloy is formed on a portion which has not been subjected to the insulating process by using the electroforming method for the matrix 1. By removing the insulating material 3 and releasing the electroformed film 4, a cylindrical member provided with four holes having a length of 800 mm, an inner diameter of 200 mm, and a diameter of 6.5 mm is obtained.

絶縁処理に関しては、母型1に形成される電鋳膜4の端部が垂直になるようなマスキング材を用いる。電鋳膜に対して穴を形成する部分にはマスキングテ−プを配置して絶縁処理を行い、膜厚300μmの電鋳ニッケル−鉄合金被膜を形成する。電鋳後、端面及び穴形状作製用のマスキング材を除去する。結果、電鋳ニッケル−鉄合金被膜は、電鋳端面が母型からほぼ垂直な形状となる。円形の絶縁処理を施した部分に関しては、Φ6.5mmの穴形状が形成できる。   In the insulation process, a masking material is used such that the end of the electroformed film 4 formed on the matrix 1 is vertical. A masking tape is placed on the portion of the electroformed film where holes are to be formed, and insulation processing is performed to form an electroformed nickel-iron alloy film having a thickness of 300 μm. After electroforming, the end face and the masking material for hole shape preparation are removed. As a result, in the electroformed nickel-iron alloy coating, the electroformed end face has a shape substantially perpendicular to the matrix. With respect to the circularly-insulated part, a hole shape of 6.56.5 mm can be formed.

図2に示すように、固定治具5をΦ6.5mmの穴に挿入し、電鋳膜4を固定する。離型装置には回転モ−タ−を取り付けており、母型を回転させながら引き上げることができる。電鋳膜を固定した状態で、モ−タ−を駆動し、母型を回転させながら上方向に引き上げると、母型1から電鋳膜4を離型することができる。   As shown in FIG. 2, the fixing jig 5 is inserted into a hole of 6.56.5 mm to fix the electroformed film 4. A rotary motor is attached to the mold release device, and can be pulled up while rotating the matrix. In a state where the electroformed film is fixed, the motor is driven, and the electroformed film 4 can be released from the matrix 1 by pulling the matrix upward while rotating the matrix.

(実施例2)
図3に示すように、母型1両端に対して、直径6.5mmの円の中心が上下端部から125mmに配置するように絶縁材料3を配置する。円形の絶縁材料3を母型周方向に対して、母型の中心軸を対称中心として点対称となるように、90°ピッチで、合計8か所配置して絶縁処理を施す。絶縁処理は実施例1同様にマスキングテ−プにて実施する。こうして円筒部材に8か所の穴形状を点対称な位置に付与することで、円筒部材を均等な力で固定することができ、母型が引き上げられる際の円筒部材の変形のリスクが低減する。実施例1同様に脱型処理を行うと、母型1から電鋳膜4を離型することができる。
(Example 2)
As shown in FIG. 3, the insulating material 3 is disposed such that the center of the circle having a diameter of 6.5 mm is disposed 125 mm from the upper and lower ends with respect to both ends of the matrix 1. Insulating treatment is performed by arranging eight round insulating materials 3 at 90 ° pitch so as to be point symmetrical with respect to the circumferential direction of the mold with respect to the central axis of the mold. The insulation process is carried out with masking tape in the same manner as in Example 1. Thus, by giving eight hole shapes to the cylindrical member in point-symmetrical positions, the cylindrical member can be fixed with an equal force, and the risk of deformation of the cylindrical member when the matrix is pulled up is reduced. . When the demolding treatment is performed in the same manner as in Example 1, the electroformed film 4 can be released from the matrix 1.

(実施例3)
実施例1同様の絶縁処理を行う際、絶縁材料3の厚みを電鋳膜4の膜厚の3倍とする。絶縁処理は実施例1同様、母型1の上端から125mmの高さにおいて、絶縁材料3を4か所配置する。電鋳処理においては、絶縁材料3付近には電流が集中し、絶縁処理部に向って電鋳膜厚が厚くなる。絶縁材料周辺の膜厚は、中心付近の膜厚の数倍にも及ぶことがある。そのため、絶縁処理材の厚みを電鋳膜厚と同等の厚みに設定すると、図4に示すように電鋳膜が絶縁処理材を乗り越えて析出してしまい、絶縁材料3を除去しにくい状態となる。絶縁材料が残ると、脱型時に母型1と円筒部材の界面に入り込み、脱型時の抵抗を高めてしまう。絶縁材料の厚みを電鋳膜の3倍とした結果、絶縁材料周辺の電鋳膜形状は垂直に形成されており、絶縁材料を確実に除去することができる。また、このようにして作製した電鋳膜4は、図5(a)に示すように絶縁材料に向かって膜厚が厚くなる。加えて、母型1端部の絶縁材料3に向かっても電鋳膜4は厚くなる。断面で見ると、絶縁材料3の上側と下側で、逆クラウン形状が2つ重なったような膜厚分布が合計2カ所形成される。実際には、絶縁材料3に向かって3次元的に膜厚が厚くなるため、図5(a)と直行する断面に関しても、電鋳膜4の厚みは厚くなる。また、実施例2のような絶縁処理を行うと、図5(b)のような断面で見たときに、逆クラウン形状が2つ重なったような膜厚分布が合計3カ所形成される。実施例1同様に離型処理を行うと、母型1から電鋳膜4を離型することができる。
(Example 3)
When performing the same insulation process as Example 1, the thickness of the insulating material 3 is made 3 times the film thickness of the electroformed film 4. In the insulation process, as in the first embodiment, four insulating materials 3 are arranged at a height of 125 mm from the upper end of the master 1. In the electroforming process, the current is concentrated in the vicinity of the insulating material 3 and the electroformed film thickness becomes thicker toward the insulating portion. The film thickness around the insulating material may reach several times the film thickness near the center. Therefore, when the thickness of the insulation treatment material is set to the same thickness as the thickness of the electroformed film, as shown in FIG. 4, the electroformed film crosses over the insulation treatment material and is deposited, making it difficult to remove the insulating material 3 Become. If the insulating material remains, it will enter the interface between the mold 1 and the cylindrical member at the time of demolding, which will increase the resistance at the time of demolding. As a result of making the thickness of the insulating material three times as large as that of the electroformed film, the shape of the electroformed film around the insulating material is formed vertically, and the insulating material can be reliably removed. Further, the electroformed film 4 produced in this manner becomes thicker toward the insulating material as shown in FIG. 5 (a). In addition, the electroformed film 4 becomes thicker toward the insulating material 3 at the end of the matrix 1 as well. When viewed in cross section, a film thickness distribution in which two reverse crown shapes overlap is formed at a total of two places on the upper and lower sides of the insulating material 3. In fact, since the film thickness is increased in three dimensions toward the insulating material 3, the thickness of the electroformed film 4 is increased also in the cross section orthogonal to FIG. 5 (a). Further, when the insulation processing as in Example 2 is performed, a total of three film thickness distributions in which two reverse crown shapes are overlapped are formed when viewed in a cross section as illustrated in FIG. 5B. When the mold release treatment is performed in the same manner as in Example 1, the electroformed film 4 can be released from the mother die 1.

(実施例4)
実施例1同様の絶縁処理を行い、電鋳膜4に穴形状を付与する工程において、図6(a)のように、電鋳膜4の厚みが上方向から下方向に向けて薄くなるように電鋳処理を行う。本実施例においては、電鋳に使用する陽極材料のマスキングを最適化することで、電鋳膜4の膜厚を調整する。それ以外でも、補助電極の使用、母型への絶縁処理の調整等でも膜厚を調整することができる。円筒部材下側の厚みが薄くなるように電鋳処理を行うことで、下側の電鋳膜の応力が減少するため、初期の離型抵抗が減少する。離型工程においては、離型初期に最も抵抗がかかるため、下側の電鋳膜の応力を減少することで脱型性が改善する。本実施例においても、実施例3同様に、絶縁材料3に向かって膜厚が厚くなるため、穴形状を付与するために施した絶縁材料3の上下2か所において、クラウン形状が2つ重なったような膜厚分布が形成される。実施例1同様に離型処理を行うと、母型から電鋳膜4を離型することができる。
(Example 4)
In the step of performing the same insulation treatment as in Example 1 to give the hole shape to the electroformed film 4, as shown in FIG. 6A, the thickness of the electroformed film 4 becomes thinner from the upper direction to the lower direction Electroforming process. In the present embodiment, the film thickness of the electroformed film 4 is adjusted by optimizing the masking of the anode material used for the electroforming. Other than that, the film thickness can also be adjusted by using the auxiliary electrode, adjusting the insulation process to the matrix, or the like. By performing the electroforming process so that the thickness on the lower side of the cylindrical member is reduced, the stress of the lower electroformed film is reduced, so that the initial release resistance is reduced. In the mold release step, since the most resistance is applied in the early stage of mold release, the mold release property is improved by reducing the stress of the electroformed film on the lower side. Also in the present embodiment, as in the third embodiment, since the film thickness increases toward the insulating material 3, two crown shapes overlap in the upper and lower two places of the insulating material 3 applied to give the hole shape. A thick film thickness distribution is formed. When the mold release treatment is performed in the same manner as in Example 1, the electroformed film 4 can be released from the matrix.

(実施例5)
図6(b)に示すように、外径が下側に進むにつれ小さくなるような母型1を用いて電鋳膜4を形成する。絶縁処理は実施例1と同様である。このようにして円筒部材を形成する場合、離型が進み、母型が上側に引き上げられるにつれて、母型と円筒部材のクリアランスが大きくなるため、徐々に離型抵抗が少なくなる。実施例1同様に離型処理を行つと、母型1から電鋳膜4を離型することができる。
(Example 5)
As shown in FIG. 6 (b), the electroformed film 4 is formed using a matrix 1 which decreases as the outer diameter moves downward. The insulation process is the same as in the first embodiment. When the cylindrical member is formed in this manner, the mold release resistance gradually decreases because the clearance between the matrix and the cylindrical member increases as the mold release proceeds and the matrix is pulled upward. As in the first embodiment, when the mold release treatment is performed, the electroformed film 4 can be released from the matrix 1.

(実施例6)
電鋳膜4に穴形状を付与するための絶縁材料3として、レジストを用いた以外は、実施例1と同様である。レジストに関しては、電着レジストを用いる。レジスト膜の形成は、フォトリソグラフィ−法を用る。レジストの厚みは、電鋳膜4の3倍の厚さである900μmとする。レジストを用いて絶縁処理を行うことで、マスキングテ−プ等に比べ、高精度に絶縁処理を行うことができる。また、マスキングテ−プでは加工しにくい、複雑形状や微小な穴形状等も作製することができる。このようにして作製した電鋳ニッケル−鉄合金被膜に対して母型1からの離型処理を実施すると、実施例1同様に離型することができる。
(Example 6)
This embodiment is the same as the embodiment 1 except that a resist is used as the insulating material 3 for giving the hole shape to the electroformed film 4. For the resist, an electrodeposition resist is used. The formation of the resist film uses a photolithography method. The thickness of the resist is 900 μm, which is three times the thickness of the electroformed film 4. By performing the insulation process using a resist, the insulation process can be performed with high accuracy as compared to a masking tape or the like. In addition, complicated shapes, minute hole shapes and the like which are difficult to process with masking tape can be manufactured. When the mold release treatment from the mother die 1 is performed on the electroformed nickel-iron alloy film produced in this manner, mold release can be performed as in the first embodiment.

(実施例7)
電鋳膜4に穴形状を付与するための絶縁材料3にレジストを用いると、絶縁処理の形状を任意に形成することができる。例えば、図7(a)、(b)、(c)に示すように、母型1表面から電鋳膜表面に向かって、厚みが連続的に変化するように絶縁材料3を形成し、脱型時に電鋳膜4を引っ張り易い穴形状を付与することができる。本実施例では、電着レジストを用い、マスクレス露光機を使用して露光処理を行い、現像処理を実施することで、図7(a)のレジスト形状を母型1上に形成する。その後、所定の厚みまで電鋳処理を行い、レジストを除去した結果、円筒部材に対して、連続的に寸法が変化する穴形状を付与することができた。また、図7(b)のようにレジストを形成すれば、ステップ状の穴形状を作製することができる。図7(c)のようにレジストを形成すれば、電鋳膜の先端形状を丸くすることができる。穴先端の電鋳形状が丸くなることで、脱型時に電鋳膜を引っ張る際に、電鋳膜にかかる負荷が分散されるため、電鋳膜の変形や破壊されるリスクが低減する。
(Example 7)
When a resist is used as the insulating material 3 for giving the hole shape to the electroformed film 4, the shape of the insulating process can be formed arbitrarily. For example, as shown in FIGS. 7 (a), (b) and (c), the insulating material 3 is formed so that the thickness continuously changes from the surface of the mold 1 to the surface of the electroformed film, It is possible to provide a hole shape that makes it easy to pull the electroformed film 4 during molding. In the present embodiment, an electrodeposition resist is used, exposure processing is performed using a maskless exposure machine, and development processing is performed to form the resist shape of FIG. 7A on the matrix 1. After that, the electroforming process was performed to a predetermined thickness, and as a result of removing the resist, it was possible to give the cylindrical member a hole shape whose dimensions continuously change. Further, if a resist is formed as shown in FIG. 7B, a step-like hole shape can be produced. If the resist is formed as shown in FIG. 7C, the tip shape of the electroformed film can be rounded. By rounding the electroformed shape at the tip of the hole, the load applied to the electroformed film is dispersed when pulling the electroformed film at the time of demolding, so the risk of deformation or breakage of the electroformed film is reduced.

(実施例8)
図8(a)に示すように、母型21の端部のみ絶縁処理を行い、電鋳処理を開始する。50μm程度、第一の電鋳膜24を形成したところで電鋳処理を一旦中止する。この状態で電鋳槽から母型を取り出し、水洗・乾燥処理を行った後、図8(b)に示すように、実施例1同様の絶縁処理を行う。その後、電鋳処理を再開するが、1度大気中にニッケルめっき膜を出してしまうと、めっき膜表面に強固な酸化被膜を形成してしまう。そのため、電鋳処理再開前には、酸洗浄により酸化被膜を十分に除去する必要がある。本実施例では、10wt%程度の希硫酸水溶液中にで5分間浸漬した。その後、水洗処理を行い、絶縁材料23を配置して、電鋳処理を再開し、250μm程度、第二の電鋳膜25を形成することで、電鋳膜24、25の総厚を300μmとした。電鋳後、絶縁材料23を除去することで、電鋳膜に凹形状を形成することができる。脱型時の引掛け部を凹み形状とすることで、脱型時に母型と引掛け治具の接触を防止することができる。そのため、脱型時に母型を傷つけるリスクを低減することができる。脱型時の引掛け部は、製品の仕様に応じて、凹形状か、貫通穴かを適宜選択すれば良い。
(Example 8)
As shown in FIG. 8A, the insulation process is performed only at the end of the matrix 21, and the electroforming process is started. When the first electroformed film 24 is formed to about 50 μm, the electroforming process is temporarily stopped. In this state, the mother die is taken out from the electroforming tank, washed with water and dried, and then, as shown in FIG. 8B, the same insulation treatment as in Example 1 is performed. Thereafter, although the electroforming process is resumed, once the nickel plating film is exposed to the atmosphere, a strong oxide film is formed on the plating film surface. Therefore, it is necessary to sufficiently remove the oxide film by acid cleaning before resumption of the electroforming process. In this example, the substrate was immersed for 5 minutes in a dilute aqueous sulfuric acid solution of about 10 wt%. Thereafter, water washing is performed, the insulating material 23 is disposed, and the electroforming process is restarted, and the second electroformed film 25 is formed to about 250 μm, so that the total thickness of the electroformed films 24 and 25 is 300 μm. did. By removing the insulating material 23 after electroforming, a concave shape can be formed in the electroformed film. By making the hooking part at the time of demolding into a concave shape, it is possible to prevent the contact between the matrix and the hooking jig at the time of demolding. Therefore, the risk of damaging the mother mold at the time of demolding can be reduced. The hooking portion at the time of demolding may be appropriately selected from the concave shape and the through hole according to the specification of the product.

(他の実施例)
以下実施例によって本発明を更に詳細に説明するが、これらは本発明をなんら限定するものでは無い。
(Other embodiments)
The present invention will be described in more detail by the following examples, which are not intended to limit the present invention.

実施例1〜86で作製した電鋳膜は、搬送用のエンドレスタイプの樹脂ベルト成形用金型等に用いることができる。実施例1〜7の電鋳膜に形成した穴形状は、成形機等に取り付ける際の固定穴として使用することができる。電鋳膜に形成した穴形状を成形機等に取り付ける際の固定穴として利用すると、固定穴をあける加工の工程を減らすことができ、生産性に優れる。   The electroformed film produced in Examples 1 to 86 can be used for an endless type resin belt molding die for transport and the like. The hole shape formed in the electroformed film of Examples 1 to 7 can be used as a fixing hole when attached to a molding machine or the like. When the hole shape formed in the electroformed film is used as a fixing hole when attached to a molding machine or the like, the process of forming the fixing hole can be reduced, and the productivity is excellent.

1 母型
2 絶縁リング
3 絶縁材料
4 電鋳膜(円筒部材)
5 円筒部材固定具
6 母型固定具
7 駆動モ−タ−
23 絶縁材料
24 第一の電鋳膜
25 第二の電鋳膜
1 master 2 insulating ring 3 insulating material 4 electroformed film (cylindrical member)
5 Cylindrical member fixture 6 Mother mold fixture 7 Drive motor
23 Insulating material 24 First electroformed film 25 Second electroformed film

Claims (6)

円筒部材を成形する円筒状金属母型上に絶縁材料を配置する工程と、前記絶縁材料によって凹形状または穴形状を含むように、前記円筒状金属母型の側面に電鋳膜を形成する工程と、前記凹形状または穴形状を用いて、前記電鋳膜を前記円筒形状母型から離型する工程とを有することを特徴とする円筒部材の離型方法。   A step of disposing an insulating material on a cylindrical metal matrix forming a cylindrical member, and a step of forming an electroformed film on the side surface of the cylindrical metal matrix so as to include a concave shape or a hole shape by the insulating material And a step of releasing the electroformed film from the cylindrical matrix using the concave shape or the hole shape. 複数の前記絶縁材料を前記母型の中心軸に対して点対称に配置することを特徴とする請求項1に記載の円筒部材の離型方法。   The method for demolding a cylindrical member according to claim 1, wherein a plurality of the insulating materials are arranged point-symmetrically with respect to a central axis of the matrix. 複数の前記絶縁材料を前記円筒状金属母型の一端部側と、前記一端部側とは反対側の他端部側に配置し、前記電鋳膜を前記一端部側の穴形状と前記他端部側の穴形状を用いて脱型することを特徴とする請求項1または2に記載の円筒部材の離型方法。   A plurality of the insulating materials are disposed on one end side of the cylindrical metal matrix and the other end side opposite to the one end side, and the electroformed film has a hole shape on the one end side and the other The mold release method for a cylindrical member according to claim 1 or 2, wherein the mold is demolded using the hole shape on the end side. 前記絶縁材料の厚さを前記電鋳膜の3倍以上の厚さとしたことを特徴とする請求項1〜3のいずれか一項に記載の円筒部材の離型方法。   The method for releasing a cylindrical member according to any one of claims 1 to 3, wherein the thickness of the insulating material is three or more times the thickness of the electroformed film. 前記電鋳膜は、前記母型の長手方向に沿って、前記電鋳膜の両端部側から前記穴形状に向かって連続的に膜厚を増加させた逆クラウン形状の膜厚分布を有することを特徴とする請求項1〜4のいずれか一項に記載の円筒部材の離型方法。   The electroformed film has a reverse crown-shaped film thickness distribution in which the film thickness is continuously increased from the both end side of the electroformed film toward the hole shape along the longitudinal direction of the matrix. The method for releasing a cylindrical member according to any one of claims 1 to 4, characterized in that 前記絶縁材料が金属酸化膜、マスキングテ−プ、ゴム、レジストの何れか1つである請求項1〜5のいずれか一項に記載の円筒部材の離型方法。


The method for releasing a cylindrical member according to any one of claims 1 to 5, wherein the insulating material is any one of a metal oxide film, a masking tape, a rubber and a resist.


JP2017167146A 2017-08-31 2017-08-31 Demolding method for cylindrical member Pending JP2019044220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017167146A JP2019044220A (en) 2017-08-31 2017-08-31 Demolding method for cylindrical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167146A JP2019044220A (en) 2017-08-31 2017-08-31 Demolding method for cylindrical member

Publications (1)

Publication Number Publication Date
JP2019044220A true JP2019044220A (en) 2019-03-22

Family

ID=65813847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167146A Pending JP2019044220A (en) 2017-08-31 2017-08-31 Demolding method for cylindrical member

Country Status (1)

Country Link
JP (1) JP2019044220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777399A (en) * 2019-11-18 2020-02-11 河南理工大学 Core mould for electroforming to prepare thin-wall seamless metal round pipe
CN111304701A (en) * 2020-04-01 2020-06-19 集美大学 Preparation method for assisting ultra-precise electroforming demolding by using graphene oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777399A (en) * 2019-11-18 2020-02-11 河南理工大学 Core mould for electroforming to prepare thin-wall seamless metal round pipe
CN111304701A (en) * 2020-04-01 2020-06-19 集美大学 Preparation method for assisting ultra-precise electroforming demolding by using graphene oxide
CN111304701B (en) * 2020-04-01 2021-02-26 集美大学 Preparation method for assisting ultra-precise electroforming demolding by using graphene oxide

Similar Documents

Publication Publication Date Title
JP2019044220A (en) Demolding method for cylindrical member
JP2011194594A (en) Resin material having surface-uneven pattern and method for producing the same
KR100750314B1 (en) Mesh type cathode drum for precision electroforming and method for manufacturing
JP2011067627A (en) Mold for forming golf ball and golf ball manufactured using the same
JP6638589B2 (en) Cathode plate for metal electrodeposition and method for producing the same
JP4268010B2 (en) High opening rate rigidized screen, high opening rate suspended metal mask, and method for manufacturing the same.
Son et al. Manufacture of μ-PIM gear mold by electroforming of Fe–Ni and Fe–Ni–W alloys
JP2019206088A (en) Mask for alignment of ball and manufacturing method therefor
US8012329B2 (en) Dimensional control in electroforms
JP2012058644A (en) Method for manufacturing endless metallic thin film
JP3779145B2 (en) Manufacturing method of high-precision sleeve having gap in bus-line direction
JPH0633291A (en) Production of porous forming die by electroforming
US3341432A (en) Method of making wave guides
JP3163163U (en) Mold
CN111455417A (en) Electroforming core mould and method for manufacturing metal capillary tube by using electroforming core mould
JP2002080991A (en) Method of manufacturing thin hole tube
KR20000024962A (en) Method for manufacturing mold of fine pattern
KR101849158B1 (en) Process for producing a wiring board
KR100592424B1 (en) Filter member and manufacturing method thereof
JP3745748B2 (en) Manufacturing method of mold by electroforming
JP4863723B2 (en) Endless belt release method and apparatus
KR100465531B1 (en) Micro mold and manufacturing method for micro part replication
KR200228349Y1 (en) Embossing Roller by Electroforming of Nickel
JP6098855B1 (en) Method for manufacturing convex mold
JP2007182610A (en) Stainless steel wire for spring and coil spring