JP2019039812A - シンチレータ - Google Patents

シンチレータ Download PDF

Info

Publication number
JP2019039812A
JP2019039812A JP2017162132A JP2017162132A JP2019039812A JP 2019039812 A JP2019039812 A JP 2019039812A JP 2017162132 A JP2017162132 A JP 2017162132A JP 2017162132 A JP2017162132 A JP 2017162132A JP 2019039812 A JP2019039812 A JP 2019039812A
Authority
JP
Japan
Prior art keywords
optical fiber
phosphor
scintillator
transparent sphere
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017162132A
Other languages
English (en)
Inventor
洋一 桜木
Yoichi Sakuragi
洋一 桜木
慶一 吉川
Keiichi Yoshikawa
慶一 吉川
祐一 池田
Yuichi Ikeda
祐一 池田
福田 健太郎
Kentaro Fukuda
健太郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokuyama Corp
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, Tokyo Electric Power Co Holdings Inc filed Critical Tokuyama Corp
Priority to JP2017162132A priority Critical patent/JP2019039812A/ja
Publication of JP2019039812A publication Critical patent/JP2019039812A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Abstract

【課題】波長シフトファイバを使用せずに蛍光体の発光を導波用の光ファイバに採光し、γ線によるパイルアップを抑え、n/γ弁別能を高めることが可能なシンチレータを提供する。【解決手段】本発明にかかるシンチレータの代表的な構成は、光ファイバの先端の端面の先に、蛍光体の粒子が内包された透明球が形成してあることを特徴とする。これにより、波長シフトファイバを使用せずに蛍光体の発光を導波用の光ファイバ端面から採光することができる。【選択図】図1

Description

本発明は、光ファイバによって蛍光体の発する光を伝達するシンチレータに関する。
中性子検出器は、中性子利用技術を支える要素技術であって、貨物検査等の保安分野、中性子回折による構造解析等の学術研究分野、非破壊検査分野、或いはホウ素中性子捕捉療法等の医療分野等における中性子利用技術の発展に伴い、より高性能な中性子検出器が求められている。
さらに過酷事故後の原子力発電所において燃料デブリの位置を調査するために、中性子を検出することが検討されている。ただし過酷事故後の原子力発電所ではγ線の強度が高く、中性子線の強度は低い。例えば、数百Gy/hのγ線環境下において数個/cm/秒程度の中性子を検出することが求められている。
γ線環境下で使用できる技術には、例えば特許文献1が挙げられる。特許文献1では、透明な樹脂中に蛍光体を分散させ、樹脂の中に波長シフトファイバを貫通させて、波長シフトファイバから導波用光ファイバに光を伝達する中性子シンチレータが提案されている。波長シフトファイバは、例えば前記蛍光体からの近紫外光を吸収し、長波長シフトした青紫色発光をPMT(photomultiplier tube:光電子倍増管)へと伝播するものである。導波用光ファイバは、側面から入射した光は反対側の側面から外に出てしまう。しかし波長シフトファイバであれば、側面から入射した光が内部で等方的に再発光するため、その発光の一部が伝搬モードに入り、波長シフトファイバおよび導波用光ファイバを伝わる。
特開2016−003854号公報
中性子検出器に求められる重要な特性として、中性子検出効率及び中性子とγ線との弁別能(以下、n/γ弁別能ともいう)が挙げられる。中性子検出効率とは、検出器に入射した中性子の数に対する検出器でカウントした中性子の数の比であって、検出効率が低い場合には、計測される中性子の絶対数が少なくなり、計測精度が低下する。また、γ線が存在する環境下において中性子を測定する場合には、n/γ弁別能が低く、γ線を中性子として計数してしまうと中性子計数精度が低下する。
特に、特許文献1のように波長シフトファイバを使用する場合、波長シフトファイバ自体も蛍光体であるため、γ線でも発光する。かかるγ線に起因するパルス信号は、本来は微小な信号であって、中性子によるパルス信号に比較して充分に小さい。しかしながら、燃料デブリ調査で想定される数百Gy/hの高γ線環境下では、複数のγ線に起因するパルス信号が重なり合う現象(パイルアップ)が生じ、見かけ上大きな信号となる。このため、高γ線環境下では、パイルアップしたγ線起因の信号に中性子の信号が埋没してしまう。
そこで本発明は、波長シフトファイバを使用せずに蛍光体の発光を導波用の光ファイバに採光し、γ線によるパイルアップを抑え、n/γ弁別能を高めることが可能なシンチレータを提供することを目的としている。
上記課題に対し、本発明にかかるシンチレータの代表的な構成は、光ファイバの先端の端面の先に、蛍光体の粒子が内包された透明球が形成してあることを特徴とする。
上記構成によれば、波長シフトファイバを使用せずに蛍光体の発光を導波用の光ファイバの「端面」から採光することができる。波長シフトファイバを使用しないため、波長シフトファイバでγ線によって発生する蛍光をなくすることができ、γ線によるパイルアップを抑えることができ、n/γ弁別能を高めることができる。
透明球は反射材で被覆してあってもよい。該反射材として拡散反射材を用いることが好ましく、光ファイバに入射せず外部に散逸しようとする光を全方位反射することによって、光ファイバに光が入射する確率を高めることができる。
また、光ファイバは、透明球から所定距離までを反射材で被覆してあってもよい。光ファイバの側面を反射材(拡散反射材)で被覆することにより、光ファイバの端面で伝搬モードとならなかった光の一部を光ファイバの端面付近まで戻すことができる。戻った光のさらにその一部の光は再び伝搬モードに入るため、伝送できる光子の数を増やすことができる。
透明球を高反射率の誘電体多層膜によって覆ってあってもよい。蛍光の光に対する誘電体多層膜の反射率は、ほぼ100%となる。すると誘電体多層膜の中で光子は幾度も反射し、いずれ光ファイバの端面から全反射角度内で入射する。これにより、伝送できる光子の数を増やすことができる。
本発明にかかるシンチレータの他の代表的な構成は、光ファイバの側面に該光ファイバが貫通する形状の透明球が形成してあり、透明球に蛍光体が内包されていて、透明球の内側に光ファイバに沿って屈折層が形成されていて、屈折層は光ファイバに沿った方向の中央部が膨らんでいて、該屈折層は透明球より高屈折率であり、かつ、光ファイバの屈折率と同等或はより高屈折率であることを特徴とする。
上記構成によれば、波長シフトファイバを使用せずに蛍光体の発光を導波用の光ファイバの「側面」から採光することができる。これにより、波長シフトファイバでγ線によって発生する蛍光をなくすることができ、γ線によるパイルアップを抑えることができ、n/γ弁別能を高めることができる。
本発明によれば、波長シフトファイバを使用せずに蛍光体の発光を導波用の光ファイバに採光することができる。これにより、γ線によるパイルアップを抑えることができ、n/γ弁別能を高めることができる。
第1実施形態にかかるシンチレータの構成を説明する図である。 実施例を説明する図である。 比較例を説明する図である。 第2実施形態にかかるシンチレータの構成を説明する図である。 第3実施形態にかかるシンチレータの構成を説明する図である。 第4実施形態にかかるシンチレータの構成を説明する図である。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示または説明を省略する。
[第1実施形態]
図1は第1実施形態にかかるシンチレータ100の構成を説明する図である。図1に示すシンチレータ100は、導波用の光ファイバ10の先端の端面10aの先に、蛍光体102の粒子が内包された透明球104が形成してある。
光ファイバ10は、光を透過させるコア12と、コア12の中を通る光を全反射させる界面を形成するためのクラッド14と、これらを被覆するバッファ16から構成されている。コア12とクラッド14は石英ガラスまたはプラスチックからなり、クラッド14よりコア12の方が屈折率がわずかに大きくなっている。バッファ16はポリイミドやシリコーン樹脂、フッ素樹脂、高抗張力繊維などを用いることができるが、いずれであっても本発明には影響しない。
蛍光体102には、中性子に反応する蛍光体を使用する。蛍光体は、中性子捕獲同位体を含有し且つ蛍光を発する無機物からなる粒子であって、該無機物自体が一つの化学物質として把握されるものであることが好ましい。具体的には、リチウム6及びホウ素10から選ばれる少なくとも1種の中性子捕獲同位体を含有する無機蛍光体を好適に採用できる。
蛍光体102の組成については特に制限されず、従来公知の無機蛍光体を粒子状としたものを用いることができる。具体的なものを例示すれば、Eu:LiCaAlF、Eu,Na:LiCaAlF、Eu:LiSrAlF、Ce:LiCaAlF、Ce,Na:LiCaAlF、Ce:LiSrAlF、Ce:LiYF、Tb:LiYF、Eu:LiI、Ce:LiGd(BO、Ce:LiCsYCl、Ce:LiCsYBr、Ce:LiCs2LaCl、Ce:LiCsLaBr、Ce:LiCsCeCl、Ce:LiRbLaBr等の結晶からなる無機蛍光体、及び、LiO−MgO−Al−SiO−Ce系のガラスからなる無機蛍光体等が挙げられる。
また、蛍光体102には、中性子に反応するコンバーター及び中性子に反応しない蛍光体を組み合わせて用いてもよい。該コンバーターを具体的に例示すれば、リチウム6及びホウ素10から選ばれる少なくとも1種の中性子捕獲同位体を含有する無機物が好ましく、中でもLiFが特に好ましい。また、前記中性子に反応しない蛍光体としては、従来公知の蛍光体を特に制限なく用いることができ、より具体的にはAg:ZnS、Eu:CaF等を好適に採用できる。
透明球104は透明な樹脂やガラスからなる塊である。「球」と称しているが、幾何学的に厳密な球である必要はなく、若干のゆがみやくぼみがあったり、紡錘形や水滴形をしていても差し支えない。透明球104は、光ファイバ10の先端の端面10aの先に形成されている。光ファイバ10の先端が透明球104に埋没していても良いが、端面10aが透明球104の中心まで至らないことが好ましい。すなわち、透明球104に埋没する光ファイバ10の長さは、略球状の透明球104の半径以下であることが好ましい。
また、透明球104の屈折率nLは、コア12の屈折率nQよりも小さいことが好ましい。これにより、透明球104から端面10aに入射した光がファイバの軸方向に屈折するため、全反射角度内に収まりやすくすることができる。
透明球104の外側には、反射材106を形成している。反射材106は、中性子は透過するが、光は反射する膜である。反射材106は、拡散反射材を用いることが好ましい。反射材106の具体例としては、硫酸バリウム或いは酸化チタン等の白色顔料を塗布して形成した反射材又はポリテトラフロロエチレン等の白色シートからなる反射材を使用することができる。
図1に光路の一例を矢印で示している。中性子が蛍光体102に衝突すると、蛍光体102からは全方位に光が生じる。蛍光体102から端面10aに直接入射する光もあるが、一部は矢印で示すように反射材106に衝突する。反射材106では光が拡散反射し、その一部が矢印で示すように端面10aへと入射する。これにより、伝送できる光子の数を増やすことができる。
上記構成によれば、波長シフトファイバを使用せずに蛍光体102の発光を導波用の光ファイバ10の「端面10a」から採光することができる。波長シフトファイバを使用しないため、波長シフトファイバでγ線によって発生する蛍光をなくすることができ、γ線によるパイルアップを抑えることができ、n/γ弁別能を高めることができる。
図2は実施例を説明する図である。図2(a)には、中性子検出器200の全体構成を示している。試験のために、Cf−252を用いた中性子線源20と、Co−60を用いたγ線源22を用いる。中性子検出器200は、光ファイバ10の先端に上記のシンチレータ100を取り付けて、光電子倍増管210に蛍光を導く。光電子倍増管210では光を電気信号に変換し、波高分析器230において波高値とカウント値を取得して中性子感度を評価した。
蛍光体102としては、中性子に反応するコンバーターであるLiFと中性子に反応しない蛍光体であるEu:CaFを組み合わせて用いた。なお、該蛍光体はLiFの結晶層とEu:CaFの結晶相がμmオーダーで積層した多層構造を有する共晶体と呼ばれる材料である。以下、該蛍光体をLiF−Eu:CaFと表す。該LiF−Eu:CaFと屈折率が1.41のシリコーン樹脂を用いて透明球104を作製した。まずファイバの先端にシリコーン樹脂の前駆体(液状)を少量塗布し、シリコーン樹脂を加熱硬化させた。次いで、該シリコーン樹脂の周囲にLiF−Eu:CaFを付着させ、さらにシリコーン樹脂の前駆体を少量塗布して加熱硬化させた。該操作を繰り返し、最終的に0.5mgのLiF−Eu:CaF2が内包された透明球を形成した。また、透明球104の大きさは2mm程度になるように調整した。かかる作製方法によれば、透明球に内包される蛍光体の粒子の量を任意に調整でき、所望の特性を有するシンチレーターを再現良く作製できる。反射材106としては硫酸バリウムを塗布して形成した拡散反射材を用いた。
図2(b)に示すグラフでは、バックグラウンドのγ線を354Gy/hという強い値にして、熱中性子束が0nvの場合と160nvの場合を示している。γ線と中性子線を比較するとγ線の方が波高が低い。グラフから、低い波高が大量に検出され、高い波高が少量検出されていることがわかる。高い波高にはγ線による若干のパイルアップも含んでいるが、中性子束の0nvの場合と160nvの場合で顕著な差が生じていることから、354Gy/Hの環境下において160個/cm/秒程度の中性子を弁別できていることがわかる。
図3は比較例を説明する図である。図3(a)は、比較例として特許文献1(特開2016−003854号公報)に記載された中性子シンチレータ300を示している。中性子シンチレータ300は、長尺の直方体(比較例では、5mm×5mm×47mm)の樹脂組成物302の中に蛍光体304の粒子を分散させて、樹脂組成物302の中に波長シフトファイバ306を貫通させておき、導波用の光ファイバ308を接続している。樹脂組成物302にはシリコーン樹脂を用いている。蛍光体304としては、Euを0.02mol%ドープしたEu:LiCaAlF結晶からなる無機蛍光体を用いた。波長シフトファイバ306としては断面の直径が1mmである株式会社クラレ製B−1を用いた。
図3(b)に示すグラフでは、バックグラウンドのγ線を0.77Gy/hという弱い値にした場合を示している。比較例では、0.77Gy/Hの環境下において160個/cm2/秒程度の中性子を弁別できている。
図3(c)に示すグラフでは、比較例においてバックグラウンドのγ線を図3(b)より少し強くして4Gy/hにしている。図3(c)ではγ線によるパイルアップにより全体にカウント数が大きくなっている。そして、中性子なし(0nv)より、むしろ中性子有り(160nv)の方がカウント数が小さくなっている。これは、γ線によるカウント数が圧倒的に高くなったため、中性子によるカウント数が測定誤差の範疇に埋もれてしまったものと考えられる。これらの結果をまとめると、実施例では354Gy/hの環境下でも中性子ピークの弁別が可能であった。比較例では、0.77Gy/hでは中性子ピークの弁別は可能だが、4Gy/hの環境では中性子ピークの弁別は不可能であった。
上記の実施例と比較例から、中性子の弁別能を高められることが確認できた。そして、燃料デブリ調査で想定される数百Gy/hの高γ線環境下でも中性子を弁別できることが確認された。これは、波長シフトファイバを使用せずに蛍光体の発光を導波用の光ファイバに採光できるようになったためである。
[第2実施形態]
図4は第2実施形態にかかるシンチレータ110の構成を説明する図である。上記第1実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
本実施形態にかかるシンチレータ110においては、反射材116によって、透明球104および光ファイバ10の透明球104から所定距離までを被覆してある。反射材116は、第1実施形態に示した反射材106と同様に拡散反射するものであり、全方位に反射する。
図4に光路の一例を矢印で示している。光ファイバ10の端面で入射角が大きいものは、コア12とクラッド14の界面における全反射角度内に入らず、本来であれば光ファイバ10の側面から外へと散逸してしまう。しかし光ファイバ10の側面を反射材116で被覆することにより、反射材116に到達した光は全方位に反射し、その一部は透明球104へと戻る。すなわち、光ファイバ10の端面で伝搬モードとならなかった光の一部を光ファイバ10の端面付近まで戻すことができる。戻った光のさらにその一部の光は再び端面10aに入射して伝搬モードに入るため、伝送できる光子の数を増やすことができる。
光ファイバ10の側面を覆う反射材116の長さは長い方がよいが、少なくとも光ファイバの端面10aの直径と比較して十分な長さを覆うことが有効である。
[第3実施形態]
図5は第3実施形態にかかるシンチレータ120の構成を説明する図である。上記第1実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
本実施形態にかかるシンチレータ120においては、反射材106に代えて、誘電体多層膜124が備えられている。
具体的には、透明球104の外側を透明な硬質樹脂又はガラスからなる透明層122で覆い、透明層122の表面に誘電体多層膜124を形成する。誘電体多層膜は既知の技術であるため詳細は省略するが、透明な誘電体材料の材質や膜厚を適切に設定することにより、光の干渉作用を利用して特定の波長の光を反射させるものである。
例えば、前記実施例1で用いたLiF−Eu:CaFの発光波長は410−460nmである。反射材として利用されている硫酸バリウム、酸化チタン又はポリテトラフロロエチレン等からなる反射材の反射率は、410nmの領域において最大でも98%程度であり、40回程度反射すると半分以下の強度に低下してしまう。これに対し蛍光の光に対する誘電体多層膜124の反射率を、入射角を所定の値より小さくすることでほぼ100%とすることができる。すると誘電体多層膜の中で光子は幾度も反射し、いずれ光ファイバの端面10aから全反射角度内で入射する。図5に光路の一例を矢印で示している。これにより、伝送できる光を増やすことができる。
透明層122は、誘電体多層膜124に対する光の入射角を前記所定の値より小さくするために設けている。前記所定の値とは、誘電体多層膜124で反射率をほぼ100%にするための値であり、誘電体多層膜124の面の形状、反射させる光の波長域等により定まる。したがって透明層122の大きさ(直径)については、光の入射角が前記所定の値よりも小さくなるように大きくすることが好ましい。
[第4実施形態]
図6は第4実施形態にかかるシンチレータ130の構成を説明する図である。上記第1実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
本実施形態にかかるシンチレータ130においては、光ファイバの端面10aからではなく、光ファイバ10の側面から採光する構成となっている。
図6に示すように、光ファイバ10の側面に、光ファイバ10が貫通する形状の透明球134が形成してある。透明球134には蛍光体102の粒子が内包されている。
そして、透明球134の内側には、光ファイバ10に沿って屈折層132が形成されている。屈折層132は光ファイバ10に沿った方向の中央部132aが膨らんでいて、凸レンズのような構成になっている。
屈折層132が形成される領域において、光ファイバのクラッド14は除去されている。屈折層132の屈折率nHは、透明球134の屈折率nLより高屈折率であり、光ファイバ10のコア12の屈折率nQと同等或いはより高屈折率である。透明球134の屈折率nLと光ファイバ10の屈折率nQは、いずれが高くてもよい。
図6に光路の一例を矢印(Xa及びXb)で示している。Xa及びXbは、それぞれ屈折層132の屈折率nHが光ファイバのコア12の屈折率nQと同等である場合及びより高屈折率である場合の光路を表す。光ファイバ10の側面から入射した光は、本来であれば反対側の側面から外へと散逸してしまう。しかし上記のような構成とすることにより、屈折層132から光ファイバ10へと入射する光を全反射角度内に収めることが可能となる。屈折層132の屈折率nHを光ファイバのコア12の屈折率nQより高屈折率とすることによって、屈折層132から光ファイバ10へと入射するときに光ファイバ10の軸方向に光が屈折するため、特に多くの光を全反射角度内に収めることが可能となるため好ましい。
全反射角度内に入らなかった光は、光ファイバ10の反対側へと抜ける。そうすると反射材106において拡散反射し、屈折層132を通って光ファイバ10へと入射する。これを繰り返すことで、全反射角度で光ファイバ10に入射して伝搬モードとなる機会が増加する。こうして、波長シフトファイバを使用せずに、蛍光体の発光を導波用の光ファイバの「側面」から採光することが可能となる。
なお本実施形態では、屈折層132が形成される領域において、光ファイバのクラッド14を除去するように説明した。これは、クラッド14からコア12に入射した光は、原理的にコア12からクラッド14に対する全反射角度内に入らないためである。ただしクラッド14が存在した状態でも、全反射角度内に収まる構成であればよく、例えば、コア12とクラッド14を共に膨張、収縮或いは湾曲等の変形させた構成等を任意に採用できる。したがって本発明は、必ずしもクラッド14の除去を必須とするものではない。
以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、上記実施形態において本発明にかかるシンチレータは中性子を検出するために特に好適であると説明した。しかし蛍光体の材質を変えることにより、放射線その他を検出するための小型のシンチレータとしても利用することができる。したがって、本発明にかかるシンチレータは中性子検出用のシンチレータに限定されない。
本発明は、光ファイバによって蛍光体の発する光を伝達するシンチレータとして利用することができる。
10…光ファイバ、10a…光ファイバの端面、12…コア、14…クラッド、16…バッファ、20…中性子線源、22…γ線源、100…シンチレータ、102…蛍光体、104…透明球、106…反射材、110…シンチレータ、116…反射材、120…シンチレータ、122…透明層、124…誘電体多層膜、130…シンチレータ、132…屈折層、132a…中央部、134…透明球、200…中性子検出器、210…光電子倍増管、220…フィルタ、230…波高分析器、300…中性子シンチレータ、302…樹脂組成物、304…蛍光体、306…波長シフトファイバ、308…光ファイバ

Claims (5)

  1. 光ファイバの先端の端面の先に、蛍光体の粒子が内包された透明球が形成してあることを特徴とするシンチレータ。
  2. 前記透明球は反射材で被覆してあることを特徴とする請求項1に記載のシンチレータ。
  3. 前記光ファイバは、前記透明球から所定距離までを反射材で被覆してあることを特徴とする請求項1または請求項2に記載のシンチレータ。
  4. 前記透明球を高反射率の誘電体多層膜によって覆ってあることを特徴とする請求項1に記載のシンチレータ。
  5. 光ファイバの側面に該光ファイバが貫通する形状の透明球が形成してあり、
    前記透明球に蛍光体が内包されていて、
    前記透明球の内側に前記光ファイバに沿って屈折層が形成されていて、
    前記屈折層は光ファイバに沿った方向の中央部が膨らんでいて、該屈折層は前記透明球より高屈折率であり、かつ、前記光ファイバの屈折率と同等或はより高屈折率であることを特徴とするシンチレータ。
JP2017162132A 2017-08-25 2017-08-25 シンチレータ Pending JP2019039812A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017162132A JP2019039812A (ja) 2017-08-25 2017-08-25 シンチレータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017162132A JP2019039812A (ja) 2017-08-25 2017-08-25 シンチレータ

Publications (1)

Publication Number Publication Date
JP2019039812A true JP2019039812A (ja) 2019-03-14

Family

ID=65726387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017162132A Pending JP2019039812A (ja) 2017-08-25 2017-08-25 シンチレータ

Country Status (1)

Country Link
JP (1) JP2019039812A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224541A1 (ja) * 2021-04-23 2022-10-27 株式会社日立製作所 検出器及び放射線モニタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224541A1 (ja) * 2021-04-23 2022-10-27 株式会社日立製作所 検出器及び放射線モニタ

Similar Documents

Publication Publication Date Title
US4788436A (en) Radiation sensitive optical fiber and detector
JP4406699B2 (ja) 光ファイバを利用した放射線及び中性子検出器
JP5916421B2 (ja) 中性子検出器
JP7279383B2 (ja) シンチレータ
US20120161011A1 (en) High aspect ratio scintillator detector for neutron detection
CN101443679A (zh) 中子和γ射线监测器
CN102597805A (zh) 闪烁像素的设计以及工作方法
JP6563339B2 (ja) 中性子シンチレーター、中性子検出器及び中性子シンチレーターの製造方法
WO2011012154A1 (en) Apparatus and method for neutron detection by capture-gamma calorimetry
JPS60155991A (ja) 中性子又はガンマ線又はその双方の検出系
JP6223749B2 (ja) 中性子シンチレーター及び中性子検出器
JP6315575B2 (ja) 中性子シンチレーター及び中性子検出器
JPH0843535A (ja) 放射線遠隔検出装置
JPH09236669A (ja) ファイバ型放射線検出器
JP2019039812A (ja) シンチレータ
WO2015064587A1 (ja) 中性子シンチレーター及び中性子検出器
JP2019039879A (ja) 中性子検出器
US9702984B1 (en) Long-distance transmission of light in a scintillator-based radiation detector
JP6900697B2 (ja) 中性子シンチレーター、中性子検出器および中性子の検出方法
JP4635212B2 (ja) 光ファイバを利用した放射線又は中性子検出器
JP4635210B2 (ja) 光ファイバを利用した放射線又は中性子の検出器
JP2020046251A (ja) 中性子検出方法および中性子検出装置
JP2015040706A (ja) 中性子シンチレーター及び中性子検出器
WO2022224541A1 (ja) 検出器及び放射線モニタ
JP6392938B2 (ja) 中性子シンチレーター及び中性子検出器

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190122