JP2019036581A - Electric magnet - Google Patents

Electric magnet Download PDF

Info

Publication number
JP2019036581A
JP2019036581A JP2017155481A JP2017155481A JP2019036581A JP 2019036581 A JP2019036581 A JP 2019036581A JP 2017155481 A JP2017155481 A JP 2017155481A JP 2017155481 A JP2017155481 A JP 2017155481A JP 2019036581 A JP2019036581 A JP 2019036581A
Authority
JP
Japan
Prior art keywords
axis
coil
coils
magnetic field
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017155481A
Other languages
Japanese (ja)
Inventor
智万 山城
Tomokazu Yamashiro
智万 山城
良一 内海
Ryoichi Uchiumi
良一 内海
茂行 佐藤
Shigeyuki Sato
茂行 佐藤
直紀 鳥海
Naoki Chokai
直紀 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toei Scient Industrial Co Ltd
Toei Scientific Industrial Co Ltd
Original Assignee
Toei Scient Industrial Co Ltd
Toei Scientific Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toei Scient Industrial Co Ltd, Toei Scientific Industrial Co Ltd filed Critical Toei Scient Industrial Co Ltd
Priority to JP2017155481A priority Critical patent/JP2019036581A/en
Publication of JP2019036581A publication Critical patent/JP2019036581A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an electric magnet which allows for downsizing of a device and reduction of mechanical interference, does not has a residual magnetic field and can output a magnetic field in any direction without moving the electric magnet.SOLUTION: The electric magnet comprises: two X-axis coils 1 in each of which coil axes 1C are in parallel with each other, and which are disposed axially symmetrically to each other around a central axis CL in parallel with a Z direction and; two Y-axis coils 2 in each of which coil axes 2C are in parallel with each other and which are disposed axially symmetrically to each other around the central axis CL; and one Z-axis coil 3 in which a coil axis 3C is matched with the central axis CL and disposed at a more outer peripheral side than the two X-axis coils 1 and the two Y-axis coils 2. An X direction and a Y direction are orthogonal to each other. A yoke that is a soft ferromagnetic substance is not disposed in a magnetic field generation region generated by all the coils 1 to 3. A magnetic field in any direction can be applied onto the central axis CL by changing current caused to flow to each of the coils 1-3.SELECTED DRAWING: Figure 1

Description

本開示は、電磁石に関する。   The present disclosure relates to an electromagnet.

磁気抵抗測定装置、振動試料磁力計、MRAM・評価装置を始めとする各種磁気物性測定装置用電磁石、磁場中熱処理装置、着磁脱磁処理装置、飽和磁歪測定装置等の電磁石を用いた処理装置など、磁気応用産業から半導体産業、さらには医療やバイオ分野と、磁場を使用する技術が多方面にわたって実用化されている。   Processing devices using electromagnets such as magnetoresistance measuring device, vibrating sample magnetometer, electromagnet for various magnetic property measuring devices including MRAM / evaluation device, heat treatment device in magnetic field, magnetization demagnetization processing device, saturation magnetostriction measuring device From the magnetic application industry to the semiconductor industry, and the medical and biotechnology fields, technologies using magnetic fields have been put into practical use in many fields.

上記の分野においては、所望の方向に磁場を印加して被測定物の磁場中の特性を計測することや所望の磁場中に被処理物を配置して熱処理等を施すことによって被処理物の磁気特性を変化させること等のために、電磁石を使い電流制御や電磁石の回転等により所望の方向に磁場を印加することも行われている。   In the above-mentioned fields, the magnetic field is applied in a desired direction to measure the characteristics of the object to be measured in the magnetic field, or the object to be processed is disposed in the desired magnetic field and subjected to heat treatment or the like. In order to change the magnetic characteristics, an electromagnet is used to apply a magnetic field in a desired direction by current control, rotation of the electromagnet, or the like.

特開2013−36941号公報JP 2013-36941 A 特許第4761483号公報Japanese Patent No. 4761383

特開2013−36941号公報には、例えば3軸の磁気センサの検査及び評価を行うために、磁気センサに磁場を印加する3軸ヘルムホルツコイルを用いた磁気センサの検査装置が開示されている。ヘルムホルツコイルは、コイル軸が同軸となる一対のコイルを離間させて配置し、一対のコイルの間に配置した対象物に磁場を印加する。x軸、y軸及びz軸の磁場を発生させるために、3組のコイルが設けられている。しかし、このようなヘルムホルツコイルを用いた電磁石では、各コイルの内側に磁場発生領域が設定されるため、磁場発生領域に配置される機器が大きければ検査装置全体を大型化しなければならず、また、ヘルムホルツコイルとの機械的干渉が生じるため、機械的動作の制約が生じてしまう。   Japanese Unexamined Patent Application Publication No. 2013-36941 discloses a magnetic sensor inspection apparatus using a three-axis Helmholtz coil that applies a magnetic field to the magnetic sensor in order to inspect and evaluate a three-axis magnetic sensor, for example. In the Helmholtz coil, a pair of coils whose coil axes are coaxial are arranged apart from each other, and a magnetic field is applied to an object arranged between the pair of coils. Three sets of coils are provided to generate x-axis, y-axis, and z-axis magnetic fields. However, in such an electromagnet using a Helmholtz coil, a magnetic field generation region is set inside each coil. Therefore, if the device arranged in the magnetic field generation region is large, the entire inspection apparatus must be enlarged. Since mechanical interference with the Helmholtz coil occurs, mechanical operation is restricted.

特許4761483号公報には、磁場印加領域を装置の一方側のみとして、機械的動作の制約及び装置大型化を回避した電磁石が開示されている。しかし、中心の第1ヨークから周囲の第2ヨークに放射状に磁場が形成されるため、x軸、y軸及びz軸などの印加したい方向に応じて対象物の位置を変更しなければならない。   Japanese Patent No. 4761483 discloses an electromagnet having a magnetic field application region only on one side of the apparatus and avoiding mechanical operation restrictions and apparatus enlargement. However, since a magnetic field is formed radially from the central first yoke to the surrounding second yoke, the position of the object must be changed according to the direction to be applied, such as the x-axis, y-axis, and z-axis.

また、別の要求として、発生させる磁場の強さ及び方向を変化させて高レスポンスでの計測及び評価が求められる場合がある。この場合、電磁石自体に残留磁場が発生したり、ヒステリシスが存在したりすると、コイルへの電流制御と実際に発生する磁場とに差異が生じるため、残留磁場及びヒステリシスが発生しないことが望まれる。   As another requirement, there are cases where measurement and evaluation with high response are required by changing the strength and direction of the magnetic field to be generated. In this case, if a residual magnetic field is generated in the electromagnet itself or if there is hysteresis, a difference is generated between the current control to the coil and the actually generated magnetic field. Therefore, it is desirable that the residual magnetic field and the hysteresis are not generated.

本開示は、このような課題に着目してなされたものであって、その目的は、装置の小型化及び機械的干渉の低減が可能であり、残留磁場がなく、電磁石を移動させずに任意方向の磁場を出力可能な電磁石を提供することである。   The present disclosure has been made paying attention to such a problem, and the object thereof is to reduce the size of the apparatus and reduce mechanical interference, and there is no residual magnetic field, and an arbitrary without moving the electromagnet. An electromagnet capable of outputting a magnetic field in a direction is provided.

本開示は、上記目的を達成するために、次のような手段を講じている。   In order to achieve the above object, the present disclosure takes the following measures.

すなわち、本開示の電磁石は、
2つのX軸用コイルであって、各コイル軸が互いに平行又は交差しており、各コイル軸は、Z方向に平行な中心軸を中心として互いに軸対称となる位置に配置される、2つのX軸用コイルと、
2つのY軸用コイルであって、各コイル軸が互いに平行又は交差しており、各コイル軸は、前記中心軸を中心として互いに軸対称となる位置に配置される、2つのY軸用コイルと、
1つのZ軸用コイルであって、コイル軸が前記中心軸と一致し、前記2つのX軸用コイル及び前記2つのY軸用コイルよりも外周側に配置される、1つのZ軸用コイルと、
を備え、
前記中心軸に直交し且つ前記2つのX軸用コイルのコイル軸を通るX方向と、前記中心軸に直交し且つ前記2つのY軸用コイルのコイル軸を通るY方向と、が互いに直交し、
前記全てのコイルは、前記中心軸に直交する方向に沿って見た場合に、少なくとも一部位が互いに重なっており、
前記全てのコイルによる磁場発生領域には、軟質強磁性体であるヨークが配置されておらず、
各コイルに流す電流を変化させることで、前記中心軸上に任意方向の磁場を印加可能である。
That is, the electromagnet of the present disclosure is
Two X-axis coils, each coil axis being parallel to or crossing each other, and each coil axis is arranged at a position that is axially symmetric with respect to a central axis parallel to the Z direction. An X-axis coil;
Two Y-axis coils, each coil axis being parallel or crossing each other, and each coil axis being arranged at a position that is axially symmetric with respect to the central axis When,
One Z-axis coil, which has a coil axis that coincides with the central axis and is arranged on the outer peripheral side of the two X-axis coils and the two Y-axis coils. When,
With
An X direction orthogonal to the central axis and passing through the coil axes of the two X axis coils and a Y direction orthogonal to the central axis and passing through the coil axes of the two Y axis coils are orthogonal to each other. ,
All of the coils overlap each other at least partially when viewed along a direction orthogonal to the central axis,
In the magnetic field generation region by all the coils, a yoke that is a soft ferromagnet is not disposed,
By changing the current passed through each coil, a magnetic field in an arbitrary direction can be applied on the central axis.

この構成によれば、X軸用コイルのコイル軸は中心軸を中心として軸対称に配置されているので、2つのX軸用コイルへの通電によって中心軸上にX方向の磁束が発生する。Y軸用コイルのコイル軸は中心軸を中心として軸対称に配置されているので、2つのY軸用コイルへの通電によって中心軸上にY方向の磁束が発生する。Z軸用コイルへの通電によって中心軸上にZ方向の磁束が発生する。XYZ全てのコイルの配置中心が一致しているので、中心軸上に所望の方向の磁束が発生し、対象物に対して電磁石を相対的に移動させなくても、任意方向の磁場を印加可能となる。
また、全てのコイルの磁場発生領域には、軟質強磁性体であるヨークが配置されていないので、電流を切れば磁場が即座に消えるため、残留磁場がなく、ヒステリシスも発生しない。
さらに、全てのコイルは、中心軸に直交する方向に沿って見た場合に、少なくとも一部位が互いに重なっているので、Z方向の寸法を抑制して小型化を追求することができ、Z方向の一方側の空間を磁場印加空間として利用できるので、機械的干渉を低減することができる。
さらに、X軸用コイル及びY軸用コイルの外周側にZ軸用コイルを配置しているので、X軸用コイル及びY軸用コイルの磁場の強さに合わせてZ軸用コイルの強さを設定でき、XYZの3方向に対してバランスよく磁場を印加可能となる。
According to this configuration, since the coil axis of the X-axis coil is arranged symmetrically with respect to the central axis, a magnetic flux in the X direction is generated on the central axis by energizing the two X-axis coils. Since the coil axis of the Y-axis coil is arranged symmetrically about the central axis, a magnetic flux in the Y direction is generated on the central axis by energizing the two Y-axis coils. By energizing the Z-axis coil, a magnetic flux in the Z direction is generated on the central axis. Since the arrangement centers of all the XYZ coils coincide, a magnetic flux in a desired direction is generated on the central axis, and a magnetic field in any direction can be applied without moving the electromagnet relative to the object. It becomes.
In addition, since the yoke, which is a soft ferromagnet, is not disposed in the magnetic field generation region of all the coils, the magnetic field disappears immediately when the current is turned off, so there is no residual magnetic field and no hysteresis is generated.
Furthermore, since all the coils overlap each other at least partially when viewed along the direction orthogonal to the central axis, the size in the Z direction can be suppressed and downsizing can be pursued. Since the space on one side can be used as a magnetic field application space, mechanical interference can be reduced.
Further, since the Z-axis coil is arranged on the outer peripheral side of the X-axis coil and the Y-axis coil, the strength of the Z-axis coil is matched to the strength of the magnetic field of the X-axis coil and the Y-axis coil. The magnetic field can be applied in a balanced manner with respect to the three directions of XYZ.

本開示の電磁石を示す平面図。The top view which shows the electromagnet of this indication. 図1のA−A部位断面図であり、X方向磁場発生に関する説明図。It is AA site | part sectional drawing of FIG. 1, and explanatory drawing regarding X direction magnetic field generation | occurrence | production. 図1のB−B部位断面図であり、Y方向磁場発生に関する説明図。It is BB site | part sectional drawing of FIG. 1, and explanatory drawing regarding a Y direction magnetic field generation | occurrence | production. 図1のA−A部位断面図であり、Z方向磁場発生に関する説明図。It is AA site | part sectional drawing of FIG. 1, and explanatory drawing regarding Z direction magnetic field generation | occurrence | production. 変形例を示す模式的断面図。The typical sectional view showing a modification. 変形例を示す模式的断面図。The typical sectional view showing a modification. 変形例を示す模式的断面図。The typical sectional view showing a modification.

以下、本開示の一実施形態の電磁石について、図面を参照して説明する。   Hereinafter, an electromagnet according to an embodiment of the present disclosure will be described with reference to the drawings.

図1及び図2A〜2Cに示すように、電磁石は、磁場を印加するために用いられ、2つのX軸用コイル1と、2つのY軸用コイル2と、1つのZ軸用コイル3と、を有する。本実施形態では、X軸用コイル1、Y軸用コイル2及びZ軸用コイル3は、エナメル導線などの非磁性体の導線を円筒状に巻き付けて形成されている。   As shown in FIGS. 1 and 2A to 2C, the electromagnet is used to apply a magnetic field, and two X-axis coils 1, two Y-axis coils 2, and one Z-axis coil 3 are used. Have. In the present embodiment, the X-axis coil 1, the Y-axis coil 2, and the Z-axis coil 3 are formed by winding a non-magnetic conductor such as an enamel conductor in a cylindrical shape.

2つのX軸用コイル1は、図2Aに示すように、各コイル軸1Cが互いに平行である。図1に示すように、各コイル軸1Cは、Z方向に平行な中心軸CLを中心として互いに軸対称となる位置に配置されている。各コイル軸1Cは、各コイル軸1Cと平行なZ方向に延びる中心軸CLを中心とする仮想円周VC上において互いに軸対称となる位置に配置される。本実施形態において、2つのX軸用コイル1は同じ大きさに形成される。2つのX軸用コイル1の一方側の軸端面1aが同一平面PS上に配置される。2つのX軸用コイル1は、中心軸CLに直交する方向(例えばX方向、Y方向)に沿って見た場合に全部位が互いに重なるように配置されている(いわゆる横並びである)。   As shown in FIG. 2A, the coil axes 1C of the two X-axis coils 1 are parallel to each other. As shown in FIG. 1, the coil axes 1 </ b> C are arranged at positions that are axially symmetric with respect to a central axis CL that is parallel to the Z direction. The coil shafts 1C are arranged at positions that are symmetric with respect to each other on a virtual circumference VC around a central axis CL extending in the Z direction parallel to the coil shafts 1C. In the present embodiment, the two X-axis coils 1 are formed in the same size. The shaft end surfaces 1a on one side of the two X-axis coils 1 are arranged on the same plane PS. The two X-axis coils 1 are arranged so that all the portions overlap each other when viewed along a direction orthogonal to the central axis CL (for example, the X direction and the Y direction) (so-called side by side).

図2Aに示すように、2つのX軸用コイル1に対して電流の向きが異なるX軸励磁用電流Xiを流すと、一方のコイル1から他方のコイル1に向かう磁束mf1が発現する。2つのX軸用コイル1の各コイル軸1Cが平行であるが同軸ではないので、ヘルムホルツコイルと異なり、X軸用コイル1の軸端面1aよりも外側の領域にX方向に沿った磁束を発現させることができる。本実施形態では、2つのX軸用コイル1の一方の軸端面1aが同一平面PS上に配置されているので、高さを抑えつつ、2つのX軸用コイル1の一方側の軸端面1aの付近にX方向に沿った磁束を発現させることができる。   As shown in FIG. 2A, when an X-axis excitation current Xi having different current directions is supplied to the two X-axis coils 1, a magnetic flux mf1 from one coil 1 toward the other coil 1 is developed. Since each coil axis 1C of the two X-axis coils 1 is parallel but not coaxial, unlike the Helmholtz coil, magnetic flux along the X direction is expressed in a region outside the shaft end surface 1a of the X-axis coil 1. Can be made. In the present embodiment, since one shaft end surface 1a of the two X-axis coils 1 is arranged on the same plane PS, the shaft end surface 1a on one side of the two X-axis coils 1 is suppressed while suppressing the height. The magnetic flux along the X direction can be expressed in the vicinity of.

2つのY軸用コイル2は、図2Bに示すように、各コイル軸2Cが中心軸CLと平行である。各コイル軸2Cは、中心軸CLを中心として互いに軸対処となる位置に配置されている。各コイル軸2Cは、仮想円周VC上において互いに軸対称となる位置に配置される。本実施形態において、2つのY軸用コイル2は、X軸用コイル1と共に同じ大きさに形成される。2つのY軸用コイル2の一方側の軸端面2aが同一平面PS上に配置される。2つのY軸用コイル2は、中心軸CLに直交する方向(例えばX方向、Y方向)に沿って見た場合に全部位が互いに重なるように配置されている(いわゆる横並びである)。   As shown in FIG. 2B, in each of the two Y-axis coils 2, each coil axis 2C is parallel to the central axis CL. Each coil shaft 2 </ b> C is disposed at a position that corresponds to each other around the central axis CL. Each coil axis 2 </ b> C is disposed at a position that is axially symmetrical with each other on the virtual circumference VC. In the present embodiment, the two Y-axis coils 2 are formed in the same size as the X-axis coil 1. The shaft end surfaces 2a on one side of the two Y-axis coils 2 are arranged on the same plane PS. The two Y-axis coils 2 are arranged so that all the portions overlap each other when viewed along a direction orthogonal to the central axis CL (for example, the X direction and the Y direction) (so-called side by side).

図2Bに示すように、2つのY軸用コイル2に対して電流の向きが異なるY軸励磁用電流Yiを流すと、一方のコイル2から他方のコイル2に向かう磁束mf2が発現する。2つのコイル2の各コイル軸2Cが平行であるが同一ではないので、ヘルムホルツコイルと異なり、Y軸用コイル2の軸端面2aよりも外側の領域にY方向に沿った磁束を発現させることができる。本実施形態では、2つのY軸用コイル2の一方の軸端面2aが同一平面PS上に配置されているので、高さを抑えつつ、2つのY軸用コイル2の一方側の軸端面2aの付近にY方向に沿った磁束を発現させることができる。   As shown in FIG. 2B, when a Y-axis excitation current Yi having different current directions is passed through the two Y-axis coils 2, a magnetic flux mf2 from one coil 2 toward the other coil 2 appears. Since the coil axes 2C of the two coils 2 are parallel but not the same, unlike the Helmholtz coil, a magnetic flux along the Y direction can be expressed in a region outside the shaft end surface 2a of the Y-axis coil 2. it can. In the present embodiment, since one shaft end surface 2a of the two Y-axis coils 2 is disposed on the same plane PS, the shaft end surface 2a on one side of the two Y-axis coils 2 is suppressed while suppressing the height. The magnetic flux along the Y direction can be expressed in the vicinity of.

中心軸CLに直交し且つ2つのX軸用コイル1のコイル軸1Cを通るX方向と、中心軸CLに直交し且つ2つのY軸用コイル2のコイル軸2Cを通るY方向と、が互いに直交する。この構造により、X軸用コイル1で生じる磁束の向きと、Y軸用コイル2で生じる磁束の向きとが直交する。   The X direction perpendicular to the central axis CL and passing through the coil axes 1C of the two X-axis coils 1 and the Y direction perpendicular to the central axis CL and passing through the coil axes 2C of the two Y-axis coils 2 are mutually Orthogonal. With this structure, the direction of the magnetic flux generated in the X-axis coil 1 is orthogonal to the direction of the magnetic flux generated in the Y-axis coil 2.

Z軸用コイル3は、図2Cに示すように、コイル軸3Cが中心軸CLと一致し、2つのX軸用コイル1及び2つのY軸用コイル2よりも外周側に配置される。図2Cに示すように、Z軸用コイル3に対してZ軸励磁用電流Ziを流すと、コイル軸3Cが中心軸CLと一致しているので、中心軸CLを通る磁束mf3が発現する。Z軸用コイル3がX軸用コイル1及びY軸用コイル2の内周側に配置される構造では、Z軸用コイル3によるz方向の磁束が弱くなり、逆にZ軸用コイル3を強くすればZ軸用コイル3が大きくなってX軸用コイル1及びY軸用コイル2が離間し、X方向及びZ方向の磁束の強度が弱くなる。Z軸用コイル3が最も外周側にあれば、Z軸用コイル3による磁束の強さは、巻き数や寸法で調整可能であり、X軸用コイル1及びY軸用コイル2による磁束の強さに合わせて強度調整可能であり、xyz方向の磁束の強度をバランスよく出力可能な電磁石を提供できる。   As shown in FIG. 2C, the Z-axis coil 3 is arranged on the outer peripheral side with respect to the two X-axis coils 1 and the two Y-axis coils 2 with the coil axis 3C coinciding with the central axis CL. As shown in FIG. 2C, when a Z-axis excitation current Zi is passed through the Z-axis coil 3, the coil axis 3C coincides with the central axis CL, and thus a magnetic flux mf3 that passes through the central axis CL appears. In the structure in which the Z-axis coil 3 is disposed on the inner peripheral side of the X-axis coil 1 and the Y-axis coil 2, the z-direction magnetic flux by the Z-axis coil 3 becomes weaker. If the strength is increased, the Z-axis coil 3 is increased, the X-axis coil 1 and the Y-axis coil 2 are separated, and the strength of the magnetic flux in the X direction and the Z direction is decreased. If the Z-axis coil 3 is on the outermost peripheral side, the strength of the magnetic flux by the Z-axis coil 3 can be adjusted by the number of turns and dimensions, and the strength of the magnetic flux by the X-axis coil 1 and the Y-axis coil 2 can be adjusted. Accordingly, it is possible to provide an electromagnet which can be adjusted in strength and can output the magnetic flux intensity in the xyz direction in a balanced manner.

本実施形態では、X軸用コイル1、Y軸用コイル2及びZ軸用コイル3は、導線を円筒形状に巻き付けて形成され、Z方向に沿った高さが同一であるが、これに限定されない。例えば、コイルを多角筒状、楕円形状に形成してもよく、Z方向に沿った高さが同一でなくてもよい。   In this embodiment, the X-axis coil 1, the Y-axis coil 2, and the Z-axis coil 3 are formed by winding a conducting wire in a cylindrical shape, and the height along the Z direction is the same, but this is not limitative. Not. For example, the coil may be formed in a polygonal cylindrical shape or an elliptical shape, and the heights along the Z direction may not be the same.

上記全てのコイル1,2、3による磁場発生領域には、軟質強磁性体であるヨークが配置されていない。このため、電流を切れば磁場が即座に消え、残留磁場がなく、ヒステリシスも発生しない。この構成を実現するために、X軸用コイル1、Y軸用コイル2及びZ軸用コイル3を支持する支持部4が設けられている。本実施形態において、支持部4は、円盤状のベースプレート及びトッププレートに、各コイル1〜3をボルト締めすると共に周囲を側壁プレートで包囲した構造をなしている。一例として、上部を足場として吊り下げ状態で保持し、下部にプローバを取り付けて、中心軸CLの任意の場所を磁場印加領域Pに設定することが挙げられる。もちろん、本開示はこれに限定されない。いずれにしても、支持部4は、アルミやプラスチックなどの非磁性体で形成されている。このように、各コイル1〜3に流す電流を変化させることで、電磁石を相対的に移動させなくても、中心軸CL上の所定領域Pに任意方向の磁場を印加可能となる。   A yoke, which is a soft ferromagnetic material, is not disposed in the magnetic field generation region of all the coils 1, 2, and 3. For this reason, when the current is turned off, the magnetic field disappears immediately, there is no residual magnetic field, and no hysteresis occurs. In order to realize this configuration, a support portion 4 that supports the X-axis coil 1, the Y-axis coil 2, and the Z-axis coil 3 is provided. In the present embodiment, the support portion 4 has a structure in which the coils 1 to 3 are bolted to a disk-shaped base plate and top plate and the periphery is surrounded by a side wall plate. As an example, it is possible to hold the upper part in a suspended state with the upper part as a scaffold, attach a prober to the lower part, and set an arbitrary place of the central axis CL as the magnetic field application region P. Of course, the present disclosure is not limited to this. In any case, the support portion 4 is formed of a nonmagnetic material such as aluminum or plastic. In this way, by changing the current flowing through each of the coils 1 to 3, a magnetic field in an arbitrary direction can be applied to the predetermined region P on the central axis CL without relatively moving the electromagnet.

全てのコイル(X軸用コイル1、Y軸用コイル2及びZ軸用コイル3)は、中心軸CLに直交する方向に沿って見た場合に、全部位が互いに重なっているので、コイルを含む装置のZ方向の寸法を抑制でき、Z方向の一方側の空間を磁場印加空間として利用できる。もちろん、本実施形態に限られず、全てのコイル(X軸用コイル1、Y軸用コイル2及びZ軸用コイル3)は、中心軸CLに直交する方向に沿って見た場合に、少なくとも一部位が互いに重なっていればよい。   Since all the coils (X-axis coil 1, Y-axis coil 2 and Z-axis coil 3) overlap each other when viewed along the direction orthogonal to the central axis CL, the coils The dimension of the device including the Z direction can be suppressed, and the space on one side in the Z direction can be used as the magnetic field application space. Of course, the present invention is not limited to this embodiment, and all the coils (the X-axis coil 1, the Y-axis coil 2, and the Z-axis coil 3) are at least one when viewed along a direction orthogonal to the central axis CL. It is only necessary that the parts overlap each other.

本実施形態では、X軸用コイル1、Y軸用コイル2及びZ軸用コイル3の一方側の軸端面1a、2a、3aは同一平面PS上にあるが、これに限定されない。例えば、図3Aに示すように、X軸用コイル1及びY軸用コイル2の一方側の軸端面1a、2aが同一平面PS上に配置され、Z軸用コイル3の一方側の軸端面3aが、X軸用コイル1及びY軸用コイル2の一方側の軸端面1a、2aが配置される同一平面PSよりも軸方向他方側に配置されていてもよい。   In the present embodiment, the shaft end surfaces 1a, 2a, 3a on one side of the X-axis coil 1, the Y-axis coil 2, and the Z-axis coil 3 are on the same plane PS, but the present invention is not limited to this. For example, as shown in FIG. 3A, the shaft end surfaces 1a and 2a on one side of the X-axis coil 1 and the Y-axis coil 2 are arranged on the same plane PS, and the shaft end surface 3a on one side of the Z-axis coil 3 is placed. However, the X axis coil 1 and the Y axis coil 2 may be disposed on the other side in the axial direction from the same plane PS on which the shaft end surfaces 1a and 2a on one side are disposed.

なお、図1〜2の例のように、2つのX軸用コイル1、2つのY軸用コイル2について各コイル軸1C、2Cを平行に配置する意味は、コイル軸が互いに交差するように配置すると、コイルの軸方向一方側の端部同士が開く構造になり、装置が大型化するからである。勿論、図4に示すように、2つのX軸用コイル1、2つのY軸用コイル2について、各コイル軸が互いに交差するように配置してもよい。コイル軸が互いに交差していれば同軸ではないので、ヘルムホルツコイルと異なり、コイルの軸端面よりも外側の領域に磁束を発現させることができる。図4に示すように、コイル軸1C(2C)と中心軸CLの角度αは、45度以下、好ましくは、20度以下、さらに好ましくは10度以下、さらに好ましくは5度以下である。   As in the example of FIGS. 1 and 2, the coil axes 1 </ b> C and 2 </ b> C are arranged in parallel for the two X-axis coils 1 and the two Y-axis coils 2 so that the coil axes cross each other. This is because, when arranged, the end portions on one side in the axial direction of the coil are open, and the device is enlarged. Of course, as shown in FIG. 4, the two X-axis coils 1 and the two Y-axis coils 2 may be arranged so that the coil axes intersect each other. If the coil axes cross each other, they are not coaxial. Therefore, unlike a Helmholtz coil, magnetic flux can be expressed in a region outside the end face of the coil. As shown in FIG. 4, the angle α between the coil axis 1C (2C) and the central axis CL is 45 degrees or less, preferably 20 degrees or less, more preferably 10 degrees or less, and further preferably 5 degrees or less.

以上のように、本実施形態の電磁石は、2つのX軸用コイル1であって、各コイル軸1Cが互いに平行又は交差しており、各コイル軸1Cは、Z方向に平行な中心軸CLを中心として互いに軸対称となる位置に配置される、2つのX軸用コイル1と、
2つのY軸用コイル2であって、各コイル軸2Cが互いに平行又は交差しており、各コイル軸2Cは、中心軸CLを中心として互いに軸対称となる位置に配置される、2つのY軸用コイル2と、
1つのZ軸用コイル3であって、コイル軸3Cが中心軸CLと一致し、2つのX軸用コイル1及び2つのY軸用コイル2よりも外周側に配置される、1つのZ軸用コイル3と、
を有する。
中心軸CLに直交し且つ2つのX軸用コイル1のコイル軸1Cを通るX方向と、中心軸CLに直交し且つ2つのY軸用コイル2のコイル軸2Cを通るY方向と、が互いに直交する。
全てのコイル1〜3は、中心軸CLに直交する方向に沿って見た場合に、少なくとも一部位が互いに重なっている。
全てのコイル1〜3による磁場発生領域には、軟質強磁性体であるヨークが配置されていない。
各コイル1〜3に流す電流を変化させることで、中心軸CL上に任意方向の磁場を印加可能である。
As described above, the electromagnet of the present embodiment is the two X-axis coils 1, and the coil axes 1 </ b> C are parallel to or intersecting each other, and each coil axis 1 </ b> C is a central axis CL parallel to the Z direction. Two X-axis coils 1 disposed at positions that are axially symmetric with respect to each other,
Two Y-axis coils 2, each coil axis 2C being parallel or crossing each other, and each coil axis 2C is disposed at a position that is axially symmetric with respect to the center axis CL. A coil 2 for shafts;
One Z-axis coil 3, wherein the coil axis 3 </ b> C coincides with the central axis CL, and is arranged on the outer peripheral side of the two X-axis coils 1 and the two Y-axis coils 2. Coil 3 for
Have
The X direction perpendicular to the central axis CL and passing through the coil axes 1C of the two X-axis coils 1 and the Y direction perpendicular to the central axis CL and passing through the coil axes 2C of the two Y-axis coils 2 are mutually Orthogonal.
All the coils 1 to 3 overlap each other at least partially when viewed along a direction orthogonal to the central axis CL.
A yoke that is a soft ferromagnet is not disposed in the magnetic field generation region of all the coils 1 to 3.
A magnetic field in an arbitrary direction can be applied on the central axis CL by changing the current flowing through the coils 1 to 3.

この構成によれば、X軸用コイル1のコイル軸1Cは中心軸CLを中心として互いに軸対称に配置されているので、2つのX軸用コイル1への通電によって中心軸CL上にX方向の磁束が発生する。Y軸用コイル2のコイル軸2Cは中心軸CLを中心として互いに軸対称に配置されているので、2つのY軸用コイル2への通電によって中心軸CL上にY方向の磁束が発生する。Z軸用コイル3への通電によって中心軸CL上にZ方向の磁束が発生する。XYZ全てのコイルの配置中心が一致しているので、中心軸CL上に所望の方向の磁束が発生し、対象物に対して電磁石を相対的に移動させなくても、任意方向の磁場を印加可能となる。
また、全てのコイル1〜3の磁場発生領域には、軟質強磁性体であるヨークが配置されていないので、電流を切れば磁場が即座に消えるため、残留磁場がなく、ヒステリシスも発生しない。
さらに、全てのコイル1〜3は、中心軸CLに直交する方向に沿って見た場合に、少なくとも一部位が互いに重なっているので、Z方向の寸法を抑制して小型化を追求することができ、Z方向の一方側の空間を磁場印加空間として利用できるので、機械的干渉を低減することができる。
さらに、X軸用コイル1及びY軸用コイル2の外周側にZ軸用コイル3を配置しているので、X軸用コイル1及びY軸用コイル2の磁場の強さに合わせてZ軸用コイル3の強さを設定でき、XYZの3方向に対してバランスよく磁場を印加可能となる。
According to this configuration, since the coil axis 1C of the X-axis coil 1 is arranged symmetrically with respect to each other about the central axis CL, energization of the two X-axis coils 1 causes an X direction on the central axis CL. The magnetic flux is generated. Since the coil axis 2C of the Y-axis coil 2 is arranged symmetrically with respect to each other about the central axis CL, a magnetic flux in the Y direction is generated on the central axis CL by energizing the two Y-axis coils 2. By energizing the Z-axis coil 3, a magnetic flux in the Z direction is generated on the central axis CL. Since the arrangement centers of all the XYZ coils coincide with each other, a magnetic flux in a desired direction is generated on the center axis CL, and a magnetic field in an arbitrary direction is applied without moving the electromagnet relative to the object. It becomes possible.
In addition, since the yoke, which is a soft ferromagnet, is not disposed in the magnetic field generation regions of all the coils 1 to 3, since the magnetic field disappears immediately when the current is turned off, there is no residual magnetic field and no hysteresis is generated.
Furthermore, since all the coils 1 to 3 overlap each other at least partially when viewed along the direction orthogonal to the central axis CL, it is possible to reduce the size in the Z direction while pursuing miniaturization. In addition, since the space on one side in the Z direction can be used as the magnetic field application space, mechanical interference can be reduced.
Further, since the Z-axis coil 3 is disposed on the outer peripheral side of the X-axis coil 1 and the Y-axis coil 2, the Z-axis is adjusted in accordance with the magnetic field strength of the X-axis coil 1 and the Y-axis coil 2. The strength of the coil 3 can be set, and a magnetic field can be applied in a balanced manner with respect to the three directions of XYZ.

本実施形態において、2つのX軸用コイル1の各コイル軸1Cは互いに平行であり、2つのY軸用コイル2の各コイル軸2Cは互いに平行である。   In the present embodiment, the coil axes 1C of the two X-axis coils 1 are parallel to each other, and the coil axes 2C of the two Y-axis coils 2 are parallel to each other.

この構成によれば、コイル軸が互いに交差している構成に比べてコイルが広がらないので、装置の小型化を追求できる。   According to this configuration, since the coil does not expand as compared with the configuration in which the coil axes cross each other, it is possible to pursue downsizing of the device.

本実施形態において、X軸用コイル1及びY軸用コイル2の一方側の軸端面1a、2aは同一平面PS上にあり、Z軸用コイル3の一方側の軸端面3aは、X軸用コイル1及びY軸用コイル2の一方側の軸端面1a、2aと同一平面PS上にある、又は、同一平面PSよりも軸方向他方側に配置されている。   In the present embodiment, the shaft end surfaces 1a and 2a on one side of the X-axis coil 1 and the Y-axis coil 2 are on the same plane PS, and the shaft end surface 3a on one side of the Z-axis coil 3 is for the X-axis. The coil 1 and the Y-axis coil 2 are on the same plane PS as the axial end faces 1a and 2a on one side, or are disposed on the other side in the axial direction from the same plane PS.

この構成によれば、X軸及びY軸の磁場の強さを一致させやすい。Z軸用コイル3は、XY軸の磁場印加領域に干渉しないように配置することができる。   According to this configuration, the strengths of the magnetic fields of the X axis and the Y axis can be easily matched. The Z-axis coil 3 can be arranged so as not to interfere with the XY-axis magnetic field application region.

本実施形態において、X軸用コイル1、Y軸用コイル2及びZ軸用コイル3を支持する支持部4を有し、支持部4は、非磁性体で形成されている。   In this embodiment, it has the support part 4 which supports the X-axis coil 1, the Y-axis coil 2, and the Z-axis coil 3, and the support part 4 is formed of a nonmagnetic material.

このように、支持部4が非磁性体であるので、残留磁場がなく、ヒステリシスも発生しない。   Thus, since the support part 4 is a nonmagnetic material, there is no residual magnetic field and no hysteresis occurs.

本実施形態において、X軸用コイル1、Y軸用コイル2及びZ軸用コイル3は、導線を円筒形状に巻き付けて形成され、Z方向に沿った高さが同一である。   In the present embodiment, the X-axis coil 1, the Y-axis coil 2, and the Z-axis coil 3 are formed by winding a conducting wire in a cylindrical shape, and have the same height along the Z direction.

円柱状の空間があれば、全てのコイル1〜3を収容することができるので、コンパクトな電磁石を提供できる。   If there is a cylindrical space, all the coils 1 to 3 can be accommodated, so that a compact electromagnet can be provided.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

図1〜2の例では、X軸用コイル1、Y軸用コイル2およびZ軸用コイル3の一方側の軸端面1a、2a、3aが同一平面PSに配置されているが、これに限定されない。例えば、図3Bに示すように、X軸用コイル1の一方側の軸端面1aと、Y軸用コイル2の一方側の軸端面2aと、Z軸用コイル3の一方側の軸端面3aとが、多少ずれていてもよい。X軸用コイル1同士の一方側の軸端面1aが同一平面上にあり、Y軸用コイル2同士の一方側の軸端面2aが同一平面上にあり、Z軸用コイル3同士の一方側の軸端面3aが同一平面上にあれば、流す電流により調整可能だからである。   In the example of FIGS. 1 and 2, the shaft end surfaces 1 a, 2 a, 3 a on one side of the X-axis coil 1, the Y-axis coil 2, and the Z-axis coil 3 are arranged on the same plane PS. Not. For example, as shown in FIG. 3B, the shaft end surface 1a on one side of the X-axis coil 1, the shaft end surface 2a on one side of the Y-axis coil 2, and the shaft end surface 3a on one side of the Z-axis coil 3 However, it may be slightly off. The shaft end surface 1a on one side of the X-axis coils 1 is on the same plane, the shaft end surface 2a on one side of the Y-axis coils 2 is on the same plane, and the one side of the Z-axis coils 3 is on one side. This is because, if the shaft end surface 3a is on the same plane, it can be adjusted by the flowing current.

上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The structure employed in each of the above embodiments can be employed in any other embodiment. The specific configuration of each unit is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…X軸用コイル
1C…コイル軸
2…Y軸用コイル
2C…コイル軸
3…Z軸用コイル
3C…コイル軸
4…支持部
CL…中心軸
VC…仮想円
DESCRIPTION OF SYMBOLS 1 ... Coil for X axis 1C ... Coil axis 2 ... Coil for Y axis 2C ... Coil axis 3 ... Coil for Z axis 3C ... Coil axis 4 ... Support part CL ... Center axis VC ... Virtual circle

Claims (5)

2つのX軸用コイルであって、各コイル軸が互いに平行又は交差しており、各コイル軸は、Z方向に平行な中心軸を中心として互いに軸対称となる位置に配置される、2つのX軸用コイルと、
2つのY軸用コイルであって、各コイル軸が互いに平行又は交差しており、各コイル軸は、前記中心軸を中心として互いに軸対称となる位置に配置される、2つのY軸用コイルと、
1つのZ軸用コイルであって、コイル軸が前記中心軸と一致し、前記2つのX軸用コイル及び前記2つのY軸用コイルよりも外周側に配置される、1つのZ軸用コイルと、
を備え、
前記中心軸に直交し且つ前記2つのX軸用コイルのコイル軸を通るX方向と、前記中心軸に直交し且つ前記2つのY軸用コイルのコイル軸を通るY方向と、が互いに直交し、
前記全てのコイルは、前記中心軸に直交する方向に沿って見た場合に、少なくとも一部位が互いに重なっており、
前記全てのコイルによる磁場発生領域には、軟質強磁性体であるヨークが配置されておらず、
各コイルに流す電流を変化させることで、前記中心軸上に任意方向の磁場を印加可能な電磁石。
Two X-axis coils, each coil axis being parallel to or crossing each other, and each coil axis is arranged at a position that is axially symmetric with respect to a central axis parallel to the Z direction. An X-axis coil;
Two Y-axis coils, each coil axis being parallel or crossing each other, and each coil axis being arranged at a position that is axially symmetric with respect to the central axis When,
One Z-axis coil, which has a coil axis that coincides with the central axis and is arranged on the outer peripheral side of the two X-axis coils and the two Y-axis coils. When,
With
An X direction orthogonal to the central axis and passing through the coil axes of the two X axis coils and a Y direction orthogonal to the central axis and passing through the coil axes of the two Y axis coils are orthogonal to each other. ,
All of the coils overlap each other at least partially when viewed along a direction orthogonal to the central axis,
In the magnetic field generation region by all the coils, a yoke that is a soft ferromagnet is not disposed,
An electromagnet capable of applying a magnetic field in an arbitrary direction on the central axis by changing a current flowing through each coil.
前記2つのX軸用コイルの各コイル軸は互いに平行であり、前記2つのY軸用コイルの各コイル軸は互いに平行である、請求項1に記載の電磁石。   2. The electromagnet according to claim 1, wherein coil axes of the two X-axis coils are parallel to each other, and coil axes of the two Y-axis coils are parallel to each other. 前記X軸用コイル及びY軸用コイルの一方側の軸端面は同一平面上にあり、
前記Z軸用コイルの一方側の軸端面は、前記X軸用コイル及びY軸用コイルの一方側の軸端面と同一平面上にある、又は、前記同一平面よりも軸方向他方側に配置されている、請求項1又は2に記載の電磁石。
The axial end surfaces on one side of the X-axis coil and the Y-axis coil are on the same plane,
The shaft end surface on one side of the Z-axis coil is on the same plane as the shaft end surface on one side of the X-axis coil and Y-axis coil, or is disposed on the other side in the axial direction from the same plane. The electromagnet according to claim 1 or 2.
前記X軸用コイル、Y軸用コイル及びZ軸用コイルを支持する支持部を備え、
前記支持部は、非磁性体で形成されている、請求項1〜3のいずれかに記載の電磁石。
A support portion for supporting the X-axis coil, the Y-axis coil, and the Z-axis coil;
The electromagnet according to claim 1, wherein the support portion is formed of a nonmagnetic material.
前記X軸用コイル、Y軸用コイル及びZ軸用コイルは、導線を円筒形状に巻き付けて形成され、前記Z方向に沿った高さが同一である、請求項1〜4のいずれかに記載の電磁石。   The X-axis coil, the Y-axis coil, and the Z-axis coil are formed by winding a conducting wire in a cylindrical shape, and have the same height along the Z direction. Electromagnet.
JP2017155481A 2017-08-10 2017-08-10 Electric magnet Pending JP2019036581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017155481A JP2019036581A (en) 2017-08-10 2017-08-10 Electric magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155481A JP2019036581A (en) 2017-08-10 2017-08-10 Electric magnet

Publications (1)

Publication Number Publication Date
JP2019036581A true JP2019036581A (en) 2019-03-07

Family

ID=65637861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155481A Pending JP2019036581A (en) 2017-08-10 2017-08-10 Electric magnet

Country Status (1)

Country Link
JP (1) JP2019036581A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004151056A (en) * 2002-11-01 2004-05-27 Hitachi Metals Ltd Weak magnetic field generation device and inspection method for magnetic field sensor
JP2007026807A (en) * 2005-07-14 2007-02-01 Yamaha Corp Inspection socket and inspection method for magnetic sensor
JP2007057547A (en) * 2006-11-27 2007-03-08 Yamaha Corp Inspection method for magnetic sensor
WO2008123144A1 (en) * 2007-03-23 2008-10-16 Asahi Kasei Emd Corporation Magnetic sensor and its sensitivity measuring method
JP2010159983A (en) * 2009-01-06 2010-07-22 Asahi Kasei Electronics Co Ltd Magnetic sensor measurement board
US20130009659A1 (en) * 2011-07-06 2013-01-10 Everspin Technologies, Inc. Probe card and method for testing magnetic sensors
CN104345292A (en) * 2013-08-08 2015-02-11 美格纳半导体有限公司 Magnetic sensor test apparatus and method
JP2017020882A (en) * 2015-07-10 2017-01-26 有限会社パワーテック Three-dimensional magnetic field electromagnet device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004151056A (en) * 2002-11-01 2004-05-27 Hitachi Metals Ltd Weak magnetic field generation device and inspection method for magnetic field sensor
JP2007026807A (en) * 2005-07-14 2007-02-01 Yamaha Corp Inspection socket and inspection method for magnetic sensor
JP2007057547A (en) * 2006-11-27 2007-03-08 Yamaha Corp Inspection method for magnetic sensor
WO2008123144A1 (en) * 2007-03-23 2008-10-16 Asahi Kasei Emd Corporation Magnetic sensor and its sensitivity measuring method
CN101641609A (en) * 2007-03-23 2010-02-03 旭化成微电子株式会社 Magnetic sensor and its sensitivity measuring method
JP2010159983A (en) * 2009-01-06 2010-07-22 Asahi Kasei Electronics Co Ltd Magnetic sensor measurement board
US20130009659A1 (en) * 2011-07-06 2013-01-10 Everspin Technologies, Inc. Probe card and method for testing magnetic sensors
CN104345292A (en) * 2013-08-08 2015-02-11 美格纳半导体有限公司 Magnetic sensor test apparatus and method
US20150042318A1 (en) * 2013-08-08 2015-02-12 Magnachip Semiconductor, Ltd. Magnetic sensor test apparatus and method
JP2017020882A (en) * 2015-07-10 2017-01-26 有限会社パワーテック Three-dimensional magnetic field electromagnet device

Similar Documents

Publication Publication Date Title
WO2012169008A1 (en) Wire rope flaw detecting apparatus
JPH02502967A (en) magnetic field generator
US20240120138A1 (en) Lightweight asymmetric magnet arrays with mixed-phase magnet rings
JP4947321B2 (en) Rotation angle detector
JP6460372B2 (en) Magnetic sensor, method for manufacturing the same, and measuring instrument using the same
JP4541092B2 (en) Superconducting magnet device of magnetic resonance imaging system
CA3121698A1 (en) Lightweight asymmetric magnet arrays with theta magnet rings
JP2019036581A (en) Electric magnet
JP5952243B2 (en) Force sense operating device
JP2010212453A (en) Electromagnet, and device and system for application of magnetic field
CN104729405A (en) Supporting device for monitoring components
JP6473546B1 (en) Electromagnet, magnetic field application system
JPH105192A (en) Gradient coil system
JP6892161B1 (en) Electromagnet, magnetic field application system
JP6934740B2 (en) Magnetization measurement method
JP7428996B1 (en) Electromagnet and magnetic field application system
WO2022220113A1 (en) Magnetic fine particle imaging device
KR101014773B1 (en) Magnetic field profile measuring apparatus for pulse electromagnet and magnetic field profile measuring method using the same
JPH03141619A (en) Magnet for generating magnetic field uniform in wide region
JP6906473B2 (en) Magnetic field compensator
JP2020041803A (en) Strain sensor structure
JPH03186725A (en) Method and instrument for measuring magnetic stress
JP2003250777A (en) Magnetic field generator and nmr apparatus utilizing the same
JPH06254065A (en) Magnetic resonance imaging device
JP4181082B2 (en) Magnetic field generator for use in Rutherford backscattering analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210602