JP2003250777A - Magnetic field generator and nmr apparatus utilizing the same - Google Patents

Magnetic field generator and nmr apparatus utilizing the same

Info

Publication number
JP2003250777A
JP2003250777A JP2002058192A JP2002058192A JP2003250777A JP 2003250777 A JP2003250777 A JP 2003250777A JP 2002058192 A JP2002058192 A JP 2002058192A JP 2002058192 A JP2002058192 A JP 2002058192A JP 2003250777 A JP2003250777 A JP 2003250777A
Authority
JP
Japan
Prior art keywords
magnetic field
magnets
magnet
field generator
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002058192A
Other languages
Japanese (ja)
Other versions
JP4003485B2 (en
Inventor
Eiji Sugiyama
英二 杉山
Masaaki Aoki
雅昭 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2002058192A priority Critical patent/JP4003485B2/en
Publication of JP2003250777A publication Critical patent/JP2003250777A/en
Application granted granted Critical
Publication of JP4003485B2 publication Critical patent/JP4003485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field generator and a NMR (nuclear magnetic resonance) apparatus, which can generate a uniform magnetic field space with grater magnetic field intensity at a place distant to some extent from the magnet surface. <P>SOLUTION: The magnetic field generator 10a includes a pair of magnets 12a, 12b which are formed with an interval open in between. An angle formed by respective magnetized directions of the magnets 12a, 12b is set so as to be neither 0° nor 180°. The magnets 12a, 12b are magnetically connected by a yoke 14. A supplementary magnet 18 can be disposed between the magnets 12a, 12b. The NMR apparatus can be obtained by additionally disposing a transmitting/receiving coil 20 between the magnets 12a, 12b. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は磁界発生装置およ
びそれを用いたNMR(nuclear magnetic resonance:
核磁気共鳴)装置に関し、より特定的には非対向型の磁
界発生装置およびそれを用いたNMR装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field generator and an NMR (nuclear magnetic resonance) using the same.
More specifically, it relates to a non-opposed magnetic field generator and an NMR apparatus using the same.

【0002】[0002]

【従来の技術】従来、対向型の磁界発生装置は、他の磁
界発生装置より強い静磁界を発生させることができるた
め、NMR装置に好適に用いられる。この装置では、発
生される均一磁界空間の中に被検査物を配置して検査さ
れるが、被検査物が対向型の磁界発生装置の磁界空間内
に入らない場合がある。この場合には磁界発生装置の外
側に磁界を発生させる必要がある。磁界発生装置の外側
に磁界を発生させることができる従来技術の一例が、特
開平51−127785号において開示されている。ま
た、他の例として、BRUKER社より表面分析用NM
R装置(商品名:ミニスペックMOUSE)が提案されてい
る。
2. Description of the Related Art Conventionally, an opposed type magnetic field generator can generate a static magnetic field stronger than other magnetic field generators, and is therefore preferably used in an NMR apparatus. In this apparatus, an object to be inspected is placed in the generated uniform magnetic field space for inspection, but the object to be inspected may not enter the magnetic field space of the opposed magnetic field generator. In this case, it is necessary to generate a magnetic field outside the magnetic field generator. Japanese Patent Laid-Open No. 51-127785 discloses an example of a conventional technique capable of generating a magnetic field outside a magnetic field generator. In addition, as another example, NM for surface analysis from BRUKER
An R device (brand name: mini-spec MOUSE) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、特開平51−
127785に開示されている技術では、磁石表面から
或る程度距離をおいたところに均一磁界空間が得られる
が、その均一磁界空間における磁界強度は小さいのでN
MR信号強度が弱く、検査精度がよくなかった。また、
BRUKER社が提案する技術では、均一磁界空間の磁
界強度は大きいが、均一磁界空間は表面近傍にのみ形成
されるので、被検査物の表面から浅い部分だけしか検査
できなかった。それゆえに、この発明の主たる目的は、
磁石表面から或る程度離れたところに磁界強度のより大
きい均一磁界空間が得られる、磁界発生装置およびそれ
を用いたNMR装置を提供することである。
However, Japanese Patent Laid-Open No. 51-
In the technology disclosed in 127785, a uniform magnetic field space can be obtained at a certain distance from the magnet surface, but since the magnetic field strength in the uniform magnetic field space is small, N
The MR signal strength was weak and the inspection accuracy was not good. Also,
In the technique proposed by BRUKER, the magnetic field strength of the uniform magnetic field space is large, but since the uniform magnetic field space is formed only near the surface, it is possible to inspect only the shallow portion from the surface of the inspection object. Therefore, the main purpose of this invention is to
It is an object of the present invention to provide a magnetic field generator capable of obtaining a uniform magnetic field space having a larger magnetic field strength at a certain distance from the surface of a magnet and an NMR apparatus using the same.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の磁界発生装置は、間隔をあけて設
けられる複数の磁石を備え、複数の磁石の磁化方向によ
って形成される角度が0°および180°のどちらでも
ない角度に設定されることを特徴とする。請求項2に記
載の磁界発生装置は、請求項1に記載の磁界発生装置に
おいて、複数の磁石の磁化方向によって形成される角度
は10°以上110°以下であることを特徴とする。
In order to achieve the above object, a magnetic field generator according to a first aspect of the present invention comprises a plurality of magnets provided at intervals and is formed by the magnetization directions of the plurality of magnets. It is characterized in that the angle is set to neither 0 ° nor 180 °. A magnetic field generator according to a second aspect is the magnetic field generator according to the first aspect, wherein an angle formed by the magnetization directions of the plurality of magnets is 10 ° or more and 110 ° or less.

【0005】請求項3に記載の磁界発生装置は、間隔を
あけて設けられる複数の磁石、および複数の磁石間に設
けられる補助磁石を備え、用いるべき均一磁界空間側に
おいて補助磁石による磁束が複数の磁石による磁束と逆
方向になるように、補助磁石が配置されることを特徴と
する。請求項4に記載の磁界発生装置は、請求項3に記
載の磁界発生装置において、補助磁石の均一磁界空間側
表面は複数の磁石の均一磁界空間側表面より0mm以上
20mm以下没するように設定されることを特徴とす
る。
A magnetic field generator according to a third aspect of the present invention comprises a plurality of magnets provided at intervals, and auxiliary magnets provided between the plurality of magnets, and a plurality of magnetic fluxes generated by the auxiliary magnets on the side of the uniform magnetic field space to be used. The auxiliary magnet is arranged so as to be in a direction opposite to the magnetic flux generated by the magnet. The magnetic field generating device according to claim 4 is the magnetic field generating device according to claim 3, wherein the surface of the auxiliary magnet on the side of the uniform magnetic field is set to be 0 mm or more and 20 mm or less from the surface of the plurality of magnets on the side of the uniform magnetic field. It is characterized by being done.

【0006】請求項5に記載の磁界発生装置は、請求項
1から4のいずれかに記載の磁界発生装置において、複
数の磁石を磁気的に結合するヨークをさらに含むことを
特徴とする。請求項6に記載の磁界発生装置は、請求項
3または4に記載の磁界発生装置において、複数の磁石
を磁気的に結合するヨークをさらに含み、補助磁石はヨ
ークから所定距離をおいて設けられることを特徴とす
る。請求項7に記載のNMR装置は、請求項1から6の
いずれかに記載の磁界発生装置、および複数の磁石の間
に設けられる送受信コイルを備える。
A magnetic field generator according to a fifth aspect is the magnetic field generator according to any one of the first to fourth aspects, further comprising a yoke for magnetically coupling a plurality of magnets. The magnetic field generator according to claim 6 is the magnetic field generator according to claim 3 or 4, further comprising a yoke that magnetically couples a plurality of magnets, and the auxiliary magnet is provided at a predetermined distance from the yoke. It is characterized by An NMR apparatus according to a seventh aspect comprises the magnetic field generating apparatus according to any one of the first to sixth aspects, and a transmission / reception coil provided between a plurality of magnets.

【0007】請求項1に記載の磁界発生装置では、複数
の磁石の磁化方向を同方向でも正逆方向でもないように
設定することによって、磁石の表面から離れたところに
より大きい磁界強度を有する広い均一磁界空間を得るこ
とができる。また、複数の磁石の磁化方向によって空間
の磁界分布が変化するので、磁化方向を適宜選択するこ
とによって、所望の位置に均一磁界空間を得ることがで
きる。請求項2に記載の磁界発生装置では、複数の磁石
の磁化方向がなす角度を10°以上110°以下に設定
することによって、磁石の表面から離れた所望の位置に
所望の磁界強度を有する均一磁界空間を設けることがで
きる。
In the magnetic field generator according to the first aspect of the present invention, the magnetizing directions of the plurality of magnets are set so as not to be in the same direction or in the forward and reverse directions, so that a wide magnetic field having a larger magnetic field strength is provided at a position away from the surface of the magnet. A uniform magnetic field space can be obtained. Further, since the magnetic field distribution of the space changes depending on the magnetization directions of the plurality of magnets, a uniform magnetic field space can be obtained at a desired position by appropriately selecting the magnetization direction. In the magnetic field generator according to claim 2, the angle formed by the magnetization directions of the plurality of magnets is set to 10 ° or more and 110 ° or less so that the desired magnetic field strength is uniform at a desired position away from the surface of the magnet. A magnetic field space can be provided.

【0008】請求項3に記載の磁界発生装置では、複数
の磁石近傍の強い磁界が補助磁石による磁界によって弱
められる。これによって、磁石表面から離れたところに
より広い均一磁界空間を得ることができる。請求項4に
記載の磁界発生装置では、補助磁石の磁界空間側表面が
複数の磁石の磁界空間側表面より0mm以上20mm以
下没するように補助磁石を配置することによって、磁石
表面から離れた所望の位置に所望の磁界強度を有する均
一磁界空間を設けることができる。
In the magnetic field generator of the third aspect, the strong magnetic field in the vicinity of the plurality of magnets is weakened by the magnetic field of the auxiliary magnet. As a result, a wider uniform magnetic field space can be obtained at a position farther from the magnet surface. In the magnetic field generator according to claim 4, by arranging the auxiliary magnet so that the surface on the magnetic field space side of the auxiliary magnet is submerged by 0 mm or more and 20 mm or less from the surface on the magnetic field space side of the plurality of magnets, a desired distance from the magnet surface is obtained. A uniform magnetic field space having a desired magnetic field strength can be provided at the position.

【0009】請求項5に記載の磁界発生装置では、複数
の磁石をヨークで磁気的に結合することによって、発生
する磁界をさらに強くでき、検出精度を向上できる。請
求項6に記載の磁界発生装置では、補助磁石をヨークか
ら所定距離をおいて配置することによって、補助磁石か
ら発生する磁束がヨークによって短絡されない。請求項
7に記載のNMR装置では、上述の磁界発生装置を用い
ることによってNMR装置に必要な均一磁界空間を形成
できるので、良好な検出精度を得ることができ様々な用
途に適用できる。たとえば、MRIでは被撮像物の表面
から浅い部分だけではなく内部をも良好な撮像精度で撮
像することができ、有用なNMR装置が得られる。
In the magnetic field generator according to the fifth aspect, the magnetic field generated can be further strengthened by magnetically coupling the plurality of magnets with the yoke, and the detection accuracy can be improved. In the magnetic field generator according to the sixth aspect, the auxiliary magnet is arranged at a predetermined distance from the yoke, so that the magnetic flux generated from the auxiliary magnet is not short-circuited by the yoke. In the NMR apparatus according to the seventh aspect, since the uniform magnetic field space required for the NMR apparatus can be formed by using the magnetic field generating apparatus described above, good detection accuracy can be obtained and the NMR apparatus can be applied to various applications. For example, in MRI, not only the shallow portion from the surface of the object to be imaged but also the inside thereof can be imaged with good imaging accuracy, and a useful NMR apparatus can be obtained.

【0010】[0010]

【発明の実施の形態】以下、図面を参照してこの発明の
実施形態について説明する。図1および図2を参照し
て、この発明の一実施形態の磁界発生装置10aは、磁
石が対向する空間の外側に均一磁界空間を形成する非対
向横磁界型の磁界発生装置であり、一定間隔をあけて設
けられる2つの直方体状の磁石12aおよび12bを含
む。磁石12aおよび12bの一端にはたとえば鉄から
なりかつ直方体状のヨーク14が接続され、磁石12a
と12bとが磁気的に結合される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. With reference to FIGS. 1 and 2, a magnetic field generator 10a according to an embodiment of the present invention is a non-opposed transverse magnetic field type magnetic field generator that forms a uniform magnetic field space outside a space where magnets face each other, and is constant. It includes two rectangular parallelepiped magnets 12a and 12b provided at intervals. A yoke 14 made of, for example, iron and having a rectangular parallelepiped shape is connected to one ends of the magnets 12a and 12b.
And 12b are magnetically coupled.

【0011】図2に示すように、磁石12aおよび12
bのそれぞれの磁化角度をθ1およびθ2とする。磁化
角度θ1は、磁石12aの磁化方向がヨーク14主面も
しくは水平方向に対してなす角度をいい、時計回り方向
に正の値をとる。磁化角度θ2は、磁石12bの磁化方
向がヨーク14主面もしくは水平方向に対してなす角度
をいい、反時計回り方向に正の値をとる。したがって、
磁石12aおよび12bのそれぞれの磁化方向によって
形成される角度は、(θ1+θ2)で求められる。
As shown in FIG. 2, magnets 12a and 12
The respective magnetization angles of b are set to θ1 and θ2. The magnetization angle θ1 is an angle formed by the magnetization direction of the magnet 12a with respect to the main surface of the yoke 14 or the horizontal direction, and has a positive value in the clockwise direction. The magnetization angle θ2 is an angle formed by the magnetization direction of the magnet 12b with respect to the main surface of the yoke 14 or the horizontal direction, and has a positive value in the counterclockwise direction. Therefore,
The angle formed by the respective magnetization directions of the magnets 12a and 12b is calculated by (θ1 + θ2).

【0012】このような磁界発生装置10aでは、磁石
12aおよび12bの他端側に形成される均一磁界空間
(たとえばSで示す領域)が検査のために用いられる。
なお、磁石12aおよび12bの磁化方向が図2に示す
方向である場合、矢印Aで示すような磁束が発生する。
In such a magnetic field generator 10a, a uniform magnetic field space (for example, a region indicated by S) formed on the other ends of the magnets 12a and 12b is used for inspection.
When the magnets 12a and 12b are magnetized in the directions shown in FIG. 2, a magnetic flux as indicated by arrow A is generated.

【0013】磁界発生装置10aによれば、磁石12a
および12bのそれぞれの磁化方向を相互に同方向でも
正逆方向でもないように設定することによって、磁石1
2aおよび12bの表面から離れたところにより大きい
磁界強度を有する広い均一磁界空間を得ることができ
る。また、磁石12aおよび12bの磁化方向によって
空間の磁界分布が変化するので、磁石12aおよび12
bの磁化方向を適宜選択することによって、所望の位置
に均一磁界空間を得ることができる。また、磁石12a
および12bをヨーク14で磁気的に結合することによ
って、発生する磁界を強くでき、撮像精度を向上でき
る。
According to the magnetic field generator 10a, the magnet 12a
The magnets 1 and 12b are set so that they are neither in the same direction nor in the forward and reverse directions, so that the magnet 1
A wide uniform magnetic field space with greater magnetic field strength can be obtained away from the surfaces of 2a and 12b. Further, since the magnetic field distribution in the space changes depending on the magnetization directions of the magnets 12a and 12b, the magnets 12a and 12b
A uniform magnetic field space can be obtained at a desired position by appropriately selecting the magnetization direction of b. Also, the magnet 12a
By magnetically coupling and 12b with the yoke 14, the generated magnetic field can be strengthened and the imaging accuracy can be improved.

【0014】磁界発生装置10aの一実験例について説
明する。実験では、磁石12aおよび12bには、60
0mm(長さL1)×315mm(幅W1)×350m
m(高さH)のR−Fe−B系永久磁石(ネオジム磁
石:NEOMAX−35H)が用いられ、磁石12aと
12bとは190mmの間隔をあけて配置された。ヨー
ク14には、820mm(長さL2)×600mm(幅
W2)×150mm(高さT)のJISSS400が用
いられた。
An experimental example of the magnetic field generator 10a will be described. In the experiment, the magnets 12a and 12b have 60
0 mm (length L1) x 315 mm (width W1) x 350 m
An m (height H) R-Fe-B system permanent magnet (neodymium magnet: NEOMAX-35H) was used, and the magnets 12a and 12b were arranged with a gap of 190 mm. As the yoke 14, JISSS400 of 820 mm (length L2) × 600 mm (width W2) × 150 mm (height T) was used.

【0015】そして、磁化角度θ1およびθ2を0°か
ら90°まで(θ1は時計回り、θ2は反時計回り)可
変に設定して、2つの磁石12aおよび12bによって
発生する均一磁界空間の中心磁界強度、その中心磁界強
度の位置および均一幅を図3に示す。ここで、中心磁界
強度の位置は、磁石12aおよび12bの表面からの距
離をいい、当該表面から外側に正の値をとる。均一幅と
は、中心磁界強度から±1%以内の磁界領域の垂直方向
の幅、すなわち均一磁界空間の垂直方向の幅をいう。均
一幅が重要となるのは、NMR実行時には一定の大きさ
の均一磁界空間が必要となるからである。
The magnetization angles θ1 and θ2 are variably set from 0 ° to 90 ° (θ1 is clockwise and θ2 is counterclockwise), and the central magnetic field of the uniform magnetic field space generated by the two magnets 12a and 12b is set. The strength, the position of the central magnetic field strength, and the uniform width are shown in FIG. Here, the position of the central magnetic field strength refers to the distance from the surfaces of the magnets 12a and 12b, and takes a positive value outward from the surfaces. The uniform width refers to the vertical width of the magnetic field region within ± 1% from the central magnetic field strength, that is, the vertical width of the uniform magnetic field space. The uniform width is important because a uniform magnetic field space of a certain size is required when performing NMR.

【0016】図3より、磁化角度θ1およびθ2を0
°、すなわち2つの磁石12aおよび12bの磁化方向
を平行(同方向)にすると、中心磁界強度は0.020
8Tと非常に小さいが、中心磁界強度の位置は磁石表面
から33.2mm、均一幅は4.8mmとなる。また、
磁化角度θ1およびθ2を5°にすると、中心磁界強度
は0.0296Tと小さいが、中心磁界強度の位置は磁
石表面から28.2mm、均一幅は4.4mmとなる。
したがって、磁化角度θ1およびθ2が0°や5°の場
合には、磁界強度は小さいものの、磁石表面からかなり
離れた位置に比較的広い均一磁界空間が発生する。磁化
角度θ1およびθ2を徐々に大きくしていくと、中心磁
界強度は大きくなるが、その位置は磁石表面に近づいて
いき、また、均一幅は狭くなっていく。なお、磁化角度
θ1とθ2は異なる角度とすることもできる。
From FIG. 3, the magnetization angles θ1 and θ2 are set to 0.
When the magnetization directions of the two magnets 12a and 12b are parallel (the same direction), the central magnetic field strength is 0.020.
Although very small as 8T, the position of the central magnetic field strength is 33.2 mm from the magnet surface, and the uniform width is 4.8 mm. Also,
When the magnetization angles θ1 and θ2 are set to 5 °, the central magnetic field strength is as small as 0.0296T, but the position of the central magnetic field strength is 28.2 mm from the magnet surface, and the uniform width is 4.4 mm.
Therefore, when the magnetization angles θ1 and θ2 are 0 ° and 5 °, although the magnetic field strength is small, a relatively wide uniform magnetic field space is generated at a position considerably distant from the magnet surface. When the magnetization angles θ1 and θ2 are gradually increased, the central magnetic field strength increases, but the position approaches the magnet surface, and the uniform width decreases. The magnetization angles θ1 and θ2 may be different angles.

【0017】この実験例において、均一磁界空間の中心
磁界強度が略0.03T以上かつ中心磁界強度の位置が
略5mm以上を条件とすると、磁化角度θ1およびθ2
は5°以上55°以下となる。したがって、2つの磁石
12aおよび12bのそれぞれの磁化方向がなす角度は
10°以上110°以下が好ましい。この場合、磁石1
2aおよび12bの表面から離れた所望の位置に所望の
磁界強度を有する均一磁界空間を設けることができるの
で、磁界発生装置10aの利用範囲がさらに広まる。
In this experimental example, assuming that the central magnetic field strength of the uniform magnetic field space is about 0.03 T or more and the position of the central magnetic field strength is about 5 mm or more, the magnetization angles θ1 and θ2.
Is 5 ° or more and 55 ° or less. Therefore, the angle formed by the respective magnetization directions of the two magnets 12a and 12b is preferably 10 ° or more and 110 ° or less. In this case, the magnet 1
Since a uniform magnetic field space having a desired magnetic field strength can be provided at a desired position apart from the surfaces of 2a and 12b, the use range of the magnetic field generation device 10a is further widened.

【0018】ついで、図4および図5を参照して他の実
験例を説明する。ここでは、図4(a)に示すコ字状磁
界発生装置および図4(b)に示すU字状磁石、すなわ
ちくさび無し−コ字状タイプ、くさび16aおよび
16bを有するくさび−コ字状タイプ、くさび16a
および16bを有さずかつ磁石12aおよび12bの磁
化角度θ1およびθ2が45°であるコ字状タイプ、
くさび16aおよび16bを有さずかつ磁石12aおよ
び12bの磁化角度θ1およびθ2が35°であるコ字
状タイプの各磁界発生装置、くさび無し−U字状タイ
プ、くさび16aおよび16bを有するくさび−U字
状タイプの各磁石について磁界強度分布が測定された。
図4(a)に示すコ字状磁界発生装置は50mm×40
mm×58mm、磁石12aおよび12bは40mm×
10mm×48mm、三角柱状のくさび16aおよび1
6bは40mm×10mm×9mm、磁石12aと12
bとの間隔は30mmにそれぞれ設定された。図4
(b)に示すU字状磁石は50mm×40mm×70m
mかつ厚み10mmに設定され、図4(a)と同寸法の
くさび16aおよび16bが用いられた。くさび16a
および16bはたとえば鉄などのヨーク材からなる。図
4(a)において磁石12aおよび12bに示す矢印は
磁化方向を示す。
Next, another experimental example will be described with reference to FIGS. 4 and 5. Here, the U-shaped magnetic field generator shown in FIG. 4A and the U-shaped magnet shown in FIG. 4B, that is, no wedge-U type, wedge-U type having wedges 16a and 16b. , Wedge 16a
And 16b and the magnetization angles θ1 and θ2 of the magnets 12a and 12b are 45 °, U-shaped type,
U-shaped magnetic field generators having no wedges 16a and 16b and magnetizing angles θ1 and θ2 of the magnets 12a and 12b being 35 °, no wedges-U type, wedges having wedges 16a and 16b- The magnetic field strength distribution was measured for each U-shaped magnet.
The U-shaped magnetic field generator shown in FIG.
mm × 58 mm, magnets 12a and 12b are 40 mm ×
Wedges 16a and 1 of 10 mm x 48 mm and triangular prism shape
6b is 40 mm × 10 mm × 9 mm, magnets 12a and 12
The distance from b was set to 30 mm. Figure 4
The U-shaped magnet shown in (b) is 50 mm x 40 mm x 70 m
The wedges 16a and 16b having the same dimensions as those of FIG. Wedge 16a
And 16b are made of a yoke material such as iron. In FIG. 4A, the arrows shown on the magnets 12a and 12b indicate the magnetization directions.

【0019】このようなからの磁界発生装置ならび
におよびの磁石について磁界強度分布を測定したと
ころ、図5に示すような結果が得られた。図5における
横軸は図4(a)および(b)に示す点PからのZ軸上
の距離を示す。ここで、点Pは、図4(a)では磁石1
2aおよび12bの表面(上端面)を含む面内中心、図
4(b)ではU字状磁石の両上端面を含む面内中心を示
し、図5における横軸の正の値は磁石の内側(点Pより
下側)、負の値は磁石の外側(点Pより上側)を示す。
図5における縦軸はZ軸上における磁界強度を示す。
When the magnetic field intensity distribution was measured for the magnetic field generator and the magnet of the above, the results shown in FIG. 5 were obtained. The horizontal axis in FIG. 5 represents the distance on the Z axis from the point P shown in FIGS. 4 (a) and 4 (b). Here, the point P is the magnet 1 in FIG.
The in-plane center including the surfaces (upper end surfaces) of 2a and 12b, the in-plane center including both upper end surfaces of the U-shaped magnet in FIG. 4 (b), and the positive value on the horizontal axis in FIG. (Below the point P), negative values indicate outside the magnet (above the point P).
The vertical axis in FIG. 5 represents the magnetic field strength on the Z axis.

【0020】図5より、磁石の外側略15mm〜20m
m付近において、磁化角度45°のコ字状タイプおよ
び磁化角度35°のコ字状タイプのそれぞれの磁界発
生装置が、他の〜のタイプより磁界均一度がよく、
なかでも磁化角度35°のコ字状タイプの磁界均一度
がよいことがわかる。このように、所定の磁化角度を有
する磁石を磁界発生装置に用いれば、安定した磁界均一
度が得られる。
From FIG. 5, the outside of the magnet is approximately 15 mm to 20 m.
In the vicinity of m, the magnetic field generators of the U-shaped type with a magnetization angle of 45 ° and the U-shaped type with a magnetization angle of 35 ° have better magnetic field homogeneity than the other types.
It can be seen that the U-shaped magnetic field with a magnetization angle of 35 ° is particularly uniform. Thus, if a magnet having a predetermined magnetization angle is used in the magnetic field generator, stable magnetic field uniformity can be obtained.

【0021】ついで、図6を参照して、この発明の他の
実施形態の磁界発生装置10bについて説明する。磁界
発生装置10bは、磁界発生装置10aと同様の磁石1
2a,12bおよびヨーク14を備え、さらに磁石12
aと12bとによって挟まれる空間に配置される補助磁
石18を含む。補助磁石18は、たとえば図示しない非
磁性部材上に載せることによって磁石12aと12bと
の間に配置できる。また、補助磁石18の磁界方向は向
かって左向きとされ、補助磁石18による磁束が磁石1
2a,12bによる磁束と逆方向になる(図9参照)。
なお、磁石12aおよび12bの磁化角度はそれぞれ9
0°であり、したがって、異極が同一側にくるように磁
石12aと12bとが配置される。また、補助磁石18
の位置を変えることによって磁界空間が調整される。
Next, a magnetic field generator 10b according to another embodiment of the present invention will be described with reference to FIG. The magnetic field generator 10b is a magnet 1 similar to the magnetic field generator 10a.
2a, 12b and a yoke 14, and further includes a magnet 12
It includes an auxiliary magnet 18 arranged in a space sandwiched by a and 12b. The auxiliary magnet 18 can be arranged between the magnets 12a and 12b by being placed on a non-magnetic member (not shown), for example. Further, the magnetic field direction of the auxiliary magnet 18 is leftward, and the magnetic flux generated by the auxiliary magnet 18 is
The direction is opposite to the magnetic flux generated by 2a and 12b (see FIG. 9).
The magnetizing angles of the magnets 12a and 12b are 9 respectively.
The magnets 12a and 12b are arranged such that the angle is 0 °, and therefore the different poles are on the same side. In addition, the auxiliary magnet 18
The magnetic field space is adjusted by changing the position of.

【0022】磁界発生装置10bの一実験例について説
明する。実験では、磁石12aおよび12bには、60
0mm×315mm×350mmのR−Fe−B系永久
磁石(ネオジム磁石:NEOMAX−35H)が用いら
れ、磁石12aと12bとは190mmの間隔をあけて
配置された。ヨーク14には、820mm×600mm
×150mmのJISSS400が用いられた。補助磁
石18には、90mm×600mm×425mmのR−
Fe−B系永久磁石(ネオジム磁石:NEOMAX−3
5H)が用いられた。
An experimental example of the magnetic field generator 10b will be described. In the experiment, the magnets 12a and 12b have 60
An R-Fe-B system permanent magnet (neodymium magnet: NEOMAX-35H) of 0 mm x 315 mm x 350 mm was used, and the magnets 12a and 12b were arranged with a gap of 190 mm. The yoke 14 has 820 mm x 600 mm
JISSS400 of × 150 mm was used. The auxiliary magnet 18 has a 90 mm x 600 mm x 425 mm R-
Fe-B system permanent magnet (neodymium magnet: NEOMAX-3
5H) was used.

【0023】そして、補助磁石18の磁化方向が向かっ
て左向き(以下、単に「左向き」)、向かって右向き
(以下、単に「右向き」)の各場合について、補助磁石
18の位置Dを0mmから30mmまで変化させた。こ
こで、補助磁石18の位置Dは、磁石12a,12bの
上面(均一磁界空間側表面)と補助磁石18の上面(均
一磁界空間側表面)との距離で表される。
The position D of the auxiliary magnet 18 is 0 mm to 30 mm when the direction of magnetization of the auxiliary magnet 18 is leftward (hereinafter, simply "leftward") and rightward (hereinafter simply "rightward"). Changed. Here, the position D of the auxiliary magnet 18 is represented by the distance between the upper surfaces of the magnets 12a and 12b (the surface on the side of the uniform magnetic field space) and the upper surface of the auxiliary magnet 18 (the surface on the side of the uniform magnetic field space).

【0024】その結果、図7に示すように、均一磁界空
間の中心磁界強度、その中心磁界強度の位置および均一
幅が求められた。図7(a)は補助磁石18の磁化方向
が左向きの場合、図7(b)は補助磁石18の磁化方向
が右向きの場合を示す。図7(b)に示すように、補助
磁石18の磁化方向が右向きの場合には、均一磁界空間
の中心磁界強度は大きくなるが、中心磁界強度の位置は
磁石12aおよび12bの表面あるいはその近傍になっ
てしまう。また、均一磁界空間の幅も小さくなる。
As a result, as shown in FIG. 7, the central magnetic field strength of the uniform magnetic field space, the position of the central magnetic field strength, and the uniform width were obtained. 7A shows the case where the magnetization direction of the auxiliary magnet 18 is leftward, and FIG. 7B shows the case where the magnetization direction of the auxiliary magnet 18 is rightward. As shown in FIG. 7B, when the magnetization direction of the auxiliary magnet 18 is rightward, the central magnetic field strength of the uniform magnetic field space increases, but the position of the central magnetic field strength is at or near the surfaces of the magnets 12a and 12b. Become. Further, the width of the uniform magnetic field space is also reduced.

【0025】これは図8に示すように、補助磁石18に
よる磁束(矢印Bで示す)の方向と磁石12a,12b
による磁束(矢印Aで示す)の方向とが順方向になり両
磁束が重なることによって、磁石12a,12bによる
均一磁界空間をかえって狭くしてしまい、磁石12a,
12b表面から離れた位置により広い均一磁界空間を形
成できないことによる。
As shown in FIG. 8, this is the direction of the magnetic flux (indicated by arrow B) by the auxiliary magnet 18 and the magnets 12a, 12b.
The direction of the magnetic flux (indicated by the arrow A) due to and the two magnetic fluxes overlap each other, so that the uniform magnetic field space due to the magnets 12a and 12b is rather narrowed.
This is because a wide uniform magnetic field space cannot be formed at a position away from the surface of 12b.

【0026】一方、図7(a)に示すように、補助磁石
18の磁化方向が左向きの場合には、たとえば補助磁石
18の位置Dが0mmのとき、磁石12a,12bおよ
び補助磁石18の表面から6.3mmのところを中心と
して2.1mmの高さ方向の幅を有する略0.3Tの磁
界空間を形成できる。補助磁石18の位置Dが10mm
のときには、中心磁界強度の位置は1.5mmとなり略
0.4Tの磁界空間を形成できる。このように所望の中
心磁界強度を有する均一磁界空間を磁石12aおよび1
2bの表面から離れた位置に形成できる。
On the other hand, as shown in FIG. 7A, when the magnetization direction of the auxiliary magnet 18 is leftward, for example, when the position D of the auxiliary magnet 18 is 0 mm, the surfaces of the magnets 12a and 12b and the auxiliary magnet 18 are set. It is possible to form a magnetic field space of approximately 0.3 T having a width in the height direction of 2.1 mm centered at a position of from 6.3 mm. The position D of the auxiliary magnet 18 is 10 mm
In the case of, the position of the central magnetic field strength is 1.5 mm, and a magnetic field space of approximately 0.4 T can be formed. In this way, the uniform magnetic field space having the desired central magnetic field strength is formed into the magnets 12a and 1a.
It can be formed at a position away from the surface of 2b.

【0027】これは、磁石12aおよび12bによって
磁石12aおよび12b近傍に強い磁界が形成される
が、図9に示すように、補助磁石18による磁束(矢印
Bで示す)の方向と磁石12aおよび12bによる磁束
(矢印Aで示す)の方向とが逆方向になるように補助磁
石18を配置することによって、磁石12aおよび12
b近傍の強い磁界を補助磁石18による磁界によって弱
めるためである。また、その結果として、補助磁石18
の磁化方向が右向きの場合とくらべると均一磁界空間を
大きくできる。なお、図8および図9において、白抜き
矢印は磁石の磁化方向を示す。
Although a strong magnetic field is formed in the vicinity of the magnets 12a and 12b by the magnets 12a and 12b, as shown in FIG. 9, the direction of the magnetic flux (shown by the arrow B) by the auxiliary magnet 18 and the magnets 12a and 12b. By arranging the auxiliary magnet 18 so that the direction of the magnetic flux (indicated by the arrow A) due to
This is because the strong magnetic field near b is weakened by the magnetic field generated by the auxiliary magnet 18. In addition, as a result, the auxiliary magnet 18
The uniform magnetic field space can be increased as compared with the case where the magnetization direction is rightward. In FIGS. 8 and 9, white arrows indicate the magnetization direction of the magnet.

【0028】また、補助磁石18の磁界方向が左向きの
場合において、中心磁界強度が略0.3T以上かつ中心
磁界強度の位置が略0.5mm以上を条件とすると、補
助磁石18の位置Dは0mm以上20mm以下となる。
この範囲内で補助磁石18を没するように配置すること
によって、磁石12a,12b表面から離れた所望の位
置に所望の磁界強度を有する均一磁界空間を設けること
ができ、磁界発生装置10bの利用範囲がさらに広ま
る。さらに、補助磁石18をヨーク14から所定距離
(たとえば5mm以上)をおいて設けることによって、
補助磁石18から発生する磁束がヨーク14によって短
絡されない。
If the magnetic field direction of the auxiliary magnet 18 is leftward and the central magnetic field strength is approximately 0.3T or more and the position of the central magnetic field strength is approximately 0.5 mm or more, the position D of the auxiliary magnet 18 is It becomes 0 mm or more and 20 mm or less.
By arranging the auxiliary magnet 18 to be submerged within this range, a uniform magnetic field space having a desired magnetic field strength can be provided at a desired position away from the surfaces of the magnets 12a and 12b, and the use of the magnetic field generator 10b is possible. The range expands further. Furthermore, by providing the auxiliary magnet 18 at a predetermined distance (for example, 5 mm or more) from the yoke 14,
The magnetic flux generated from the auxiliary magnet 18 is not short-circuited by the yoke 14.

【0029】なお、補助磁石18による磁束の方向と磁
石12aおよび12bによる磁束の方向とが逆方向にな
る限りにおいて、補助磁石18の磁化方向は図9に示す
状態から多少上向きあるいは下向きに傾いてもよい。こ
こでいう「逆方向」には、正逆方向だけではなく、補助
磁石18による磁束と磁石12a,12bによる磁束と
が正逆方向成分(相互に正逆方向となるベクトル成分)
を有している場合も含む。
As long as the direction of the magnetic flux of the auxiliary magnet 18 and the direction of the magnetic flux of the magnets 12a and 12b are opposite to each other, the magnetization direction of the auxiliary magnet 18 is slightly tilted upward or downward from the state shown in FIG. Good. In the "reverse direction" here, not only the forward and reverse directions, but the magnetic flux of the auxiliary magnet 18 and the magnetic flux of the magnets 12a and 12b are the forward and reverse components (vector components that are the forward and reverse directions to each other).
Including the case of having.

【0030】また、磁界発生装置10bにおいて、磁石
12a,12bの磁化角度θ1,θ2を、0°および9
0°のどちらでもない任意の角度に設定してもよい。こ
れによって磁界発生装置10aと10bとを組み合わせ
た磁界発生装置を形成できる。さらに、図10に示すよ
うに、磁界発生装置10bの磁石12aと12bとの間
でありかつ補助磁石18の両側に送受信コイル20を配
置することによってNMR装置100が得られる。
In the magnetic field generator 10b, the magnetization angles θ1 and θ2 of the magnets 12a and 12b are 0 ° and 9 °, respectively.
It may be set to any angle other than 0 °. This makes it possible to form a magnetic field generator in which the magnetic field generators 10a and 10b are combined. Further, as shown in FIG. 10, the NMR apparatus 100 is obtained by disposing the transmitting / receiving coil 20 between the magnets 12a and 12b of the magnetic field generator 10b and on both sides of the auxiliary magnet 18.

【0031】磁界発生装置10bによれば、必要な均一
磁界空間が装置片側に得られるので、NMR装置100
によれば、良好な検出精度を得ることができるととも
に、検査対象の制限がなくなり医療・産業用等の様々な
用途に広く適用できる。たとえば、ベッドに寝た患者を
そのままの状態でMRI検査することができる。また、
被撮像物の表面から浅い部分だけではなく内部をも良好
な精度で検出することができ、非常に大きな対象物の検
査、壁の中や地中の物質の検査にも使用できる。なお、
磁界発生装置10aの磁石12aと12bとの間に送受
信コイル20を配置してもNMR装置を得ることがで
き、この場合も上述と同様の効果が得られる。
According to the magnetic field generator 10b, the required uniform magnetic field space can be obtained on one side of the apparatus, and therefore the NMR apparatus 100b
According to this, good detection accuracy can be obtained, and there is no limitation on the inspection object, and it can be widely applied to various uses such as medical and industrial uses. For example, an MRI examination can be performed on a patient lying in bed as it is. Also,
It is possible to detect not only the shallow portion from the surface of the object to be imaged but also the inside thereof with good accuracy, and it can be used for inspection of a very large object and inspection of substances in walls and underground. In addition,
An NMR apparatus can be obtained by disposing the transmission / reception coil 20 between the magnets 12a and 12b of the magnetic field generator 10a, and in this case also, the same effect as described above can be obtained.

【0032】磁界発生装置は、3個以上の磁石によって
構成されてもよく、たとえば図11(a)および(b)
に示すように4個の磁石を用いて縦磁界型に構成されて
もよい。図11に示す装置の場合、磁石12上面より上
側であって4個の磁石12によって囲まれる領域を中心
として(たとえばCで示す領域)均一磁界空間が得られ
る。さらに、磁界発生装置は中空円筒状に形成されても
よい。また、この発明はESR(electron spin resona
nce:電子スピン共鳴)装置にも適用できる。
The magnetic field generator may be composed of three or more magnets, for example, FIGS. 11 (a) and 11 (b).
As shown in FIG. 4, four magnets may be used to form a vertical magnetic field type. In the case of the device shown in FIG. 11, a uniform magnetic field space is obtained centered on the area above the upper surface of the magnet 12 and surrounded by the four magnets 12 (for example, the area indicated by C). Further, the magnetic field generator may be formed in a hollow cylindrical shape. The present invention is also based on ESR (electron spin resona).
nce: electron spin resonance) device.

【0033】[0033]

【発明の効果】この発明の磁界発生装置によれば、磁石
の表面から離れたところにより大きい磁界強度を有する
均一磁界空間を得ることができる。また、この発明の磁
界発生装置を用いたNMR装置によれば、良好な撮像精
度を得ることができ様々な用途に適用できる。
According to the magnetic field generator of the present invention, it is possible to obtain a uniform magnetic field space having a larger magnetic field strength away from the surface of the magnet. Further, according to the NMR apparatus using the magnetic field generator of the present invention, good imaging accuracy can be obtained, and it can be applied to various uses.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】図1の実施形態を示す図解図である。2 is an illustrative view showing the embodiment of FIG. 1. FIG.

【図3】図1の実施形態の一実験例の結果を示すテーブ
ルである。
FIG. 3 is a table showing the results of an experimental example of the embodiment of FIG.

【図4】他の実験例で用いられる装置を示す斜視図であ
り、(a)はコ字状タイプの磁界発生装置、(b)はU
字状磁石を示す。
FIG. 4 is a perspective view showing an apparatus used in another experimental example, (a) is a U-shaped magnetic field generator, and (b) is U.
A letter magnet is shown.

【図5】図4に示す磁界発生装置を用いた実験例の結果
を示すグラフである。
5 is a graph showing the results of an experimental example using the magnetic field generator shown in FIG.

【図6】この発明の他の実施形態を示す図解図である。FIG. 6 is an illustrative view showing another embodiment of the present invention.

【図7】図6の実施形態の一実験例の結果を示すテーブ
ルであり、(a)は補助磁石の磁化方向が左側、(b)
は補助磁石の磁化方向が右側の場合を示す。
7 is a table showing the results of an experimental example of the embodiment of FIG. 6, where (a) is the magnetization direction of the auxiliary magnet on the left side, (b).
Shows the case where the magnetization direction of the auxiliary magnet is on the right side.

【図8】図6の実施形態において補助磁石を磁化方向右
向きに配置した場合の磁束分布を示す図解図である。
8 is an illustrative view showing a magnetic flux distribution when an auxiliary magnet is arranged rightward in the magnetization direction in the embodiment of FIG. 6. FIG.

【図9】図6の実施形態において補助磁石を磁化方向左
向きに配置した場合の磁束分布を示す図解図である。
9 is an illustrative view showing a magnetic flux distribution when an auxiliary magnet is arranged to the left in the magnetization direction in the embodiment of FIG.

【図10】NMR装置の一例を示す図解図である。FIG. 10 is an illustrative view showing one example of an NMR apparatus.

【図11】(a)は磁界発生装置の他の例を示す斜視図
であり、(b)はその図解図である。
11A is a perspective view showing another example of the magnetic field generator, and FIG. 11B is an illustrative view thereof.

【符号の説明】[Explanation of symbols]

10a,10b 磁界発生装置 12a,12b 磁石 14 ヨーク 18 補助磁石 20 送受信コイル 100 NMR装置 A,B 磁束 D 補助磁石の位置 θ1,θ2 磁化角度 10a, 10b Magnetic field generator 12a, 12b magnet 14 York 18 auxiliary magnet 20 transmitter / receiver coil 100 nmr A, B magnetic flux D Auxiliary magnet position θ1, θ2 Magnetization angle

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 間隔をあけて設けられる複数の磁石を備
え、 前記複数の磁石の磁化方向によって形成される角度が0
°および180°のどちらでもない角度に設定される、
磁界発生装置。
1. A plurality of magnets provided at intervals, wherein an angle formed by the magnetization directions of the plurality of magnets is 0.
Set to an angle that is neither ° nor 180 °,
Magnetic field generator.
【請求項2】 前記角度は10°以上110°以下であ
る、請求項1に記載の磁界発生装置。
2. The magnetic field generator according to claim 1, wherein the angle is 10 ° or more and 110 ° or less.
【請求項3】 間隔をあけて設けられる複数の磁石、お
よび前記複数の磁石間に設けられる補助磁石を備え、 用いるべき均一磁界空間側において前記補助磁石による
磁束が前記複数の磁石による磁束と逆方向になるよう
に、前記補助磁石が配置される、磁界発生装置。
3. A plurality of magnets provided at intervals, and an auxiliary magnet provided between the plurality of magnets, wherein the magnetic flux of the auxiliary magnet is opposite to the magnetic flux of the plurality of magnets on the side of the uniform magnetic field space to be used. A magnetic field generation device in which the auxiliary magnets are arranged so as to be oriented.
【請求項4】 前記補助磁石の均一磁界空間側表面は前
記複数の磁石の均一磁界空間側表面より0mm以上20
mm以下没するように設定される、請求項3に記載の磁
界発生装置。
4. The surface of the auxiliary magnet on the side of the uniform magnetic field is 0 mm or more and 20 mm or more than the surface of the plurality of magnets on the side of the uniform magnetic field.
The magnetic field generation device according to claim 3, wherein the magnetic field generation device is set so as to be submerged by mm or less.
【請求項5】 前記複数の磁石を磁気的に結合するヨー
クをさらに含む、請求項1から4のいずれかに記載の磁
界発生装置。
5. The magnetic field generator according to claim 1, further comprising a yoke that magnetically couples the plurality of magnets.
【請求項6】 前記複数の磁石を磁気的に結合するヨー
クをさらに含み、 前記補助磁石は前記ヨークから所定距離をおいて設けら
れる、請求項3または4に記載の磁界発生装置。
6. The magnetic field generator according to claim 3, further comprising a yoke that magnetically couples the plurality of magnets, wherein the auxiliary magnet is provided at a predetermined distance from the yoke.
【請求項7】 請求項1から6のいずれかに記載の磁界
発生装置、および前記複数の磁石の間に設けられる送受
信コイルを備える、NMR装置。
7. An NMR apparatus comprising the magnetic field generator according to claim 1 and a transmission / reception coil provided between the plurality of magnets.
JP2002058192A 2002-03-05 2002-03-05 Magnetic field generator and NMR apparatus using the same Expired - Lifetime JP4003485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058192A JP4003485B2 (en) 2002-03-05 2002-03-05 Magnetic field generator and NMR apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002058192A JP4003485B2 (en) 2002-03-05 2002-03-05 Magnetic field generator and NMR apparatus using the same

Publications (2)

Publication Number Publication Date
JP2003250777A true JP2003250777A (en) 2003-09-09
JP4003485B2 JP4003485B2 (en) 2007-11-07

Family

ID=28668217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058192A Expired - Lifetime JP4003485B2 (en) 2002-03-05 2002-03-05 Magnetic field generator and NMR apparatus using the same

Country Status (1)

Country Link
JP (1) JP4003485B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016062A1 (en) 2006-07-31 2008-02-07 National University Corporation Okayama University Magnetic field generator and nuclear magnetic resonance device provided with this magnetic field generator
JP2008268133A (en) * 2007-04-24 2008-11-06 National Institute Of Advanced Industrial & Technology Single-side open type magnetic circuit
JP2010060438A (en) * 2008-09-04 2010-03-18 National Institute Of Advanced Industrial Science & Technology Single-side open type multiple cylindrical magnetic circuit
JP2011158348A (en) * 2010-02-01 2011-08-18 Oita Univ Electromagnetic horn type electron spin resonance apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016062A1 (en) 2006-07-31 2008-02-07 National University Corporation Okayama University Magnetic field generator and nuclear magnetic resonance device provided with this magnetic field generator
CN101495035B (en) * 2006-07-31 2011-04-20 国立大学法人冈山大学 Magnetic field generator and nuclear magnetic resonance device provided with this magnetic field generator
JP5147072B2 (en) * 2006-07-31 2013-02-20 国立大学法人 岡山大学 Magnetic field generator and nuclear magnetic resonance apparatus provided with the magnetic field generator
JP2008268133A (en) * 2007-04-24 2008-11-06 National Institute Of Advanced Industrial & Technology Single-side open type magnetic circuit
JP2010060438A (en) * 2008-09-04 2010-03-18 National Institute Of Advanced Industrial Science & Technology Single-side open type multiple cylindrical magnetic circuit
JP2011158348A (en) * 2010-02-01 2011-08-18 Oita Univ Electromagnetic horn type electron spin resonance apparatus

Also Published As

Publication number Publication date
JP4003485B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US8077002B2 (en) Open MRI magnetic field generator
JP5147072B2 (en) Magnetic field generator and nuclear magnetic resonance apparatus provided with the magnetic field generator
JPS6138453A (en) Nuclear magnetic resonance device
US7541811B2 (en) Apparatus for electron spin resonance CT
JPS6123502B2 (en)
JPH05211104A (en) Static magnetic field generating equipment for magnetic resonance imaging equipment
US7084633B2 (en) Magnetic field generating device and MRI equipment using the device
EP1591759A1 (en) Electromagnetic flowmeter
JP4726579B2 (en) Magnet system and MRI apparatus
JPH07201557A (en) Magnetic field generating device for mri
JP4345354B2 (en) Magnetic field generator and MRI apparatus using the same
JP2005118098A (en) Magnetic resonance imaging apparatus
JP4003485B2 (en) Magnetic field generator and NMR apparatus using the same
JP6892161B1 (en) Electromagnet, magnetic field application system
JP6875560B2 (en) Magnetic field generation system
JP2003092213A (en) Magnetic field forming device
JP2005237501A (en) Magnetic circuit and magnetic field adjustment method therefor
JP2002102205A (en) Magnetic resonace imaging apparatus
JP2596836B2 (en) Magnetic field generator
JP2006149722A (en) Magnet system and magnetic resonance imaging apparatus
CN113791372B (en) Magnetic nanoparticle space positioning device and method
JP7210015B2 (en) Magnetic circuit for one-sided open magnetic resonance apparatus
JP2009300444A (en) Eight-fold dipole magnet array for generating uniform magnetic field
JP3098044B2 (en) Magnetic resonance imaging equipment
JP2005168692A (en) Opposed permanent magnet type magnetic circuit and method for adjusting its magnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Ref document number: 4003485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

EXPY Cancellation because of completion of term