JP2020041803A - Strain sensor structure - Google Patents

Strain sensor structure Download PDF

Info

Publication number
JP2020041803A
JP2020041803A JP2018166730A JP2018166730A JP2020041803A JP 2020041803 A JP2020041803 A JP 2020041803A JP 2018166730 A JP2018166730 A JP 2018166730A JP 2018166730 A JP2018166730 A JP 2018166730A JP 2020041803 A JP2020041803 A JP 2020041803A
Authority
JP
Japan
Prior art keywords
rotating shaft
coil
magnetic flux
ring
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018166730A
Other languages
Japanese (ja)
Other versions
JP7111315B2 (en
Inventor
貴広 佐々木
Takahiro Sasaki
貴広 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2018166730A priority Critical patent/JP7111315B2/en
Publication of JP2020041803A publication Critical patent/JP2020041803A/en
Application granted granted Critical
Publication of JP7111315B2 publication Critical patent/JP7111315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a strain sensor capable of preventing an increase in manufacturing cost and man-hour.SOLUTION: A strain sensor 10 includes a rotating shaft 20, a magnetostrictive member 21 provided on the rotating shaft 20, a ring-shaped coil 30 provided on the outer peripheral side of the rotating shaft 20, and a magnetic shield member 50 provided between the magnetostrictive member 21 and the ring-shaped coil 30 to block magnetic flux. The ring-shaped coil 30 includes a ring-shaped detection coil 32, and is provided such that a center axis A of the ring-shaped coil 30 is oblique to an axial direction B of the rotating shaft 20. The magnetic shield member 50 is provided on a part of the rotating shaft 20 in the circumferential direction.SELECTED DRAWING: Figure 1

Description

本発明は歪みセンサ構造に関し、特に、コイルのインピーダンスの変化から、回転軸の歪みを検出する歪みセンサ構造に関する。   The present invention relates to a strain sensor structure, and more particularly, to a strain sensor structure for detecting a rotation axis distortion from a change in coil impedance.

車両の操舵装置等の機器に搭載される従来の歪みセンサの構造としては、例えば以下の特許文献1に記載された歪みセンサが知られている。すなわち、図4に示す従来の歪みセンサ1では、回転軸2の外周面に環状に異方性付与部材である第1磁歪材部2a及び第2磁歪材部2bが設けられ、前記第1磁歪材部2aに対向するように第1輪状検出コイル3a及び第2輪状検出コイル3bが前記回転軸2の軸方向に互いにずらされた状態で設けられており、前記第2磁歪材部2bに対向するように第3輪状検出コイル3c及び第4輪状検出コイル3dが前記回転軸2の軸方向に互いにずらされた状態で設けられている。前記第2磁歪材部2bは、前記第1磁歪材部2aの磁気異方性に対して90度位相が異なるように設けられている。   As a structure of a conventional strain sensor mounted on a device such as a steering device of a vehicle, for example, a strain sensor described in Patent Literature 1 below is known. That is, in the conventional strain sensor 1 shown in FIG. 4, the first magnetostrictive material portion 2a and the second magnetostrictive material portion 2b, which are anisotropy imparting members, are provided on the outer peripheral surface of the rotating shaft 2 in a ring shape. A first annular detection coil 3a and a second annular detection coil 3b are provided so as to be opposed to each other in the axial direction of the rotating shaft 2 so as to face the material portion 2a, and to face the second magnetostrictive material portion 2b. The third annular detection coil 3c and the fourth annular detection coil 3d are provided so as to be displaced from each other in the axial direction of the rotating shaft 2. The second magnetostrictive member 2b is provided so as to have a phase difference of 90 degrees with respect to the magnetic anisotropy of the first magnetostrictive member 2a.

前記回転軸2に力が加えられると、前記回転軸2に歪みが生じることで前記第1磁歪材部2a及び前記第2磁歪材部2bに歪みが生じて、ビラリ効果により前記第1磁歪材部2a及び前記第2磁歪材部2bは磁区が回転及び整列して透磁率が変化し、それにより磁束が変化する。そして、前記第1輪状検出コイル3a及び前記第2輪状検出コイル3bと、前記第3輪状検出コイル3c及び前記第4輪状検出コイル3dとのインピーダンスが変化し、インピーダンスの変化に対応して前記第1,第2,第3,第4輪状検出コイル3a,3b,3c,3dの検出電圧が変化する。したがって、前記第1,第2,第3,第4輪状検出コイル3a,3b,3c,3dの検出電圧を測定することで、前記第1磁歪材部2a及び前記第2磁歪材部2bの透磁率の変化を算出して、前記回転軸2の歪みを検出することができる。   When a force is applied to the rotating shaft 2, distortion occurs in the rotating shaft 2, causing distortion in the first magnetostrictive material portion 2 a and the second magnetostrictive material portion 2 b, and causing the first magnetostrictive material to vibrate. In the portion 2a and the second magnetostrictive material portion 2b, the magnetic domain is rotated and aligned to change the magnetic permeability, thereby changing the magnetic flux. Then, the impedance of the first and second annular detection coils 3a and 3b and the third and fourth annular detection coils 3c and 3d changes, and the first and second annular detection coils 3c and 3d change in impedance. The detection voltages of the first, second, third, and fourth annular detection coils 3a, 3b, 3c, 3d change. Therefore, by measuring the detection voltages of the first, second, third, and fourth annular detection coils 3a, 3b, 3c, and 3d, the transmission of the first magnetostrictive member 2a and the second magnetostrictive member 2b is measured. By calculating the change in magnetic susceptibility, the distortion of the rotating shaft 2 can be detected.

特開2006−64445号公報JP 2006-64445 A

上記のような従来の前記歪みセンサ1では、予め前記第1磁歪材部2a及び前記第2磁歪材部2bに例えば高周波加熱による熱処理を行うことにより、又は前記第1磁歪材部2a及び前記第2磁歪材部2bの表面に溝加工処理を行い、そのとき前記第1磁歪材部2a及び前記第2磁歪材部2bの溝加工方向を変えること等により、磁気異方性が付与されていた。そのため、加工により前記歪みセンサ1の製造コスト及び製造工数が増加するという問題点があった。   In the conventional strain sensor 1 as described above, the first magnetostrictive member 2a and the second magnetostrictive member 2b are previously subjected to a heat treatment by, for example, high-frequency heating, or the first magnetostrictive member 2a and the second (2) Groove processing is performed on the surface of the magnetostrictive material portion 2b, and magnetic anisotropy is imparted by changing the groove processing direction of the first magnetostrictive material portion 2a and the second magnetostrictive material portion 2b at that time. . For this reason, there is a problem that the manufacturing cost and the number of manufacturing steps of the strain sensor 1 increase due to the processing.

この発明は、このような課題を解決するためになされたものであり、磁歪材部に異方性を付与するための加工を行う必要がなく、製造コスト及び製造工数を低減することができる歪みセンサを提供することを目的とする。   The present invention has been made in order to solve such a problem, and it is not necessary to perform a process for giving anisotropy to a magnetostrictive material portion, and it is possible to reduce a manufacturing cost and a manufacturing man-hour. It is intended to provide a sensor.

上記の課題を解決するために、この発明に係る歪みセンサ構造は、回転軸と、前記回転軸に設けられた磁歪材部と、前記回転軸の外周側に設けられた輪状コイルと、前記磁歪材部と前記輪状コイルとの間に設けられ、磁束を遮断する磁気シールド部材とを備え、前記輪状コイルは、輪状検出コイルを有し、前記輪状コイルの中心軸が前記回転軸の軸方向に対して斜め方向となるように設けられ、前記磁気シールド部材は、前記回転軸の周方向の一部に設けられている。   In order to solve the above-mentioned problem, a strain sensor structure according to the present invention includes a rotating shaft, a magnetostrictive member provided on the rotating shaft, a ring-shaped coil provided on an outer peripheral side of the rotating shaft, A magnetic shield member provided between the material portion and the ring-shaped coil to block magnetic flux, the ring-shaped coil has a ring-shaped detection coil, and a center axis of the ring-shaped coil is in an axial direction of the rotation axis. The magnetic shield member is provided so as to be oblique to the direction, and the magnetic shield member is provided in a part of a circumferential direction of the rotating shaft.

また、前記輪状コイルは、前記回転軸の一方の端部に最も近い第1位置と、前記回転軸の他方の端部に最も近い第2位置とを有し、前記磁気シールド部材は、前記回転軸の前記軸方向から見たときに、前記回転軸の周方向において前記第1位置に最も近い位置から前記第2位置に最も近い位置までの間に設けられてもよい。
また、前記輪状コイルは、前記回転軸に力を加えた場合に前記回転軸に生じる歪みにより前記磁歪材部の磁区回転方向又は磁区整列方向と、前記輪状検出コイルに鎖交する検出磁束の向きとが、一致又は直交するように設けられてもよい。
また、前記輪状コイルは、前記回転軸に力を加えたときに前記回転軸に発生する歪みによる前記磁歪材部の磁区回転方向と、前記輪状検出コイルに鎖交する検出磁束の向きとが、一致又は直交するように設けられてもよい。
また、前記輪状コイルは、前記回転軸に力を加えたときに前記回転軸に発生する歪みによる前記磁歪材部の磁区整列方向と、前記輪状検出コイルに鎖交する検出磁束の向きとが、一致又は直交するように設けられてもよい。
また、前記磁歪材部は、前記回転軸と異なる材質であってもよい。
The ring-shaped coil has a first position closest to one end of the rotating shaft and a second position closest to the other end of the rotating shaft, and the magnetic shield member is configured to rotate the rotating shaft. When viewed from the axial direction of the shaft, the shaft may be provided between a position closest to the first position and a position closest to the second position in a circumferential direction of the rotating shaft.
Further, the ring-shaped coil has a magnetic domain rotation direction or a magnetic domain alignment direction of the magnetostrictive member due to a strain generated in the rotation axis when a force is applied to the rotation axis, and a direction of a detection magnetic flux linked to the ring-shaped detection coil. May be provided so as to coincide or be orthogonal to each other.
Further, the ring-shaped coil, the direction of the magnetic domain rotation of the magnetostrictive member portion due to distortion generated in the rotation axis when a force is applied to the rotation axis, and the direction of the detection magnetic flux linked to the ring-shaped detection coil, They may be provided so as to be coincident or orthogonal.
Further, the ring-shaped coil, the magnetic domain alignment direction of the magnetostrictive member portion due to distortion generated in the rotation axis when applying a force to the rotation axis, and the direction of the detection magnetic flux linked to the ring-shaped detection coil, They may be provided so as to be coincident or orthogonal.
Further, the magnetostrictive member may be made of a material different from the rotating shaft.

本発明に係る歪みセンサ構造によれば、前記磁歪材部と前記輪状コイルとの間に磁束を遮断する前記磁気シールド部材を備え、前記磁気シールド部材は、前記回転軸の周方向の一部に設けられているため、前記磁歪材部に異方性を付与するための加工を行う必要がなく、歪みセンサの製造コスト及び製造工数の増加を防止することができる。   According to the strain sensor structure according to the present invention, the magnetic sensor includes the magnetic shield member that blocks magnetic flux between the magnetostrictive member and the ring-shaped coil, and the magnetic shield member is provided on a part of the rotation shaft in a circumferential direction. Since it is provided, it is not necessary to perform processing for imparting anisotropy to the magnetostrictive member, and it is possible to prevent an increase in the manufacturing cost and man-hour of the strain sensor.

本発明の実施の形態に係る歪みセンサの正面図である。It is a front view of the distortion sensor concerning an embodiment of the invention. 図1に記載の歪みセンサの左側面図である。It is a left view of the distortion sensor of FIG. 図1に記載の歪みセンサの平面図である。It is a top view of the distortion sensor of FIG. 従来の歪みセンサの概略図である。It is the schematic of the conventional distortion sensor.

以下、この発明の実施の形態を添付図面の図1〜図3に基づいて説明する。なお、従来例と同一又は同等部分には同一符号を付して説明する。
図1は、この発明の実施の形態に係る歪みセンサ10の正面図である。前記歪みセンサ10には、外部から力が加えられる回転軸20が設けられている。前記回転軸20には、磁歪材部21が設けられている。前記磁歪材部21は、前記回転軸20とは異なる材質であって、前記回転軸20に力が加えられることにより生じる歪みに応じて透磁率が変化する磁歪材料によって形成される。前記磁歪材部21に用いる材質は透磁率の大きいものが望ましく、例えばNi−Fe系の合金又はFe−Co系合金等の任意の磁歪材料が用いられる。なお、前記回転軸20及び前記磁歪材部21は、同じ材質から形成されていてもよい。また、図1以下の図面においては、歪みセンサの軸受、固定部材及び配線等の一部の構成の記載を省略している。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The same or equivalent parts as those in the conventional example will be described with the same reference numerals.
FIG. 1 is a front view of a strain sensor 10 according to an embodiment of the present invention. The distortion sensor 10 is provided with a rotating shaft 20 to which a force is applied from the outside. The rotating shaft 20 is provided with a magnetostrictive member 21. The magnetostrictive member 21 is made of a material different from that of the rotating shaft 20, and is made of a magnetostrictive material whose magnetic permeability changes according to a strain generated when a force is applied to the rotating shaft 20. The material used for the magnetostrictive material portion 21 is desirably a material having a high magnetic permeability. For example, an arbitrary magnetostrictive material such as a Ni—Fe alloy or an Fe—Co alloy is used. Note that the rotation shaft 20 and the magnetostrictive member 21 may be formed of the same material. In addition, in the drawings after FIG. 1, description of some components such as a bearing, a fixing member, and a wiring of the strain sensor is omitted.

前記回転軸20の外周側には、ボビンコイルである輪状コイル30が設けられている。前記輪状コイル30は、例えば樹脂等の絶縁体により形成された空芯のボビンに、輪状励磁コイル31及び輪状検出コイル32が巻回され一体に形成されて構成されており、空芯部分において前記回転軸20が回転自在となるように形成されている。前記輪状励磁コイル31は、図示しない電源に接続され励磁されることにより励磁磁束を生じる。前記輪状検出コイル32は、検出磁束を検出し検出電圧として出力する。また、前記輪状検出コイル32は図示しない検出回路に接続されており、検出回路は検出磁束の変化により生じる検出電圧の変化を検出する。前記磁歪材部21と前記輪状コイル30との間には、間隙40が形成されている。前記間隙40には前記磁歪材部21と前記輪状コイル30との間の磁束を遮断するために、鉄等の強磁性体により形成された磁気シールド部材50が設けられている。この前記磁気シールド部材50は、前記輪状コイル30に対して固定されるように取り付けられているため、前記磁気シールド部材50は前記回転軸20とともに回転することはない。なお、前記磁気シールド部材50は、磁束を遮断できる材料で形成されればよく、例えば鉄以外にパーマロイ等を用いて形成されてもよい。   An annular coil 30 which is a bobbin coil is provided on the outer peripheral side of the rotating shaft 20. The ring-shaped coil 30 is formed by winding a ring-shaped excitation coil 31 and a ring-shaped detection coil 32 integrally with an air-core bobbin formed of an insulator such as a resin. The rotating shaft 20 is formed to be rotatable. The ring-shaped excitation coil 31 is connected to a power supply (not shown) and is excited to generate an excitation magnetic flux. The ring-shaped detection coil 32 detects a detected magnetic flux and outputs the detected magnetic flux as a detected voltage. Further, the ring-shaped detection coil 32 is connected to a detection circuit (not shown), and the detection circuit detects a change in a detection voltage caused by a change in a detected magnetic flux. A gap 40 is formed between the magnetostrictive member 21 and the ring-shaped coil 30. The gap 40 is provided with a magnetic shield member 50 made of a ferromagnetic material such as iron in order to cut off a magnetic flux between the magnetostrictive member 21 and the annular coil 30. Since the magnetic shield member 50 is attached so as to be fixed to the annular coil 30, the magnetic shield member 50 does not rotate with the rotation shaft 20. The magnetic shield member 50 may be formed of a material capable of blocking magnetic flux, and may be formed of, for example, permalloy other than iron.

図2は、図1に記載の前記歪みセンサ10の左側面図である。図2に示すように、前記輪状コイル30は、その中心軸Aが前記回転軸20の軸方向Bに対して斜方向を向くように配置されている。すなわち、前記輪状コイルの前記中心軸Aは前記回転軸20の前記軸方向Bに対して、平行にも垂直にもならないように配置されている。前記輪状コイル30の前記中心軸Aの、前記回転軸20の前記軸方向Bに対する角度は、後述するこの実施の形態の前記歪みセンサ10の動作において示すように、前記回転軸20に外部から力を加えたときの前記磁歪材部21におけるビラリ効果による磁区回転方向C又は磁区整列方向Dと、前記輪状励磁コイル31に鎖交する前記励磁磁束E及び前記輪状検出コイル32に鎖交する前記検出磁束Fの向きとが、平行又は垂直となるように前記輪状コイル30は配置されている。   FIG. 2 is a left side view of the strain sensor 10 shown in FIG. As shown in FIG. 2, the ring-shaped coil 30 is disposed so that its center axis A is inclined with respect to the axial direction B of the rotating shaft 20. That is, the center axis A of the annular coil is arranged so as not to be parallel or perpendicular to the axial direction B of the rotating shaft 20. The angle of the center axis A of the ring-shaped coil 30 with respect to the axial direction B of the rotating shaft 20 is, as shown in the operation of the strain sensor 10 of this embodiment described later, applied to the rotating shaft 20 from outside. , The magnetic domain rotation direction C or the magnetic domain alignment direction D due to the Villari effect in the magnetostrictive material portion 21, the excitation magnetic flux E interlinked with the annular excitation coil 31, and the detection interlinked with the annular detection coil 32. The ring-shaped coil 30 is arranged such that the direction of the magnetic flux F is parallel or vertical.

図3は、図1に記載の前記歪みセンサ10の平面図である。図1〜図3に示すように、前記磁気シールド部材50は、前記回転軸20の周方向においてその全周のうちの一部に形成されている。より具体的に説明すると、前記回転軸20は図1における上側に位置する一方の端部と下側に位置する他方の端部とを有しており、前記輪状コイル30は一方の端部に最も近い第1位置30aと、他方の端部に最も近い第2位置30bとを有している。そして前記磁気シールド部材50は図3に示すように、前記軸方向Bから前記磁歪材部21と前記輪状コイル30との間の前記間隙40を見たときに、前記回転軸20の周方向において前記第1位置30aに最も近い位置から前記第2位置30bに最も近い位置の間のうち、右側の領域Gに設けられている。したがって、図1〜図3に示すように、前記磁気シールド部材50は前記回転軸20と前記輪状コイル30との間に、前記歪みセンサ10の前記回転軸20の半周分の領域において磁束を遮蔽するように設けられている。一方、前記回転軸20の周方向において前記間隙40の前記第1位置30aに最も近い位置から前記第2位置30bに最も近い位置の間のうち、左側の領域Hには前記磁気シールド部材50が設けられていないため磁束は遮蔽されない。   FIG. 3 is a plan view of the strain sensor 10 shown in FIG. As shown in FIGS. 1 to 3, the magnetic shield member 50 is formed on a part of the entire circumference in the circumferential direction of the rotating shaft 20. More specifically, the rotating shaft 20 has one end located on the upper side in FIG. 1 and the other end located on the lower side, and the annular coil 30 is attached to one end. It has a first position 30a closest to it and a second position 30b closest to the other end. As shown in FIG. 3, when the gap 40 between the magnetostrictive member 21 and the annular coil 30 is viewed from the axial direction B, the magnetic shield member 50 It is provided in the right region G between the position closest to the first position 30a and the position closest to the second position 30b. Accordingly, as shown in FIGS. 1 to 3, the magnetic shield member 50 shields magnetic flux between the rotation shaft 20 and the ring-shaped coil 30 in a region corresponding to a half circumference of the rotation shaft 20 of the strain sensor 10. It is provided to be. On the other hand, the magnetic shield member 50 is located in the left region H between the position closest to the first position 30a and the position closest to the second position 30b of the gap 40 in the circumferential direction of the rotation shaft 20. Since it is not provided, the magnetic flux is not shielded.

次に、この実施の形態における前記歪みセンサ10の動作について説明する。
前記歪みセンサ10により歪みを測定するときには、前記輪状励磁コイル31に交流電流が加えられ、前記輪状励磁コイル31に鎖交する前記励磁磁束Eが生じる。この前記励磁磁束Eは前記磁気シールド部材50により前記励磁磁束Eが遮断されない前記領域Hにおいては前記磁歪材部21を透過し、前記磁歪材部21には磁気的な異方性が付与される。したがって、前記磁気シールド部材により前記励磁磁束Eが遮断されない前記領域Hにおける、前記磁歪材部21は異方性付与部材を構成する。
Next, the operation of the strain sensor 10 according to this embodiment will be described.
When strain is measured by the strain sensor 10, an alternating current is applied to the ring-shaped exciting coil 31, and the exciting magnetic flux E interlinking with the ring-shaped exciting coil 31 is generated. The exciting magnetic flux E penetrates through the magnetostrictive member 21 in the region H where the exciting magnetic flux E is not blocked by the magnetic shield member 50, and the magnetostrictive member 21 is given magnetic anisotropy. . Therefore, the magnetostrictive member 21 in the region H where the exciting magnetic flux E is not blocked by the magnetic shield member constitutes an anisotropy imparting member.

このとき、仮に前記歪みセンサ10に前記磁気シールド部材50が設けられていなければ、前記領域Gにおいて前記磁歪材部21に前記領域Hとは逆向きの異方性が付与され、前記輪状検出コイル32の前記検出磁束Fの値が前記領域Hとは逆になる。そのため、前記領域Gと前記領域Hとの前記検出磁束Fが全体としては0となり、前記磁歪材部21の歪みを検出することができない。しかしながら、この前記歪みセンサ10には前記磁気シールド部材50が設けられているため、前記領域Gにおいては前記磁歪材部21と前記輪状コイル30との間の前記励磁磁束Eが遮断され、前記磁歪材部21には磁気的な異方性が付与されない。したがって、前記磁気シールド部材50により前記励磁磁束Eが遮断されている前記領域Gにおける、前記磁歪材部21は異方性付与部材を構成しない。さらに、前記領域Gにおいては、前記輪状検出コイル32による前記検出磁束Fも遮断されるため検出されることがない。   At this time, if the magnetic shield member 50 is not provided in the strain sensor 10, the magnetostrictive material portion 21 is given anisotropy in a direction opposite to that of the region H in the region G, and the ring-shaped detection coil is provided. The value of the detected magnetic flux F of 32 is opposite to that of the area H. Therefore, the detected magnetic flux F in the region G and the region H becomes 0 as a whole, and the distortion of the magnetostrictive member 21 cannot be detected. However, since the magnetic shield member 50 is provided in the strain sensor 10, the exciting magnetic flux E between the magnetostrictive member 21 and the ring-shaped coil 30 is cut off in the region G, The material portion 21 is not provided with magnetic anisotropy. Therefore, the magnetostrictive member 21 in the region G where the exciting magnetic flux E is blocked by the magnetic shield member 50 does not constitute an anisotropy imparting member. Further, in the area G, the detected magnetic flux F by the ring-shaped detection coil 32 is also shut off, so that it is not detected.

前記回転軸20に外部から力が加えられていない場合には、前記磁気シールド部材50が設けられていない前記領域Hにおいて、前記輪状励磁コイル31によって生じた前記励磁磁束Eが前記磁歪材部21を透過して前記輪状検出コイル32に前記検出磁束Fとして検出される。また、前記磁気シールド部材が設けられている前記領域Gにおいては、前記輪状励磁コイル31によって生じた前記励磁磁束Eが前記検出磁束Fとして前記輪状検出コイル32に検出されない。そのため、前記輪状検出コイル32に接続された検出回路は、前記領域Hにおける前記検出磁束Fにより前記輪状検出コイル32に生じる電圧のみを検出する。   When no force is applied to the rotating shaft 20 from the outside, in the region H where the magnetic shield member 50 is not provided, the exciting magnetic flux E generated by the annular exciting coil 31 is applied to the magnetostrictive member 21. And is detected by the annular detection coil 32 as the detection magnetic flux F. In the region G where the magnetic shield member is provided, the exciting magnetic flux E generated by the annular exciting coil 31 is not detected by the annular detecting coil 32 as the detected magnetic flux F. Therefore, the detection circuit connected to the ring-shaped detection coil 32 detects only the voltage generated in the ring-shaped detection coil 32 by the detected magnetic flux F in the region H.

次に、前記回転軸20に外部から左回りに力が加えられた場合、前記回転軸20に歪みが発生することにより前記磁歪材部21に歪みが発生する。すると、図2に示すように歪みによりビラリ効果が発生し、前記磁歪材部21の磁区が磁区整列方向Dの方向へ整列する。これにより、前記磁歪材部21の透磁率は、前記回転軸20に力が加えられていない場合に対して変化する。この透磁率の変化により、前記検出磁束Fが変化し、これにより前記輪状検出コイル32のインピーダンスが変化する。このインピーダンスの変化により、前記輪状検出コイル32の出力信号電圧が変化し、検出回路に変化後の出力信号電圧が検出される。前記回転軸20に外部から力を加えていない場合の前記出力信号電圧の値と、前記回転軸20に外部から左回りに力を加えた場合の前記出力信号電圧の値との変化を測定することにより、検出回路は前記磁歪材部21及び前記回転軸20に生じた歪みの向きと大きさを検出することができる。   Next, when a counterclockwise force is applied to the rotating shaft 20 from the outside, the rotating shaft 20 is distorted, so that the magnetostrictive member 21 is distorted. Then, as shown in FIG. 2, a vignetting effect occurs due to the distortion, and the magnetic domains of the magnetostrictive member 21 are aligned in the magnetic domain alignment direction D. As a result, the magnetic permeability of the magnetostrictive member 21 changes with respect to the case where no force is applied to the rotating shaft 20. Due to the change in the magnetic permeability, the detected magnetic flux F changes, whereby the impedance of the annular detection coil 32 changes. Due to this change in impedance, the output signal voltage of the annular detection coil 32 changes, and the detection circuit detects the changed output signal voltage. A change in the value of the output signal voltage when no force is applied to the rotation shaft 20 from the outside and a change in the output signal voltage value when a force is applied to the rotation shaft 20 counterclockwise from the outside are measured. Thus, the detection circuit can detect the direction and magnitude of the distortion generated in the magnetostrictive member 21 and the rotating shaft 20.

このとき、前記磁区整列方向Dと、前記励磁磁束E及び前記検出磁束Fの向きとが平行である。そのため前記領域Hにおいては、前記磁区整列方向Dと、前記励磁磁束E及び前記検出磁束Fの向きとが平行でない場合と比べて、前記磁歪材部21の透磁率の変化に基づく、前記検出磁束Fの変化が前記輪状検出コイル32のインピーダンスの変化として、より高感度且つ高精度に検出される。   At this time, the magnetic domain alignment direction D is parallel to the directions of the excitation magnetic flux E and the detection magnetic flux F. Therefore, in the region H, compared with the case where the magnetic domain alignment direction D is not parallel to the directions of the exciting magnetic flux E and the detected magnetic flux F, the detected magnetic flux The change in F is detected with higher sensitivity and higher accuracy as a change in the impedance of the ring-shaped detection coil 32.

一方、前記回転軸20に外部から右回りに力が加えられた場合、前記回転軸20に歪みが発生することにより前記磁歪材部21に歪みが発生する。そして、図2に示すように歪みによりビラリ効果が発生し、前記磁歪材部21の磁区が磁区回転方向Cの方向へ回転する。これにより、前記磁歪材部21の透磁率は、前記回転軸20に力が加えられていない場合に対して変化する。この透磁率の変化により、前記検出磁束Fが変化し、これにより前記輪状検出コイル32のインピーダンスが変化する。このインピーダンスの変化により、前記輪状検出コイル32の出力信号電圧が変化し、検出回路に変化後の出力信号電圧が検出される。前記回転軸20に外部から力を加えていない場合の前記出力信号電圧の値と、前記回転軸20に外部から右回りに力を加えた場合の前記出力信号電圧の値との変化により、前記磁歪材部21及び前記回転軸20に生じた歪みの向きと大きさを検出することができる。   On the other hand, when a force is applied clockwise from the outside to the rotating shaft 20, distortion occurs in the rotating shaft 20, causing distortion in the magnetostrictive material portion 21. Then, as shown in FIG. 2, a vignetting effect occurs due to the distortion, and the magnetic domains of the magnetostrictive member 21 rotate in the direction of the magnetic domain rotation direction C. As a result, the magnetic permeability of the magnetostrictive member 21 changes with respect to the case where no force is applied to the rotating shaft 20. Due to the change in the magnetic permeability, the detected magnetic flux F changes, whereby the impedance of the annular detection coil 32 changes. Due to this change in impedance, the output signal voltage of the annular detection coil 32 changes, and the detection circuit detects the changed output signal voltage. The output signal voltage value when no force is applied to the rotating shaft 20 from the outside, and the output signal voltage value when a force is applied clockwise from the outside to the rotating shaft 20 are changed. It is possible to detect the direction and magnitude of the distortion generated in the magnetostrictive member 21 and the rotating shaft 20.

このとき、前記磁区回転方向Cと、前記励磁磁束E及び前記検出磁束Fの向きは垂直である。そのため前記領域Hにおいては、前記磁区整列方向Dと、前記励磁磁束E及び前記検出磁束Fの向きとが垂直でない場合と比べて、前記磁歪材部21の透磁率の変化に基づく、前記検出磁束Fの変化が前記輪状検出コイル32のインピーダンスの変化として、より高感度且つ高精度に検出される。   At this time, the direction of the magnetic domain rotation C is perpendicular to the directions of the exciting magnetic flux E and the detected magnetic flux F. Therefore, in the region H, compared with the case where the magnetic domain alignment direction D is not perpendicular to the directions of the exciting magnetic flux E and the detected magnetic flux F, the detected magnetic flux The change in F is detected with higher sensitivity and higher accuracy as a change in the impedance of the ring-shaped detection coil 32.

このように、前記回転軸20と、前記回転軸20に設けられた前記磁歪材部21と、前記回転軸20の外周側に設けられた前記輪状コイル30と、前記磁歪材部21と前記輪状コイル30との間に設けられ、磁束を遮断する前記磁気シールド部材50とを備え、前記輪状コイル30は、前記輪状検出コイル32を有し、前記輪状コイル30の前記中心軸Aが前記回転軸20の前記軸方向Bに対して斜め方向となるように設けられ、前記磁気シールド部材50は、前記回転軸20の周方向の一部に設けられているため、前記磁歪材部21に異方性を付与するための加工を行う必要がなく、前記歪みセンサ10の製造コスト及び製造工数を低減することができる。   Thus, the rotating shaft 20, the magnetostrictive member 21 provided on the rotating shaft 20, the annular coil 30 provided on the outer peripheral side of the rotating shaft 20, the magnetostrictive member 21 and the annular member The magnetic shield member 50 that is provided between the coil 30 and blocks magnetic flux; the annular coil 30 includes the annular detection coil 32; and the center axis A of the annular coil 30 is the rotation axis. The magnetic shield member 50 is provided in a part of the rotating shaft 20 in the circumferential direction, so that it is anisotropic with respect to the magnetostrictive member 21. It is not necessary to perform processing for imparting the property, and the manufacturing cost and the number of manufacturing steps of the strain sensor 10 can be reduced.

また、前記回転軸20の前記磁歪材部21を加工等して異方性を付与しないため、前記磁歪材部21にあらかじめ異方性を付与する場合と比較して、前記磁歪材部21が歪んだときの磁歪による透磁率の変化を大きくすることができ、前記歪みセンサ10の感度及び精度が向上する。   In addition, since the magnetostrictive material portion 21 of the rotating shaft 20 is not subjected to anisotropy by processing or the like, the magnetostrictive material portion 21 has a greater anisotropy than when the magnetostrictive material portion 21 is previously provided with anisotropy. The change in magnetic permeability due to the magnetostriction when distorted can be increased, and the sensitivity and accuracy of the distortion sensor 10 are improved.

また、前記輪状コイル30は、前記回転軸20の一方の端部に最も近い前記第1位置30aと、前記回転軸20の他方の端部に最も近い前記第2位置30bとを有し、前記磁気シールド部材50は、前記回転軸20の前記軸方向Bから見たときに、前記回転軸20の周方向において前記第1位置30aに最も近い位置から前記第2位置30bに最も近い位置までの間である前記領域Gに設けられているため、前記領域Gにおいて前記領域Hとは逆向きの異方性が前記磁歪材部21に付与されることを防止して、前記領域Hにおける前記検出磁束Fを測定して前記磁歪材部21の歪みを検出することができる。これにより、異方性の異なる磁歪材部を複数設けることなく前記磁歪材部21の歪みを検出することができるため、前記歪みセンサ10を省スペースにし又低コストにすることができる。   The ring-shaped coil 30 has the first position 30a closest to one end of the rotating shaft 20 and the second position 30b closest to the other end of the rotating shaft 20. The magnetic shield member 50 extends from a position closest to the first position 30a to a position closest to the second position 30b in the circumferential direction of the rotary shaft 20 when viewed from the axial direction B of the rotary shaft 20. Since it is provided in the region G between the regions G, it is possible to prevent the anisotropy in a direction opposite to the region H from being given to the magnetostrictive material portion 21 in the region G, and to perform the detection in the region H. The distortion of the magnetostrictive member 21 can be detected by measuring the magnetic flux F. Thereby, the distortion of the magnetostrictive member 21 can be detected without providing a plurality of magnetostrictive members having different anisotropy, so that the space of the strain sensor 10 can be reduced and the cost can be reduced.

また、前記回転軸20に力を加えたときに前記回転軸20に発生する歪みによる前記磁歪材部21の前記磁区回転方向Cと、前記輪状検出コイル32に鎖交する前記検出磁束Fの向きとが、一致又は直交するように設けられており、また、前記輪状コイル30は、前記回転軸20に力を加えたときに前記回転軸20に発生する歪みによる前記磁歪材部21の前記磁区整列方向Dと、前記輪状検出コイル32に鎖交する前記検出磁束Fの向きとが、一致又は直交するように設けられているため、前記歪みセンサ10の感度及び精度を向上させることができる。   Further, the direction of the magnetic domain rotation direction C of the magnetostrictive member portion 21 due to the distortion generated in the rotating shaft 20 when a force is applied to the rotating shaft 20 and the direction of the detected magnetic flux F interlinked with the annular detection coil 32. Are provided so as to be coincident with or orthogonal to each other, and the annular coil 30 is provided in the magnetic domain of the magnetostrictive material portion 21 due to a distortion generated in the rotating shaft 20 when a force is applied to the rotating shaft 20. Since the alignment direction D and the direction of the detection magnetic flux F linked to the ring-shaped detection coil 32 are provided so as to coincide with or orthogonal to each other, the sensitivity and accuracy of the strain sensor 10 can be improved.

また、前記磁歪材部21は、前記回転軸20と異なる材質であるため、前記回転軸20に合成の高い材質を用いて強度を確保しつつ、透磁率の変化の大きい磁歪材部21を使用することが可能であるため、前記歪みセンサ10の感度及び精度を向上させることができる。   Further, since the magnetostrictive member 21 is made of a material different from that of the rotating shaft 20, the magnetostrictive member 21 having a large change in magnetic permeability is used while securing strength by using a material having a high composition for the rotating shaft 20. Therefore, the sensitivity and accuracy of the strain sensor 10 can be improved.

なお、この実施の形態においては前記輪状コイル30は前記輪状励磁コイル31と前記輪状検出コイル32とを有し、前記輪状励磁コイル31は前記励磁磁束Eを発生し前記輪状検出コイル32は前記検出磁束Fを検出していたが、前記輪状コイル30は前記輪状検出コイル32のみを有していてもよい。この場合は、前記輪状検出コイル32は図示しない電源に接続され励磁され、前記磁歪材部21の透磁率の変化により前記検出磁束Fが変化し、これにより前記輪状検出コイル32のインピーダンスが変化する。そして、このインピーダンスの変化により前記輪状検出コイル32の出力信号電圧が変化し、さらに検出回路が出力信号電圧の変化を検出することにより、実施の形態と同じように検出回路が前記磁歪材部21及び前記回転軸20に生じた歪みの向きと大きさを検出することができる。   In this embodiment, the annular coil 30 has the annular exciting coil 31 and the annular detecting coil 32, the annular exciting coil 31 generates the exciting magnetic flux E, and the annular detecting coil 32 Although the magnetic flux F is detected, the annular coil 30 may include only the annular detection coil 32. In this case, the ring-shaped detection coil 32 is connected to a power supply (not shown) and is excited, and the detected magnetic flux F changes due to a change in the magnetic permeability of the magnetostrictive member 21, thereby changing the impedance of the ring-shaped detection coil 32. . Then, the output signal voltage of the ring-shaped detection coil 32 changes due to the change in impedance, and the detection circuit detects the change in the output signal voltage. In addition, the direction and magnitude of the distortion generated in the rotating shaft 20 can be detected.

なお、この実施の形態においては前記回転軸20に外部から左回りに力が加えられた場合は前記磁区整列方向Dと前記励磁磁束E及び前記検出磁束Fの向きとが平行となり、前記回転軸20に外部から右回りに力が加えられた場合は前記磁区回転方向Cと前記励磁磁束E及び前記検出磁束Fの向きとが垂直となっていたが、前記回転軸20に外部から左回りに力が加えられた場合は前記磁区整列方向Dと前記励磁磁束E及び前記検出磁束Fの向きとが垂直となり、前記回転軸20に外部から右回りに力が加えられた場合は前記磁区回転方向Cと前記励磁磁束E及び前記検出磁束Fの向きとが平行となってもよい。
また、前記回転軸20に外部から左回りに力が加えられた場合は前記磁区回転方向Cと前記励磁磁束E及び前記検出磁束Fの向きとが平行となり、前記回転軸20に外部から右回りに力が加えられた場合は前記磁区整列方向Dと前記励磁磁束E及び前記検出磁束Fの向きとが垂直となってもよい。
さらに、前記回転軸20に外部から左回りに力が加えられた場合は前記磁区回転方向Cと前記励磁磁束E及び前記検出磁束Fの向きとが垂直となり、前記回転軸20に外部から右回りに力が加えられた場合は前記磁区整列方向Dと前記励磁磁束E及び前記検出磁束Fの向きとが平行となってもよい。
In this embodiment, when a force is applied to the rotating shaft 20 counterclockwise from the outside, the magnetic domain alignment direction D is parallel to the directions of the exciting magnetic flux E and the detected magnetic flux F, and the rotating shaft 20 When a force is applied clockwise to the outside 20 from the outside, the magnetic domain rotation direction C is perpendicular to the directions of the excitation magnetic flux E and the detection magnetic flux F, but the rotation axis 20 is counterclockwise from the outside. When a force is applied, the magnetic domain alignment direction D is perpendicular to the directions of the exciting magnetic flux E and the detected magnetic flux F, and when a force is applied to the rotating shaft 20 clockwise from outside, the magnetic domain rotating direction is changed. C and the directions of the excitation magnetic flux E and the detection magnetic flux F may be parallel.
When a force is applied to the rotating shaft 20 counterclockwise from the outside, the magnetic domain rotation direction C is parallel to the directions of the exciting magnetic flux E and the detected magnetic flux F, and the rotating shaft 20 is clockwise rotated from the outside. May be perpendicular to the magnetic domain alignment direction D and the directions of the excitation magnetic flux E and the detection magnetic flux F.
Further, when a force is applied to the rotating shaft 20 counterclockwise from the outside, the magnetic domain rotation direction C is perpendicular to the directions of the exciting magnetic flux E and the detection magnetic flux F, and the rotating shaft 20 is clockwise rotated from the outside. , The direction of the magnetic domain alignment D may be parallel to the directions of the excitation magnetic flux E and the detection magnetic flux F.

また、前記回転軸20に外部から力が加えられた場合に前記磁区整列方向Dと前記励磁磁束E及び前記検出磁束Fの向きとが完全に平行又は垂直にならなくともよく、前記回転軸20に外部から力が加えられた場合に前記磁区回転方向Cと前記励磁磁束E及び前記検出磁束Fの向きとが完全に平行又は垂直にならなくともよい。少なくとも前記励磁磁束E及び前記検出磁束Fの向きが、前記回転軸20の軸方向Bに対して完全に平行又は垂直でなければよい。   Further, when a force is applied to the rotating shaft 20 from the outside, the magnetic domain alignment direction D and the directions of the exciting magnetic flux E and the detected magnetic flux F do not have to be completely parallel or perpendicular to each other. The direction of the magnetic domain rotation C and the directions of the excitation magnetic flux E and the detection magnetic flux F need not be completely parallel or perpendicular to each other when a force is applied from the outside. At least the directions of the exciting magnetic flux E and the detected magnetic flux F need not be completely parallel or perpendicular to the axial direction B of the rotating shaft 20.

また、この実施の形態においては前記磁気シールド部材50を、前記歪みセンサ10の前記回転軸20の半周に相当する前記領域Gの全範囲に設けていたが、前記領域Gの一部に設けてもよい。また、この実施の形態においては前記磁気シールド部材50を前記領域Gに設け、前記輪状検出コイル32が前記領域Hにおいて前記検出磁束Fを検出していたが、前記磁気シールド部材50を前記領域Hに設け、前記輪状検出コイル32が前記領域Gにおいて前記検出磁束Fを検出してもよい。また、前記磁気シールド部材50を前記領域Gの全範囲及び前記領域Hの一部に設けてもよいし、前記領域Hの全範囲及び前記領域Gの一部の範囲に設けてもよい。   Further, in this embodiment, the magnetic shield member 50 is provided in the entire area of the area G corresponding to a half circumference of the rotation shaft 20 of the strain sensor 10, but is provided in a part of the area G. Is also good. Further, in this embodiment, the magnetic shield member 50 is provided in the area G, and the annular detection coil 32 detects the detected magnetic flux F in the area H. And the annular detection coil 32 may detect the detected magnetic flux F in the region G. Further, the magnetic shield member 50 may be provided in the whole range of the region G and a part of the region H, or may be provided in the whole range of the region H and a part of the region G.

なお、本発明による歪みセンサ構造は、以下の通りである。すなわち前記回転軸20と、前記回転軸20に設けられた前記磁歪材部21と、前記回転軸20の外周側に設けられた前記輪状コイル30と、前記磁歪材部21と前記輪状コイル30との間に設けられ、磁束を遮断する前記磁気シールド部材50とを備え、前記輪状コイル30は、前記輪状検出コイル32を有し、前記輪状コイル30の前記中心軸Aが前記回転軸20の前記軸方向Bに対して斜め方向となるように設けられ、前記磁気シールド部材50は、前記回転軸20の周方向の一部に設けられている構成であり、また、前記輪状コイル30は、前記回転軸20の一方の端部に最も近い前記第1位置30aと、前記回転軸20の他方の端部に最も近い前記第2位置30bとを有し、前記磁気シールド部材50は、前記回転軸20の前記軸方向Bから見たときに、前記回転軸20の周方向において前記第1位置30aに最も近い位置から前記第2位置30bに最も近い位置までの間に設けられている構成であり、また、前記輪状コイル30は、前記回転軸20に力を加えたときに前記回転軸20に発生する歪みによる前記磁歪材部21の前記磁区回転方向Cと、前記輪状検出コイル32に鎖交する前記検出磁束Fの向きとが、一致又は直交するように設けられている構成であり、また、前記輪状コイル30は、前記回転軸20に力を加えたときに前記回転軸20に発生する歪みによる前記磁歪材部21の前記磁区整列方向Dと、前記輪状検出コイル32に鎖交する前記検出磁束Fの向きとが、一致又は直交するように設けられている構成であり、また、前記磁歪材部21は、前記回転軸20と異なる材質により構成されている。   The structure of the strain sensor according to the present invention is as follows. That is, the rotating shaft 20, the magnetostrictive member 21 provided on the rotating shaft 20, the ring-shaped coil 30 provided on the outer peripheral side of the rotating shaft 20, the magnetostrictive member 21 and the ring-shaped coil 30 And the magnetic shield member 50 that blocks magnetic flux. The annular coil 30 includes the annular detection coil 32, and the center axis A of the annular coil 30 is the rotation axis 20 of the rotating shaft 20. The magnetic shield member 50 is provided so as to be oblique with respect to the axial direction B, and the magnetic shield member 50 is provided in a part of the rotating shaft 20 in the circumferential direction. It has the first position 30a closest to one end of the rotating shaft 20 and the second position 30b closest to the other end of the rotating shaft 20, and the magnetic shield member 50 20 said axes When viewed from the direction B, it is provided between a position closest to the first position 30a and a position closest to the second position 30b in the circumferential direction of the rotating shaft 20. The ring-shaped coil 30 is configured such that the magnetic domain rotation direction C of the magnetostrictive member portion 21 due to distortion generated in the rotation shaft 20 when a force is applied to the rotation shaft 20 and the detected magnetic flux linked to the ring-shaped detection coil 32. The direction of F is provided so as to be coincident or orthogonal, and the ring-shaped coil 30 is configured such that the magnetostriction caused by the distortion generated in the rotating shaft 20 when a force is applied to the rotating shaft 20. The magnetic domain alignment direction D of the material portion 21 and the direction of the detection magnetic flux F interlinked with the ring-shaped detection coil 32 are provided so as to match or be orthogonal to each other. Is It is composed of a material different from the rolling axis 20.

本発明による歪みセンサ構造は、回転軸と、回転軸に設けられた磁歪材部と、回転軸の外周側に設けられた輪状コイルと、磁歪材部と輪状コイルとの間に設けられ、磁束を遮断する磁気シールド部材とを備え、輪状コイルは、輪状検出コイルを有し、輪状コイルの中心軸が回転軸の軸方向に対して斜め方向となるように設けられ、磁気シールド部材は、回転軸の周方向の一部に設けられているため、前記歪みセンサの製造コスト及び製造工数を低減することができる。   The strain sensor structure according to the present invention includes a rotating shaft, a magnetostrictive member provided on the rotating shaft, a ring-shaped coil provided on the outer peripheral side of the rotating shaft, and a magnetic flux provided between the magnetostrictive member and the ring-shaped coil. And a magnetic shield member that blocks the rotation, the annular coil has an annular detection coil, and the central axis of the annular coil is provided so as to be oblique to the axial direction of the rotation axis. Since the strain sensor is provided at a part in the circumferential direction of the shaft, the manufacturing cost and the number of manufacturing steps of the strain sensor can be reduced.

20 回転軸
30 輪状コイル
30a 第1位置
30b 第2位置
32 輪状検出コイル
50 磁気シールド部材
A 中心軸
B 軸方向
C 磁区回転方向
D 磁区整列方向
F 検出磁束
Reference Signs List 20 rotation axis 30 ring-shaped coil 30a first position 30b second position 32 ring-shaped detection coil 50 magnetic shield member A center axis B axis direction C domain rotation direction D domain alignment direction F detection magnetic flux

Claims (5)

回転軸(20)と、
前記回転軸(20)に設けられた磁歪材部(21)と、
前記回転軸(20)の外周側に設けられた輪状コイル(30)と、
前記磁歪材部(21)と前記輪状コイル(30)との間に設けられ、磁束を遮断する磁気シールド部材(50)と
を備え、
前記輪状コイル(30)は、
輪状検出コイル(32)を有し、
前記輪状コイル(30)の中心軸(A)が前記回転軸(20)の軸方向(B)に対して斜め方向となるように設けられ、
前記磁気シールド部材(50)は、前記回転軸(20)の周方向の一部に設けられていることを特徴とする歪みセンサ構造。
A rotating shaft (20);
A magnetostrictive member (21) provided on the rotating shaft (20),
An annular coil (30) provided on the outer peripheral side of the rotating shaft (20);
A magnetic shield member (50) provided between the magnetostrictive member (21) and the ring-shaped coil (30) to block magnetic flux;
The annular coil (30) includes:
A ring-shaped detection coil (32);
A center axis (A) of the ring-shaped coil (30) is provided so as to be oblique to an axial direction (B) of the rotating shaft (20);
The said magnetic shield member (50) is provided in a part of circumferential direction of the said rotating shaft (20), The distortion sensor structure characterized by the above-mentioned.
前記輪状コイル(30)は、前記回転軸(20)の一方の端部に最も近い第1位置(30a)と、前記回転軸(20)の他方の端部に最も近い第2位置(30b)とを有し、
前記磁気シールド部材(50)は、前記回転軸(20)の前記軸方向(B)から見たときに、前記回転軸(20)の周方向において前記第1位置(30a)に最も近い位置から前記第2位置(30b)に最も近い位置までの間に設けられていることを特徴とする請求項1に記載の歪みセンサ構造。
The annular coil (30) has a first position (30a) closest to one end of the rotating shaft (20) and a second position (30b) closest to the other end of the rotating shaft (20). And
The magnetic shield member (50) is located at a position closest to the first position (30a) in a circumferential direction of the rotating shaft (20) when viewed from the axial direction (B) of the rotating shaft (20). The strain sensor structure according to claim 1, wherein the strain sensor is provided between the second position and a position closest to the second position.
前記輪状コイル(30)は、
前記回転軸(20)に力を加えたときに前記回転軸(20)に発生する歪みによる前記磁歪材部(21)の磁区回転方向(C)と、前記輪状検出コイル(32)に鎖交する検出磁束(F)の向きとが、一致又は直交するように設けられていることを特徴とする請求項1又は2に記載の歪みセンサ構造。
The annular coil (30) includes:
The magnetic domain rotation direction (C) of the magnetostrictive member portion (21) due to the strain generated on the rotating shaft (20) when a force is applied to the rotating shaft (20), and the annular detection coil (32) interlinks. The strain sensor structure according to claim 1, wherein the direction of the detected magnetic flux (F) is provided so as to coincide with or orthogonal to the direction.
前記輪状コイル(30)は、
前記回転軸(20)に力を加えたときに前記回転軸(20)に発生する歪みによる前記磁歪材部(21)の磁区整列方向(D)と、前記輪状検出コイル(32)に鎖交する検出磁束(F)の向きとが、一致又は直交するように設けられていることを特徴とする請求項1又は2に記載の歪みセンサ構造。
The annular coil (30) includes:
The magnetic domain alignment direction (D) of the magnetostrictive member portion (21) due to the strain generated on the rotating shaft (20) when a force is applied to the rotating shaft (20), and the annular detection coil (32) interlinks. The strain sensor structure according to claim 1, wherein the direction of the detected magnetic flux (F) is provided so as to coincide with or orthogonal to the direction.
前記磁歪材部(21)は、前記回転軸(20)と異なる材質であることを特徴とする請求項1〜4のいずれか1項に記載の歪みセンサ構造。   The strain sensor structure according to any one of claims 1 to 4, wherein the magnetostrictive member (21) is made of a different material from the rotating shaft (20).
JP2018166730A 2018-09-06 2018-09-06 Strain sensor structure Active JP7111315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018166730A JP7111315B2 (en) 2018-09-06 2018-09-06 Strain sensor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018166730A JP7111315B2 (en) 2018-09-06 2018-09-06 Strain sensor structure

Publications (2)

Publication Number Publication Date
JP2020041803A true JP2020041803A (en) 2020-03-19
JP7111315B2 JP7111315B2 (en) 2022-08-02

Family

ID=69798028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166730A Active JP7111315B2 (en) 2018-09-06 2018-09-06 Strain sensor structure

Country Status (1)

Country Link
JP (1) JP7111315B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557393A (en) * 1943-12-22 1951-06-19 Rifenbergh Clare Morgan Electrical torque measuring system
JPS61258132A (en) * 1985-05-13 1986-11-15 Yutaka Takahashi Magnetostriction detecting type torque sensor
JPH02176437A (en) * 1988-12-27 1990-07-09 Matsushita Electric Ind Co Ltd Torque sensor
JPH08285706A (en) * 1995-02-13 1996-11-01 Toyota Autom Loom Works Ltd Torque sensor and strain detection element
JPH11337424A (en) * 1998-05-27 1999-12-10 Aisin Seiki Co Ltd Torque sensor
JP2007278865A (en) * 2006-04-07 2007-10-25 Hitachi Metals Ltd Magnetostrictive torque detecting apparatus
US20110308330A1 (en) * 2010-06-21 2011-12-22 Lutz May Dynamic Signal Torque Sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557393A (en) * 1943-12-22 1951-06-19 Rifenbergh Clare Morgan Electrical torque measuring system
JPS61258132A (en) * 1985-05-13 1986-11-15 Yutaka Takahashi Magnetostriction detecting type torque sensor
JPH02176437A (en) * 1988-12-27 1990-07-09 Matsushita Electric Ind Co Ltd Torque sensor
JPH08285706A (en) * 1995-02-13 1996-11-01 Toyota Autom Loom Works Ltd Torque sensor and strain detection element
JPH11337424A (en) * 1998-05-27 1999-12-10 Aisin Seiki Co Ltd Torque sensor
JP2007278865A (en) * 2006-04-07 2007-10-25 Hitachi Metals Ltd Magnetostrictive torque detecting apparatus
US20110308330A1 (en) * 2010-06-21 2011-12-22 Lutz May Dynamic Signal Torque Sensor

Also Published As

Publication number Publication date
JP7111315B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
JP6071460B2 (en) System and method for detecting magnetic noise by applying a switching function to a magnetic field sensing coil
EP0366217B1 (en) Torque sensor
EP2260278B1 (en) Magnetoelastic torque sensor with ambient field rejection
WO2013161027A1 (en) Magnetic position detecting apparatus
JPS62249026A (en) Torque measuring instrument
JP6278050B2 (en) Rotation angle detection device and rotary machine device
JP7076780B2 (en) Core structure and strain detector for detecting changes in permeability
JP7076781B2 (en) Core and strain detectors for detecting changes in permeability
JP2005164531A (en) Magnetostrictive torque sensor
JP2019211334A (en) Core structure and strain detector for detecting change of magnetic permeability
JP2017161470A (en) Rotation angle detection device
JP6460372B2 (en) Magnetic sensor, method for manufacturing the same, and measuring instrument using the same
JP6849188B2 (en) Angle detector
JP6283860B2 (en) Angle detection device and angle detection system
JP2020041803A (en) Strain sensor structure
JP4305271B2 (en) Magnetostrictive torque sensor
JP6675570B2 (en) Magnetostrictive torque sensor
JP6961222B2 (en) Strain sensor stator structure
EP3388806A1 (en) Circumferential force measuring device
JP6989114B2 (en) Torque detector
JP2020012783A (en) Distortion sensor structure and distortion detection method
JP2019215175A (en) Stator structure of strain sensor
JP2005337987A (en) Torque sensor system
JP4992641B2 (en) Rotation angle detection device and rotation angle detection method
JP5012423B2 (en) Rotation angle detection device and rotation angle detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220712

R150 Certificate of patent or registration of utility model

Ref document number: 7111315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150