JP2019034734A - Energy saving deceleration traveling control method - Google Patents

Energy saving deceleration traveling control method Download PDF

Info

Publication number
JP2019034734A
JP2019034734A JP2018203550A JP2018203550A JP2019034734A JP 2019034734 A JP2019034734 A JP 2019034734A JP 2018203550 A JP2018203550 A JP 2018203550A JP 2018203550 A JP2018203550 A JP 2018203550A JP 2019034734 A JP2019034734 A JP 2019034734A
Authority
JP
Japan
Prior art keywords
speed
traveling
distance
vehicle
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018203550A
Other languages
Japanese (ja)
Other versions
JP6494006B2 (en
Inventor
渡邉雅弘
Masahiro Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018203550A priority Critical patent/JP6494006B2/en
Publication of JP2019034734A publication Critical patent/JP2019034734A/en
Application granted granted Critical
Publication of JP6494006B2 publication Critical patent/JP6494006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Abstract

To execute deceleration traveling to a target deceleration/stop point of a vehicle such as an intersection by the travelling while keeping an energy saving and stable traffic flow, with excellent kinetic energy utilization efficiency and a small average speed reduction rate during deceleration.SOLUTION: Utilization efficiency η (=(vc-vb)/vc) of kinetic energy of a running vehicle to inertia travelling is reduced in a permissible range (e.g., in a range exceeding kinetic energy regeneration efficiency in regenerative braking)(that is, the ratio (vb/vc) of an inertia travelling starting speed vc to an inertia travelling ending speed (braking traveling starting speed) vb is set to an optimum level), and the η reduction effect is caused to contribute to the improvement of an average inertia travelling speed, thereby enabling deceleration traveling while keeping an energy saving and stable traffic flow.SELECTED DRAWING: Figure 2

Description

本願発明は、主として市街地走行中の車両における交差点等目標減速・停止点への減速走行を、原則として減速走行を行う全車両において、惰性走行と制動走行(回生制動走行を含む)の最適配分での減速走行によって交差点等目標減速・停止点への到達・通過を安全かつ省エネルギー・排出ガス削減走行で可能にする省エネルギー減速走行制御方法に関する。 The invention of the present application is based on the optimal allocation of inertia traveling and braking traveling (including regenerative braking traveling) in all vehicles that perform deceleration traveling as a rule, such as intersections in a vehicle traveling in an urban area, as a rule. The present invention relates to an energy-saving deceleration traveling control method that enables safe and energy-saving / exhaust gas reduction traveling to reach and pass a target deceleration / stop point such as an intersection by slow traveling.

市街地走行における減速・停止点の代表的存在が交差点である。
この交差点通過を安全かつ省エネルギーで可能にするシステムに「交差点無停止走行システム」(あるいは「信号同期速度制御システム」)がある。
これは交差点上流特定地点において、車両は次に通過すべき交差点の信号情報を路側に設けられた路車間通信装置等から獲得し、前記獲得した交差点信号情報に基づき、当該車両が交差点を青信号・無停止で通過することのできる速度あるいは走行所要時間等の走行条件の算出・特定および前記算出・特定した走行条件での前記特定地点から交差点への走行を行い、交差点を青信号・無停止で通過するものである(特許文献1)。
しかしこの方法では、路側においては交差点信号情報を車両個々に通報するための路車間通信路側装置、車側においては前記路車間通信路側装置からの情報を受信し前記受信した情報から交差点を青信号・無停止で通過するための走行条件の算出・特定および前記算出・特定された走行条件での走行を行うための演算・制御機能(装置)、が必要となる。
A representative presence of deceleration / stop points in city driving is an intersection.
There is a “crossing non-stop traveling system” (or “signal synchronous speed control system”) as a system that enables this intersection passing safely and with energy saving.
This is because at the intersection upstream specific point, the vehicle acquires signal information of the intersection to be passed next from a road-to-vehicle communication device or the like provided on the road side, and based on the acquired intersection signal information, the vehicle indicates Calculating / specifying driving conditions such as speed or travel time that can pass without stopping, and driving from the specified point to the intersection under the calculated / specified driving conditions, passing through the intersection with a green light and without stopping (Patent Document 1).
However, in this method, on the road side, the roadside-to-vehicle communication roadside device for reporting the intersection signal information to each vehicle, the vehicle side receives information from the roadside-to-vehicle communication roadside device, and from the received information, The calculation / specification of the driving condition for passing without stopping and the calculation / control function (device) for driving under the calculated / specified driving condition are required.

上記「交差点無停止走行システム」における走行条件の算出およびおよび前記走行条件での走行制御の煩雑さを避ける方法として、「信号情報活用運転支援システム」がある(非特許文献1)。
「信号情報活用運転支援システム」においては、車両は路車間通信装置(光ビーコン)から送信される交通信号情報を受信し、現在走行中の速度での交差点青信号・無停止通過が可能な場合、現速度で交差点に向かい青信号で交差点を無停止通過する「ノンストップ通過支援」、現速度では青信号・無停止通過が不可能な場合は、現地点から交差点までの走行距離が惰性走行可能距離範囲内である場合、惰性走行で交差点に向かい、交差点で停止する「赤信号減速支援」がある。
即ち、交差点を青信号・無停止で通過できる車両はそのまま青信号・無停止通過を、通過できない車両は交差点まで惰性走行による減速走行を行い交差点で停止する。
There is a “signal information utilization driving support system” (Non-Patent Document 1) as a method for avoiding the complexity of calculation of traveling conditions and traveling control under the above-mentioned traveling conditions in the “intersection non-stop traveling system”.
In the “Signal Information Utilization Driving Support System”, when the vehicle receives traffic signal information transmitted from the road-to-vehicle communication device (light beacon), and is capable of passing the traffic light at the current traveling speed, `` Non-stop passing support '' that passes the intersection at the current speed without stopping at the green light, if the green speed / non-stop passing is impossible at the current speed, the distance from the local point to the intersection is the coasting distance range If it is within, there is “red signal deceleration support” that goes to the intersection by coasting and stops at the intersection.
That is, a vehicle that can pass through the intersection with a green light and no stop passes through the green signal and no stop as it is, and a vehicle that cannot pass through the vehicle is decelerated by inertia traveling to the intersection and stops at the intersection.

ここで惰性走行とは、車両の駆動源(エンジン、モーター等)と駆動輪間の接続を遮断あるいは疎とすることによって、車両の減速走行駆動を車両の有している運動エネルギー主体で行う走行を云う。
また、惰性走行可能距離とは、通常走行状態から惰性走行状態に移行した場合、車両停止まで減速走行可能な最大惰性走行距離を云う(特許文献2)。
Here, coasting refers to traveling in which the vehicle is driven by kinetic energy mainly by decelerating the vehicle by disconnecting or loosening the connection between the drive source (engine, motor, etc.) of the vehicle and the drive wheels. Say.
In addition, the inertial travelable distance refers to the maximum inertial travel distance that can be decelerated until the vehicle stops when the normal travel state shifts to the inertial travel state (Patent Document 2).

特開2006−031573JP 2006-031573 A 特開2011−046272JP2011-046272A 特開2014−000942JP 2014-000942 A

一般社団法人UTMS協会:「信号情報のリアルタイム活用技術の開発及び実証報告書」UTMS Association: “Development and Demonstration Report of Real-time Signal Information Utilization Technology”

上記非特許文献1による「信号情報活用運転支援システム」では、特許文献1による「交差点無停止走行制御システム」の如き交差点無停止通過のための速度等の走行条件算出・特定、および算出・特定結果の走行条件に基づく煩雑な走行制御が不要となる利点があるが、「交差点無停止走行制御システム」の場合と同様、交差点の信号情報を、交差点上流地点においてそこを通過する個々の車両に、通報しなければならない、即ち、通過すべき交差点の信号情報を車両に通報するための光ビーコン等の路側システムが各交差点に対応して必要であり、全交差点に対応した路側システムを設置するにはその費用が膨大となる、という問題が残る。
上記問題に対して本願発明は、「交差点無停止走行システム」あるいは「信号情報活用運転支援システム」の如き車両に対しての交差点信号情報の通報を不要とするにもかかわらず、交差点信号情報が得られる場合とほぼ同等な省エネルギーかつ安全な交差点等目標減速・停止点への省エネルギー減速走行制御方法を提供しようとするものである。
In the “signal information utilization driving support system” according to Non-Patent Document 1, the driving condition calculation / specification and the calculation / specification such as the speed for the intersection non-stop passing such as the “intersection non-stop driving control system” according to Patent Document 1 are performed. Although there is an advantage that complicated traveling control based on the resulting traveling condition is unnecessary, as in the case of the `` intersection non-stop traveling control system '', the signal information of the intersection is transmitted to each vehicle passing there at the upstream point of the intersection. , Roadside systems such as optical beacons for notifying the vehicle of signal information of intersections to be passed are necessary for each intersection, and roadside systems corresponding to all intersections are installed. Still has the problem of enormous costs.
For the above problem, the present invention does not require the notification of the intersection signal information to the vehicle such as the “intersection non-stop traveling system” or the “signal information utilization driving support system”, but the intersection signal information It is an object of the present invention to provide an energy-saving decelerating traveling control method to a target deceleration / stop point such as an energy-saving and safe intersection that is almost equivalent to the obtained case.

走行開始地点から目的地点までの車両の走行開始に先立って、走行開始地点から目的地点までの経路探索を行い、前記経路探索結果に基づいて走行開始地点から目的地点までの間の走行区間中に(一般的には複数の)目標減速・停止点を特定し前記目標減速・停止点毎にその位置および到達時の車両速度(停止点の場合速度は0)を特定する。
前記走行開始地点から目的地点までの走行は、走行開始地点からあらかじめ特定されている加速度αaでの加速走行、加速走行の結果速度が定速走行速度vcに達した場合は定速走行、および目標減速・停止点に向けては目標減速・停止点上流惰性走行可能距離範囲内からの目標減速・停止点に向けての惰性走行主体による減速走行を行う。
目標減速・停止点に到着(あるいは到着直前の目標減速・停止点信号状態の視認等による確認)後は、改めて目標減速・停止点の信号状態に応じて、例えば信号が青である場合はそのまま交差点を無停止で通過する、信号が青でない場合は交差点手前で停止し、信号が青になるのを待つ。
この結果、車両は走行開始地点から目的地点までの全区間、定速走行による走行を行ったとほぼ同等な省エネルギー走行が可能となる。(特許文献3)
Prior to the start of traveling of the vehicle from the travel start point to the destination point, a route search from the travel start point to the destination point is performed, and based on the route search result, during the travel section from the travel start point to the destination point A target deceleration / stop point (generally a plurality) is specified, and the position and vehicle speed at the time of arrival are specified for each target deceleration / stop point (speed is 0 in the case of a stop point).
The travel from the travel start point to the destination point includes acceleration travel at an acceleration αa specified in advance from the travel start point, constant speed travel as a result of the accelerated travel reaching a constant speed travel speed vc, and target To the deceleration / stop point, the vehicle is decelerated by the inertia traveling body toward the target deceleration / stop point from within the target deceleration / stop point upstream inertia travelable distance range.
After arriving at the target deceleration / stop point (or confirming the target deceleration / stop point signal status immediately before arrival), depending on the signal status of the target deceleration / stop point, for example, if the signal is blue Pass through the intersection without stopping. If the signal is not blue, stop before the intersection and wait for the signal to turn blue.
As a result, the vehicle can perform energy-saving traveling that is substantially equivalent to traveling by constant speed traveling in the entire section from the traveling start point to the destination point. (Patent Document 3)

上記本願発明の根拠となる目標減速・停止点走行方法の相違による省エネルギー性能の違いを、図1を用いて説明する。
図1において、
地点Aは、車両走行開始点(加速度αaで加速走行開始点)、
地点Bは、加速走行の結果車両速度が定速度vcに到達した地点、
地点Dは、速度vcで定速走行中の車両が地点Eに向けて制動減速度αb での制動を開始する地点、
(速度vcからの制動減速度αb での制動走行距離はLb0)
地点Eは、車両が通過あるいは停止すべき目標交差点
地点Fは、地点Eでの停止状態から加速度αaによる加速走行の結果車両速度が(再度)定速度vcに到達する地点、
である。
The difference in energy saving performance due to the difference in the target deceleration / stop point traveling method that is the basis of the present invention will be described with reference to FIG.
In FIG.
Point A is the vehicle travel start point (acceleration travel start point with acceleration αa),
Point B is a point where the vehicle speed has reached a constant speed vc as a result of accelerated running,
Point D is a point at which a vehicle that is traveling at a constant speed at a speed vc starts braking at a braking deceleration αb toward point E.
(The braking distance at the braking deceleration αb from the speed vc is Lb0)
A point E is a target intersection point F through which the vehicle should pass or stop. A point at which the vehicle speed reaches (again) a constant speed vc as a result of acceleration travel from the stop state at the point E by the acceleration αa.
It is.

ここで、地点Aから地点Eまでの道路は平坦路とし、当該道路を車両が速度vで走行する場合の走行抵抗Rは、(数1)で示されるものとする。
(数1)
R=R1+R2・v2
ここで、
R1:転がり抵抗、
R2・v2:速度vで走行時の空気抵抗
v:車両走行速度
である。
(数1)より、走行抵抗Rは速度に無関係な成分R1と速度の二乗に比例する成分R2・v2の和となることがわかる。
Here, the road from the point A to the point E is a flat road, and the traveling resistance R when the vehicle travels on the road at the speed v is represented by (Equation 1).
(Equation 1)
R = R1 + R2 · v 2
here,
R1: Rolling resistance,
R2 · v 2 : Air resistance when driving at speed v
v: Vehicle traveling speed.
From equation (1), running resistance R is found to be the sum of the components R2 · v 2 which is proportional to the square of unrelated components R1 and speed to the speed.

速度v=vcで走行中の車両の有する運動エネルギーEvccは(数2)で、また速度v=vc で走行中の車両の惰性走行可能距離、即ち速度vc で走行中の車両が惰性走行に移行後惰性走行で目標減速・停止点(地点E)に速度0で到達するに要する距離(惰性走行可能距離)Li0は(数3)で示される。
ここで、地点E上流距離Li0の地点を惰性走行開始点(地点P0)とする。
(数2)
Evcc =m・vc2 /2
≒(R1+R2・vc02)・Li0
(数3)
Li0 ≒vc2/(2・αi(vc0))
ここで、
m :車両質量(搭載物質量を含む)
vc0:速度vc〜0間の平均惰性走行速度
αi(vc0):平均惰性走行速度vc0に対応する惰性走行減速度
である。
The kinetic energy Evcc of the vehicle traveling at the speed v = vc is (Equation 2), and the inertia traveling distance of the vehicle traveling at the speed v = vc, that is, the vehicle traveling at the speed vc shifts to inertia traveling. The distance required for reaching the target deceleration / stop point (point E) at the speed 0 in the trailing inertia traveling (the inertial traveling possible distance) Li0 is represented by (Equation 3).
Here, the point of the point E upstream distance Li0 is defined as a coasting start point (point P0).
(Equation 2)
Evcc = m · vc 2/2
≒ (R1 + R2 · vc0 2 ) · Li0
(Equation 3)
Li0 ≒ vc 2 / (2 ・ αi (vc0))
here,
m: Vehicle mass (including the amount of substance on board)
vc0: Average inertia traveling speed αi between speeds vc and 0 (vc0): Inertia traveling deceleration corresponding to the average inertia traveling speed vc0.

次に、交差点(地点E)信号が赤の場合、通常走行では速度vcで走行中の車両が地点E上流地点Dにおいて制動減速度αbによる制動走行に移行して地点Eで停止する場合の運動エネルギーEvccによる走行距離Lb0は(数4)で示される。
(数4)
Lb0=vc2/(2・αb)
従って、例えば、50km/hで定速走行中の車両の、Li0は300m以上、Lb0は30m以下であることから、制動走行によって減速走行に利用される運動エネルギーは、惰性走行によって減速走行に利用される運動エネルギーの10%以下になる(残る90%は制動による摩擦熱として大気中に放散される)ことがわかる。
Next, when the intersection (point E) signal is red, in the case of normal driving, the vehicle traveling at the speed vc shifts to the braking driving at the point E upstream point D by the braking deceleration αb and stops at the point E. The travel distance Lb0 by the energy Evcc is expressed by (Expression 4).
(Equation 4)
Lb0 = vc 2 /(2.αb)
Therefore, for example, since Li0 is 300 m or more and Lb0 is 30 m or less for a vehicle traveling at a constant speed of 50 km / h, the kinetic energy used for deceleration traveling by braking traveling is used for deceleration traveling by inertia traveling. It can be seen that the kinetic energy is 10% or less (the remaining 90% is dissipated into the atmosphere as frictional heat by braking).

一方、地点P0から地点Eまでの距離Li0間 を定速走行速度vcで走行する場合の走行抵抗Rvcは(数6)で示されることから、この間に必要となる駆動輪駆動レベルのエネルギーEvcは(数7)で示される。
(数6)
Rvc =(R1+R2・vc2
(数7)
Evc =(R1+R2・vc2 )・Li0
但し、上記走行の結果地点Eにおける速度vc の車両は、運動エネルギーEvcを有している。
(数2)と(数7)で示されるエネルギーを比較するとvc >vavであることから
(数8)
Evcc<Evc
即ち、同一距離Li0走行に際しての平均走行速度(平均走行抵抗)の相違により、地点P0(速度vc )から地点E(速度0)までの間惰性走行する方が速度vcで定速走行するよりも省エネルギーであり、その消費エネルギー差ΔE2は、
(数9)
ΔE2=Evc−Evcc
≒{(R1+R2・vc2 )−(R1+R2・vc02 )}・Li0
≒R2・(vc2 − vc02)・Li0
であることがわかる。
On the other hand, the travel resistance Rvc when traveling at the constant speed travel speed vc between the distance Li0 from the point P0 to the point E is expressed by (Equation 6), so the energy Evc of the drive wheel drive level required during this time is (Expression 7)
(Equation 6)
Rvc = (R1 + R2 · vc 2 )
(Equation 7)
Evc = (R1 + R2 · vc 2 ) · Li0
However, the vehicle having the speed vc at the point E as a result of the travel has the kinetic energy Evc.
Since the energy expressed by (Equation 2) and (Equation 7) is compared, vc> vav (Equation 8)
Evcc <Evc
That is, due to the difference in average travel speed (average travel resistance) when traveling at the same distance Li0, intermittent travel from point P0 (speed vc) to point E (speed 0) is faster than constant speed travel at speed vc. Energy saving, and the difference in energy consumption ΔE2 is
(Equation 9)
ΔE2 = Evc−Evcc
≒ {(R1 + R2 · vc 2 )-(R1 + R2 · vc0 2 )} · Li0
≒ R2 ・ (vc 2 − vc0 2 ) ・ Li0
It can be seen that it is.

即ち、
走行方式1: 「速度vc で走行中の車両が、制動走行後交差点で停止する」
走行方式2: 「速度vc で走行中の車両が、惰性走行開始点から惰性走行して交差点で停止する」
走行方式3: 「速度vc で走行中の車両が、惰性走行開始点から速度vc で定速走行して交差点に到達する」
において、
上記各方式の省エネルギー性能は、
走行方式2が一番よく、次いで走行方式3であり、走行方式1が最も悪いことがわかる。
That is,
Driving method 1: “A vehicle running at a speed vc stops at an intersection after braking”
Travel method 2: “A vehicle traveling at a speed vc travels inertially from the inertial start point and stops at the intersection”
Travel method 3: “A vehicle traveling at a speed vc travels at a constant speed from the inertial travel start point at a speed vc and reaches an intersection”
In
The energy saving performance of each of the above methods is
It can be seen that traveling method 2 is the best, followed by traveling method 3, and traveling method 1 is the worst.

また、上記説明より、
走行方式2は、走行方式1はもとより、走行方式3(この場合目標地点Eにおいては車両の運動エネルギーは未消費のまま残る)」よりも空気抵抗の差分だけ省エネルギーとなる、ことがわかる。
即ち、上記各交差点走行方法において、交差点に向けて惰性走行可能距離惰性走行を行う走行方法は、制動走行を行う方法は言うに及ばず、定速走行で交差点を通過する方法よりも省エネルギーになる。
From the above explanation,
It can be seen that the driving method 2 saves energy by the difference in air resistance than the driving method 1 as well as the driving method 3 (in this case, the kinetic energy of the vehicle remains unconsumed at the target point E).
That is, in each of the above-mentioned intersection traveling methods, the traveling method that performs inertial traveling possible inertial traveling toward the intersection is not limited to the method of performing braking traveling, but energy saving than the method of passing through the intersection at constant speed traveling. .

しかし、惰性走行による交差点等減速・停止点走行には大きな問題がある。
それは惰性走行による減速走行距離が長大化し、この間の平均走行速度が低下する、即ち減速走行時間が伸長する、ことによって、交通流に乱れを生じさせる恐れがあることである。
この問題を低減する方法、即ち本願発明の主体を、図2を用いて説明する。
基本的には、
「走行中の車両の有する運動エネルギーの惰性走行への利用効率ηを、許容できる範囲(例えば、回生制動での運動エネルギー回生効率を上回る範囲内)で軽減、即ち惰性走行開始速度vcと惰性走行終了速度(制動走行開始速度)vbの比(vb/vc)を最適設定、しこのη軽減効果(言い換えれば惰性走行距離短縮効果)を平均惰性走行速度の向上に供する」
のである。
運動エネルギーの惰性走行への利用効率ηとするとηは(数10)であらわすことができる。
(数10)
η=(vc2−vb2)/vc2
ここで
vc:惰性走行開始速度
vb:惰性走行終了速度(制動走行開始速度)
である。
(数10)において、惰性走行開始速度vc一定の状態で、惰性走行終了速度vbを変化させることによって、(即ちvb/vcを変化させることによって、)ηの変化が可能であることがわかる。
また、惰性走行速度範囲vc 〜 vb間の平均惰性走行速度vcbは(数11)であらわすことができる。
(数11)
vcb≒(vc+vb)/2
However, there is a big problem in traveling at a deceleration / stop point such as an intersection by coasting.
That is, there is a possibility that the traffic flow may be disturbed due to an increase in the deceleration traveling distance due to inertial traveling and a decrease in the average traveling speed during this period, that is, an increase in the deceleration traveling time.
A method for reducing this problem, that is, the subject of the present invention will be described with reference to FIG.
Basically,
“Use efficiency η of the kinetic energy of the running vehicle for inertia travel is reduced within an allowable range (for example, within the range exceeding the kinetic energy regeneration efficiency in regenerative braking), that is, inertia travel start speed vc and inertia travel The ratio of end speed (braking travel start speed) vb (vb / vc) is optimally set, and this η reduction effect (in other words, inertia travel distance reduction effect) is used to improve the average inertia travel speed.
It is.
Assuming that kinetic energy is used for inertia running η, η can be expressed by (Equation 10).
(Equation 10)
η = (vc 2 −vb 2 ) / vc 2
here
vc: coasting start speed
vb: coasting end speed (braking start speed)
It is.
In (Equation 10), it can be seen that η can be changed by changing the inertial travel end speed vb with the inertial travel start speed vc constant (that is, by changing vb / vc).
Moreover, the average inertial traveling speed vcb between the inertial traveling speed ranges vc to vb can be expressed by (Equation 11).
(Equation 11)
vcb ≒ (vc + vb) / 2

上記、(数10)、(数11)を用いての、惰性走行距離、および平均惰性走行速度改善効果を具体的数値で例示する。
速度vc=50km/hから速度0までの間の惰性走行可能距離Li0=300mとすると、
その間の平均惰性走行速度vc0は
vc0 ≒(vc+0)/2
≒25km/h
である。
一方、惰性走行速度範囲をvc=50km/hからvb1=25km/hとすると、この間の惰性走行距離Li1は、
Li1≒{(vc2−vb12)/vc2}・Li0
≒225m
また、vc=50km/hからvb1=25km/hの間の平均惰性走行速度vcb1は
vcb1≒(50+ 25)/2
≒37km/h
となる。
The inertial running distance and the average inertial traveling speed improvement effect using the above (Equation 10) and (Equation 11) are exemplified by specific numerical values.
If the inertial travelable distance Li0 = 300 m between the speed vc = 50 km / h and the speed 0,
The mean inertia traveling speed vc0
vc0 ≒ (vc + 0) / 2
≒ 25km / h
It is.
On the other hand, when the inertial traveling speed range is vc = 50 km / h to vb1 = 25 km / h, the inertial traveling distance Li1 during this period is
Li1≈ {(vc 2 −vb1 2 ) / vc 2 } · Li0
≒ 225m
Also, the average inertia traveling speed vcb1 between vc = 50 km / h and vb1 = 25 km / h is
vcb1 ≒ (50 + 25) / 2
≒ 37km / h
It becomes.

即ち、上記方策を実行することによって、惰性走行距離は、当初の(η=225/300=)75%に短縮されるが、平均惰性走行速度は惰性走行開始速度vcに対して当初((vc0/vc)≒50%に減少していたものが、((vcb1/vc)≒)74%に改善されることがわかる。
(但し、この平均惰性走行速改善効果は惰性走行速度に限った改善であり、図2に示すP0地点からP1地点までの距離(Li0−Li1)を含めた平均減速走行速度を考えれば、その平均減速走行速度は約41km/hとなり約82%への改善となる。)
上記の如く、運動エネルギーの惰性走行への利用効率を、惰性走行速度範囲vc〜vbを設けて限定することによって低減して、惰性走行距離を短縮するとともに、平均惰性走行速度を向上させることによって、惰性走行距離の長大化の低減及び平均減速(惰性)走行速度の低減防止を図ることができる。
That is, by executing the above measures, the inertial travel distance is shortened to 75% of the initial (η = 225/300 =), but the average inertial travel speed is initially ((vc0 It can be seen that the reduction from / vc) ≈50% is improved to ((vcb1 / vc) ≈) 74%.
(However, the effect of improving the average inertial traveling speed is limited to the inertial traveling speed. Considering the average deceleration traveling speed including the distance (Li0−Li1) from the point P0 to the point P1 shown in FIG. (The average deceleration traveling speed is about 41 km / h, which is an improvement to about 82%.)
As described above, the use efficiency of kinetic energy for inertia traveling is reduced by limiting the inertia traveling speed range vc to vb to shorten the inertia traveling distance and improve the average inertia traveling speed. Thus, it is possible to reduce the length of the inertia traveling distance and prevent the average deceleration (inertia) traveling speed from being reduced.

しかし、上記方法においては、もう一つ大きな問題がある。
それは惰性走行距離Li1算出のベースとなる惰性走行可能距離Li0は、前記(数3)より明らかな如く、惰性走行減速度αi(vc0)と速度vcできまるが、この惰性走行減速度は走行抵抗の逆数であり、走行抵抗は(同一車両であってもその時の車両条件、走行環境即ち)車両重量あるいは道路・車両タイヤ間の摩擦係数等で大きく変化する。
この問題は、車両の実惰性走行状態で惰性走行距離Li1を学習して補正・更新することによって解決する。
即ち、速度vcから距離Li1の惰性走行の結果、車両が目標減速・停止点上流距離 L=Lbに達した時点の速度がvb’ であるとき、目標減速・停止点到着後に行う次の惰性走行においては、例えば、惰性走行距離をLi1‘
(数12)
Li1‘=Li1+{(vb’2−vb2)/(2・αi(vb))
と補正・更新する。
ここで、
αi(vb):速度vb時の惰性走行減速度
である。
However, the above method has another big problem.
The inertial travelable distance Li0, which is the basis for calculating the inertial travel distance Li1, can be determined by the inertial travel deceleration αi (vc0) and the speed vc, as is clear from the above (Equation 3). The running resistance greatly varies depending on the vehicle weight at that time (ie, the running environment, ie, the vehicle weight or the friction coefficient between the road and the vehicle tire).
This problem is solved by learning and correcting / updating the inertial traveling distance Li1 in the actual traveling state of the vehicle.
That is, when the speed at the time when the vehicle reaches the target deceleration / stop point upstream distance L = Lb is vb 'as a result of the inertial travel from the speed vc to the distance Li1, the next inertial travel to be performed after the target deceleration / stop point arrives. In, for example, let Li1 '
(Equation 12)
Li1 ′ = Li1 + {(vb ′ 2 −vb 2 ) / (2 · αi (vb))
Correct and update.
here,
αi (vb): Inertia running deceleration at speed vb.

従って、交差点上流での交差点信号情報が得られない場合の、即ち「信号情報活用運転支援システム」における「ノンストップ通過支援」あるいは「赤信号減速支援」の如き走行制御方法が不可能な場合の、交差点走行制御方法として、上記の如く交差点上流距離Li1地点から(交差点信号状態にかかわらず)惰性走行を開始し、目標減速・停止点上流距離Lb地点到達後は制動走行を行う。併せて目標減速・停止点上流距離Lb地点到着時の当初予定速度vbと実惰性走行結果による速度vb’から、例えば(数12)のごとく、速度vbとvb’の運動エネルギー差を用いて次回の速度vcからの惰性走行距離Li1の補正・更新を行う。
この結果、信号情報活用走行制御方式に比べても省エネルギー性能および安全性能で大差ない交差点走行制御方法が可能となる。
Therefore, when the intersection signal information upstream of the intersection cannot be obtained, that is, when the driving control method such as “non-stop passage assistance” or “red signal deceleration assistance” in the “signal information utilization driving assistance system” is impossible. As an intersection traveling control method, coasting is started from the intersection upstream distance Li1 point (regardless of the intersection signal state) as described above, and braking traveling is performed after reaching the target deceleration / stop point upstream distance Lb point. In addition, from the initial planned speed vb when the target deceleration / stop point upstream distance Lb arrives and the speed vb 'based on the actual driving result, the next time using the kinetic energy difference between the speed vb and vb', for example, as shown in (Equation 12) The inertial traveling distance Li1 from the speed vc is corrected / updated.
As a result, an intersection traveling control method that is not much different in energy saving performance and safety performance compared to the signal information utilization traveling control method becomes possible.

但し、本願発明による走行制御方法では惰性走行距離はそこを走行する車両毎の走行抵抗R によっても、あるいは惰性走行移行時の車両速度vcによっても、目標減速・停止点に向けての惰性走行開始地点は変動する。このため惰性走行開始後の走行領域での交通流の安定が妨げられる恐れが生じる。
この問題は、惰性走行開始地点を、車両毎に目標減速・停止地点上流惰性走行開始最適距離地点とせずに、全車共通の惰性走行可能距離範囲内特定地点として設定し、その地点で全車惰性走行に移行することで解決できる。
この方策、即ち惰性走行開始地点を全車共通化することによって、車両毎の運動エネルギー利用効率即ち省エネルギー性能は低下するが、交通流の安定化は可能となる。
However, in the traveling control method according to the present invention, the inertial traveling distance is determined by the traveling resistance R of each vehicle traveling there, or the vehicle speed vc at the time of transition to inertial traveling, and the inertial traveling start toward the target deceleration / stop point is started. The location varies. For this reason, there exists a possibility that the stability of the traffic flow in the travel area after the start of inertial travel may be hindered.
The problem is that the coasting start point is set as a specific point within the coasting range that is common to all vehicles, rather than being the optimal starting point for coasting at the target deceleration / stop point for each vehicle. It can be solved by moving to.
By making this measure, that is, the inertial travel start point common to all vehicles, the kinetic energy utilization efficiency, that is, the energy saving performance for each vehicle is lowered, but the traffic flow can be stabilized.

本願発明により、交差点を安全かつ省エネルギーで通過するための交差点信号情報取得が不可の場合でも、車両は交差点上流惰性走行可能距離の地点から交差点に向けての(信号状態にかかわらず無条件で)惰性走行主体の減速走行を行うことによって、交差点信号情報を獲得しての交差点通過とほぼ同等な安全かつ省エネルギー交差点走行が可能となる。 Even if it is not possible to acquire intersection signal information for safely and energy-saving passing through an intersection according to the present invention, the vehicle is directed from the point of the upstream upstream coasting distance to the intersection (regardless of the signal state). By performing deceleration traveling mainly by inertial traveling, it is possible to perform safe and energy-saving intersection traveling that is almost equivalent to passing through the intersection after acquiring intersection signal information.

即ち、本願発明は、前記「信号情報活用運転支援システム」用の路側装置としての光ビーコン、あるいは前記光ビーコンからの信号情報受信用車載装置がなくとも、交差点等の目標減速・停止点上流惰性走行可能距離地点を特定する機能を付加した現行カーナビゲーション装置改良タイプにおいて、目標減速・停止点上流惰性走行可能距離範囲内の地点から目標減速・停止点に向けての惰性走行支援を行うことによって「信号情報活用運転支援システム」と同等な効果を得ることができる。
さらに、本願発明は目標減速・停止点として交差点の如き固定地点ではなく、例えば自車前方に走行中の車両等の障害物に対しても適用可能である。
また、加速走行あるいは定速走行から惰性走行への移行を、本願発明による省エネルギー減速走行制御機能を有するカーナビゲーション装置等からの指示により、惰性走行開始地点においてドライバーが手動で行うことは勿論可能であるが、自動運転車においては、自動的に惰性走行移行は可能であることから、本願発明は自動運転車の目標減速・停止点走行制御方法としても有効である。
That is, the present invention provides an upstream inertia of a target deceleration / stop point such as an intersection without an optical beacon as a roadside device for the “signal information utilization driving support system” or an in-vehicle device for receiving signal information from the optical beacon. In the improved type of current car navigation system with the function to identify the cruising distance point, by supporting inertial running from the point within the target deceleration / stop point upstream inertia range to the target deceleration / stop point The same effect as the “signal information utilization driving support system” can be obtained.
Further, the present invention can be applied not to a fixed point such as an intersection as a target deceleration / stop point, but also to an obstacle such as a vehicle traveling in front of the host vehicle.
In addition, it is of course possible for the driver to manually perform the transition from acceleration traveling or constant speed traveling to inertial traveling at the inertial traveling start point by an instruction from a car navigation device having an energy saving deceleration traveling control function according to the present invention. However, since an autonomous driving vehicle can automatically shift to coasting, the present invention is also effective as a target deceleration / stop point traveling control method for an autonomous driving vehicle.

交差点等減速・停止点に向けての走行形態毎の省エネルギー効果説明用車両走行形態図、Vehicle travel mode diagram for explaining energy saving effect for each travel mode toward the deceleration / stop point such as an intersection, 本願発明による惰性走行距離(Li1),および制動走行距離(Lb1)説明図、Explanatory drawing of inertial travel distance (Li1) and braking travel distance (Lb1) according to the present invention, 本願発明による、安全かつ省エネルギーな交差点走行制御のための走行制御手順例、である。It is a travel control procedure example for safe and energy-saving intersection travel control according to the present invention.

本願発明をカーナビゲーション装置の改良で可能とするためには、当該カーナビゲーション装置に少なくとも下記機能・情報の一部付加が必要である。
地図データベース
・交差点等目標減速・停止点の正確な位置情報、
・車両の惰性行移行速度vcに対応した惰性走行距離情報およびその蓄積領域確保、
・制動開始速度vb時に対応する惰性走行減速度αi(vb)情報
・制動走行減速度αb情報、制動距離 Lb情報
・惰性走行可能距離範囲内道路における惰性走行適/不適情報
(例えば道路勾配、道路曲率、等の理由による惰性走行不適情報等)
センサー情報取得機能
・現速度情報
・高精度現在位置情報(GPS)
演算機能
・車両現在位置−目標交差点間距離L算出機能
・惰性走行開始速度−惰性走行下限速度間の惰性走行距離Li算出機能
・距離L情報と、惰性走行距離Liおよび制動走行距離Lb 比較機能、
In order to make the present invention possible by improving the car navigation device, it is necessary to add at least a part of the following functions and information to the car navigation device.
Map database-Accurate position information of target deceleration / stop points such as intersections,
-Inertia mileage information corresponding to the vehicle's inertial movement transition speed vc and its storage area reservation,
・ Inertia travel deceleration αi (vb) information corresponding to the braking start speed vb ・ Brake travel deceleration αb information, braking distance Lb information ・ Inertia travel suitability / inappropriate information (e.g. road gradient, road) Inadequate driving information due to curvature, etc.)
Sensor information acquisition function ・ Current speed information ・ High-precision current position information (GPS)
Calculation function-Vehicle current position-target intersection distance L calculation function-Inertia travel distance Li between inertial travel start speed-inertial travel lower limit speed-Distance L information, inertial travel distance Li and braking travel distance Lb comparison function,

上記機能を有するカーナビゲーション装置における本願発明を採用した省エネルギー交差点走行制御手順例を図3に示す。
図3において、
301は、本願発明による省エネルギー交差点走行制御手順開始点、
302は、車両の走行開始地点、目的地点および、この間の経路探索、目標減速・停止点の特定を行う経路探索処理、
303は、処理302の結果より次の目標減速・停止点の特定を行う次の目標減速・停止点特定処理、
304は、車両の走行開始のための発進可能か否かの判定をする走行開始判定処理、
305は、処理305において走行開始可能と判定された場合、加速走行を開始・継続する加速走行処理、
FIG. 3 shows an example of an energy saving intersection traveling control procedure in which the present invention is adopted in the car navigation apparatus having the above function.
In FIG.
301 is an energy saving intersection traveling control procedure start point according to the present invention,
302 is a route search process for specifying a vehicle start point, a destination point, a route search therebetween, and a target deceleration / stop point;
303 is a next target deceleration / stop point specifying process for specifying the next target deceleration / stop point from the result of the process 302;
304 is a travel start determination process for determining whether or not the vehicle can be started for the start of travel,
305 is an accelerated traveling process for starting / continuing accelerated traveling when it is determined in the processing 305 that traveling can be started,

306は、車両の現在速度および現在位置を特定する現在速度・現在位置特定処理、
307は、車両現在位置―目標減速・停止点位置情報から車両現在位置―目標減速・停止点間距離Lを特定する距離L特定処理、
308は、車両の現在速度vに対応する惰性走行距離Li1をデータベースから選択・抽出・特定するLi特定処理、
309は、処理307で特定した距離Lが、処理308で特定した距離Li以上か否かを判定する距離L・Li判定処理、
310は、処理309の判定結果、距離Lが距離(Li +Lb)を超えていると判定された場合、車両現速度vと車両定速走行速度vcの比較を行う車両の定速走行判定処理、
311は、距離処理310で車両現速度vが定速走行速度vc以上であると判定された場合、定速走行に移行・継続する定速走行処理、
306 is a current speed / current position specifying process for specifying the current speed and current position of the vehicle,
307 is a distance L specifying process for specifying a vehicle current position-target deceleration / stop point distance L from the vehicle current position-target deceleration / stop point position information;
308 is a Li specifying process for selecting / extracting / specifying the inertial mileage Li1 corresponding to the current speed v of the vehicle from the database;
309 is a distance L / Li determination process for determining whether or not the distance L specified in the process 307 is greater than or equal to the distance Li specified in the process 308;
310 is a vehicle constant speed travel determination process for comparing the vehicle current speed v and the vehicle constant speed travel speed vc when it is determined that the distance L exceeds the distance (Li + Lb) as a result of the process 309;
311 is a constant speed traveling process that shifts to and continues to a constant speed traveling when the distance processing 310 determines that the current vehicle speed v is equal to or higher than the constant speed traveling speed vc.

312は、処理309で距離Lが距離(Li +Lb)以下であると判定された場合惰性走行に移行あるいは惰性走行を継続する惰性走行処理、
313は、車両現在速度v、および車両現在位置を特定する現在速度・位置特定処理、
314は、処理313で特定された車両現在位置情報を用いて、車両現在位置―目標減速・停止点間距離Lを特定する距離L特定処理、
315は、処理314で特定された距離Lと制動走行距離Lbの比較を行うL・Lb比較処理、
316は処理315の結果距離Lが距離Lb以下と判定された結果に対応して、制動走行に移行する制動処理、
317は、車両現在位置を特定する現在位置特定処理、
318は、処理317で特定された車両現在位置情報を用いて、車両現在位置―目標減速・停止点間距離Lを特定する距離L特定処理、
319は、距離Lが0、即ち車両が目標減速/停止点に到着したか否かの判定を行う目標減速・停止点到着判定処理、
320は、処理319でL=0と判定された場合、車両停止する車両停止処理、
321は、処理320の停止が目的地点到着による停止か否かの判定をする目的地点到着判定処理、
322は、処理315において、距離Lと制動走行距離Lbの関係がL≦Lbと判定された場合、(数
12)により、補正惰性走行距離Li1’を算出して、データベース中の惰性走行開始速度vcに対応した惰性走行距離記憶領域に(次回の減速走行時、速度vcからの惰性走行距離Li1として利用することを目的として)格納するLi1更新・格納処理、
323は、経路探索の結果特定された車両走行開始地点から目的地点までの走行制御処理の終了点、
である。
312 is an inertial running process for shifting to inertial running or continuing inertial running when it is determined in process 309 that the distance L is equal to or less than the distance (Li + Lb);
313 is a vehicle current speed v and a current speed / position specifying process for specifying the vehicle current position;
314 is a distance L specifying process for specifying the vehicle current position-target deceleration / stop point distance L using the vehicle current position information specified in the process 313;
315 is an L / Lb comparison process for comparing the distance L specified in the process 314 and the braking travel distance Lb;
316 is a braking process for shifting to the braking travel in response to the result of the determination that the distance L is equal to or less than the distance Lb in the process 315;
317 is a current position specifying process for specifying the vehicle current position;
318 is a distance L specifying process for specifying a vehicle current position-target deceleration / stop point distance L using the vehicle current position information specified in process 317;
319 is a target deceleration / stop point arrival determination process for determining whether the distance L is 0, that is, whether the vehicle has arrived at the target deceleration / stop point;
320 is a vehicle stop process for stopping the vehicle when L = 0 is determined in process 319;
321 is a destination arrival determination process for determining whether the stop of the process 320 is a stop due to arrival of the destination,
If the relation between the distance L and the braking travel distance Lb is determined to be L ≦ Lb in the process 315, the inertia coast travel start speed in the database is calculated by calculating the corrected coast travel distance Li1 ′ according to (Equation 12). Li1 update / storage process for storing in the inertial mileage storage area corresponding to vc (for the purpose of using as the inertial mileage Li1 from the speed vc at the time of the next deceleration traveling),
323 is the end point of the travel control process from the vehicle travel start point specified as a result of the route search to the destination point,
It is.

本願発明による減速走行制御方法による交差点等目標減速・停止点走行は、従来の「交差点無停止走行システム」あるいは「信号情報活用運転支援システム」の如き交差点を青信号・無停止通過のための信号情報の車両への通報が不可能であっても、また車両側において上記路車間通信路側装置からの信号情報の受信が不可能であっても、モーター駆動車両は勿論、エンジン駆動車両等すべての駆動形態の車両に、適用して相応な安全かつ省エネルギーな走行を可能とする。
この結果、本願発明によって、通常の(回生制動を含む)制動走行を主体とした交差点走行に比べて概略20%以上の省エネルギー・排出ガス削減および制動時の摩擦熱による熱エネルギーの大気中への放散量削減、の各効果を得ることができると推測される。
The target deceleration / stop point traveling such as an intersection by the deceleration traveling control method according to the present invention is signal information for passing a blue signal / non-stop through an intersection such as the conventional “intersection non-stop traveling system” or “signal information utilization driving support system”. Even if it is impossible to report to other vehicles, and even if it is impossible to receive signal information from the roadside-to-vehicle communication roadside device on the vehicle side, not only motor-driven vehicles but also all engine-driven vehicles are driven. Applicable to a vehicle of the form, it enables appropriate safe and energy-saving traveling.
As a result, according to the present invention, energy saving / exhaust gas reduction of approximately 20% or more compared to the intersection driving mainly including normal braking driving (including regenerative braking) and heat energy due to frictional heat during braking into the atmosphere. It is estimated that each effect of reducing the amount of radiation can be obtained.

図1、図2において、
αi(v):速度vにおける惰性走行減速度
αb:制動減速度
αa:加速度
vc:定速走行速度
Evcc:速度vcで走行中の車両の有する運動エネルギー、
(速度vcから速度0間惰性走行した場合に消費する駆動輪駆動レベルエネルギー)
Li0:速度vcから速度0間惰性走行した場合の惰性走行可能距離
(但しこの間の惰性走行減速度はαi(vc0):一定とする)
Lb0:速度vcから速度0間の制動走行距離
Li1:速度vcから速度vb1間惰性走行した場合の惰性走行可能距離
(但しこの間の惰性走行減速度もαi(vc0):一定とする)
Lb1:速度vb1から速度0間の制動走行距離
1 and 2,
αi (v): Inertia travel deceleration at speed v αb: Braking deceleration αa: Acceleration
vc: Constant speed running speed
Evcc: Kinetic energy of the vehicle running at speed vc,
(Drive wheel drive level energy consumed when running from speed vc to zero-speed inertia)
Li0: Inertia travel distance when coasting from speed vc to zero speed (however, coasting deceleration during this period is αi (vc0): constant)
Lb0: braking travel distance from speed vc to speed 0 Li1: inertial travelable distance when coasting from speed vc to speed vb1 (however, inertia traveling deceleration during this period is also assumed to be αi (vc0): constant)
Lb1: Brake travel distance between speed vb1 and speed 0

Claims (4)

速度vcで走行中の車両の交差点等目標減速・停止点への減速走行を、当該車両の有する運動エネルギーの惰性走行への利用効率ηで定まる、目標減速・停止点上流距離Li1地点からの惰性走行、および前記惰性走行に継続しての、目標減速・停止点上流距離Lb地点からの制動走行、で行うことを特徴とする省エネルギー減速走行制御方法。
ここで、
η=(vc2−vb2)/vc2
vb:惰性走行速度範囲下限値、制動走行開始速度
Li1=η・Li0
Li0:速度vcで走行中の車両の有する運動エネルギーを100%惰性走行に利用した場合の惰性走行距離(惰性走行可能距離)
≒vc2/(2・αi(vc0) )
αi(vc0):速度vc〜0間の平均惰性走行減速度
Lb=vb2/(2・αb )
αb:制動減速度
である。
Inertia from the target deceleration / stop point upstream distance Li1 that is determined by the use efficiency η of the kinetic energy possessed by the vehicle for inertial travel, such as the intersection of a vehicle running at a speed vc An energy-saving deceleration traveling control method, which is performed by traveling and braking traveling from the target deceleration / stop point upstream distance Lb, which is continued from the inertia traveling.
here,
η = (vc 2 −vb 2 ) / vc 2
vb: Inertia travel speed range lower limit, braking travel start speed Li1 = η · Li0
Li0: coasting distance when the kinetic energy of a vehicle traveling at speed vc is used for 100% coasting
≒ vc 2 / (2 ・ αi (vc0))
αi (vc0): Average inertia running deceleration Lb = vb 2 / (2 · αb) between speed vc and 0
αb: braking deceleration.
速度vcから距離Li1の惰性走行の結果、車両が目標減速・停止点上流距離L=Lbに達した時点の速度がvb’ であるとき、惰性走行による目標減速・停止点上流距離Lb地点到着時の当初予定速度vbと実惰性走行結果による速度vb’の運動エネルギー差(あるいは速度差)から得られる惰性走行距離補正値をもって次の速度vcからの惰性走行距離を補正・更新することを特徴とする請求項1記載の省エネルギー減速走行制御方法。   When the speed when the vehicle reaches the target deceleration / stop point upstream distance L = Lb as a result of inertial travel from the speed vc to the distance Li1 is vb ', when the target deceleration / stop point upstream distance Lb arrives at inertial travel The inertia travel distance from the next speed vc is corrected / updated with the inertia travel distance correction value obtained from the kinetic energy difference (or speed difference) between the initial planned speed vb and the speed vb 'based on the actual travel result. The energy-saving deceleration traveling control method according to claim 1. 速度vcからの距離Li1の惰性走行の結果、車両が目標減速・停止点である信号交差点上流距離L=Lbに達した時点で、当該交差点信号が青であることを目視であるいは車載センサーにより認知した場合、車両は(制動を行わず)その時点での速度での/からの定速/加速走行で当該交差点を通過することを特徴とする請求項1記載の省エネルギー減速走行制御方法。   As a result of coasting at distance Li1 from speed vc, when the vehicle reaches signal intersection upstream distance L = Lb, which is the target deceleration / stop point, the intersection signal is recognized visually or by an in-vehicle sensor. In this case, the vehicle passes through the intersection at a constant speed / accelerated traveling at / from the current speed (without braking). 速度vcで走行中の車両の交差点等目標減速・停止点への減速走行に際し、惰性走行開始地点を、車両毎に目標減速・停止地点上流惰性走行開始最適距離地点とせずに、全車共通の惰性走行可能距離範囲内特定距離地点として設定し、その地点で全車減速のための惰性走行に移行することを特徴とする省エネルギー減速走行制御方法。 In the case of deceleration traveling to a target deceleration / stop point such as an intersection of vehicles traveling at a speed vc, the inertial travel start point is not the target deceleration / stop point upstream inertial travel start optimal distance point for each vehicle, but is common to all vehicles An energy-saving decelerating travel control method, characterized in that it is set as a specific distance point within a travelable distance range and shifts to inertial travel for deceleration of all vehicles at that point.
JP2018203550A 2018-10-30 2018-10-30 Energy-saving deceleration travel control method Active JP6494006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018203550A JP6494006B2 (en) 2018-10-30 2018-10-30 Energy-saving deceleration travel control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018203550A JP6494006B2 (en) 2018-10-30 2018-10-30 Energy-saving deceleration travel control method

Publications (2)

Publication Number Publication Date
JP2019034734A true JP2019034734A (en) 2019-03-07
JP6494006B2 JP6494006B2 (en) 2019-04-03

Family

ID=65636528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203550A Active JP6494006B2 (en) 2018-10-30 2018-10-30 Energy-saving deceleration travel control method

Country Status (1)

Country Link
JP (1) JP6494006B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110816516A (en) * 2019-11-06 2020-02-21 航天重型工程装备有限公司 Method and device for controlling speed of mine vehicle
CN112216105A (en) * 2020-09-21 2021-01-12 浙江吉利控股集团有限公司 Vehicle speed guiding method and device, vehicle and storage medium
JP2021024344A (en) * 2019-08-01 2021-02-22 渡邉 雅弘 Method for supporting energy-saving deceleration traveling
CN115472030A (en) * 2022-08-12 2022-12-13 广州汽车集团股份有限公司 Green wave vehicle speed optimization method and device, vehicle and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047148A (en) * 2010-08-30 2012-03-08 Toyota Motor Corp Control device of vehicle
JP2017056927A (en) * 2015-11-02 2017-03-23 渡邉 雅弘 Energy-saving deceleration-running control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047148A (en) * 2010-08-30 2012-03-08 Toyota Motor Corp Control device of vehicle
JP2017056927A (en) * 2015-11-02 2017-03-23 渡邉 雅弘 Energy-saving deceleration-running control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024344A (en) * 2019-08-01 2021-02-22 渡邉 雅弘 Method for supporting energy-saving deceleration traveling
CN110816516A (en) * 2019-11-06 2020-02-21 航天重型工程装备有限公司 Method and device for controlling speed of mine vehicle
CN110816516B (en) * 2019-11-06 2021-05-18 航天重型工程装备有限公司 Method and device for controlling speed of mine vehicle
CN112216105A (en) * 2020-09-21 2021-01-12 浙江吉利控股集团有限公司 Vehicle speed guiding method and device, vehicle and storage medium
CN115472030A (en) * 2022-08-12 2022-12-13 广州汽车集团股份有限公司 Green wave vehicle speed optimization method and device, vehicle and storage medium

Also Published As

Publication number Publication date
JP6494006B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6494006B2 (en) Energy-saving deceleration travel control method
JP4646334B2 (en) Vehicle travel control method
US9645970B2 (en) Driver coaching system
JP3391745B2 (en) Curve approach control device
US9286737B2 (en) Method of determining an eco-driving indicator for the travel of a vehicle
JP4793886B2 (en) Vehicle travel control method
CN104183124B (en) Trunk road vehicle speed planning method based on single intersection traffic signal information
JP2006327545A (en) Device and method for calculating traveling pattern of traveling object
CN104794915A (en) Continuous intersection traffic control method and device
CN106023612A (en) Vehicle priority passage method and roadside unit
CN104200656B (en) A kind of major trunk roads speed planing method based on traffic signal information
JP2011225103A (en) Vehicle traveling control method
US9352740B2 (en) Vehicle energy-management device for controlling energy consumption along a travel route
KR20170005065A (en) Method and system for adapting the acceleration of a vehicle during driving of the vehicle along a route of travel
JP2014240233A (en) Drive support system
JP2013226945A (en) Vehicle traveling control method
JP2016070805A (en) Vehicular information processing apparatus
CN107215333B (en) A kind of cooperative self-adapted cruise strategy of economy using sliding mode
CN111137299A (en) Driving control method using traffic light information and vehicle for performing the same
JPWO2019039105A1 (en) Mobile body motion control device
JP2017056927A (en) Energy-saving deceleration-running control method
JP2004347470A (en) Speed limit information providing system and program for providing speed limit information
WO2021043279A1 (en) Waypoint information transmission method, apparatus and system for platooning
JP2017124806A (en) Energy saving deceleration travel control method
CN108025748A (en) To the speed control of motor vehicles

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181213

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6494006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250