JP2019032985A - Non-aqueous electrolyte secondary battery and manufacturing method of battery pack - Google Patents

Non-aqueous electrolyte secondary battery and manufacturing method of battery pack Download PDF

Info

Publication number
JP2019032985A
JP2019032985A JP2017152933A JP2017152933A JP2019032985A JP 2019032985 A JP2019032985 A JP 2019032985A JP 2017152933 A JP2017152933 A JP 2017152933A JP 2017152933 A JP2017152933 A JP 2017152933A JP 2019032985 A JP2019032985 A JP 2019032985A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode tab
metal plate
tab
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017152933A
Other languages
Japanese (ja)
Inventor
吉田 聡司
Soji Yoshida
聡司 吉田
雅享 藤元
Masayuki Fujimoto
雅享 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2017152933A priority Critical patent/JP2019032985A/en
Publication of JP2019032985A publication Critical patent/JP2019032985A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To surely weld a negative electrode tab made of a copper or a copper alloy to a negative terminal.SOLUTION: In a manufacturing method of a non-aqueous electrolyte secondary battery, according to an embodiment, one surface of a negative electrode tab made of any one of a copper and a copper alloy connected to a negative plate is contacted to a negative terminal, and the other surface of the negative electrode tab is contacted to a metal in which the other surface of the negative electrode tab contains a metal which has an electric resistance larger than that of the copper as a main component, and in such a state, the negative electrode tab, the negative terminal, and the metal plate are alternately welded. The metal plate preferably contains one of nickel and iron as a main component.SELECTED DRAWING: Figure 2

Description

本発明は銅又は銅合金からなる負極タブを用いた非水電解質二次電池及び電池パックの製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery using a negative electrode tab made of copper or a copper alloy and a method for manufacturing a battery pack.

近年、スマートフォンやタブレットといった薄型の電子機器の高機能化に伴い、それらの駆動電源として用いられる非水電解質二次電池にも薄型化とともにさらなる高容量化が求められている。また、非水電解質二次電池は電動工具や電動アシスト自転車といった用途にも普及しており、高出力化が求められている。   In recent years, with the enhancement of functions of thin electronic devices such as smartphones and tablets, non-aqueous electrolyte secondary batteries used as their drive power sources are also required to have a thinner and higher capacity. Nonaqueous electrolyte secondary batteries are also widely used in applications such as electric tools and electric assist bicycles, and high output is required.

非水電解質二次電池に用いられる極板は、芯体としての金属箔上に活物質を含む合剤スラリーを塗布して作製され、極板の一部に合剤スラリーが塗布されていない芯体露出部が設けられる。その芯体露出部に集電タブが接続され、集電タブが極板と外部端子との間の電流経路を形成する。芯体には非水電解質中で正極又は負極の電位に曝されても安定に存在することのできる金属箔が用いられる。そのため、正極芯体にはアルミニウム箔が好ましく用いられ、負極芯体には銅箔が好ましく用いられる。   The electrode plate used in the nonaqueous electrolyte secondary battery is prepared by applying a mixture slurry containing an active material on a metal foil as a core, and a core in which a mixture slurry is not applied to a part of the electrode plate A body exposed portion is provided. A current collecting tab is connected to the core exposed portion, and the current collecting tab forms a current path between the electrode plate and the external terminal. For the core, a metal foil that can exist stably even when exposed to the potential of the positive electrode or the negative electrode in a non-aqueous electrolyte is used. Therefore, an aluminum foil is preferably used for the positive electrode core, and a copper foil is preferably used for the negative electrode core.

角形の非水電解質二次電池では外装体としてアルミニウム製の有底筒状の外装缶が用いられ、その封口板にはアルミニウム板が用いられる。封口板は外装缶の開口部にレーザ溶接で取り付けられる。正極板に接続された正極タブが封口板に接合されるため、封口板及び外装缶を正極端子として用いることができる。一方、負極端子は封口板に設けた貫通孔にその周囲から絶縁した状態で取り付けられており、負極板に接続された負極タブが負極端子に接合される。   In a rectangular nonaqueous electrolyte secondary battery, a bottomed cylindrical outer can made of aluminum is used as the outer casing, and an aluminum plate is used as the sealing plate. The sealing plate is attached to the opening of the outer can by laser welding. Since the positive electrode tab connected to the positive electrode plate is joined to the sealing plate, the sealing plate and the outer can can be used as the positive electrode terminal. On the other hand, the negative electrode terminal is attached to a through hole provided in the sealing plate while being insulated from the periphery thereof, and a negative electrode tab connected to the negative electrode plate is joined to the negative electrode terminal.

非水電解質二次電池の内部抵抗を低減するために、集電タブには電気抵抗の低い材料を用いることが好ましい。特許文献1は、表面層としてニッケル又は鉄を主成分として用い、中間層として銅又は銅合金を用いた三層構造の電池用集電タブを開示している。特許文献2は、表面層としてニッケルを用い、中間層として銅を用いた三層構造の集電タブを電池パック用の配線材として用いることを開示している。   In order to reduce the internal resistance of the nonaqueous electrolyte secondary battery, it is preferable to use a material with low electrical resistance for the current collecting tab. Patent Document 1 discloses a current collecting tab for a battery having a three-layer structure using nickel or iron as a main component as a surface layer and copper or a copper alloy as an intermediate layer. Patent Document 2 discloses that a current collecting tab having a three-layer structure using nickel as a surface layer and copper as an intermediate layer is used as a wiring material for a battery pack.

特開平11−297300号公報JP 11-297300 A 特開2004−192891号公報JP 2004-192891 A 特開平11−283607号公報Japanese Patent Laid-Open No. 11-283607

銅を主成分とする銅タブは、負極端子などの金属部材との溶接が困難であるとの課題がある。特許文献1又は2に開示されているように、銅層の表面をニッケル層で積層したクラッド材を集電タブとして用いることで、溶接の問題は解決される。しかし、そのようなの三層クラッド材は銅タブに比べると電気抵抗が高い。そのため、銅タブを使用するため、銅タブの負極端子などの金属部材との溶接性を改善することが望まれる。   The copper tab which has copper as a main component has the subject that welding with metal members, such as a negative electrode terminal, is difficult. As disclosed in Patent Document 1 or 2, the welding problem is solved by using a clad material in which the surface of a copper layer is laminated with a nickel layer as a current collecting tab. However, such a three-layer clad material has a higher electrical resistance than a copper tab. Therefore, since a copper tab is used, it is desired to improve weldability with a metal member such as a negative electrode terminal of the copper tab.

特許文献3は、円筒形電池の正極タブと封口体の弁キャップとを抵抗溶接する方法を開示している。特許文献3は、アルミニウムからなる金属部材同士を抵抗溶接する場合、アルミニウムの電気抵抗が低いために抵抗溶接に必要な発熱を生じさせることが困難である
との課題の解決手段を提示している。具体的には、正極タブと弁キャップを重ね合わせて、溶接棒と正極タブの間にアルミニウムよりも電気抵抗の大きい導電材料からなる溶接用部材を介在させた状態で抵抗溶接を行う方法が開示されている。
Patent Document 3 discloses a method of resistance welding a positive electrode tab of a cylindrical battery and a valve cap of a sealing body. Patent Document 3 presents a solution to the problem that it is difficult to generate heat necessary for resistance welding because the electrical resistance of aluminum is low when metal members made of aluminum are resistance-welded. . Specifically, a method of performing resistance welding with a positive electrode tab and a valve cap overlapped and a welding member made of a conductive material having a higher electric resistance than aluminum interposed between the welding rod and the positive electrode tab is disclosed. Has been.

特許文献3に開示された溶接方法によれば、アルミニウム同士を抵抗溶接で確実に溶接することが可能になる。しかし、その溶接方法は融点の低いアルミニウム同士を抵抗溶接することを目的としており、銅、鉄、及びニッケルのような融点の高い金属間の溶接を目的とするものではない。   According to the welding method disclosed in Patent Document 3, aluminum can be reliably welded to each other by resistance welding. However, the welding method is intended for resistance welding of aluminum having a low melting point, and is not intended for welding between metals having a high melting point such as copper, iron, and nickel.

上記課題を解決するために本発明の一態様に係る非水電解質二次電池の製造方法は、負極板に接続された銅及び銅合金のいずれかからなる負極タブの一方の表面を負極端子に当接し、負極タブの他方の表面を銅より電気抵抗の大きい金属を主成分とする金属板に当接した状態で、負極端子、負極タブ、及び金属板を互いに溶接することを特徴としている。そのような製造方法によって製造される非水電解質二次電池は、正極板と負極板がセパレータを介して巻回又は積層された電極体と、非水電解質と、電極体と非水電解質を収容する有底筒状の外装缶と、外装缶の開口部を封止する封口板を含む。   In order to solve the above-described problem, a method for manufacturing a nonaqueous electrolyte secondary battery according to one embodiment of the present invention includes using one surface of a negative electrode tab made of copper or a copper alloy connected to a negative electrode plate as a negative electrode terminal. The negative electrode terminal, the negative electrode tab, and the metal plate are welded to each other with the other surface of the negative electrode tab in contact with a metal plate mainly composed of a metal having a higher electrical resistance than copper. A non-aqueous electrolyte secondary battery manufactured by such a manufacturing method includes an electrode body in which a positive electrode plate and a negative electrode plate are wound or stacked with a separator interposed therebetween, a non-aqueous electrolyte, and the electrode body and the non-aqueous electrolyte. A bottomed cylindrical outer can and a sealing plate for sealing the opening of the outer can.

さらに、上記の非水電解質二次電池の製造方法は、非水電解質二次電池の外装体から導出する銅及び銅合金のいずれか一方からなる負極タブが保護回路基板の負極集電部に溶接された電池パックの製造方法にも適用することができる。すなわち、本発明の一態様に係る電池パックの製造方法は、非水電解質二次電池の外装体から導出した負極タブの一方の表面を保護回路基板の負極集電部に当接し、負極タブの他方の表面に銅より電気抵抗の大きい金属を主成分とする金属板を当接した状態で、負極集電部、負極タブ、及び金属板を互いに溶接することを特徴としている。   Further, in the above method for producing a non-aqueous electrolyte secondary battery, a negative electrode tab made of either copper or a copper alloy led out from the exterior body of the non-aqueous electrolyte secondary battery is welded to the negative electrode current collector of the protective circuit board. The present invention can also be applied to a method for manufacturing a battery pack. That is, in the battery pack manufacturing method according to one aspect of the present invention, one surface of the negative electrode tab derived from the exterior body of the nonaqueous electrolyte secondary battery is brought into contact with the negative electrode current collector of the protective circuit board, The negative electrode current collector, the negative electrode tab, and the metal plate are welded to each other in a state where a metal plate mainly composed of a metal having a higher electrical resistance than copper is in contact with the other surface.

本発明の一態様によれば、銅又は銅合金からなる負極タブを負極端子や、保護回路基板の負極集電部に確実に溶接して、十分な溶接強度を確保することができる。その結果、負極タブに電気抵抗の低い銅又は銅合金を用いることが可能になるため、非水電解質二次電池や電池パックの内部抵抗を低減することができる。   According to one aspect of the present invention, a negative electrode tab made of copper or a copper alloy can be reliably welded to a negative electrode terminal or a negative electrode current collector of a protective circuit board to ensure sufficient welding strength. As a result, since it becomes possible to use copper or a copper alloy having a low electrical resistance for the negative electrode tab, the internal resistance of the nonaqueous electrolyte secondary battery or the battery pack can be reduced.

角形の非水電解質二次電池の斜視図である。It is a perspective view of a square nonaqueous electrolyte secondary battery. 正極タブ及び負極タブと外部端子との接続方法を示す概要図である。It is a schematic diagram which shows the connection method of a positive electrode tab and a negative electrode tab, and an external terminal. 負極タブと負極端子のレーザ溶接を示す模式図である。It is a schematic diagram which shows the laser welding of a negative electrode tab and a negative electrode terminal. 負極タブと負極端子の抵抗溶接を示す模式図である。It is a schematic diagram which shows resistance welding of a negative electrode tab and a negative electrode terminal. 電池と保護回路基板の接続方法を示す電池パックの概要図である。It is a schematic diagram of the battery pack which shows the connection method of a battery and a protection circuit board.

以下、本発明を実施するための形態について説明するが、本発明は下記の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   Hereinafter, although the form for implementing this invention is demonstrated, this invention is not limited to the following embodiment, A various change is possible in the range which does not deviate from the summary of this invention.

図1は、本発明の一実施形態に係る角形の非水電解質二次電池10である。有底筒状の角形の外装缶19に電極体17と非水電解液が収容されており、外装缶19の開口部は封口板11で封止されている。図2に示すように、負極板に接続された負極タブ15と正極板に接続された正極タブ16が電極体17の同一端面から導出している。負極タブ15は封口板11の貫通孔に絶縁部材13を介して圧入固定された負極端子12に溶接されており、正極タブ16は封口板11の内側表面に溶接されている。したがって、封口板11及び外装缶19が正極端子として機能することができる。   FIG. 1 shows a prismatic nonaqueous electrolyte secondary battery 10 according to an embodiment of the present invention. An electrode body 17 and a non-aqueous electrolyte are accommodated in a bottomed cylindrical rectangular outer can 19, and an opening of the outer can 19 is sealed with a sealing plate 11. As shown in FIG. 2, the negative electrode tab 15 connected to the negative electrode plate and the positive electrode tab 16 connected to the positive electrode plate are led out from the same end surface of the electrode body 17. The negative electrode tab 15 is welded to the negative electrode terminal 12 press-fitted and fixed to the through hole of the sealing plate 11 via the insulating member 13, and the positive electrode tab 16 is welded to the inner surface of the sealing plate 11. Therefore, the sealing plate 11 and the outer can 19 can function as a positive electrode terminal.

負極板は、負極芯体と負極芯体上に形成された負極合剤層を有する。負極合剤層は、例えば負極活物質、結着剤、及び増粘剤を分散媒中で混練して作製した負極合剤スラリーを負極芯体上に塗布し、乾燥して形成することができる。負極板には負極タブ15を接続するための負極芯体露出部が設けられている。負極芯体露出部は、負極合剤スラリーを負極芯体上に間欠塗布することで容易に形成することができる。   The negative electrode plate has a negative electrode core and a negative electrode mixture layer formed on the negative electrode core. The negative electrode mixture layer can be formed, for example, by applying a negative electrode mixture slurry prepared by kneading a negative electrode active material, a binder, and a thickener in a dispersion medium onto a negative electrode core and drying it. . The negative electrode plate is provided with a negative electrode core exposed portion for connecting the negative electrode tab 15. The negative electrode core exposed portion can be easily formed by intermittently applying the negative electrode mixture slurry onto the negative electrode core.

負極タブ15には銅又は銅合金が用いられる。銅合金は、銅を主成分とすることが好ましく、銅の含有量は90質量%以上であることがより好ましい。銅又は銅合金からなる負極タブを用いることで、負極タブ15の電気抵抗が低減して非水電解質二次電池の負荷特性が向上する。   Copper or a copper alloy is used for the negative electrode tab 15. The copper alloy is preferably composed mainly of copper, and the copper content is more preferably 90% by mass or more. By using the negative electrode tab made of copper or a copper alloy, the electrical resistance of the negative electrode tab 15 is reduced, and the load characteristics of the nonaqueous electrolyte secondary battery are improved.

負極芯体には、非水電解液中で負極電位に曝されても安定に存在できる金属箔を用いることが好ましく、負極タブ15と同様に銅又は銅合金の金属箔を用いることが好ましい。負極タブ15の負極芯体への接続方法は特に制限されないが、超音波溶接、抵抗溶接、及びレーザ溶接が例示される。   As the negative electrode core, it is preferable to use a metal foil that can exist stably even when exposed to a negative electrode potential in a non-aqueous electrolyte, and like the negative electrode tab 15, it is preferable to use a metal foil of copper or a copper alloy. Although the connection method in particular of the negative electrode tab 15 to the negative electrode core is not restrict | limited, Ultrasonic welding, resistance welding, and laser welding are illustrated.

負極活物質には、リチウムイオンを可逆的に吸蔵、放出することができる材料から適宜選択して用いることができる。例えば、人造黒鉛及び天然黒鉛などの炭素材料、並びにケイ素及び酸化ケイ素などのケイ素材料を用いることができる。これらは単独で、又は2種以上を組み合わせて用いることができる。   The negative electrode active material can be appropriately selected from materials capable of reversibly occluding and releasing lithium ions. For example, carbon materials such as artificial graphite and natural graphite, and silicon materials such as silicon and silicon oxide can be used. These can be used alone or in combination of two or more.

正極板は、正極芯体と正極芯体上に形成された正極合剤層を有する。正極合剤層は、例えば正極活物質、結着剤、及び導電剤を分散媒中で混練して作製した正極合剤スラリーを正極芯体上に塗布し、乾燥して形成することができる。正極板には正極タブ16を接続するための正極芯体露出部が設けられている。正極芯体露出部は、正極合剤スラリーを正極芯体上に間欠塗布することで容易に形成することができる。   The positive electrode plate has a positive electrode core body and a positive electrode mixture layer formed on the positive electrode core body. The positive electrode mixture layer can be formed, for example, by applying a positive electrode mixture slurry prepared by kneading a positive electrode active material, a binder, and a conductive agent in a dispersion medium onto a positive electrode core and drying it. A positive electrode core exposed portion for connecting the positive electrode tab 16 is provided on the positive electrode plate. The positive electrode core exposed portion can be easily formed by intermittently applying the positive electrode mixture slurry onto the positive electrode core.

正極芯体には、非水電解液中で正極電位に曝されても安定に存在できる金属箔を用いることが好ましく、金属箔の構成材料にはアルミニウム又はアルミニウム合金を用いることが好ましい。正極芯体に接続される正極タブ16にはアルミニウム又はアルミニウム合金を用いることが好ましい。正極タブ16の正極芯体への接続方法は特に制限されないが、超音波溶接、抵抗溶接、及びレーザ溶接が例示される。   For the positive electrode core, it is preferable to use a metal foil that can exist stably even when exposed to a positive electrode potential in a non-aqueous electrolyte, and it is preferable to use aluminum or an aluminum alloy as a constituent material of the metal foil. Aluminum or an aluminum alloy is preferably used for the positive electrode tab 16 connected to the positive electrode core. Although the connection method in particular of the positive electrode tab 16 to the positive electrode core is not restrict | limited, Ultrasonic welding, resistance welding, and laser welding are illustrated.

正極活物質には、リチウムイオンを可逆的に吸蔵、放出することができる材料から適宜選択して用いることができる。例えば、LiMO2(MはCo、Ni、及びMnの少なくとも1種)で表されるリチウム遷移金属複合酸化物、LiMn24、及び、LiFePO4などを用いることができる。これらは単独で、又は2種以上を組み合わせて用いることができる。また、これらの正極活物質はジルコニウム、マグネシウム、アルミニウム、及びチタンの少なくとも1種を添加して、又は遷移金属元素と置換して用いることもできる。 The positive electrode active material can be appropriately selected from materials capable of reversibly occluding and releasing lithium ions. For example, a lithium transition metal composite oxide represented by LiMO 2 (M is at least one of Co, Ni, and Mn), LiMn 2 O 4 , LiFePO 4 , and the like can be used. These can be used alone or in combination of two or more. Moreover, these positive electrode active materials can also be used by adding at least one of zirconium, magnesium, aluminum, and titanium, or by replacing with a transition metal element.

電極体17は、負極板と正極板をセパレータを介して偏平状に巻回して作製することができる。負極タブ15及び正極タブ16は電極体の同一端面から導出しており、それぞれ負極端子12、及び正極端子としての封口板11に溶接される。封口板11にはアルミニウムが用いられており、正極タブ16はレーザ溶接で封口板11に溶接することができる。負極端子12には、鉄、ニッケル、及びステンレスを用いることができる。鉄を用いる場合は、その表面がニッケルでめっきされていることが好ましい。   The electrode body 17 can be produced by winding a negative electrode plate and a positive electrode plate in a flat shape via a separator. The negative electrode tab 15 and the positive electrode tab 16 are led out from the same end face of the electrode body, and are welded to the negative electrode terminal 12 and the sealing plate 11 as the positive electrode terminal, respectively. Aluminum is used for the sealing plate 11, and the positive electrode tab 16 can be welded to the sealing plate 11 by laser welding. Iron, nickel, and stainless steel can be used for the negative electrode terminal 12. When iron is used, the surface is preferably plated with nickel.

セパレータとしては、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレ
フィンを主成分とする微多孔膜を用いることができる。微多孔膜は1層単独で又は2層以上を積層して用いることができる。2層以上の積層セパレータにおいては、融点が低いポリエチレン(PE)を主成分とする層を中間層に、耐酸化性に優れたポリプロピレン(PP)を表面層とすることが好ましい。さらに、セパレータには酸化アルミニウム(Al)、酸化チタン(TiO)及び酸化ケイ素(SiO)のような無機粒子を添加することができる。このような無機粒子はセパレータ中に担持させることができ、セパレータ表面に結着剤とともに塗布することもできる。
As the separator, a microporous film mainly composed of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous membrane can be used singly or as a laminate of two or more layers. In a laminated separator having two or more layers, it is preferable to use a layer mainly composed of polyethylene (PE) having a low melting point as an intermediate layer and polypropylene (PP) excellent in oxidation resistance as a surface layer. Furthermore, inorganic particles such as aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), and silicon oxide (SiO 2 ) can be added to the separator. Such inorganic particles can be carried in the separator and can be applied together with a binder on the separator surface.

電極体17は正極板と負極板をそれらの間にセパレータを介在させて円状に又は偏平状に巻回して作製することができる。円状に巻回して得られた電極体はプレスして偏平状に成形される。また、正極板と負極板をそれらの間にセパレータを介在させて積層して作製した電極体を用いることもできる。   The electrode body 17 can be produced by winding a positive electrode plate and a negative electrode plate in a circular shape or a flat shape with a separator interposed therebetween. The electrode body obtained by winding in a circle is pressed into a flat shape. An electrode body produced by laminating a positive electrode plate and a negative electrode plate with a separator interposed therebetween can also be used.

本実施形態では、角形の外装缶19が用いられているが、円筒形の外装缶を用いることもできる。外装缶の構成材料として、アルミニウム、鉄、ニッケル、及びステンレスが例示される。外装缶が正極電位に曝される場合はアルミニウム又はアルミニウム合金を用いることが好ましい。本実施形態のように、外装缶が正極電位に曝される場合は、アルミニウム又はアルミニウム合金を用いることが好ましい。   In this embodiment, the rectangular outer can 19 is used, but a cylindrical outer can can also be used. Examples of the constituent material of the outer can include aluminum, iron, nickel, and stainless steel. When the outer can is exposed to the positive electrode potential, it is preferable to use aluminum or an aluminum alloy. When the outer can is exposed to the positive electrode potential as in this embodiment, it is preferable to use aluminum or an aluminum alloy.

ここで、負極タブ15と負極端子12の溶接方法について説明する。負極タブ15と負極端子12の溶接方法として、レーザ溶接及び抵抗溶接が例示される。   Here, the welding method of the negative electrode tab 15 and the negative electrode terminal 12 is demonstrated. As a method for welding the negative electrode tab 15 and the negative electrode terminal 12, laser welding and resistance welding are exemplified.

最初に、レーザ溶接を用いた場合について説明する。図3に示すように、負極タブ15の一方の表面を負極端子12に当接し、負極タブ15の他方の表面を銅より電気抵抗の大きい金属を主成分とする金属板18に当接した状態で、金属板18の表面にレーザ光を照射してレーザ溶接が行われる。その金属板18中でレーザ光による照射熱が発生し、その照射熱が負極タブ15及び負極端子12へと伝わる過程で負極タブ15が負極端子12に溶接される。   First, the case where laser welding is used will be described. As shown in FIG. 3, one surface of the negative electrode tab 15 is in contact with the negative electrode terminal 12, and the other surface of the negative electrode tab 15 is in contact with a metal plate 18 whose main component is a metal having a larger electrical resistance than copper. Thus, laser welding is performed by irradiating the surface of the metal plate 18 with laser light. Irradiation heat by laser light is generated in the metal plate 18, and the negative electrode tab 15 is welded to the negative electrode terminal 12 in the process of transmitting the irradiation heat to the negative electrode tab 15 and the negative electrode terminal 12.

銅よりも電気抵抗の大きな金属を主成分とする金属板18の熱伝導度及びレーザ光の反射率は、銅又は銅合金からなる負極タブに比べて低い。そのため、金属板18にレーザ光を照射した場合、レーザ光を負極タブ15に照射する場合に比べて、レーザの出力に対して照射熱が高効率で発生する。また、負極タブ15の表面が発熱した金属板18に当接しているため、金属板18から負極タブ15に伝わった照射熱が放熱されにくい。そのため、負極タブ15と負極端子12が確実に溶接される。   The thermal conductivity and the reflectance of the laser beam of the metal plate 18 whose main component is a metal having a larger electric resistance than copper are lower than those of a negative electrode tab made of copper or a copper alloy. Therefore, when the metal plate 18 is irradiated with laser light, the heat of irradiation is generated with higher efficiency with respect to the output of the laser than when the laser light is irradiated onto the negative electrode tab 15. Further, since the surface of the negative electrode tab 15 is in contact with the heated metal plate 18, the irradiation heat transmitted from the metal plate 18 to the negative electrode tab 15 is not easily radiated. Therefore, the negative electrode tab 15 and the negative electrode terminal 12 are reliably welded.

レーザ溶接に用いられるレーザとして、YAGレーザ、COレーザ、エキシマレーザ、及びファイバレーザなどが例示される。これらの中でも、ファイバレーザはレーザ光の集光性に優れているため、銅又は銅合金からなる負極タブ15と負極端子12の溶接に好適である。 Examples of lasers used for laser welding include YAG laser, CO 2 laser, excimer laser, and fiber laser. Among these, the fiber laser is excellent in the laser beam condensing property, and is suitable for welding the negative electrode tab 15 and the negative electrode terminal 12 made of copper or a copper alloy.

次に、抵抗溶接を用いた場合について説明する。図4に示すように、負極タブ15の一方の表面を負極端子12に当接し、負極タブ15の他方の表面を銅より電気抵抗の大きい金属を主成分とする金属板18に当接した状態で、第1電極棒41及び第2電極棒42の間に所定の電流を流して抵抗溶接が行われる。第1電極棒41と第2電極棒42の間に電流を流すことで、金属板18、負極タブ15、及び負極端子12のそれぞれにジュール熱が発生する。負極タブ15と負極端子12のみを抵抗溶接する場合に比べて、金属板18で発生したジュール熱が負極タブ15及び負極端子12に伝わる分だけ金属板18を用いて抵抗溶接をする場合は負極タブ15と負極端子12の溶接が容易になる。   Next, the case where resistance welding is used will be described. As shown in FIG. 4, one surface of the negative electrode tab 15 is in contact with the negative electrode terminal 12, and the other surface of the negative electrode tab 15 is in contact with a metal plate 18 whose main component is a metal having a higher electrical resistance than copper. Thus, resistance welding is performed by flowing a predetermined current between the first electrode rod 41 and the second electrode rod 42. By passing a current between the first electrode rod 41 and the second electrode rod 42, Joule heat is generated in each of the metal plate 18, the negative electrode tab 15, and the negative electrode terminal 12. Compared with the case where only the negative electrode tab 15 and the negative electrode terminal 12 are resistance welded, the negative electrode is used when resistance welding is performed using the metal plate 18 to the extent that Joule heat generated in the metal plate 18 is transmitted to the negative electrode tab 15 and the negative electrode terminal 12. The welding of the tab 15 and the negative electrode terminal 12 becomes easy.

抵抗溶接の際、金属板18、負極タブ15、及び負極端子12中を電流が流れるが、その電流が広い範囲で流れるとジュール熱が効果的に発生しない。そこで抵抗溶接を行う場合は、負極タブ15と負極端子12の当接面の接触面積を低減するため、それらのうち少なくとも一方の表面に突起を設けることが好ましい。また、金属板18は負極タブ15と負極端子12の積層方向から見て、負極タブ15と負極端子12の当接面の範囲内に配置されていることが好ましい。このようにして、抵抗溶接に寄与しない無効電流を低減することができる。   During resistance welding, current flows through the metal plate 18, the negative electrode tab 15, and the negative electrode terminal 12, but when the current flows in a wide range, Joule heat is not effectively generated. Therefore, when performing resistance welding, in order to reduce the contact area of the contact surface of the negative electrode tab 15 and the negative electrode terminal 12, it is preferable to provide a protrusion on at least one surface thereof. In addition, the metal plate 18 is preferably disposed within the range of the contact surface between the negative electrode tab 15 and the negative electrode terminal 12 when viewed from the stacking direction of the negative electrode tab 15 and the negative electrode terminal 12. In this way, reactive current that does not contribute to resistance welding can be reduced.

レーザ溶接及び抵抗溶接の例を用いて説明したように、負極タブ15の一方の表面を負極端子12に当接し、負極タブ15の他方の表面を銅より電気抵抗の大きい金属を主成分とする金属板18に当接した状態で、金属板18、負極タブ15、及び負極端子12を互いに溶接することにより、金属板18で発生した熱を負極タブ15と負極端子12の溶接に寄与させることができる。これにより、銅又は銅合金からなる負極タブ15を負極端子12に確実に溶接することが可能になる。金属板18は負極タブ15に溶接されるが、外装缶19の開口部を封口板11で封止する前に金属板18を負極タブ15から取り外してもよい。   As described with reference to the examples of laser welding and resistance welding, one surface of the negative electrode tab 15 is brought into contact with the negative electrode terminal 12, and the other surface of the negative electrode tab 15 is mainly composed of a metal having a higher electric resistance than copper. The metal plate 18, the negative electrode tab 15, and the negative electrode terminal 12 are welded together while being in contact with the metal plate 18, thereby contributing the heat generated in the metal plate 18 to the welding of the negative electrode tab 15 and the negative electrode terminal 12. Can do. This makes it possible to reliably weld the negative electrode tab 15 made of copper or a copper alloy to the negative electrode terminal 12. Although the metal plate 18 is welded to the negative electrode tab 15, the metal plate 18 may be removed from the negative electrode tab 15 before the opening of the outer can 19 is sealed with the sealing plate 11.

金属板の形状は負極タブに当接させるため、その表面はフラットであることが好ましい。しかし、本発明の効果が失われない範囲でその一部に開口や凹凸を設けるなど、金属板の形状は改変することができる。金属板の厚みは、金属板の溶接時の発熱量や損傷の防止の観点から0.01mm以上0.2mm以下であることが好ましい。レーザ溶接の場合は、金属板の厚みは0.05mm以上0.15mm以下であることがより好ましい。抵抗溶接の場合は、金属板の厚みは0.01mm以上0.1mm以下であることがより好ましい。金属板は、負極タブの折り曲げ加工を阻害しない範囲で負極タブ上に配置することが好ましい。   Since the shape of the metal plate is brought into contact with the negative electrode tab, the surface is preferably flat. However, the shape of the metal plate can be modified, for example, by providing an opening or unevenness in a part thereof as long as the effect of the present invention is not lost. The thickness of the metal plate is preferably 0.01 mm or more and 0.2 mm or less from the viewpoint of the amount of heat generated during welding of the metal plate and the prevention of damage. In the case of laser welding, the thickness of the metal plate is more preferably 0.05 mm or more and 0.15 mm or less. In the case of resistance welding, the thickness of the metal plate is more preferably 0.01 mm or more and 0.1 mm or less. The metal plate is preferably disposed on the negative electrode tab within a range that does not hinder the bending of the negative electrode tab.

レーザ溶接の場合、レーザ光の出力値を調整することで金属板の発熱量や、負極タブと負極端子の溶接強度を制御できるため、金属板の材質や寸法、及び負極タブの寸法の自由度が高い。さらに、負極タブと負極端子の溶接の際の電極体や電極体上に配置する絶縁板への熱影響を低減することができる。したがって、本開示に係る非水電解質二次電池の製造方法においては、負極タブと負極端子の溶接にレーザ溶接を用いることが好ましい。   In laser welding, the heating value of the metal plate and the welding strength of the negative electrode tab and the negative electrode terminal can be controlled by adjusting the output value of the laser beam, so the degree of freedom of the metal plate material and dimensions, and the negative electrode tab size Is expensive. Furthermore, it is possible to reduce the thermal effect on the electrode body and the insulating plate disposed on the electrode body when the negative electrode tab and the negative electrode terminal are welded. Therefore, in the method for manufacturing a nonaqueous electrolyte secondary battery according to the present disclosure, it is preferable to use laser welding for welding the negative electrode tab and the negative electrode terminal.

負極タブ15及び正極タブ16が接続された封口板11は、外装缶19の開口部にレーザ溶接により溶接される。封口板11には注液孔14が設けられており、その注液孔14を介して非水電解液が外装缶19の内部へ注入される。非水電解液を注入した後、注液孔14を封口板11と同じ金属材料で塞いで電池内部が密閉される。   The sealing plate 11 to which the negative electrode tab 15 and the positive electrode tab 16 are connected is welded to the opening of the outer can 19 by laser welding. A liquid injection hole 14 is provided in the sealing plate 11, and a non-aqueous electrolyte is injected into the exterior can 19 through the liquid injection hole 14. After injecting the non-aqueous electrolyte, the injection hole 14 is closed with the same metal material as the sealing plate 11 to seal the inside of the battery.

非水電解液に用いることができる非水溶媒として、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル及び鎖状カルボン酸エステルを用いることができ、これらは2種以上を混合して用いることが好ましい。環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)及びブチレンカーボネート(BC)が例示される。また、フルオロエチレンカーボネート(FEC)のように、水素の一部をフッ素で置換した環状炭酸エステルを用いることもできる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)及びメチルプロピルカーボネート(MPC)などが例示される。環状カルボン酸エステルとしてはγ−ブチロラクトン(γ−BL)及びγ−バレロラクトン(γ−VL)が例示され、鎖状カルボン酸エステルとしてはピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート及びメチルプロピオネートが例示される。   As the non-aqueous solvent that can be used for the non-aqueous electrolyte, cyclic carbonates, chain carbonates, cyclic carboxylic acid esters, and chain carboxylic acid esters can be used, and these should be used in combination of two or more. Is preferred. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). In addition, a cyclic carbonate in which part of hydrogen is substituted with fluorine, such as fluoroethylene carbonate (FEC), can also be used. Examples of the chain carbonate include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate (MPC). Examples of cyclic carboxylic acid esters include γ-butyrolactone (γ-BL) and γ-valerolactone (γ-VL). Examples of chain carboxylic acid esters include methyl pivalate, ethyl pivalate, methyl isobutyrate, and methyl Pionate is exemplified.

非水電解液の電解質塩に用いることができるリチウム塩として、LiPF、LiBF
、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10及びLi12Cl12が例示される。これらの中でもLiPFが特に好ましく、非水電解液中の濃度は0.5〜2.0mol/Lであることが好ましい。LiPFにLiBFなど他のリチウム塩を混合することもできる。
LiPF 6 , LiBF as lithium salts that can be used for the electrolyte salt of the non-aqueous electrolyte
4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 and Li 2 B 12 Cl 12 are exemplified. Among these, LiPF 6 is particularly preferable, and the concentration in the nonaqueous electrolytic solution is preferably 0.5 to 2.0 mol / L. Other lithium salts such as LiBF 4 may be mixed with LiPF 6 .

上記の実施形態では、電池内部における負極タブと負極端子の溶接方法について説明した。非水電解質二次電池には負極タブや正極タブが外装体を介して電池外部に導出されている構造を有するものがある。そのような構造を有する非水電解質二次電池においては、負極タブ及び正極タブがそれぞれ負極端子及び正極端子として機能する。そのため、負極タブと負極端子の溶接は不要である。しかし、負極タブ及び正極タブをそれぞれ負極端子及び正極端子として用いる場合、負極タブ及び正極タブをそれぞれ保護回路基板の負極集電部及び正極集電部に溶接して電池パックを構成する場合がある。負極タブに銅又は銅合金が用いられている場合、上記の実施形態で説明した溶接方法を負極タブと保護回路基板の負極集電部の溶接に適用することができる。   In the above embodiment, the method for welding the negative electrode tab and the negative electrode terminal inside the battery has been described. Some non-aqueous electrolyte secondary batteries have a structure in which a negative electrode tab or a positive electrode tab is led out of the battery through an exterior body. In the nonaqueous electrolyte secondary battery having such a structure, the negative electrode tab and the positive electrode tab function as a negative electrode terminal and a positive electrode terminal, respectively. Therefore, welding of the negative electrode tab and the negative electrode terminal is unnecessary. However, when the negative electrode tab and the positive electrode tab are used as the negative electrode terminal and the positive electrode terminal, respectively, the negative electrode tab and the positive electrode tab may be welded to the negative electrode current collector and the positive electrode current collector of the protection circuit board, respectively, to form a battery pack. . When copper or a copper alloy is used for the negative electrode tab, the welding method described in the above embodiment can be applied to the welding of the negative electrode tab and the negative electrode current collector of the protective circuit board.

電極体に接続されている負極タブや正極タブを電池外部に導出する非水電解質二次電池の一例として、図5に示すパウチ型の非水電解質二次電池51が挙げられる。パウチ型の非水電解質二次電池51の外装体52にはポリプロピレンやナイロンなどの樹脂シートとアルミニウムシートを積層したラミネートシートが用いられている。2枚のラミネートシートを重ね合わせるか、又は1枚のラミネートシートを二つ折りにして重ね合わせることにより電極体及び非水電解液を収容するパウチ状の外装体52が形成される。負極タブ15及び正極タブ16は、ラミネートシートの重ね合わせ部の間から電池外部に導出する。負極タブ15及び正極タブ16はそれぞれ保護回路基板54の負極集電部55及び正極集電部56に溶接される。このようにパウチ型の非水電解質二次電池51と保護回路基板54が一体化されて電池パック50が構成される。パウチ型の非水電解質二次電池51に接続された保護回路基板54は、負極タブ15及び正極タブ16を折り曲げてテラス53上に配置される。これにより、電池パック50の占有体積を低減することができる。   As an example of a non-aqueous electrolyte secondary battery in which a negative electrode tab or a positive electrode tab connected to the electrode body is led out of the battery, a pouch-type non-aqueous electrolyte secondary battery 51 shown in FIG. A laminated sheet obtained by laminating a resin sheet such as polypropylene or nylon and an aluminum sheet is used for the exterior body 52 of the pouch-type nonaqueous electrolyte secondary battery 51. A pouch-shaped exterior body 52 that accommodates the electrode body and the non-aqueous electrolyte is formed by overlapping two laminate sheets or by folding one laminate sheet in two. The negative electrode tab 15 and the positive electrode tab 16 are led out of the battery from between the overlapping portions of the laminate sheet. The negative electrode tab 15 and the positive electrode tab 16 are welded to the negative electrode current collector 55 and the positive electrode current collector 56 of the protection circuit board 54, respectively. Thus, the battery pack 50 is configured by integrating the pouch-type nonaqueous electrolyte secondary battery 51 and the protection circuit board 54. The protective circuit board 54 connected to the pouch-type nonaqueous electrolyte secondary battery 51 is disposed on the terrace 53 by bending the negative electrode tab 15 and the positive electrode tab 16. Thereby, the occupied volume of the battery pack 50 can be reduced.

負極集電部55には、ニッケル、鉄、又はステンレスを用いることが好ましい。鉄を用いる場合は、その表面にニッケルめっきをすることが好ましい。負極タブ15と負極集電部55の溶接方法については図3及び図4のそれぞれにおいて負極端子12を負極集電部55に読み替えることで理解される。   The negative electrode current collector 55 is preferably made of nickel, iron, or stainless steel. When using iron, it is preferable to nickel-plat the surface. The welding method of the negative electrode tab 15 and the negative electrode current collector 55 is understood by replacing the negative electrode terminal 12 with the negative electrode current collector 55 in each of FIGS. 3 and 4.

正極集電部56にはアルミニウム又はアルミニウム合金を用いることが好ましい。正極タブ16と正極集電部56の溶接方法として、レーザ溶接及び超音波溶接が例示される。   The positive electrode current collector 56 is preferably made of aluminum or an aluminum alloy. As a method for welding the positive electrode tab 16 and the positive electrode current collector 56, laser welding and ultrasonic welding are exemplified.

(実施例1)
銅製の負極タブを接続した負極板を用いて偏平状の電極体を作製し、電極体を有底筒状のアルミニウム製の外装缶へ収容した。負極タブの厚みは0.1mm、幅は3mmとした。外装缶を封止するアルミニウム製の封口板には絶縁部材を介してニッケルめっきされた鉄からなる負極端子が圧入固定されている。外装缶に収容した電極体から導出する負極タブを負極端子に当接し、さらに図3に示すように負極タブにニッケル製の金属板を当接し、金属板にレーザ光を照射して、金属板、負極タブ、及び負極端子を互いに溶接した。金属板の平面形状は一辺が2.5mmの正方形とし、その厚みは0.1mmとした。レーザ溶接は、6.5Jのエネルギーのレーザ光を金属板上に2点照射して行った。負極タブと負極端子の溶接面積は0.6mmであった。正極タブは封口体の内側表面にレーザ溶接で溶接した。負極タブ及び正極タブが溶接された封口板を外装缶の開口部にレーザ溶接で
溶接した後、封口板の注液孔から非水電解液を注入した。最後に、注液孔をアルミニウム板で封止して、厚みが5.5mm、幅が51mm、高さが72mmの実施例1に係る角形の非水電解質二次電池を作製した。
Example 1
A flat electrode body was prepared using a negative electrode plate to which a copper negative electrode tab was connected, and the electrode body was housed in a bottomed cylindrical aluminum outer can. The thickness of the negative electrode tab was 0.1 mm, and the width was 3 mm. A negative electrode terminal made of nickel-plated iron is press-fitted and fixed to an aluminum sealing plate for sealing the outer can through an insulating member. The negative electrode tab led out from the electrode body housed in the outer can is brought into contact with the negative electrode terminal, and further, as shown in FIG. 3, a nickel metal plate is brought into contact with the negative electrode tab, and the metal plate is irradiated with laser light. The negative electrode tab and the negative electrode terminal were welded together. The planar shape of the metal plate was a square with a side of 2.5 mm, and its thickness was 0.1 mm. Laser welding was performed by irradiating a metal plate with two laser beams having an energy of 6.5 J. The welding area of the negative electrode tab and the negative electrode terminal was 0.6 mm 2 . The positive electrode tab was welded to the inner surface of the sealing body by laser welding. The sealing plate to which the negative electrode tab and the positive electrode tab were welded was welded to the opening of the outer can by laser welding, and then a nonaqueous electrolyte was injected from the injection hole of the sealing plate. Finally, the liquid injection hole was sealed with an aluminum plate to produce a rectangular nonaqueous electrolyte secondary battery according to Example 1 having a thickness of 5.5 mm, a width of 51 mm, and a height of 72 mm.

(実施例2)
負極タブと負極端子を抵抗溶接で溶接したこと以外は実施例1と同様な方法で実施例2に係る角形の非水電解質二次電池を作製した。負極タブと負極端子の抵抗溶接は、図4に示すように、負極タブを負極端子に当接し、さらに負極タブにニッケル製の金属板を当接した状態で第1電極棒と第2電極棒の間に1.6kAの電流を流して行った。抵抗溶接の際、第1電極棒及び第2電極棒にはそれぞれ3Kgの荷重を印加した。
(Example 2)
A square nonaqueous electrolyte secondary battery according to Example 2 was produced in the same manner as in Example 1 except that the negative electrode tab and the negative electrode terminal were welded by resistance welding. As shown in FIG. 4, the resistance welding of the negative electrode tab and the negative electrode terminal is performed by contacting the first electrode rod and the second electrode rod with the negative electrode tab in contact with the negative electrode terminal and further with the nickel metal plate in contact with the negative electrode tab. During this time, a current of 1.6 kA was passed. During resistance welding, a load of 3 kg was applied to each of the first electrode rod and the second electrode rod.

(比較例1)
銅製の負極タブに代えて銅−ニッケル(Cu−Ni)クラッド材からなる負極タブを用いとこと、及び、ニッケル製の金属板を用いずに負極タブと負極端子をレーザ溶接で溶接したこと以外は実施例1と同様にして比較例1に係る角形の非水電解質二次電池を作製した。
(Comparative Example 1)
Other than using a negative electrode tab made of a copper-nickel (Cu-Ni) clad material instead of a copper negative electrode tab and welding the negative electrode tab and the negative electrode terminal by laser welding without using a nickel metal plate Produced a square nonaqueous electrolyte secondary battery according to Comparative Example 1 in the same manner as in Example 1.

(負極タブ−負極端子間の溶接強度の確認)
実施例1、2及び比較例1の各電池について、封口板を固定した状態で負極タブと負極端子の溶接部、又は負極タブが破断するまで負極タブの引張試験を行った。いずれの電池においても、溶接部ではなく負極タブが破断していたことから、負極タブと負極端子の間に形成された溶接部は十分な溶接強度を有していることが確認された。なお、実施例1においてニッケル製の金属板を用いることなく負極タブにレーザ光を照射した場合、負極タブと負極端子との溶接は不可能であったことが確認されている。このことから、銅製の負極タブを負極端子に溶接する場合に本開示は有利な効果を発揮することがわかる。銅製の負極タブに代えて、銅合金製の負極タブを用いた場合でも同様の効果が発揮されることが期待される。
(Confirmation of welding strength between negative electrode tab and negative electrode terminal)
For each of the batteries of Examples 1 and 2 and Comparative Example 1, a tensile test of the negative electrode tab was performed until the welded portion of the negative electrode tab and the negative electrode terminal or the negative electrode tab broke with the sealing plate fixed. In any battery, since the negative electrode tab, not the welded portion, was broken, it was confirmed that the welded portion formed between the negative electrode tab and the negative electrode terminal had sufficient weld strength. In Example 1, when the negative electrode tab was irradiated with laser light without using a nickel metal plate, it was confirmed that welding of the negative electrode tab and the negative electrode terminal was impossible. From this, it can be seen that the present disclosure exhibits an advantageous effect when a copper negative electrode tab is welded to the negative electrode terminal. Even when a copper alloy negative electrode tab is used instead of the copper negative electrode tab, the same effect is expected to be exhibited.

(振動試験)
実施例1、2及び比較例1の各電池を2枚のアクリル板(厚み5mm、幅60mm、高さ80mm)で挟んで固定し、振動試験用の模擬電池パックを作製した。その模擬電池パックをアクリル板からなる箱(一辺が150mmの立方体)の中に入れて振動数が8Hz、振幅が50mmの振動を60分間印加して振動試験を行った。試験後、模擬電池パックを解体して負極タブの破断の有無を確認した。振動試験には、実施例1、2及び比較例の各10個の電池を用いた。その結果を表1に示す。
(Vibration test)
Each battery of Examples 1 and 2 and Comparative Example 1 was sandwiched and fixed between two acrylic plates (thickness 5 mm, width 60 mm, height 80 mm) to produce a simulated battery pack for vibration test. The simulated battery pack was placed in a box made of an acrylic plate (a cube having a side of 150 mm), and a vibration test was performed by applying vibration having a frequency of 8 Hz and an amplitude of 50 mm for 60 minutes. After the test, the simulated battery pack was disassembled to confirm whether the negative electrode tab was broken. For the vibration test, 10 batteries of Examples 1 and 2 and Comparative Example were used. The results are shown in Table 1.

Figure 2019032985
Figure 2019032985

振動試験の結果、比較例の電池の一部に負極タブの破断が見られたものの、実施例1及び2の全ての電池には負極タブの破断は見られなかった。Cu−Niクラッド材は異種金属を貼り合わせられているため、クラッド材からなる負極タブに振動のような応力が加え
られると、それぞれの層の伸びの差に起因して亀裂が生じやすいものと考えられる。一方、実施例1及び2の負極タブは、表面にニッケル製の金属板が溶接されているものの、金属板は負極タブの全面に溶接されているわけではない。そのため、負極タブに振動のような応力が加えられても、金属板が受ける応力は小さいため、クラッド材を用いた場合のように負極タブへの亀裂が防止される。
As a result of the vibration test, breakage of the negative electrode tab was observed in a part of the batteries of the comparative example, but breakage of the negative electrode tab was not observed in all the batteries of Examples 1 and 2. Since Cu-Ni clad material is bonded with dissimilar metals, if stress such as vibration is applied to the negative electrode tab made of clad material, cracks are likely to occur due to the difference in elongation of each layer. Conceivable. On the other hand, the negative electrode tabs of Examples 1 and 2 have a nickel metal plate welded to the surface, but the metal plate is not welded to the entire surface of the negative electrode tab. Therefore, even if stress such as vibration is applied to the negative electrode tab, the stress received by the metal plate is small, and thus cracking of the negative electrode tab is prevented as in the case of using a clad material.

また、実施例1及び2の負極タブの厚みは比較例の負極タブの厚みと同じである。そのため、比較例に比べて実施例1及び2では、電池の内部抵抗が低減されるため負荷特性の向上及び外部短絡時の発熱量の低下といった電池特性面において有利な効果が発揮される。   Moreover, the thickness of the negative electrode tab of Example 1 and 2 is the same as the thickness of the negative electrode tab of a comparative example. Therefore, compared with the comparative example, in Examples 1 and 2, since the internal resistance of the battery is reduced, advantageous effects are exhibited in terms of battery characteristics such as improvement in load characteristics and reduction in the amount of heat generated during an external short circuit.

実施例1及び2においては、負極タブにニッケル製の金属板が溶接されている。そのため、各実施例の負極タブは見かけ上、比較例のCu−Niクラッド材からなる負極タブに類似している。しかし、上記の通り、本開示によればCu−Niクラッド材からなる負極タブを用いた場合より信頼性や電池特性に優れた非水電解質二次電池を提供することが可能になる。   In Examples 1 and 2, a nickel metal plate is welded to the negative electrode tab. Therefore, the negative electrode tab of each Example is apparently similar to the negative electrode tab made of the Cu—Ni clad material of the comparative example. However, as described above, according to the present disclosure, it is possible to provide a nonaqueous electrolyte secondary battery that is more excellent in reliability and battery characteristics than the case where a negative electrode tab made of a Cu—Ni clad material is used.

本発明によれば、銅又は銅合金からなる負極タブを負極端子に、又は保護回路基板の負極集電部に確実に溶接して、十分な溶接強度を確保することができる。このように負極タブに電気抵抗の低い銅又は銅合金を用いることが可能になるため、非水電解質二次電池や電池パックの内部抵抗を低減することができる。そのため、本発明の産業上の利用可能性は大きい。   According to the present invention, a negative electrode tab made of copper or a copper alloy can be reliably welded to the negative electrode terminal or the negative electrode current collector of the protective circuit board to ensure sufficient welding strength. Thus, since it becomes possible to use copper or a copper alloy with low electrical resistance for the negative electrode tab, the internal resistance of the nonaqueous electrolyte secondary battery or the battery pack can be reduced. Therefore, the industrial applicability of the present invention is great.

10 角形の非水電解質二次電池
11 封口板
12 負極端子
13 絶縁部材
14 注液孔
15 負極タブ
16 正極タブ
17 電極体
18 金属板
19 外装缶
41 第1電極棒
42 第2電極棒
50 電池パック
51 パウチ型の非水電解質二次電池
52 外装体
53 テラス
54 保護回路基板
55 負極集電部
56 正極集電部
DESCRIPTION OF SYMBOLS 10 Square nonaqueous electrolyte secondary battery 11 Sealing plate 12 Negative electrode terminal 13 Insulating member 14 Injection hole 15 Negative electrode tab 16 Positive electrode tab 17 Electrode body 18 Metal plate 19 Exterior can 41 First electrode rod 42 Second electrode rod 50 Battery pack 51 Pouch Type Nonaqueous Electrolyte Secondary Battery 52 Exterior Body 53 Terrace 54 Protective Circuit Board 55 Negative Electrode Current Collector 56 Positive Electrode Current Collector

Claims (10)

正極板と負極板がセパレータを介して巻回又は積層された電極体と、非水電解質と、前記電極体と前記非水電解質を収容する有底筒状の外装缶と、前記外装缶の開口部を封止する封口板とを含み、前記負極板に接続された負極タブと前記封口板に絶縁された状態で固定された負極端子とを有する非水電解質二次電池の製造方法であって、
前記負極タブは銅及び銅合金のいずれか一方からなり、
前記負極タブの一方の表面を前記負極端子に当接し、前記負極タブの他方の表面を銅より電気抵抗の大きい金属を主成分とする金属板に当接した状態で、前記負極タブ、前記負極端子、及び前記金属板を互いに溶接することを特徴とする非水電解質二次電池の製造方法。
An electrode body in which a positive electrode plate and a negative electrode plate are wound or laminated with a separator interposed therebetween, a nonaqueous electrolyte, a bottomed cylindrical outer can that contains the electrode body and the nonaqueous electrolyte, and an opening of the outer can A non-aqueous electrolyte secondary battery having a negative electrode tab connected to the negative electrode plate and a negative electrode terminal fixed in a state of being insulated from the sealing plate. ,
The negative electrode tab is made of one of copper and copper alloy,
In the state where one surface of the negative electrode tab is in contact with the negative electrode terminal and the other surface of the negative electrode tab is in contact with a metal plate whose main component is a metal having a higher electrical resistance than copper, the negative electrode tab and the negative electrode A method of manufacturing a non-aqueous electrolyte secondary battery, wherein the terminal and the metal plate are welded together.
前記金属板にレーザ光を照射して前記負極タブ、前記負極端子、及び前記金属板を溶接する請求項1に記載の非水電解質二次電池の製造方法。   The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 1, wherein the metal plate is irradiated with laser light to weld the negative electrode tab, the negative electrode terminal, and the metal plate. 前記金属板に第一溶接棒を当接し、前記負極端子の電池内側面に第二溶接棒を当接することにより、前記負極タブ、前記負極端子、及び前記金属板を抵抗溶接する請求項1に記載の非水電解質二次電池の製造方法。   2. The resistance welding of the negative electrode tab, the negative electrode terminal, and the metal plate is performed by bringing a first welding rod into contact with the metal plate and bringing a second welding rod into contact with a battery inner surface of the negative electrode terminal. The manufacturing method of the nonaqueous electrolyte secondary battery as described. 前記金属板の主成分はニッケル及び鉄のいずれか一方である請求項1から3のいずれかに記載の非水電解質二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein a main component of the metal plate is one of nickel and iron. 前記金属板は前記負極タブと前記負極端子の当接面の範囲内に配置される、請求項1から4のいずれかに記載の非水電解質二次電池の製造方法。   The method for manufacturing a nonaqueous electrolyte secondary battery according to claim 1, wherein the metal plate is disposed within a range of a contact surface between the negative electrode tab and the negative electrode terminal. 前記負極端子の主成分はニッケル及び鉄のいずれか一方である請求項1から5のいずれかに記載の非水電解質二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein a main component of the negative electrode terminal is one of nickel and iron. 銅及び銅合金のいずれか一方からなる負極タブが外装体を介して電池外部に導出している非水電解質二次電池と、保護回路基板を備える電池パックの製造方法であって、
前記負極タブの一方の面を前記保護回路基板の負極集電部に当接し、前記負極タブの他方の面を銅より電気抵抗の大きい金属を主成分とする金属板を当接した状態で、前記負極タブ、前記負極集電部、及び前記金属板を互いに溶接することを特徴とする電池パックの製造方法。
A non-aqueous electrolyte secondary battery in which a negative electrode tab made of one of copper and a copper alloy is led out of the battery through an exterior body, and a manufacturing method of a battery pack including a protective circuit board,
With one surface of the negative electrode tab in contact with the negative electrode current collector of the protection circuit board, the other surface of the negative electrode tab is in contact with a metal plate whose main component is a metal having a larger electrical resistance than copper, The method of manufacturing a battery pack, wherein the negative electrode tab, the negative electrode current collector, and the metal plate are welded together.
前記金属板にレーザ光を照射して前記負極タブ、前記負極集電部、及び前記金属板を溶接する請求項7に記載の電池パックの製造方法。   The method for manufacturing a battery pack according to claim 7, wherein the metal plate is irradiated with laser light to weld the negative electrode tab, the negative electrode current collector, and the metal plate. 前記金属板に第一溶接棒を当接し、前記負極集電部に第二溶接棒を当接することにより、前記負極タブ、前記負極集電部、及び前記金属板を抵抗溶接する請求項7に記載の電池パックの製造方法。   8. The resistance welding of the negative electrode tab, the negative electrode current collector, and the metal plate is performed by bringing a first welding rod into contact with the metal plate and bringing a second welding rod into contact with the negative electrode current collector. The manufacturing method of the battery pack of description. 前記金属板の主成分はニッケル及び鉄のいずれか一方である請求項7から9のいずれかに記載の電池パックの製造方法。   The method for manufacturing a battery pack according to claim 7, wherein a main component of the metal plate is one of nickel and iron.
JP2017152933A 2017-08-08 2017-08-08 Non-aqueous electrolyte secondary battery and manufacturing method of battery pack Pending JP2019032985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017152933A JP2019032985A (en) 2017-08-08 2017-08-08 Non-aqueous electrolyte secondary battery and manufacturing method of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152933A JP2019032985A (en) 2017-08-08 2017-08-08 Non-aqueous electrolyte secondary battery and manufacturing method of battery pack

Publications (1)

Publication Number Publication Date
JP2019032985A true JP2019032985A (en) 2019-02-28

Family

ID=65524373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152933A Pending JP2019032985A (en) 2017-08-08 2017-08-08 Non-aqueous electrolyte secondary battery and manufacturing method of battery pack

Country Status (1)

Country Link
JP (1) JP2019032985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824600A (en) * 2022-04-22 2022-07-29 江苏正力新能电池技术有限公司 Welding method and preparation method of cylindrical battery and welding structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824600A (en) * 2022-04-22 2022-07-29 江苏正力新能电池技术有限公司 Welding method and preparation method of cylindrical battery and welding structure
CN114824600B (en) * 2022-04-22 2023-12-05 江苏正力新能电池技术有限公司 Welding method and preparation method of cylindrical battery and welding structure

Similar Documents

Publication Publication Date Title
JP5830953B2 (en) Secondary battery, battery unit and battery module
CN105917512B (en) Secondary battery and method for manufacturing secondary battery
JP5784928B2 (en) Non-aqueous secondary battery
JP5699559B2 (en) Non-aqueous electrolyte battery
JP7006683B2 (en) Cylindrical battery
US20120244423A1 (en) Laminate case secondary battery
JP4458145B2 (en) Battery pack and manufacturing method thereof
JP6177908B2 (en) Secondary battery
JP5953549B2 (en) Lithium ion battery
JP2008171583A (en) Enclosed battery
JP2011192547A (en) Battery
JP5447656B2 (en) Multilayer electrode body type battery, method for manufacturing the same, vehicle and equipment
JP2007087652A (en) Nonaqueous electrolyte battery
JP2018181622A (en) Multilayer type secondary battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP2012151036A (en) Laminated battery
JP6055983B2 (en) Battery current collector and lithium ion battery
JP5011928B2 (en) battery
JP5025277B2 (en) Battery manufacturing method
JP2008257922A (en) Manufacturing method of non-aqueous electrolyte battery
JP2011086483A (en) Laminated secondary battery
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP2019032985A (en) Non-aqueous electrolyte secondary battery and manufacturing method of battery pack
JP5119615B2 (en) Secondary battery and assembled battery
JP2012195122A (en) Nonaqueous electrolyte secondary battery