JP2019031941A - Steam valve driving device and steam valve - Google Patents

Steam valve driving device and steam valve Download PDF

Info

Publication number
JP2019031941A
JP2019031941A JP2017153415A JP2017153415A JP2019031941A JP 2019031941 A JP2019031941 A JP 2019031941A JP 2017153415 A JP2017153415 A JP 2017153415A JP 2017153415 A JP2017153415 A JP 2017153415A JP 2019031941 A JP2019031941 A JP 2019031941A
Authority
JP
Japan
Prior art keywords
valve
steam
control
control valve
hydraulic oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017153415A
Other languages
Japanese (ja)
Inventor
晃一 永石
Koichi Nagaishi
晃一 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017153415A priority Critical patent/JP2019031941A/en
Publication of JP2019031941A publication Critical patent/JP2019031941A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Control Of Turbines (AREA)
  • Lift Valve (AREA)

Abstract

To provide a steam valve driving device and a steam valve capable of being continuously operated even in occurrence of incompatibility in a control valve.SOLUTION: A steam valve driving device for controlling an amount of steam includes a control device, a first control valve for controlling an amount of working fluid, a second control valve disposed in parallel with the first control valve, first and third cutoff valves for cutting supply of the working fluid to the control valve and discharge of the working fluid from the control valve, second and fourth cutoff valves for cutting supply of the working fluid to a hydraulic cylinder device from the control valve and discharge to the control valve from the hydraulic cylinder device, and a bypass flow channel. The steam valve driving device continuously operates the steam valve by the second control valve on the basis of a signal from the control device, closes the first and second cutoff valves, and discharges the working fluid in the first control valve between the first and second cutoff valves and the first control valve through the bypass flow channel, when incompatibility occurs in the first control valve.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、蒸気弁駆動装置および蒸気弁に関する。   Embodiments described herein relate generally to a steam valve driving device and a steam valve.

蒸気タービンの回転数や出力は、蒸気タービンに導入される蒸気の流量で調整される。蒸気の流量の調整は、蒸気タービンの入口に搭載される蒸気弁(主蒸気止め弁、蒸気加減弁など)の開度を、それぞれの蒸気弁に接続された蒸気弁駆動装置で制御して行われる。蒸気弁駆動装置は、流路、蒸気弁を開閉するピストンを収容したシリンダへ作動油を導入または排油する制御弁(サーボ弁、電磁弁)を有する。サーボ弁は、制御信号によりシリンダへ供給される作動油の油量を調整する。つまり、サーボ弁で作動油の油量を調整することで、蒸気弁の開度を制御する。一方で電磁弁は、主蒸気止め弁に用いられ、制御信号によりシリンダへ供給される作動油を許可または遮断し、主蒸気止め弁の開度を全開(許可)または全閉(遮断)する。したがって、制御弁を介して蒸気弁の開度を制御できなくなった場合は、蒸気タービンへ導入される蒸気の流量を調整できず、蒸気タービンの継続運転ができなくなる。   The rotation speed and output of the steam turbine are adjusted by the flow rate of the steam introduced into the steam turbine. The steam flow rate is adjusted by controlling the opening of the steam valves (main steam stop valve, steam control valve, etc.) mounted at the inlet of the steam turbine with the steam valve drive unit connected to each steam valve. Is called. The steam valve driving device has a control valve (servo valve, electromagnetic valve) that introduces or drains hydraulic fluid into a flow path and a cylinder that houses a piston that opens and closes the steam valve. The servo valve adjusts the amount of hydraulic oil supplied to the cylinder by a control signal. That is, the opening degree of the steam valve is controlled by adjusting the amount of hydraulic oil with the servo valve. On the other hand, the solenoid valve is used as a main steam stop valve, and permits or shuts off the hydraulic oil supplied to the cylinder by a control signal, and fully opens (permits) or fully closes (shuts down) the opening of the main steam stop valve. Therefore, when the opening degree of the steam valve cannot be controlled via the control valve, the flow rate of the steam introduced into the steam turbine cannot be adjusted, and the continuous operation of the steam turbine cannot be performed.

上述の懸念に対して、従来の蒸気弁駆動装置は、複数の蒸気弁にそれぞれ具備され、異常が発生した蒸気弁駆動装置の制御弁に制御される蒸気弁を閉じた後に作動油を排油し、制御弁を交換する。その間は、他の蒸気弁により蒸気の流量の調整を継続させるため、1つの制御弁に異常が発生した場合でも蒸気タービンを継続運転できる。しかしながら、制御弁の不適合に伴う異常が発生した場合には、蒸気弁を全閉させる必要があり、交換後の復旧に長い時間を要する。また、蒸気弁が1つしかない場合は、蒸気タービンそのもの運転を停止させる必要がある。したがって、制御弁に異常が発生した場合でも継続運転できる蒸気弁駆動装置および蒸気弁が求められている。   In response to the above-mentioned concerns, the conventional steam valve driving device is provided in each of a plurality of steam valves, and the hydraulic oil is discharged after closing the steam valve controlled by the control valve of the steam valve driving device in which an abnormality has occurred. Then, replace the control valve. In the meantime, since the adjustment of the flow rate of the steam is continued by another steam valve, the steam turbine can be continuously operated even when an abnormality occurs in one control valve. However, when an abnormality occurs due to the nonconformity of the control valve, it is necessary to fully close the steam valve, and it takes a long time to recover after replacement. Further, when there is only one steam valve, it is necessary to stop the operation of the steam turbine itself. Therefore, there is a need for a steam valve drive device and a steam valve that can continue operation even when an abnormality occurs in the control valve.

特開2015−78618号公報JP2015-78618A 特公平3−3042号公報Japanese Examined Patent Publication No. 3-3042

本発明が解決しようとする課題は、制御弁に不適合が発生した場合でも継続運転できる蒸気弁駆動装置および蒸気弁を提供することである。   The problem to be solved by the present invention is to provide a steam valve driving device and a steam valve that can be continuously operated even when a nonconformity occurs in a control valve.

上記の課題を解決するために、実施形態の蒸気弁駆動装置によれば、蒸気タービンに導入される蒸気量を制御するための蒸気弁の駆動装置であって、前記蒸気弁は、弁体と、前記弁体の開度を調整するための油圧シリンダ装置とを有し、前記油圧シリンダ装置に供給される作動油の量により前記弁体の開度を調整して前記蒸気量を制御する蒸気弁駆動装置において、前記油圧シリンダ装置に供給される前記作動油の量を制御する制御装置と、
前記制御装置からの信号により、前記油圧シリンダ装置に供給される前記作動油の量を制御する第一の制御弁と、前記第一の制御弁と並列に設けられ、前記油圧シリンダ装置に供給される前記作動油の量を制御する第二の制御弁と、前記第一の制御弁への前記作動油の供給と前記第一の制御弁からの前記作動油の排出とを遮断する第一の遮断弁と、前記第一の制御弁から前記油圧シリンダ装置への前記作動油の供給と前記油圧シリンダ装置から前記第一の制御弁への前記作動油の排出とを遮断する第二の遮断弁と、前記第二の制御弁への前記作動油の供給と前記第二の制御弁からの前記作動油の排出とを遮断する第三の遮断弁と、前記第二の制御弁から前記油圧シリンダ装置への前記作動油の供給と前記油圧シリンダ装置から前記第二の制御弁への前記作動油の排出とを遮断する第四の遮断弁と、前記第一の制御弁と前記第一および第二の遮断弁との間から分岐され、かつ前記第二の制御弁と前記第三および第四の遮断弁との間から分岐されて前記作動油を排出するバイパス流路と、を具備し、前記蒸気弁駆動装置は、前記第一の制御弁に不適合が発生した場合に、前記制御装置からの信号により、前記第二の制御弁を用いて前記油圧シリンダ装置に供給される前記作動油の量を制御して前記蒸気弁を継続運転させ、前記第一および第二の遮断弁を閉じ、前記バイパス流路を通過して前記第一および第二の遮断弁と前記第一の制御弁との間および前記第一の制御弁における作動油を排出する。
In order to solve the above-described problems, according to the steam valve driving device of the embodiment, the steam valve driving device for controlling the amount of steam introduced into the steam turbine, the steam valve includes: a valve body; A hydraulic cylinder device for adjusting the opening degree of the valve body, and adjusting the steam amount by adjusting the opening degree of the valve body according to the amount of hydraulic oil supplied to the hydraulic cylinder device In the valve drive device, a control device for controlling the amount of the hydraulic oil supplied to the hydraulic cylinder device;
A first control valve that controls the amount of the hydraulic fluid supplied to the hydraulic cylinder device by a signal from the control device, and a first control valve that are provided in parallel with the first control valve, are supplied to the hydraulic cylinder device. A second control valve that controls the amount of the hydraulic oil, and a first control valve that blocks supply of the hydraulic oil to the first control valve and discharge of the hydraulic oil from the first control valve. And a second shut-off valve that shuts off the supply of the hydraulic oil from the first control valve to the hydraulic cylinder device and the discharge of the hydraulic oil from the hydraulic cylinder device to the first control valve. A third shut-off valve that shuts off the supply of the hydraulic oil to the second control valve and the discharge of the hydraulic oil from the second control valve, and the hydraulic cylinder from the second control valve Supply of the hydraulic oil to a device and the second control from the hydraulic cylinder device A fourth shut-off valve that shuts off the discharge of the hydraulic oil to the first pipe, and a branch from between the first control valve and the first and second shut-off valves, and the second control valve and the A bypass flow path that branches off from between the third and fourth shut-off valves and discharges the hydraulic oil, and the steam valve drive device is configured when the first control valve is incompatible. , By controlling the amount of the hydraulic oil supplied to the hydraulic cylinder device using the second control valve according to a signal from the control device, the steam valve is continuously operated, and the first and second The shut-off valve is closed, passes through the bypass flow path, and discharges hydraulic oil between the first and second shut-off valves and the first control valve and in the first control valve.

第一および第二の実施形態に係る蒸気弁駆動装置を備えた蒸気タービン発電設備の一例を表す図である。It is a figure showing an example of the steam turbine power generation equipment provided with the steam valve drive device which concerns on 1st and 2nd embodiment. 第一の実施形態に係る蒸気弁駆動装置の構成を表す図である。It is a figure showing the structure of the steam valve drive device which concerns on 1st embodiment. 第一の実施形態に係る蒸気弁駆動装置において、一方のサーボ弁に不適合が発生した場合の動作手順を表すフローである。In the steam valve drive device concerning a first embodiment, it is a flow showing the operation procedure at the time of nonconformity generating to one servo valve. 従来の蒸気弁駆動装置の構成を表す図である。It is a figure showing the structure of the conventional steam valve drive device. 従来の蒸気弁駆動装置のサーボ弁90の系統図であって、(a)サーボ弁が初期位置にいる場合、(b)サーボ弁が開き、蒸気弁に作動油を供給する場合をそれぞれ示す。It is the systematic diagram of the servo valve 90 of the conventional steam valve drive device, Comprising: (a) When a servo valve exists in an initial position, (b) The case where a servo valve opens and supplies hydraulic fluid to a steam valve is each shown.

以下、実施形態に係る蒸気弁駆動装置について説明する。   Hereinafter, the steam valve drive device according to the embodiment will be described.

図1は、第一および第二の実施形態に係る蒸気弁駆動装置を備えた蒸気タービン発電設備の一例を表す図である。この蒸気タービン発電設備は、後述する各実施形態に係る蒸気弁駆動装置を少なくとも1つ搭載する。図1に示す蒸気タービン発電設備1は、例えば火力発電プラントを表す。蒸気タービン発電設備1は、ボイラ2と、高圧タービン3と、再熱器4と、低圧タービン5と、復水器6と、給水ポンプ7から構成される。   Drawing 1 is a figure showing an example of the steam turbine power generation equipment provided with the steam valve drive device concerning a 1st and 2nd embodiment. This steam turbine power generation facility is equipped with at least one steam valve driving device according to each embodiment described later. A steam turbine power generation facility 1 shown in FIG. 1 represents, for example, a thermal power plant. The steam turbine power generation facility 1 includes a boiler 2, a high pressure turbine 3, a reheater 4, a low pressure turbine 5, a condenser 6, and a feed water pump 7.

ボイラ2は、水を加熱して蒸気を生成する。この蒸気は、主蒸気止め弁11および蒸気加減弁12を順次に経て高圧タービン3に導入される。高圧タービン3は、ターボ機械であり、導入された蒸気によって回転する。高圧タービン3は、再熱器4に接続され、仕事を終えて膨張した蒸気を再熱器4に送る。再熱器4は、高圧タービン3で仕事をした蒸気の湿分を除去すると共に加熱する。再熱器4を通過した蒸気は、低圧タービン5に導入される。低圧タービン5は、高圧タービン3に直結された回転軸を有するターボ機械であり、再熱器4から導入された蒸気によって回転する。高圧タービン3および低圧タービン5の回転は、回転軸を介して発電機(図示していない)に伝わり、発電機での発電に寄与する。一方、低圧タービン5は、復水器6に接続され、仕事を終えて膨張した蒸気を復水器6に送る。復水器6は、低圧タービン5で仕事をした蒸気を凝縮して水に戻す。給水ポンプ7は、この水を加圧してボイラ2へ送る。   The boiler 2 heats water and generates steam. This steam is introduced into the high-pressure turbine 3 through the main steam stop valve 11 and the steam control valve 12 in order. The high-pressure turbine 3 is a turbo machine and is rotated by the introduced steam. The high-pressure turbine 3 is connected to the reheater 4, and sends the expanded steam after work to the reheater 4. The reheater 4 removes the moisture of the steam that has worked in the high-pressure turbine 3 and heats it. The steam that has passed through the reheater 4 is introduced into the low-pressure turbine 5. The low-pressure turbine 5 is a turbo machine having a rotating shaft directly connected to the high-pressure turbine 3, and is rotated by steam introduced from the reheater 4. The rotation of the high-pressure turbine 3 and the low-pressure turbine 5 is transmitted to a generator (not shown) via a rotating shaft, and contributes to power generation by the generator. On the other hand, the low-pressure turbine 5 is connected to the condenser 6, and sends the expanded steam after finishing work to the condenser 6. The condenser 6 condenses the steam worked in the low-pressure turbine 5 and returns it to water. The feed water pump 7 pressurizes this water and sends it to the boiler 2.

ここで、主蒸気止め弁11は、蒸気弁駆動装置によって弁体を全閉または全開し、高圧タービン3および低圧タービン5への蒸気の供給を遮断あるいは許可する。一方、蒸気加減弁12は、蒸気弁駆動装置によって弁体の開度を調整し、高圧タービン3および低圧タービン5へ供給される蒸気量を制御する。   Here, the main steam stop valve 11 fully closes or fully opens the valve body by the steam valve driving device, and interrupts or permits the supply of steam to the high pressure turbine 3 and the low pressure turbine 5. On the other hand, the steam control valve 12 controls the amount of steam supplied to the high-pressure turbine 3 and the low-pressure turbine 5 by adjusting the opening of the valve body by the steam valve driving device.

(比較例)
次に、実施形態に係る蒸気弁駆動装置を説明するにあたり、比較例として従来の蒸気弁駆動装置を、図4を用いて説明する。図4は、従来の蒸気弁駆動装置の構成を表す図である。従来の蒸気弁駆動装置80は、蒸気弁70に接続され、制御弁としてのサーボ弁90と、制御装置100から構成される。この蒸気弁駆動装置80は、複数の蒸気弁70にそれぞれ具備される。サーボ弁90に不適合が発生した場合、このサーボ弁90に連結された蒸気弁70を全閉させた後に作動油を排油し、不適合が発生したサーボ弁90を交換する。
(Comparative example)
Next, in describing the steam valve driving device according to the embodiment, a conventional steam valve driving device will be described with reference to FIG. 4 as a comparative example. FIG. 4 is a diagram illustrating a configuration of a conventional steam valve driving device. A conventional steam valve driving device 80 is connected to the steam valve 70 and includes a servo valve 90 as a control valve and a control device 100. The steam valve driving device 80 is provided in each of the plurality of steam valves 70. When non-conformance occurs in the servo valve 90, the steam valve 70 connected to the servo valve 90 is fully closed, the hydraulic oil is discharged, and the servo valve 90 in which the non-conformance has occurred is replaced.

弁体71の開閉は、蒸気弁駆動装置80から油圧シリンダ装置72へ作動油81を導入して調整される。この油圧シリンダ装置72は、弁体71に連結されたピストン73によって、作動油81が導入される作動室72aと、非作動室72bに区画される。また、油圧シリンダ装置72は、ピストン73の軸回りを螺旋状に覆うようにばね74が設置される。このばね74は、ピストン73に復元力を与え、弁体71を閉じるように動作させる。ピストン73は、ばね74の復元力および弁体71にかかる蒸気の圧力に抗って作動油81の油圧により上方に可動し、蒸気弁70の弁体71を開くよう動作させる。   The opening and closing of the valve body 71 is adjusted by introducing hydraulic oil 81 from the steam valve driving device 80 to the hydraulic cylinder device 72. The hydraulic cylinder device 72 is divided into a working chamber 72 a into which the working oil 81 is introduced and a non-working chamber 72 b by a piston 73 connected to the valve body 71. Further, the hydraulic cylinder device 72 is provided with a spring 74 so as to cover the axis of the piston 73 spirally. The spring 74 applies a restoring force to the piston 73 and operates to close the valve body 71. The piston 73 moves upward by the hydraulic pressure of the hydraulic oil 81 against the restoring force of the spring 74 and the pressure of the steam applied to the valve body 71, and operates to open the valve body 71 of the steam valve 70.

開度検出器75は、油圧シリンダ装置72のピストン73に連結され、ピストン73の可動に追従した弁体71の開度を電気信号として制御装置100へ送信する。   The opening detector 75 is connected to the piston 73 of the hydraulic cylinder device 72 and transmits the opening of the valve body 71 following the movement of the piston 73 to the control device 100 as an electrical signal.

蒸気弁駆動装置80は、油圧発生装置(図示していない)から油圧シリンダ装置72へ導入される作動油81の流路と、油圧シリンダ装置72からタンク(図示していない)に向かって排出される排油82(排出された作動油)の流路を有する。サーボ弁90を交換する場合は、制御装置100からの信号により蒸気弁70を全閉させるよう動作させる。つまり、作動室72aに充満した油を、サーボ弁90を介して排油82として排出させる。なお、タービントリップが発生した場合には、トリップ回路(図示していない)を介して、作動室72aに充満した油を直接排油82として排出させる。   The steam valve driving device 80 is discharged from a hydraulic pressure generator (not shown) to the hydraulic cylinder device 72 and to the hydraulic cylinder device 72 and from the hydraulic cylinder device 72 toward a tank (not shown). And a flow path for the discharged oil 82 (discharged hydraulic oil). When exchanging the servo valve 90, the steam valve 70 is operated to be fully closed by a signal from the control device 100. That is, the oil filled in the working chamber 72 a is discharged as drain oil 82 through the servo valve 90. When a turbine trip occurs, the oil filled in the working chamber 72a is directly discharged as drain oil 82 via a trip circuit (not shown).

制御装置100は、開度検出器75から弁体71の開度を電気信号として受信する。また、制御装置100は、蒸気弁駆動装置80から作動室72aへ供給される作動油81の流れ、および作動室72aから蒸気弁駆動装置80へ排出される排油82の流れを制御する信号をサーボ弁90へ送信する。特に、定格運転時において、サーボ弁90は開いた状態であり、制御装置100は、開度検出器75から受信する弁体71の開度が一定となるようにサーボ弁90を制御する。   The control device 100 receives the opening degree of the valve body 71 from the opening degree detector 75 as an electric signal. In addition, the control device 100 generates a signal for controlling the flow of the hydraulic oil 81 supplied from the steam valve driving device 80 to the working chamber 72a and the flow of the exhaust oil 82 discharged from the working chamber 72a to the steam valve driving device 80. Transmit to servo valve 90. In particular, during rated operation, the servo valve 90 is in an open state, and the control device 100 controls the servo valve 90 so that the opening degree of the valve body 71 received from the opening degree detector 75 is constant.

ここで、サーボ弁90の構成および蒸気弁70への作動油81の供給方法について、図4および図5を用いて説明する。図5は、従来の蒸気弁駆動装置のサーボ弁90の系統図であって、(a)サーボ弁が初期位置にいる場合、(b)サーボ弁が開き、蒸気弁に作動油を供給する場合をそれぞれ示す。   Here, the configuration of the servo valve 90 and the method of supplying the hydraulic oil 81 to the steam valve 70 will be described with reference to FIGS. 4 and 5. FIG. 5 is a system diagram of a servo valve 90 of a conventional steam valve driving device, where (a) the servo valve is in the initial position, (b) the servo valve is opened, and hydraulic oil is supplied to the steam valve. Respectively.

サーボ弁90は、従来用いられているノズルフラッパ型のサーボ弁であり、流路92aaと、オリフィス92bと、スプール93と、パイロットポート94aと、供給ポート94bと、制御ポート94cと、戻りポート94dと、制御ポート94eと、アーマチュア95と、フラッパ96と、スプリング97と、コイル98と、磁極99とを備える。スプール93は、スプリング97を介してフラッパ96の下端に連結される。油圧発生装置(図示していない)から作動室72aに導入される作動油81の流れと、作動室72aから排出される排油82の流れを制御する。比較例では、制御ポート94cは、作動油81を作動室72aへ供給するポート、制御ポート94eは、作動室72aから排出される排油82を導入するポートとする。   The servo valve 90 is a conventionally used nozzle flapper type servo valve, and includes a flow path 92aa, an orifice 92b, a spool 93, a pilot port 94a, a supply port 94b, a control port 94c, and a return port 94d. A control port 94e, an armature 95, a flapper 96, a spring 97, a coil 98, and a magnetic pole 99. The spool 93 is connected to the lower end of the flapper 96 via a spring 97. It controls the flow of hydraulic oil 81 introduced into the working chamber 72a from a hydraulic pressure generator (not shown) and the flow of exhaust oil 82 discharged from the working chamber 72a. In the comparative example, the control port 94c is a port for supplying the working oil 81 to the working chamber 72a, and the control port 94e is a port for introducing the drain oil 82 discharged from the working chamber 72a.

具体的には、油圧発生装置(図示していない)から、パイロットポート94aを経て流路92aに作動油81を導入する。左右のパイロットポート94aから流路92aへ導入された作動油81は、流路92aの左右に設けられたオリフィス92bにより流量が絞られる。スプール93、アーマチュア95、およびフラッパ96に偏りがないこの状態を初期位置(図5(a)の状態)とする。初期位置に対して、制御装置100からコイル98へ信号(電流)が送信されると、アーマチュア95は、コイル98の作る磁界によって励磁される。励磁されたアーマチュア95は、磁極99の作る磁界から力を受け、アーマチュア95の下方に連結されたフラッパ96を可動させる。フラッパ96は、アーマチュア95と共に可動して左右に展開された流路92aの右方を塞ぐ。この際に、オリフィス92bより下流側の油圧が左右で変化する。つまり、フラッパ96が近づいた右方の油圧は上昇し、フラッパ96が遠ざかった左方の油圧は下降する。その結果、スプール93は、スプリング97の復元力に抗って油圧により左方に変位する(図5(b)の状態)。スプール93が左方に変位すると、供給ポート94bおよび制御ポート94cが開き、供給ポート94bおよび制御ポート94c間で流路が形成される。作動油81は、この流路を介して、油圧発生装置(図示していない)、サーボ弁90を順次通過し、作動室72aへ導入される。同時に、戻りポート94dおよび制御ポート94eが開くと、戻りポート94dおよび制御ポート94e間で流路が形成される。排油82は、この流路を介して作動室72a、サーボ弁90を順次通過し、油圧発生装置(図示していない)へと戻される。   Specifically, the hydraulic oil 81 is introduced into the flow path 92a from the hydraulic pressure generator (not shown) through the pilot port 94a. The flow rate of the hydraulic oil 81 introduced from the left and right pilot ports 94a into the flow path 92a is reduced by the orifices 92b provided on the left and right sides of the flow path 92a. This state in which the spool 93, the armature 95, and the flapper 96 are not biased is defined as an initial position (the state shown in FIG. 5A). When a signal (current) is transmitted from the control device 100 to the coil 98 with respect to the initial position, the armature 95 is excited by the magnetic field generated by the coil 98. The excited armature 95 receives a force from the magnetic field generated by the magnetic pole 99 and moves the flapper 96 connected to the lower side of the armature 95. The flapper 96 is movable together with the armature 95 and closes the right side of the flow path 92a that is developed left and right. At this time, the hydraulic pressure on the downstream side of the orifice 92b changes on the left and right. That is, the hydraulic pressure on the right side where the flapper 96 approaches increases, and the hydraulic pressure on the left side where the flapper 96 moves away decreases. As a result, the spool 93 is displaced to the left by the hydraulic pressure against the restoring force of the spring 97 (the state shown in FIG. 5B). When the spool 93 is displaced to the left, the supply port 94b and the control port 94c are opened, and a flow path is formed between the supply port 94b and the control port 94c. The hydraulic oil 81 sequentially passes through a hydraulic pressure generator (not shown) and the servo valve 90 through this flow path, and is introduced into the working chamber 72a. At the same time, when the return port 94d and the control port 94e are opened, a flow path is formed between the return port 94d and the control port 94e. The drained oil 82 sequentially passes through the working chamber 72a and the servo valve 90 through this flow path, and is returned to a hydraulic pressure generator (not shown).

一方で、制御信号100からコイル98に対して初期位置に戻すよう指示する信号が送信されると、アーマチュア95およびフラッパ96は、傾きを小さくする方向に可動する。これにより、塞がれていた左方の流路92aが再び開通し、スプール93に働く油圧が小さくなる。油圧よりもスプリング97の復元力が大きくなると、スプール93は、この復元力により初期位置へ戻るように可動し、各ポートを閉鎖する。   On the other hand, when a signal for instructing the coil 98 to return to the initial position is transmitted from the control signal 100, the armature 95 and the flapper 96 move in a direction of decreasing the inclination. As a result, the blocked left channel 92a is opened again, and the hydraulic pressure acting on the spool 93 is reduced. When the restoring force of the spring 97 becomes larger than the hydraulic pressure, the spool 93 moves to return to the initial position by the restoring force, and closes each port.

この一連の流れにおいて、サーボ弁90は、制御装置100からの信号を入力としてスプール93を変位させ、各ポートの開度を変化させる。その結果、サーボ弁90は、作動室72aに導入される作動油81の流量と、作動室72aから排出される排油82の流量のバランスを調整し、弁体71の開度を制御する。   In this series of flows, the servo valve 90 receives the signal from the control device 100 and displaces the spool 93 to change the opening degree of each port. As a result, the servo valve 90 adjusts the balance between the flow rate of the hydraulic oil 81 introduced into the working chamber 72a and the flow rate of the drained oil 82 discharged from the working chamber 72a, and controls the opening degree of the valve body 71.

(第一の実施形態)
次に、第一の実施形態に係る蒸気弁駆動装置を説明する。なお、比較例と類似する箇所については説明を省略する。図2は、第一の実施形態に係る蒸気弁駆動装置の構成を表す図である。第一の実施形態に係る蒸気弁駆動装置30は、蒸気弁20に接続され、サーボ弁40(制御弁)と、サーボ弁50(制御弁)と、制御装置60から構成される。この蒸気弁20は、主蒸気止め弁11および蒸気加減弁12の総称である。第一の実施形態に係る蒸気弁駆動装置30は、蒸気弁20に複数のサーボ弁が並列に設けられ、いずれかのサーボ弁に不適合が発見された場合でも、蒸気タービンを継続運転させたままサーボ弁を修理または交換できる。
(First embodiment)
Next, the steam valve driving device according to the first embodiment will be described. In addition, description is abbreviate | omitted about the location similar to a comparative example. FIG. 2 is a diagram illustrating the configuration of the steam valve driving device according to the first embodiment. The steam valve drive device 30 according to the first embodiment is connected to the steam valve 20 and includes a servo valve 40 (control valve), a servo valve 50 (control valve), and a control device 60. The steam valve 20 is a general term for the main steam stop valve 11 and the steam control valve 12. In the steam valve drive device 30 according to the first embodiment, the steam valve 20 is provided with a plurality of servo valves in parallel, and the steam turbine is continuously operated even if any of the servo valves is found to be incompatible. Servo valve can be repaired or replaced.

蒸気弁20は、蒸気が流れる流路において、高圧タービン3および低圧タービン5の少なくとも一方の蒸気入り口に設けられる。この蒸気弁20が蒸気加減弁12の場合は、弁体21の開閉動作により開度を調整してタービンへの蒸気の導入量を調整し、蒸気弁20が主蒸気止め弁11の場合は、全開もしくは全閉状態となって蒸気の導入を許可(全開)または遮断(全閉)する。   The steam valve 20 is provided at the steam inlet of at least one of the high-pressure turbine 3 and the low-pressure turbine 5 in the flow path through which the steam flows. When the steam valve 20 is the steam control valve 12, the opening degree is adjusted by opening and closing the valve body 21 to adjust the amount of steam introduced into the turbine. When the steam valve 20 is the main steam stop valve 11, Fully open or fully closed to permit (full open) or shut off (fully closed) steam introduction.

蒸気弁駆動装置30は、弁体21を開けたまま、サーボ弁40またはサーボ弁50を交換できる。蒸気弁駆動装置30は、油圧シリンダ装置22に連結され、油圧発生装置(図示していない)から油圧シリンダ装置22を駆動する作動油31の流路と、油圧シリンダ装置22からタンク(図示していない)に向かって排出される排油32(排出された作動油)の流路に加えて、排油32の流路から分岐したバイパス流路33を有する。蒸気弁駆動装置30の油圧シリンダ装置22への連結は、流路を介して連結されることが好ましいが、連結方法によっては限定されない。バイパス流路33は、サーボ弁40と遮断弁41a〜41eとの間、およびサーボ弁50と遮断弁51a〜51eとの間から分岐して排油32の流路に接続され、絞り弁34および36と、逆止弁(図示していない)と、止め弁(図示していない)が設置される。逆止弁(図示していない)は、排油32の逆流を防ぐために設けられる。止め弁(図示していない)は、交換後の新たなサーボ弁40または50から、排油32の流路を介して順次空気抜きを行うために設けられる。   The steam valve driving device 30 can replace the servo valve 40 or the servo valve 50 with the valve body 21 open. The steam valve driving device 30 is connected to the hydraulic cylinder device 22 and has a flow path of hydraulic oil 31 that drives the hydraulic cylinder device 22 from a hydraulic pressure generator (not shown), and a tank (not shown) from the hydraulic cylinder device 22. In addition to the flow path of the drained oil 32 (discharged hydraulic oil) discharged toward (no), a bypass flow path 33 branched from the flow path of the drained oil 32 is provided. The connection of the steam valve drive device 30 to the hydraulic cylinder device 22 is preferably connected via a flow path, but is not limited by the connection method. The bypass flow path 33 branches from between the servo valve 40 and the shutoff valves 41a to 41e and between the servo valve 50 and the shutoff valves 51a to 51e and is connected to the flow path of the drained oil 32. 36, a check valve (not shown) and a stop valve (not shown) are installed. A check valve (not shown) is provided to prevent the backflow of the drained oil 32. A stop valve (not shown) is provided for sequentially venting air from the new servo valve 40 or 50 after replacement through the flow path of the drained oil 32.

定格運転時において、絞り弁34および36は全閉の状態であり、サーボ弁40を交換する場合は、制御装置60からの信号により絞り弁34開くように動作させ、サーボ弁50を交換する場合は、制御装置60からの信号により絞り弁36開くように動作させる。絞り弁34または36を開くことによって、サーボ弁40またはサーボ弁50に充満した油を排出する。この間、もう一方のサーボ弁を介して弁体21の開度を制御する。なお、タービントリップが発生した場合には、トリップ回路(図示していない)を介して、作動室22aから作動油31を排油32として排出させる。   During the rated operation, the throttle valves 34 and 36 are in a fully closed state. When the servo valve 40 is replaced, the throttle valve 34 is opened by a signal from the control device 60 and the servo valve 50 is replaced. Is operated to open the throttle valve 36 in response to a signal from the control device 60. By opening the throttle valve 34 or 36, the oil filled in the servo valve 40 or the servo valve 50 is discharged. During this time, the opening degree of the valve body 21 is controlled via the other servo valve. When a turbine trip occurs, the hydraulic oil 31 is discharged as exhaust oil 32 from the working chamber 22a via a trip circuit (not shown).

サーボ弁40およびサーボ弁50は、作動油31の流路および排油32の流路を介して油圧シリンダ装置22に並列に設けられ、油圧発生装置(図示していない)から油圧シリンダ装置22を駆動する作動油31の流れと、作動室22aから排出される排油32の流れを制御する。サーボ弁40およびサーボ弁50のうち、不適合が発生したサーボ弁が第一の制御弁、他方のサーボ弁が第二の制御弁である。サーボ弁40およびサーボ弁50の構成および蒸気弁20への作動油31の供給方法は、サーボ弁90と同様である。   The servo valve 40 and the servo valve 50 are provided in parallel to the hydraulic cylinder device 22 through the flow path of the hydraulic oil 31 and the flow path of the drain oil 32, and the hydraulic cylinder apparatus 22 is supplied from a hydraulic pressure generator (not shown). It controls the flow of the hydraulic oil 31 to be driven and the flow of the exhaust oil 32 discharged from the working chamber 22a. Of the servo valve 40 and the servo valve 50, the servo valve in which incompatibility has occurred is the first control valve, and the other servo valve is the second control valve. The configuration of the servo valve 40 and the servo valve 50 and the method of supplying the hydraulic oil 31 to the steam valve 20 are the same as those of the servo valve 90.

遮断弁41a〜41eおよび遮断弁51a〜51eは、サーボ弁40およびサーボ弁50に連結される。ここでの連結は、直接サーボ弁40およびサーボ弁50に連結される場合だけでなく、作動油31の流路および排油32の流路を介して連結される場合も含む。遮断弁41a〜41cおよび遮断弁51a〜51cのうち、不適合が発生したサーボ弁に連結された方が第一の遮断弁、他方が第三の遮断弁であり、遮断弁41d、41eおよび遮断弁51d、51eのうち、不適合が発生したサーボ弁に連結された方が第二の遮断弁、他方が第四の遮断弁である。第一から第四の遮断弁のうち、油圧シリンダ装置22側へと連結された流路は、太線で示す。サーボ弁40およびサーボ弁50のいずれか一方に不適合が発生した場合に、遮断弁41a〜41eまたは遮断弁51a〜51eは、弁体を全閉するよう動作し、不適合が発生したサーボ弁を油圧シリンダ装置22から遮断する。この全閉動作は、制御装置60から遮断弁41a〜41eまたは遮断弁51a〜51eに対して信号が送信された後に行われる。   The shutoff valves 41 a to 41 e and the shutoff valves 51 a to 51 e are connected to the servo valve 40 and the servo valve 50. The connection here includes not only the case of being directly connected to the servo valve 40 and the servo valve 50 but also the case of being connected via the flow path of the hydraulic oil 31 and the flow path of the exhaust oil 32. Of the shut-off valves 41a to 41c and the shut-off valves 51a to 51c, the first shut-off valve is connected to the servo valve in which incompatibility has occurred, and the other is the third shut-off valve. The shut-off valves 41d and 41e and the shut-off valves Of 51d and 51e, the second shut-off valve is connected to the servo valve in which the nonconformity occurs, and the other is the fourth shut-off valve. Of the first to fourth shut-off valves, the flow path connected to the hydraulic cylinder device 22 side is indicated by a bold line. When a non-conformance occurs in either one of the servo valve 40 or the servo valve 50, the shut-off valves 41a to 41e or the shut-off valves 51a to 51e operate to fully close the valve body, and the servo valve in which the non-conformance has occurred is hydraulically operated. Shut off from the cylinder device 22. This fully closing operation is performed after a signal is transmitted from the control device 60 to the shutoff valves 41a to 41e or the shutoff valves 51a to 51e.

制御装置60は、開度検出器25から、弁体21の開度を電気信号として受信する。また、制御装置60は、蒸気弁駆動装置30から作動室22aへ導入される作動油31の流れ、および作動室22aから蒸気弁駆動装置30へ排出される排油32の流れを制御する信号を蒸気弁駆動装置30へ送信する。特に、定格運転時において、サーボ弁40およびサーボ弁50は共に開いた状態であり、制御装置60は、開度検出器25から受信する弁体21の開度が一定となるようにサーボ弁40およびサーボ弁50を制御する。   The control device 60 receives the opening degree of the valve body 21 from the opening degree detector 25 as an electrical signal. In addition, the control device 60 provides signals for controlling the flow of the hydraulic oil 31 introduced from the steam valve driving device 30 to the working chamber 22a and the flow of the exhaust oil 32 discharged from the working chamber 22a to the steam valve driving device 30. It transmits to the steam valve drive device 30. In particular, during rated operation, the servo valve 40 and the servo valve 50 are both open, and the controller 60 controls the servo valve 40 so that the opening degree of the valve body 21 received from the opening degree detector 25 is constant. And the servo valve 50 is controlled.

次に、図3を用いて、一方のサーボ弁に不適合が発生した場合の蒸気弁駆動装置の動作方法について説明する。図3は、第一の実施形態に係る蒸気弁駆動装置において、一方のサーボ弁に不適合が発生した場合の動作手順を表すフローである。蒸気弁駆動装置30は、定常運転時に定期的に実施される弁テストにおいて、サーボ弁40およびサーボ弁50の動作の健全性を確認する。この弁テストは、制御装置60からサーボ弁40またはサーボ弁50に対して、一方のサーボ弁を初期位置に維持させたまま他方のサーボ弁を可動させるよう指示する。この指示に追従して弁体21が可動した場合、可動させるよう指示したサーボ弁は不適合なしと判断される。この指示に弁体21が追従しなかった場合、可動させるよう指示したサーボ弁は不適合ありと判断される(S1)。サーボ弁の不適合を判断した直後に、制御装置60は、初期位置に維持させたサーボ弁の動作を解除させるよう指示する。   Next, an operation method of the steam valve driving device when a nonconformity occurs in one servo valve will be described with reference to FIG. FIG. 3 is a flow showing an operation procedure when a nonconformity occurs in one of the servo valves in the steam valve driving device according to the first embodiment. The steam valve driving device 30 confirms the soundness of the operation of the servo valve 40 and the servo valve 50 in a valve test that is periodically performed during steady operation. In this valve test, the control device 60 instructs the servo valve 40 or the servo valve 50 to move the other servo valve while keeping the one servo valve at the initial position. When the valve body 21 moves following this instruction, it is determined that the servo valve instructed to move is not incompatible. If the valve body 21 does not follow this instruction, it is determined that the servo valve instructed to move is incompatible (S1). Immediately after determining the nonconformity of the servo valve, the control device 60 instructs to cancel the operation of the servo valve maintained at the initial position.

(1)サーボ弁40に不適合が発生した場合(第一の制御弁がサーボ弁40の場合)
サーボ弁40に不適合が発生した場合には、サーボ弁50を初期位置に維持させる動作を解除した後に、制御装置60から遮断弁41a〜41eに対して、遮断弁41a〜41eを全閉するよう動作させる信号を送信し、全閉動作が行われる(S2)。サーボ弁40を復旧させるまでの間は、サーボ弁50のみを用いて蒸気弁20の弁体21の開度が調整される。さらに制御装置60は、バイパス流路33の絞り弁34に対して、絞り弁34を開くよう動作させる信号を送信し、絞り弁34を開く動作が行われる。すると、サーボ弁40と遮断弁41a〜41eの間に充満された油は、各ポートからバイパス流路33を通過し、排油32として排出される(S3)。このとき、圧力計35により、バイパス流路33の圧力が表示される。圧力計35で表示される圧力により、作動油31の流出または噴出がないことを確認する。この確認後に、制御装置60から絞り弁34に対して、絞り弁34を全閉させる信号を送信し、絞り弁34の全閉動作が行われる。上述の過程を実施した後に、不適合が発生したサーボ弁40を修理、または正常なサーボ弁40と交換する(S4)。修理または交換後に、再度制御装置60から遮断弁41a〜41eに対して、遮断弁41a〜41eを全開するよう動作させる信号を送信し、遮断弁41a〜41eの全閉動作が解除される(S5)。これにより、サーボ弁40に作動油31が供給され、サーボ弁40が復旧する。
(1) When nonconformity occurs in the servo valve 40 (when the first control valve is the servo valve 40)
When non-conformity occurs in the servo valve 40, after the operation for maintaining the servo valve 50 at the initial position is canceled, the shutoff valves 41a to 41e are fully closed from the control device 60 to the shutoff valves 41a to 41e. A signal to be operated is transmitted, and the fully closed operation is performed (S2). Until the servo valve 40 is restored, the opening degree of the valve body 21 of the steam valve 20 is adjusted using only the servo valve 50. Further, the control device 60 transmits a signal for opening the throttle valve 34 to the throttle valve 34 of the bypass flow path 33, and the operation of opening the throttle valve 34 is performed. Then, the oil filled between the servo valve 40 and the shutoff valves 41a to 41e passes through the bypass flow path 33 from each port and is discharged as the drained oil 32 (S3). At this time, the pressure in the bypass channel 33 is displayed by the pressure gauge 35. Based on the pressure displayed by the pressure gauge 35, it is confirmed that there is no outflow or ejection of the hydraulic oil 31. After this confirmation, a signal for fully closing the throttle valve 34 is transmitted from the control device 60 to the throttle valve 34, and the throttle valve 34 is fully closed. After performing the above-described process, the servo valve 40 in which the nonconformity has occurred is repaired or replaced with a normal servo valve 40 (S4). After repair or replacement, a signal for operating the shut-off valves 41a to 41e to be fully opened is transmitted again from the control device 60 to the shut-off valves 41a to 41e, and the full-close operation of the shut-off valves 41a to 41e is released (S5). ). As a result, the hydraulic oil 31 is supplied to the servo valve 40 and the servo valve 40 is restored.

一方、サーボ弁40に不適合が発生しなかった場合は、サーボ弁50の弁テストを実施するか、または弁テストを終了させる。弁テストを終了させる場合は、サーボ弁の交換は実施せず、運転を継続させる(S6)。   On the other hand, when the nonconformity does not occur in the servo valve 40, the valve test of the servo valve 50 is performed or the valve test is terminated. When ending the valve test, the servo valve is not replaced and the operation is continued (S6).

(2)サーボ弁50に不適合が発生した場合
サーボ弁50に不適合が発生した場合には、サーボ弁40に不都合が発生した場合の制御装置60からの信号について、遮断弁41a〜41eへの信号を遮断弁51a〜51eに、絞り弁34への信号を絞り弁36にそれぞれ送信して動作を行わせればよい。また、バイパス流路33の圧力は、圧力計37で確認すればよい。これにより、サーボ弁40と同様にサーボ弁50を復旧させる。
(2) When non-conformance occurs in the servo valve 50 When non-conformance occurs in the servo valve 50, the signal from the control device 60 when the inconvenience occurs in the servo valve 40 is a signal to the shut-off valves 41a to 41e. May be transmitted to the shutoff valves 51a to 51e and a signal to the throttle valve 34 may be transmitted to the throttle valve 36, respectively. Further, the pressure in the bypass channel 33 may be confirmed with a pressure gauge 37. Thereby, the servo valve 50 is restored in the same manner as the servo valve 40.

上述した第一の実施形態によれば、サーボ弁40またはサーボ弁50に異常が発生した場合でも、蒸気弁20を全閉させることなく修理または交換を可能とし、蒸気タービンが継続運転できる。蒸気弁20を全閉させることなくサーボ弁の修理または交換が可能なため、メンテナンスにかかる時間および費用が抑えられる。また、蒸気弁20を全閉させずに済むため、蒸気弁が多重化された場合だけでなく、蒸気弁が単数の場合にも適用できる。   According to the first embodiment described above, even when an abnormality occurs in the servo valve 40 or the servo valve 50, repair or replacement can be performed without fully closing the steam valve 20, and the steam turbine can be continuously operated. Since the servo valve can be repaired or replaced without fully closing the steam valve 20, maintenance time and cost can be reduced. Moreover, since it is not necessary to fully close the steam valve 20, it is applicable not only when the steam valves are multiplexed but also when there is a single steam valve.

(第二の実施形態)
次に、第二の実施形態に係る蒸気弁駆動装置について説明する。第一の実施形態と類似する箇所については、説明を省略する。第一の実施形態に係る蒸気弁駆動装置との相違点は、制御弁としてサーボ弁の代わりに電磁弁を用いることである。電磁弁は、制御装置からの信号により、作動室への作動油の供給を許可または遮断し、弁体の開度を全開(許可)または全閉(遮断)状態になるよう制御する。第二の実施形態に係る蒸気弁駆動装置の他の構成については、第一の実施形態と同様である。
(Second embodiment)
Next, the steam valve driving device according to the second embodiment will be described. A description of parts similar to those in the first embodiment is omitted. The difference from the steam valve drive device according to the first embodiment is that an electromagnetic valve is used as a control valve instead of a servo valve. The solenoid valve permits or shuts off the supply of hydraulic oil to the working chamber according to a signal from the control device, and controls the opening of the valve body to be in a fully open (permitted) or fully closed (shut off) state. Other configurations of the steam valve driving device according to the second embodiment are the same as those of the first embodiment.

上述した第二の実施形態によれば、電磁弁においても第一の実施形態と同様の効果を有する。   According to the second embodiment described above, the electromagnetic valve has the same effect as the first embodiment.

なお、第一および第二の実施形態においては、サーボ弁または電磁弁が2個の場合について記載したが、サーボ弁または電磁弁の個数は限定されない。   In the first and second embodiments, the case where there are two servo valves or solenoid valves is described, but the number of servo valves or solenoid valves is not limited.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1.蒸気タービン発電設備、2.ボイラ、3.高圧タービン、4.再熱器、5.低圧タービン、6.復水器、7.給水ポンプ、11.主蒸気止め弁、12.蒸気加減弁、20.蒸気弁、21.弁体、22.油圧シリンダ装置、22a.作動室、22b.非作動室、23.ピストン、24.ばね、25.開度検出器、30.蒸気弁駆動装置、31.作動油、32.排油、33.バイパス流路、34.絞り弁、35.圧力計、36.絞り弁、37.圧力計、40.サーボ弁、41a〜41e.遮断弁、44a.パイロットポート、44b.供給ポート、44c.制御ポート、44d.戻りポート、44e.制御ポート、50.サーボ弁、51a〜51e.遮断弁、54a.パイロットポート、54b.供給ポート、54c.制御ポート、54d.戻りポート、54e.制御ポート、60.制御装置、70.蒸気弁、71.弁体、72.油圧シリンダ装置、72a.作動室、72b.非作動室、73.ピストン、74.ばね、75.開度検出器、80.蒸気弁駆動装置、81.作動油、82.排油、90.サーボ弁、92.流路、93.スプール、94a.パイロットポート、94b.供給ポート、94c.制御ポート、94d.戻りポート、94e.制御ポート、95.アーマチュア、96.フラッパ、97.スプリング、98.コイル、99.磁極、100.制御装置 1. 1. Steam turbine power generation equipment, Boiler, 3. High pressure turbine, 4. 4. Reheater, Low pressure turbine, 6. Condenser, 7. Water pump, 11. Main steam stop valve, 12. Steam control valve, 20. Steam valve, 21. Valve body, 22. Hydraulic cylinder device, 22a. Working chamber, 22b. Non-working chamber, 23. Piston, 24. Spring, 25. Opening detector 30. Steam valve driving device 31. Hydraulic oil, 32. Oil drain, 33. Bypass channel, 34. Throttle valve, 35. Pressure gauge, 36. Throttle valve, 37. Pressure gauge, 40. Servo valves, 41a-41e. Shut-off valve, 44a. Pilot port, 44b. Supply port, 44c. Control port, 44d. Return port, 44e. Control port, 50. Servo valves 51a-51e. Shut-off valve, 54a. Pilot port, 54b. Supply port, 54c. Control port, 54d. Return port, 54e. Control port, 60. Control device, 70. Steam valve, 71. Valve body, 72. Hydraulic cylinder device, 72a. Working chamber, 72b. Non-working chamber, 73. Piston, 74. Spring, 75. Opening detector, 80. 81. steam valve drive device, Hydraulic oil, 82. Oil draining, 90. Servo valve, 92. Flow path, 93. Spool, 94a. Pilot port, 94b. Supply port, 94c. Control port, 94d. Return port, 94e. Control port, 95. Armature, 96. Flapper, 97. Spring, 98. Coil, 99. Magnetic pole, 100. Control device

Claims (4)

蒸気タービンに導入される蒸気量を制御するための蒸気弁の駆動装置であって、前記蒸気弁は、弁体と、前記弁体の開度を調整するための油圧シリンダ装置とを有し、前記油圧シリンダ装置に供給される作動油の量により前記弁体の開度を調整して前記蒸気量を制御する蒸気弁駆動装置において、
前記油圧シリンダ装置に供給される前記作動油の量を制御する制御装置と、
前記制御装置からの信号により、前記油圧シリンダ装置に供給される前記作動油の量を制御する第一の制御弁と、
前記第一の制御弁と並列に設けられ、前記油圧シリンダ装置に供給される前記作動油の量を制御する第二の制御弁と、
前記第一の制御弁への前記作動油の供給と前記第一の制御弁からの前記作動油の排出とを遮断する第一の遮断弁と、
前記第一の制御弁から前記油圧シリンダ装置への前記作動油の供給と前記油圧シリンダ装置から前記第一の制御弁への前記作動油の排出とを遮断する第二の遮断弁と、
前記第二の制御弁への前記作動油の供給と前記第二の制御弁からの前記作動油の排出とを遮断する第三の遮断弁と、
前記第二の制御弁から前記油圧シリンダ装置への前記作動油の供給と前記油圧シリンダ装置から前記第二の制御弁への前記作動油の排出とを遮断する第四の遮断弁と、
前記第一の制御弁と前記第一および第二の遮断弁との間から分岐され、かつ前記第二の制御弁と前記第三および第四の遮断弁との間から分岐されて前記作動油を排出するバイパス流路と、
を具備し、
前記蒸気弁駆動装置は、前記第一の制御弁に不適合が発生した場合に、前記制御装置からの信号により、前記第二の制御弁を用いて前記油圧シリンダ装置に供給される前記作動油の量を制御して前記蒸気弁を継続運転させ、
前記第一および第二の遮断弁を閉じ、前記バイパス流路を通過して前記第一および第二の遮断弁と前記第一の制御弁との間および前記第一の制御弁における作動油を排出する蒸気弁駆動装置。
A steam valve drive device for controlling the amount of steam introduced into the steam turbine, the steam valve having a valve body and a hydraulic cylinder device for adjusting the opening of the valve body, In the steam valve driving device that controls the amount of steam by adjusting the opening of the valve body by the amount of hydraulic oil supplied to the hydraulic cylinder device,
A control device for controlling the amount of the hydraulic oil supplied to the hydraulic cylinder device;
A first control valve for controlling the amount of the hydraulic oil supplied to the hydraulic cylinder device by a signal from the control device;
A second control valve which is provided in parallel with the first control valve and controls the amount of the hydraulic oil supplied to the hydraulic cylinder device;
A first shut-off valve that shuts off the supply of the hydraulic oil to the first control valve and the discharge of the hydraulic oil from the first control valve;
A second shut-off valve that shuts off the supply of the hydraulic oil from the first control valve to the hydraulic cylinder device and the discharge of the hydraulic oil from the hydraulic cylinder device to the first control valve;
A third shut-off valve that shuts off the supply of the hydraulic oil to the second control valve and the discharge of the hydraulic oil from the second control valve;
A fourth shut-off valve that shuts off the supply of the hydraulic oil from the second control valve to the hydraulic cylinder device and the discharge of the hydraulic oil from the hydraulic cylinder device to the second control valve;
The hydraulic fluid is branched from between the first control valve and the first and second cutoff valves, and is branched from between the second control valve and the third and fourth cutoff valves. A bypass flow path for discharging
Comprising
The steam valve driving device is configured to supply the hydraulic oil supplied to the hydraulic cylinder device using the second control valve in response to a signal from the control device when a nonconformity occurs in the first control valve. Control the amount and continue operation of the steam valve,
Close the first and second shut-off valves, pass hydraulic fluid between the first and second shut-off valves and the first control valve and in the first control valve through the bypass flow path. Steam valve drive device to discharge.
前記蒸気弁は、蒸気止め弁または蒸気加減弁であり、
前記第一および第二の制御弁は、前記作動油の量を制御して前記蒸気弁の開度を調整するサーボ弁である請求項1に記載の蒸気弁駆動装置。
The steam valve is a steam stop valve or a steam control valve,
2. The steam valve drive device according to claim 1, wherein the first and second control valves are servo valves that control an amount of the hydraulic oil to adjust an opening degree of the steam valve.
前記蒸気弁は蒸気止め弁であり、
前記第一および第二の制御弁は、前記蒸気止め弁の油圧シリンダ装置への前記作動油の供給を許可あるいは遮断させる電磁弁である請求項1に記載の蒸気弁駆動装置。
The steam valve is a steam stop valve;
2. The steam valve driving device according to claim 1, wherein the first and second control valves are electromagnetic valves that permit or block the supply of the hydraulic oil to a hydraulic cylinder device of the steam stop valve.
蒸気タービンへ導入される蒸気量を制御するため、可動して蒸気入口の開度を調整する弁体と、
前記弁体に連結されたピストンと、
前記ピストンの軸周りを螺旋状に覆うように配置され、前記弁体を閉じる方向へ可動させるばねと、
前記ピストンを収容し、作動室に作動油を導入して前記ばねの復元力に抗って前記作動油の油圧により前記ピストンを可動させる油圧シリンダ装置と、を具備する蒸気弁において、
前記油圧シリンダ装置は、請求項1から3のいずれかに記載の蒸気弁駆動装置に連結される蒸気弁。
In order to control the amount of steam introduced into the steam turbine, a valve body that moves and adjusts the opening of the steam inlet;
A piston connected to the valve body;
A spring which is arranged so as to spirally cover the axis of the piston and which moves the valve body in a closing direction;
A hydraulic cylinder device that houses the piston, introduces hydraulic oil into a working chamber, and moves the piston by hydraulic pressure of the hydraulic oil against a restoring force of the spring;
The said hydraulic cylinder apparatus is a steam valve connected with the steam valve drive device in any one of Claim 1 to 3.
JP2017153415A 2017-08-08 2017-08-08 Steam valve driving device and steam valve Pending JP2019031941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153415A JP2019031941A (en) 2017-08-08 2017-08-08 Steam valve driving device and steam valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153415A JP2019031941A (en) 2017-08-08 2017-08-08 Steam valve driving device and steam valve

Publications (1)

Publication Number Publication Date
JP2019031941A true JP2019031941A (en) 2019-02-28

Family

ID=65523172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153415A Pending JP2019031941A (en) 2017-08-08 2017-08-08 Steam valve driving device and steam valve

Country Status (1)

Country Link
JP (1) JP2019031941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11359515B2 (en) 2019-05-14 2022-06-14 Kabushiki Kaisha Toshiba Steam valve driving apparatus, steam valve apparatus, and steam turbine plant
EP4286661A1 (en) 2022-05-31 2023-12-06 Basell Polyolefine GmbH Method and device for controlling a steam turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11359515B2 (en) 2019-05-14 2022-06-14 Kabushiki Kaisha Toshiba Steam valve driving apparatus, steam valve apparatus, and steam turbine plant
EP4286661A1 (en) 2022-05-31 2023-12-06 Basell Polyolefine GmbH Method and device for controlling a steam turbine
WO2023232704A1 (en) 2022-05-31 2023-12-07 Basell Polyolefine Gmbh Method and device for controlling a steam turbine

Similar Documents

Publication Publication Date Title
RU2606465C2 (en) Method of high pressure (hp) positive displacement pump efficiency monitoring in turbomachine hydraulic regulation system
CN101479678A (en) Device and method for performing a functional test on a control element of a turbo engine
EP3081784B1 (en) Gas turbine fuel control system with shutoff feature and associated method
JP2018123732A (en) Steam turbine valve driving device
US8753067B2 (en) Steam valve apparatus
JP2019031941A (en) Steam valve driving device and steam valve
US11359515B2 (en) Steam valve driving apparatus, steam valve apparatus, and steam turbine plant
JP2007303387A (en) Speed governor for hydraulic machine
JP2013204469A (en) Steam turbine and steam turbine control device
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
JP6139369B2 (en) Steam valve device
JP5823167B2 (en) Steam valve device
JP7408494B2 (en) Steam turbine valve abnormality monitoring system, steam turbine valve drive device, steam turbine valve device, and steam turbine plant
JPH10306766A (en) Reversible pump-turbine
JP6581499B2 (en) Steam valve drive
JP4693360B2 (en) Turbomachine safety equipment and power generation equipment
JP2986148B2 (en) Turbine emergency equipment
JP6678561B2 (en) Turbine control device and geothermal turbine power generation equipment
JP7053418B2 (en) Combined intermediate valve gear and turbine power generation equipment
KR101155528B1 (en) Apparatus for observing a safety valve bypass element
US10087786B2 (en) Plant control apparatus and combined cycle power plant
JP7249229B2 (en) Hybrid servo motor system
JP7263218B2 (en) hydraulic circuit
CN217813614U (en) Hydraulic control loop and hydraulic block for redundant servo valve of steam valve and servomotor of steam turbine
KR102525617B1 (en) Thrust control apparatus for balance piston of nuclear power plant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210416