JP7053418B2 - Combined intermediate valve gear and turbine power generation equipment - Google Patents

Combined intermediate valve gear and turbine power generation equipment Download PDF

Info

Publication number
JP7053418B2
JP7053418B2 JP2018171684A JP2018171684A JP7053418B2 JP 7053418 B2 JP7053418 B2 JP 7053418B2 JP 2018171684 A JP2018171684 A JP 2018171684A JP 2018171684 A JP2018171684 A JP 2018171684A JP 7053418 B2 JP7053418 B2 JP 7053418B2
Authority
JP
Japan
Prior art keywords
valve
drive device
hydraulic oil
flow path
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018171684A
Other languages
Japanese (ja)
Other versions
JP2020041531A (en
Inventor
雄一 佐々木
隆弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018171684A priority Critical patent/JP7053418B2/en
Publication of JP2020041531A publication Critical patent/JP2020041531A/en
Application granted granted Critical
Publication of JP7053418B2 publication Critical patent/JP7053418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

本発明の実施形態は、組み合わせ中間弁装置およびタービン発電設備に関する。 Embodiments of the present invention relate to a combined intermediate valve device and a turbine power generation facility.

原子力発電設備では、高圧タービンで仕事をした後の蒸気は、湿分分離器で湿分を除去され、その後クロスアラウンド管を経て低圧タービンに導入される。クロスアラウンド管には、低圧タービンのタービントリップまたは負荷遮断時に低圧タービンへの蒸気流入によるタービンのオーバースピードを防ぐため、中間蒸気止め弁およびインターセプト弁がそれぞれ設けられている。中間蒸気止め弁およびインターセプト弁は、クロスアラウンド管を流れる蒸気の流れ方向に沿って直列に組み込まれ、組み合わせ中間弁装置として構成される。 In a nuclear power plant, the steam after working in a high pressure turbine is dehumidified by a moisture separator and then introduced into a low pressure turbine via a cross-around pipe. The cross-around pipe is provided with an intermediate steam stop valve and an intercept valve, respectively, in order to prevent overspeed of the turbine due to steam inflow to the low pressure turbine during a turbine trip or load cutoff of the low pressure turbine. The intermediate steam stop valve and intercept valve are incorporated in series along the flow direction of steam flowing through the cross-around pipe and are configured as a combined intermediate valve device.

関連技術に係る組み合わせ中間弁装置100について、図6および図7を用いて説明する。図6は、関連技術に係る組み合わせ中間弁装置の概略構成図であり、図7は、図6をP-P方向から見た平面図である。図6に示すように、組み合わせ中間弁装置100は、両端部にフランジを有する管状の弁ケーシング11に、バタフライ型の中間蒸気止め弁12aと、バタフライ型のインターセプト弁12bとを組込んで一体化した構成とされている。この弁ケーシング11の軸方向両端が、フランジを介して図示省略のクロスアラウンド管と低圧タービン入口配管との間に連結される。 The combined intermediate valve device 100 according to the related technique will be described with reference to FIGS. 6 and 7. FIG. 6 is a schematic configuration diagram of a combined intermediate valve device according to a related technique, and FIG. 7 is a plan view of FIG. 6 as viewed from the PP direction. As shown in FIG. 6, the combined intermediate valve device 100 integrates a butterfly type intermediate steam stop valve 12a and a butterfly type intercept valve 12b in a tubular valve casing 11 having flanges at both ends. It is said that the configuration is as follows. Both ends of the valve casing 11 in the axial direction are connected via a flange between a cross-around pipe (not shown) and a low-pressure turbine inlet pipe.

図6および図7に示すように、中間蒸気止め弁12aは、組み合わせ中間弁装置100の弁体であり、その中心位置が弁棒13aに取り付けられる。弁棒13aは中間蒸気止め弁12aの回動軸であり、蒸気の流れ方向と直交する配置で弁ケーシング11の軸受部11aに回動可能に支持される。弁棒13aの一端は、後述する中間蒸気止め弁駆動装置20aに連結される。 As shown in FIGS. 6 and 7, the intermediate steam stop valve 12a is a valve body of the combined intermediate valve device 100, and its central position is attached to the valve rod 13a. The valve rod 13a is a rotation axis of the intermediate steam stop valve 12a, and is rotatably supported by the bearing portion 11a of the valve casing 11 in an arrangement orthogonal to the steam flow direction. One end of the valve rod 13a is connected to an intermediate steam stop valve drive device 20a, which will be described later.

中間蒸気止め弁駆動装置20aは、油圧式の中間蒸気止め弁12aの駆動装置であり、弁ケーシング11の外側に、連結具18aを介して固定されている。中間蒸気止め弁駆動装置20aの一端側の中心位置からは上下方向に変位可能な駆動ロッド21aが突出し、この駆動ロッド21aの先端にリンク式の駆動レバー14aを介して弁棒13aが連結されている。そして、油圧供給装置(図示省略)から中間蒸気止め弁駆動装置20aの油圧シリンダ22aに作動油が供給されると、この作動油からの油圧が駆動ロッド21aに働き、油圧シリンダ22a内部の駆動ロッド21aに繋がれたばねからの復元力に抗って駆動ロッド21aを上方向に押し上げる。その結果、駆動ロッド21aは上方向に変位し、その変位量は、油圧シリンダ22aに供給される作動油量に応じて変化する。駆動レバー14aは、駆動ロッド21aの上下方向の運動を回転運動に変換して弁棒13aに駆動力を伝達する。これにより、弁棒13aに取り付けられた中間蒸気止め弁12aが、この弁棒13aと共に開閉回動する。より具体的には、中間蒸気止め弁駆動装置20aの油圧シリンダ22aに所定量の作動油が供給される場合には、中間蒸気止め弁12aが全開となり、この油圧シリンダ22aから作動油を排出しきった(油圧シリンダ22a内の作動油が空である)場合には、中間蒸気止め弁12aが全閉となる。 The intermediate steam stop valve drive device 20a is a drive device for the hydraulic intermediate steam stop valve 12a, and is fixed to the outside of the valve casing 11 via a connector 18a. A drive rod 21a that can be displaced in the vertical direction protrudes from the center position on one end side of the intermediate steam stop valve drive device 20a, and a valve rod 13a is connected to the tip of the drive rod 21a via a link type drive lever 14a. There is. When hydraulic oil is supplied from the hydraulic pressure supply device (not shown) to the hydraulic cylinder 22a of the intermediate steam stop valve drive device 20a, the hydraulic pressure from the hydraulic oil acts on the drive rod 21a and the drive rod inside the hydraulic cylinder 22a. The drive rod 21a is pushed upward against the restoring force from the spring connected to the 21a. As a result, the drive rod 21a is displaced upward, and the displacement amount changes according to the amount of hydraulic oil supplied to the hydraulic cylinder 22a. The drive lever 14a converts the vertical motion of the drive rod 21a into a rotary motion and transmits the drive force to the valve rod 13a. As a result, the intermediate steam stop valve 12a attached to the valve rod 13a opens and closes and rotates together with the valve rod 13a. More specifically, when a predetermined amount of hydraulic oil is supplied to the hydraulic cylinder 22a of the intermediate steam stop valve drive device 20a, the intermediate steam stop valve 12a is fully opened and the hydraulic oil is completely discharged from the hydraulic cylinder 22a. If (the hydraulic oil in the hydraulic cylinder 22a is empty), the intermediate steam stop valve 12a is fully closed.

一方、インターセプト弁12bは、中間蒸気止め弁12aと共に組み合わせ中間弁装置100の弁体を構成し、その中心位置が弁棒13bに取り付けられる。弁棒13bは、インターセプト弁12bの回動軸であり、中間蒸気止め弁12aよりも蒸気の流れ方向下流側の軸受部11bに回動可能に支持される。その他の構成については、中間蒸気止め弁12aと同様である。すなわち、弁ケーシング11の外側には、連結具18bを介して、インターセプト弁駆動装置20bが固定されている。弁棒13bは、駆動レバー14bを介してインターセプト弁駆動装置20bの駆動ロッド21bに連結される。 On the other hand, the intercept valve 12b is combined with the intermediate steam stop valve 12a to form the valve body of the intermediate valve device 100, and the center position thereof is attached to the valve rod 13b. The valve rod 13b is a rotation shaft of the intercept valve 12b, and is rotatably supported by a bearing portion 11b on the downstream side in the steam flow direction with respect to the intermediate steam stop valve 12a. Other configurations are the same as those of the intermediate steam stop valve 12a. That is, the intercept valve driving device 20b is fixed to the outside of the valve casing 11 via the connector 18b. The valve rod 13b is connected to the drive rod 21b of the intercept valve drive device 20b via the drive lever 14b.

タービントリップや負荷遮断等の際には、中間蒸気止め弁駆動装置20a、インターセプト弁駆動装置20bが緊急起動してこれらを構成する油圧シリンダ内部から作動油を排出し、中間蒸気止め弁12aおよびインターセプト弁12bを急閉する。 In the event of a turbine trip, load shedding, etc., the intermediate steam stop valve drive device 20a and intercept valve drive device 20b are urgently activated to discharge hydraulic oil from the inside of the hydraulic cylinders that compose them, and the intermediate steam stop valve 12a and intercept are used. The valve 12b is closed suddenly.

特開2003-293705号公報Japanese Unexamined Patent Application Publication No. 2003-293705.

中間蒸気止め弁12aおよびインターセプト弁12bは、タービントリップや負荷遮断等が発生した場合でも、所定の時間だけ運転状態を継続できることが要求される。タービントリップや負荷遮断等が発生すると、中間蒸気止め弁12aおよびインターセプト弁12bが急閉されるため、この要求を満たすには、弁体の急閉後に再度弁体を急開して、その弁開度が制御可能かを確認する必要がある。しかしながら、弁体を開くには、中間蒸気止め弁駆動装置20a、インターセプト弁駆動装置20bそれぞれの油圧シリンダ内部に対して、駆動ロッド21a、21bに繋がれたばねからの復元力に抗うだけの作動油を再度供給する必要がある。したがって、上述の方法において弁体を開き、かつその弁開度が制御可能かを確認するためには、急閉時と比べて長い時間を要する可能性がある。 The intermediate steam stop valve 12a and the intercept valve 12b are required to be able to continue the operating state for a predetermined time even when a turbine trip, load cutoff, or the like occurs. When a turbine trip or load shedding occurs, the intermediate steam stop valve 12a and the intercept valve 12b are suddenly closed. To meet this requirement, the valve body is suddenly closed and then the valve body is suddenly opened again. It is necessary to confirm whether the opening can be controlled. However, in order to open the valve body, hydraulic oil that only resists the restoring force from the springs connected to the drive rods 21a and 21b inside the hydraulic cylinders of the intermediate steam stop valve drive device 20a and the intercept valve drive device 20b, respectively. Need to be resupplied. Therefore, it may take a longer time than when the valve body is suddenly closed in order to open the valve body and confirm whether the valve opening degree can be controlled by the above method.

また、一般的な原子力発電設備では、中間蒸気止め弁12a、インターセプト弁12bがそれぞれ複数設けられ、これらの弁それぞれに対応した中間蒸気止め弁駆動装置20aとインターセプト弁駆動装置20bとが、一つの油圧供給装置(図示省略)に連結される。したがって、複数の弁体を同時に急開動作させる場合、これらの駆動装置に供給すべき作動油の総流量が、油圧供給装置から供給可能な作動油の総流量を一時的に上回る可能性がある。これは、原子力発電設備に設けられる全ての蒸気弁の作動油系統の急激な圧力低下を起こし、蒸気弁の制御不能を引き起こす可能性がある。 Further, in a general nuclear power generation facility, a plurality of intermediate steam stop valves 12a and intercept valves 12b are provided, respectively, and the intermediate steam stop valve drive device 20a and the intercept valve drive device 20b corresponding to each of these valves are one. It is connected to a hydraulic supply device (not shown). Therefore, when a plurality of valve bodies are suddenly opened at the same time, the total flow rate of the hydraulic oil to be supplied to these drive devices may temporarily exceed the total flow rate of the hydraulic oil that can be supplied from the hydraulic pressure supply device. .. This can cause a sharp drop in pressure in the hydraulic system of all steam valves installed in nuclear power plants, which can lead to uncontrollable steam valves.

そこで本発明が解決しようとする課題は、作動油の排出だけで弁体の急閉とその後の急開とを実行できる組み合わせ中間弁装置およびタービン発電設備を提供することである。 Therefore, an object to be solved by the present invention is to provide a combined intermediate valve device and a turbine power generation facility capable of performing sudden closing and subsequent rapid opening of a valve body only by discharging hydraulic oil.

上記の課題を解決するために、実施形態の組み合わせ中間弁装置によれば、弁体が取り付けられた弁棒を油圧シリンダ内の作動油量を調整して回転駆動させ、蒸気流路からこの弁体を通過して蒸気タービンに供給される蒸気量を制御する組み合わせ中間弁装置であって、前記油圧シリンダを具備し、前記油圧シリンダへ供給される前記作動油量を調整し前記弁棒を介して前記弁体に駆動力を伝達する第一および第二の駆動装置と、前記第一の駆動装置と前記弁棒との間、および前記第二の駆動装置と前記弁棒との間に設けられ、前記弁棒と前記第一および第二の駆動装置のいずれか一方とを連結させるクラッチ機構と、前記クラッチ機構による前記連結を調整する制御指令を出力する制御装置と、を備え、前記蒸気タービンの通常運転時には、前記弁棒が前記クラッチ機構を介して前記第一の駆動装置に連結され、前記第一の駆動装置の油圧シリンダ内の前記作動油量により前記弁体の開きを調整し、前記蒸気タービンの異常運転時に前記弁体を急閉する場合には、前記第一の駆動装置の油圧シリンダへの前記作動油の供給を遮断して、前記第一の駆動装置の油圧シリンダから前記作動油を排出し、前記急閉の後に前記弁体を急開する場合には、前記制御装置からの制御指令に基づいて、前記クラッチ機構が前記第一の駆動装置と前記弁棒とを遮断すると共に、前記第二の駆動装置と前記弁棒とを連結し、前記第二の駆動装置の油圧シリンダへの前記作動油の供給を遮断して、所定量の作動油が満たされた前記第二の駆動装置の油圧シリンダから前記作動油を排出する。 In order to solve the above problems, according to the combined intermediate valve device of the embodiment, the valve rod to which the valve body is attached is driven to rotate by adjusting the amount of hydraulic oil in the hydraulic cylinder, and this valve is driven from the steam flow path. It is a combination intermediate valve device that controls the amount of steam that passes through the body and is supplied to the steam turbine. The hydraulic cylinder is provided, and the amount of hydraulic oil supplied to the hydraulic cylinder is adjusted via the valve rod. The first and second drive devices that transmit the driving force to the valve body are provided between the first drive device and the valve rod, and between the second drive device and the valve rod. The steam is provided with a clutch mechanism for connecting the valve rod and any one of the first and second drive devices, and a control device for outputting a control command for adjusting the connection by the clutch mechanism. During normal operation of the turbine, the valve rod is connected to the first drive device via the clutch mechanism, and the opening of the valve body is adjusted by the amount of hydraulic oil in the hydraulic cylinder of the first drive device. When the valve body is suddenly closed during abnormal operation of the steam turbine, the supply of the hydraulic oil to the hydraulic cylinder of the first drive device is cut off, and the hydraulic cylinder of the first drive device is used. When the hydraulic oil is discharged and the valve body is suddenly opened after the sudden closing, the clutch mechanism causes the first drive device and the valve rod to be connected based on a control command from the control device. The second drive device and the valve rod are connected to each other, and the supply of the hydraulic oil to the hydraulic cylinder of the second drive device is cut off, so that a predetermined amount of the hydraulic oil is filled. The hydraulic oil is discharged from the hydraulic cylinder of the second drive device.

本発明の実施形態によれば、作動油の排出だけで弁体の急閉とその後の急開とを実行できる。 According to the embodiment of the present invention, the valve body can be suddenly closed and then suddenly opened only by discharging the hydraulic oil.

実施形態に係る組み合わせ中間弁装置を備えたタービン発電設備の概要図である。It is a schematic diagram of the turbine power generation facility provided with the combined intermediate valve device which concerns on embodiment. 実施形態に係る実施形態に係る組み合わせ中間弁装置の概要図である。It is a schematic diagram of the combination intermediate valve device which concerns on embodiment which concerns on embodiment. 実施形態に係る組み合わせ中間弁装置のインターセプト弁近傍を拡大した図であり、(a)は弁棒13bと駆動レバー14bとが連結する場合を、(b)は弁棒13bと駆動レバー15bとが連結する場合をそれぞれ示す。It is an enlarged view of the vicinity of the intercept valve of the combination intermediate valve device which concerns on embodiment, (a) is the case where a valve rod 13b and a drive lever 14b are connected, and (b) is a case where a valve rod 13b and a drive lever 15b are connected. The cases of concatenation are shown respectively. 実施形態に係るインターセプト弁の開閉動作を示すフローチャートであって、(a)はインターセプト弁の急閉時を、(b)は急閉後の急開時をそれぞれ示す。It is a flowchart which shows the opening and closing operation of the intercept valve which concerns on embodiment, (a) shows the time of sudden closing of an intercept valve, (b) shows the time of sudden opening after sudden closing, respectively. 実施形態の変形例に係る組み合わせ中間弁装置の構成を示す図である。It is a figure which shows the structure of the combination intermediate valve device which concerns on the modification of embodiment. 関連技術に係る組み合わせ中間弁装置の概略構成図である。It is a schematic block diagram of the combination intermediate valve device which concerns on the related technology. 図6をP-P方向から見た平面図である。FIG. 6 is a plan view of FIG. 6 as viewed from the PP direction.

本実施形態は、インターセプト弁を駆動させるインターセプト弁駆動装置を二つ設けると共に、これらの駆動装置のいずれかとインターセプト弁の弁棒とをクラッチ機構を介して連結させる。これにより、各駆動装置からの作動油の排出を通して、インターセプト弁の急閉と、その後の急開とが実現できる。以降では、その詳細について説明する。なお、前述の関連技術に係る組み合わせ中間弁装置と同様の箇所については、同じ図番を付して説明する。 In the present embodiment, two intercept valve driving devices for driving the intercept valve are provided, and one of these driving devices and the valve stem of the intercept valve are connected via a clutch mechanism. As a result, the intercept valve can be suddenly closed and then suddenly opened through the discharge of the hydraulic oil from each drive device. Hereinafter, the details will be described. The same parts as those of the combined intermediate valve device according to the above-mentioned related techniques will be described with the same reference numerals.

図1は、実施形態に係る組み合わせ中間弁装置を備えたタービン発電設備の一例を表す図である。このタービン発電設備は、例えば原子力発電用のタービン発電設備である。本実施形態では、沸騰水型原子炉発電(BWR)用のタービン発電設備を例示して説明する。 FIG. 1 is a diagram showing an example of a turbine power generation facility provided with a combined intermediate valve device according to an embodiment. This turbine power generation facility is, for example, a turbine power generation facility for nuclear power generation. In this embodiment, a turbine power generation facility for boiling water reactor power generation (BWR) will be illustrated and described.

図1に示すように、タービン発電設備1は、原子炉2と、主蒸気止め弁3aと、蒸気加減弁3bと、高圧蒸気タービン4と、湿分分離加熱器5と、低圧蒸気タービン6と、発電機7と、復水器8と、復水ポンプ9と、組み合わせ中間弁装置10と、を備える。 As shown in FIG. 1, the turbine power generation facility 1 includes a reactor 2, a main steam stop valve 3a, a steam control valve 3b, a high-pressure steam turbine 4, a moisture separation heater 5, and a low-pressure steam turbine 6. , A generator 7, a condenser 8, a condenser pump 9, and a combined intermediate valve device 10.

原子炉2で発生した蒸気は、主蒸気管を通り、主蒸気止め弁3aと、高圧蒸気タービン4への流入速度および負荷を直接制御する蒸気加減弁3bとを順次経て高圧蒸気タービン4に流入する。高圧蒸気タービン4に流入した蒸気は、高圧蒸気タービン4内部で膨張仕事をして、高圧蒸気タービン4を回転駆動させる。高圧蒸気タービン4で仕事をした後の蒸気は、高圧蒸気タービン4の排気として高圧蒸気タービン4から排出され、アラウンド管を通って湿分分離加熱器5に流入する。湿分分離加熱器5では、排気中の湿分を除去すると共に、この排気を加熱して再熱蒸気を発生させる。再熱蒸気は、湿分分離加熱器5から排出された後に、組み合わせ中間弁装置10を構成する中間蒸気止め弁12aおよびインターセプト弁12bを順次経て、低圧蒸気タービン6に流入する。低圧蒸気タービン6に流入した再熱蒸気は、低圧蒸気タービン6で膨張仕事をして、低圧蒸気タービン6を回転駆動させる。この再熱蒸気は、低圧蒸気タービン6の排気として低圧蒸気タービン6から排出され、復水器8で復水に凝縮される。復水は、復水器8から復水ポンプ9を経て再び原子炉2に供給される。 The steam generated in the reactor 2 passes through the main steam pipe, sequentially passes through the main steam stop valve 3a and the steam control valve 3b that directly controls the inflow speed and load to the high-pressure steam turbine 4, and then flows into the high-pressure steam turbine 4. do. The steam flowing into the high-pressure steam turbine 4 expands inside the high-pressure steam turbine 4 to rotate and drive the high-pressure steam turbine 4. The steam after working in the high-pressure steam turbine 4 is discharged from the high-pressure steam turbine 4 as exhaust from the high-pressure steam turbine 4, and flows into the moisture separation heater 5 through an around pipe. The moisture separation heater 5 removes moisture in the exhaust gas and heats the exhaust gas to generate reheated steam. After being discharged from the moisture separation heater 5, the reheated steam flows into the low-pressure steam turbine 6 through the intermediate steam stop valve 12a and the intercept valve 12b constituting the combined intermediate valve device 10 in sequence. The reheated steam flowing into the low-pressure steam turbine 6 expands in the low-pressure steam turbine 6 to rotationally drive the low-pressure steam turbine 6. This reheated steam is discharged from the low-pressure steam turbine 6 as exhaust from the low-pressure steam turbine 6, and is condensed into condensate by the condenser 8. The condensate is supplied to the reactor 2 again from the condensate 8 via the condensate pump 9.

このように、タービン発電設備1を流れる蒸気または復水の流路は閉ループを構成している。高圧蒸気タービン4、および低圧蒸気タービン6の回転駆動により発生した回転エネルギは、発電機7において電気エネルギに変換され、送電系統に送られる。 As described above, the flow path of steam or condensate flowing through the turbine power generation facility 1 constitutes a closed loop. The rotational energy generated by the rotational drive of the high-pressure steam turbine 4 and the low-pressure steam turbine 6 is converted into electric energy in the generator 7 and sent to the transmission system.

なお、ここでは一台の高圧蒸気タービン4と三台の低圧蒸気タービン6を備えるタービン発電設備1を例示したが、タービン発電設備1の構成はこの場合に限定されない。例えば、高圧蒸気タービン、中圧蒸気タービン、および低圧蒸気タービンを備えた構成や、これらの蒸気タービンの少なくともいずれかが複数台設置された構成などでもよい。 Although the turbine power generation facility 1 including one high-pressure steam turbine 4 and three low-pressure steam turbines 6 is illustrated here, the configuration of the turbine power generation facility 1 is not limited to this case. For example, a configuration including a high-pressure steam turbine, a medium-pressure steam turbine, and a low-pressure steam turbine, or a configuration in which a plurality of at least one of these steam turbines is installed may be used.

次に、図1において説明した組み合わせ中間弁装置10について説明する。なお、関連技術に係る組み合わせ中間弁装置と同様の構成については同じ図番を付けて説明する。 Next, the combined intermediate valve device 10 described with reference to FIG. 1 will be described. The same configuration as the combined intermediate valve device according to the related technology will be described with the same reference numerals.

組み合わせ中間弁装置10は、弁ケーシング11と、中間蒸気止め弁12aと、インターセプト弁12bと、弁棒13aおよび13bと、駆動レバー14a、14b、および15bと、クラッチ機構16bと、中間蒸気止め弁駆動装置20aと、インターセプト弁駆動装置20b(第一の駆動装置)および30b(第二の駆動装置)と、油圧回路40とを備える。すなわち、組み合わせ中間弁装置10は、インターセプト弁12bの駆動装置として、インターセプト弁駆動装置20b(第一の駆動装置)および30b(第二の駆動装置)の二つの駆動装置を備える。 The combined intermediate valve device 10 includes a valve casing 11, an intermediate steam stop valve 12a, an intercept valve 12b, valve rods 13a and 13b, drive levers 14a, 14b, and 15b, a clutch mechanism 16b, and an intermediate steam stop valve. It includes a drive device 20a, an intercept valve drive device 20b (first drive device) and 30b (second drive device), and a hydraulic circuit 40. That is, the combined intermediate valve device 10 includes two drive devices, the intercept valve drive device 20b (first drive device) and the intercept valve drive device 30b (second drive device), as the drive device for the intercept valve 12b.

中間蒸気止め弁12aは、組み合わせ中間弁装置10の弁体であり、その中心位置が弁棒13aに取り付けられる。弁棒13aは中間蒸気止め弁12aの回動軸であり、弁ケーシング11の軸受部11aを介して、この弁ケーシング11と直交する軸心まわりに回動可能に支持される。すなわち、中間蒸気止め弁12aと弁棒13aとは一体となって、弁ケーシング11と直交する軸心まわりに回動する。弁棒13aの一端は、後述する駆動レバー14aを介して、後述する中間蒸気止め弁駆動装置20aに連結される。 The intermediate steam stop valve 12a is a valve body of the combined intermediate valve device 10, and its center position is attached to the valve rod 13a. The valve rod 13a is a rotation axis of the intermediate steam stop valve 12a, and is rotatably supported around an axis orthogonal to the valve casing 11 via a bearing portion 11a of the valve casing 11. That is, the intermediate steam stop valve 12a and the valve rod 13a are integrated and rotate around an axial center orthogonal to the valve casing 11. One end of the valve rod 13a is connected to the intermediate steam stop valve drive device 20a described later via a drive lever 14a described later.

インターセプト弁12bは、中間蒸気止め弁12aと共に組み合わせ中間弁装置10の弁体を構成し、その中心位置が弁棒13bに取り付けられる。弁棒13bはインターセプト弁12bの回動軸であり、弁ケーシング11の軸受部11bを介して、この弁ケーシング11と直交する軸心まわりに回動可能に支持される。すなわち、中間蒸気止め弁12bと弁棒13bとは一体となって、弁ケーシング11と直交する軸心まわりに回動する。弁棒13bの一端側には、駆動レバー14bおよびインターセプト弁駆動装置20bが、その他端側には、駆動レバー15bおよびインターセプト弁駆動装置30bがそれぞれ設けられている。弁棒13bと、駆動レバー14bおよび15bとの間にはクラッチ機構16bが設けられ、後述するように、これら駆動レバーのいずれかと弁棒13bとが、このクラッチ機構16bを介して連結する。 The intercept valve 12b is combined with the intermediate steam stop valve 12a to form the valve body of the intermediate valve device 10, and the center position thereof is attached to the valve rod 13b. The valve rod 13b is a rotation axis of the intercept valve 12b, and is rotatably supported around an axis orthogonal to the valve casing 11 via a bearing portion 11b of the valve casing 11. That is, the intermediate steam stop valve 12b and the valve rod 13b are integrated and rotate around an axial center orthogonal to the valve casing 11. A drive lever 14b and an intercept valve drive device 20b are provided on one end side of the valve rod 13b, and a drive lever 15b and an intercept valve drive device 30b are provided on the other end side. A clutch mechanism 16b is provided between the valve rod 13b and the drive levers 14b and 15b, and as will be described later, one of these drive levers and the valve rod 13b are connected via the clutch mechanism 16b.

中間蒸気止め弁駆動装置20aは、駆動ロッド21aと、油圧シリンダ22aと、ダンプ弁室(図示省略)と、ディスクダンプ弁(図示省略)とを備える。中間蒸気止め弁駆動装置20aは、弁ケーシング11の外側で、かつ弁ケーシング11の中心から一側方に離間した位置に側面視で直交する姿勢で配置される。このとき、弁ケーシング11と中間蒸気止め弁駆動装置20aとは、連結具18aを介して一体に固定されている。中間蒸気止め弁駆動装置20a一端側の中心位置からは、上下方向に変位可能な駆動ロッド21aが突出し、この駆動ロッド21aの先端と弁棒13aとが、リンク式の駆動レバー14aを介して連結される。中間蒸気止め弁駆動装置20aは、油圧シリンダ22a内部に供給される作動油量を調整することで駆動ロッド21aを上下に変位させ、この変位を駆動レバー14aで回転運動に変換して弁棒13aを回動させる。これにより、中間蒸気止め弁12aが、弁棒13aと共に弁ケーシング11内で開閉回動する。なお、ダンプ弁室およびディスクダンプ弁(共に図示省略)の構成やその動作方法については、後述するインターセプト弁駆動装置20bのダンプ弁室23bおよびディスクダンプ弁24bと同様である。 The intermediate steam stop valve drive device 20a includes a drive rod 21a, a hydraulic cylinder 22a, a dump valve chamber (not shown), and a disc dump valve (not shown). The intermediate steam stop valve drive device 20a is arranged outside the valve casing 11 and at a position unilaterally separated from the center of the valve casing 11 in a posture orthogonal to each other in a side view. At this time, the valve casing 11 and the intermediate steam stop valve drive device 20a are integrally fixed via the connector 18a. A drive rod 21a that can be displaced in the vertical direction protrudes from the center position on one end side of the intermediate steam stop valve drive device 20a, and the tip of the drive rod 21a and the valve rod 13a are connected via a link type drive lever 14a. Will be done. The intermediate steam stop valve drive device 20a displaces the drive rod 21a up and down by adjusting the amount of hydraulic oil supplied to the inside of the hydraulic cylinder 22a, and converts this displacement into rotary motion with the drive lever 14a to convert the valve rod 13a. Is rotated. As a result, the intermediate steam stop valve 12a opens and closes and rotates in the valve casing 11 together with the valve rod 13a. The configuration of the dump valve chamber and the disc dump valve (both not shown) and the operation method thereof are the same as those of the dump valve chamber 23b and the disc dump valve 24b of the intercept valve drive device 20b described later.

なお、中間蒸気止め弁12aは、油圧シリンダ22aに作動油が満たされていない場合には全閉状態に、油圧シリンダ22aに所定量の作動油が満たされる場合には全開状態になるように設定されている。 The intermediate steam stop valve 12a is set to be fully closed when the hydraulic cylinder 22a is not filled with hydraulic oil, and to be fully open when the hydraulic cylinder 22a is filled with a predetermined amount of hydraulic oil. Has been done.

次に、インターセプト弁駆動装置20bおよび30bについて、図2を用いて説明する。図2は、実施形態に係る組合せバタフライ弁装置の概要図である。インターセプト弁駆動装置20bは、駆動ロッド21bと、油圧シリンダ22bと、ダンプ弁室23bと、ディスクダンプ弁24bとを備える。 Next, the intercept valve driving devices 20b and 30b will be described with reference to FIG. FIG. 2 is a schematic view of the combination butterfly valve device according to the embodiment. The intercept valve drive device 20b includes a drive rod 21b, a hydraulic cylinder 22b, a dump valve chamber 23b, and a disc dump valve 24b.

中間蒸気止め弁駆動装置20bは、弁ケーシング11の外側で、かつ弁ケーシング11の中心から一側方に離間した位置に側面視で直交する姿勢で配置される。このとき、弁ケーシング11と中間蒸気止め弁駆動装置20bとは、連結具18bを介して一体に固定されている。インターセプト弁駆動装置20b一端側の中心位置からは、上下方向に変位可能な駆動ロッド21bが突出し、その先端がリンク式の駆動レバー14bに接続される。この駆動ロッド21bは油圧シリンダ22bと一体で構成され、油圧シリンダ22b内部に作動油を供給し、この作動油からの油圧により上下方向に可動する。 The intermediate steam stop valve drive device 20b is arranged outside the valve casing 11 and at a position unilaterally separated from the center of the valve casing 11 in a posture orthogonal to each other in a side view. At this time, the valve casing 11 and the intermediate steam stop valve drive device 20b are integrally fixed via the connector 18b. A drive rod 21b that can be displaced in the vertical direction protrudes from the center position on one end side of the intercept valve drive device 20b, and its tip is connected to a link type drive lever 14b. The drive rod 21b is integrally formed with the hydraulic cylinder 22b, supplies hydraulic oil to the inside of the hydraulic cylinder 22b, and is movable in the vertical direction by the hydraulic pressure from the hydraulic oil.

油圧シリンダ22bの下方にはダンプ弁室23bが設けられる。ダンプ弁室23bは、ディスクダンプ弁24bとばねとを、互いに連結させた状態で収容している。また、ダンプ弁室23bには、後述する油圧回路40の第一の排出流路45と連結する接続口が設けられている。ディスクダンプ弁24bが開いている場合には、後述する油圧回路40の第一の排出流路45につながる接続口が開いている。ディスクダンプ弁24が閉じている場合には、後述する油圧回路40の第一の排出流路45につながる接続口を塞ぐ。ディスクダンプ弁24bの開閉動作の詳細については後述する。 A dump valve chamber 23b is provided below the hydraulic cylinder 22b. The dump valve chamber 23b accommodates the disc dump valve 24b and the spring in a state of being connected to each other. Further, the dump valve chamber 23b is provided with a connection port for connecting to the first discharge flow path 45 of the hydraulic circuit 40, which will be described later. When the disc dump valve 24b is open, the connection port connected to the first discharge flow path 45 of the hydraulic circuit 40, which will be described later, is open. When the disk dump valve 24 is closed, the connection port connected to the first discharge flow path 45 of the hydraulic circuit 40, which will be described later, is closed. The details of the opening / closing operation of the disc dump valve 24b will be described later.

一方、インターセプト弁駆動装置30bは、駆動ロッド31bと、油圧シリンダ32bと、ダンプ弁室33bと、ディスクダンプ弁34bとを備える。中間蒸気止め弁駆動装置30bは、弁ケーシング11の外側かつインターセプト弁駆動装置20bと対向する側に、弁ケーシング11の中心から一側方に離間した位置に側面視で直交する姿勢で配置される。このとき、弁ケーシング11と中間蒸気止め弁駆動装置30bとは、連結具19bを介して一体に固定されている。インターセプト弁駆動装置30b一端側の中心位置からは、上下方向に変位可能な駆動ロッド31bが突出し、その先端がリンク式の駆動レバー15bに接続される。ダンプ弁室33b、ディスクダンプ弁34bの構成については、インターセプト弁駆動装置20bと同様である。 On the other hand, the intercept valve drive device 30b includes a drive rod 31b, a hydraulic cylinder 32b, a dump valve chamber 33b, and a disc dump valve 34b. The intermediate steam stop valve drive device 30b is arranged on the outside of the valve casing 11 and on the side facing the intercept valve drive device 20b at a position separated from the center of the valve casing 11 to one side and orthogonal to each other in a side view. .. At this time, the valve casing 11 and the intermediate steam stop valve drive device 30b are integrally fixed via the connector 19b. A drive rod 31b that can be displaced in the vertical direction protrudes from the center position on one end side of the intercept valve drive device 30b, and its tip is connected to a link type drive lever 15b. The configurations of the dump valve chamber 33b and the disk dump valve 34b are the same as those of the intercept valve drive device 20b.

ここで、弁棒13bと駆動レバー14bおよび15bとの接続関係について、図3を用いてより詳細に説明する。図3は、実施形態に係る組み合わせ中間弁装置のインターセプト弁近傍を拡大した図であり、(a)は弁棒13bと駆動レバー14bとが連結する場合を、(b)は弁棒13bと駆動レバー15bとが連結する場合をそれぞれ示す。なお、図3に示す制御装置17bからクラッチ機構16bへ延びる一点鎖線の矢印は、制御装置17bからクラッチ機構16bへの制御指令を示している。また、この図においてはインターセプト弁12bの周囲に制御装置17bが配置されているが、これは、制御装置17bがクラッチ機構16bに対して制御指令が送信されることを例示したものであり、この制御装置17bの設置位置がこの位置にあることを示すものではない。 Here, the connection relationship between the valve rod 13b and the drive levers 14b and 15b will be described in more detail with reference to FIG. FIG. 3 is an enlarged view of the vicinity of the intercept valve of the combined intermediate valve device according to the embodiment. FIG. 3A is a case where the valve rod 13b and the drive lever 14b are connected, and FIG. 3B is a drive with the valve rod 13b. The case where the lever 15b is connected is shown respectively. The arrow of the alternate long and short dash line extending from the control device 17b to the clutch mechanism 16b shown in FIG. 3 indicates a control command from the control device 17b to the clutch mechanism 16b. Further, in this figure, the control device 17b is arranged around the intercept valve 12b, which exemplifies that the control device 17b transmits a control command to the clutch mechanism 16b. It does not indicate that the installation position of the control device 17b is at this position.

図3(a)および(b)に示すように、駆動レバー14bおよび15bと、弁棒13bとの間には、クラッチ機構16bが設けられる。クラッチ機構16bは、例えば油圧シリンダを備える油圧式のクラッチ機構であり、この油圧シリンダに作動油を供給するクラッチ機構油圧回路(図示省略)と、制御装置17bからの制御指令に基づき、油圧回路から作動油を供給または遮断する電磁弁(図示省略)を備える。すなわち、クラッチ機構16bには、制御装置17bからの制御指令に基づいてクラッチ機構油圧回路(図示省略)から作動油が供給される。この作動油からの油圧によってクラッチ機構16bが変位すると、弁棒13bと駆動レバー14bとが連結する(図3(a)に示す状態)か、または弁棒15bと駆動レバー15bとが連結する(図3(b)に示す状態)。弁棒13bと、駆動レバー14bまたは15bとの連結に関する詳細な説明は後述する。 As shown in FIGS. 3A and 3B, a clutch mechanism 16b is provided between the drive levers 14b and 15b and the valve rod 13b. The clutch mechanism 16b is, for example, a hydraulic clutch mechanism provided with a hydraulic cylinder, and the clutch mechanism hydraulic circuit (not shown) for supplying hydraulic oil to the hydraulic cylinder and the hydraulic circuit based on a control command from the control device 17b. It is equipped with an electromagnetic valve (not shown) that supplies or shuts off hydraulic oil. That is, hydraulic oil is supplied to the clutch mechanism 16b from the clutch mechanism hydraulic circuit (not shown) based on the control command from the control device 17b. When the clutch mechanism 16b is displaced by the hydraulic pressure from the hydraulic oil, the valve rod 13b and the drive lever 14b are connected (the state shown in FIG. 3A), or the valve rod 15b and the drive lever 15b are connected (the state shown in FIG. 3A). The state shown in FIG. 3 (b)). A detailed description of the connection between the valve rod 13b and the drive lever 14b or 15b will be described later.

次に、図2を用いて、インターセプト弁駆動装置20bおよび30bに作動油を供給する油圧回路40について説明する。油圧回路40は、第一の作動油供給流路41(第一の供給流路)と、遮断弁42および52と、サーボ弁43および53と、第一の非常油供給流路44と、第一の排出流路45と、第一の急速作動電磁弁46と、第二の作動油供給流路51(第二の供給流路)と、第二の非常油供給流路54と、第二の排出流路55と、第二の急速作動電磁弁56とを備える。また、油圧回路40はこの他に、サーボ弁43および53と、第一の急速作動電磁弁46と、第二の急速作動電磁弁56のそれぞれに対して制御指令を出力する指令部(図示省略)を備える。図2に示す油圧回路40の種々の構成については、その図番が4から始まるもの(油圧回路40を除く)はインターセプト弁駆動装置20bに関連し、その図番が5から始まるものはインターセプト弁駆動装置30bに関連する。 Next, the hydraulic circuit 40 that supplies hydraulic oil to the intercept valve drive devices 20b and 30b will be described with reference to FIG. The hydraulic circuit 40 includes a first hydraulic oil supply flow path 41 (first supply flow path), shutoff valves 42 and 52, servo valves 43 and 53, a first emergency oil supply flow path 44, and a first. One discharge flow path 45, a first rapidly operating solenoid valve 46, a second hydraulic oil supply flow path 51 (second supply flow path), a second emergency oil supply flow path 54, and a second. The discharge flow path 55 of the above and the second rapid-acting solenoid valve 56 are provided. In addition to this, the hydraulic circuit 40 is a command unit (not shown) that outputs control commands to the servo valves 43 and 53, the first fast-acting solenoid valve 46, and the second quick-acting solenoid valve 56, respectively. ). Regarding the various configurations of the hydraulic circuit 40 shown in FIG. 2, those whose drawing numbers start with 4 (excluding the hydraulic circuit 40) are related to the intercept valve drive device 20b, and those whose drawing numbers start with 5 are intercept valves. It relates to the drive device 30b.

第一の作動油供給流路41は、油圧供給装置(図示省略)からインターセプト弁駆動装置20bの油圧シリンダ22bに供給される作動油の流路、第二の作動油供給流路51は、油圧供給装置(図示省略)からインターセプト弁駆動装置30bの油圧シリンダ32bに供給される作動油の流路である。 The first hydraulic oil supply flow path 41 is a hydraulic oil flow path supplied from the hydraulic pressure supply device (not shown) to the hydraulic cylinder 22b of the intercept valve drive device 20b, and the second hydraulic oil supply flow path 51 is hydraulic pressure. It is a flow path of hydraulic oil supplied from a supply device (not shown) to a hydraulic cylinder 32b of an intercept valve drive device 30b.

遮断弁42は、第一の作動油供給流路41の上流側に設けられる。遮断弁42は、その内部にピストンを収容し、このピストン上部には、後述する第一の非常油供給流路44を流れる非常油の一部が供給される。遮断弁42に非常油が供給されていない場合は、このピストンが第一の作動油供給流路41からサーボ弁43までの流路が閉鎖されている。遮断弁42に非常油が供給された場合は、この非常油がピストンを押し下げて、第一の作動油供給流路41からサーボ弁43までの流路を開通させる。遮断弁52は第二の作動油供給流路51の上流側に設けられ、その構成や動作は遮断弁42と同様である。 The isolation valve 42 is provided on the upstream side of the first hydraulic oil supply flow path 41. The shutoff valve 42 accommodates a piston inside, and a part of emergency oil flowing through the first emergency oil supply flow path 44, which will be described later, is supplied to the upper portion of the piston. When emergency oil is not supplied to the isolation valve 42, the flow path from the first hydraulic oil supply flow path 41 to the servo valve 43 is closed by this piston. When emergency oil is supplied to the isolation valve 42, the emergency oil pushes down the piston to open the flow path from the first hydraulic oil supply flow path 41 to the servo valve 43. The isolation valve 52 is provided on the upstream side of the second hydraulic oil supply flow path 51, and its configuration and operation are the same as those of the isolation valve 42.

サーボ弁43は、指令部からの制御指令に基づき、油圧発生装置(図示省略)から第一の作動油供給流路41を経て油圧シリンダ22bに作動油を供給する流れと、油圧シリンダ22b内部の作動油を、後述する第一の排出流路45を経て排出する流れとを制御する。サーボ弁53は、指令部からの制御指令に基づき、油圧発生装置(図示省略)から第二の作動油供給流路51を経て油圧シリンダ32bに作動油を供給する流れと、油圧シリンダ32b内部の作動油を、後述する第二の排出流路55を経て排出する流れとを制御する。 The servo valve 43 has a flow of supplying hydraulic oil from the hydraulic pressure generator (not shown) to the hydraulic cylinder 22b via the first hydraulic oil supply flow path 41 and a flow inside the hydraulic cylinder 22b based on a control command from the command unit. It controls the flow of hydraulic oil discharged through the first discharge flow path 45 described later. The servo valve 53 has a flow of supplying hydraulic oil from the hydraulic pressure generator (not shown) to the hydraulic cylinder 32b via the second hydraulic oil supply flow path 51 and a flow inside the hydraulic cylinder 32b based on a control command from the command unit. It controls the flow of hydraulic oil discharged through the second discharge flow path 55, which will be described later.

第一の非常油供給流路44は、油圧供給装置(図示省略)からインターセプト弁駆動装置20bのダンプ弁室23bに供給される非常油の流路、第二の非常油供給流路54は、油圧供給装置(図示省略)からインターセプト弁駆動装置30bのダンプ弁室33bに供給される非常油の流路である。本実施形態においては、作動油および非常油とは同じ油圧供給装置(図示省略)から供給され、この油圧供給装置(図示省略)からの油のうち、油圧シリンダ22b、32bに供給されて駆動ロッド21b、31bに油圧を付加する油を作動油、ダンプ弁室23b、33bに供給されてディスクダンプ弁24b、34bに対して油圧を付加する油を非常油という。 The first emergency oil supply flow path 44 is an emergency oil flow path supplied from the hydraulic pressure supply device (not shown) to the dump valve chamber 23b of the intercept valve drive device 20b, and the second emergency oil supply flow path 54 is. It is a flow path of emergency oil supplied from the hydraulic pressure supply device (not shown) to the dump valve chamber 33b of the intercept valve drive device 30b. In the present embodiment, the hydraulic oil and the emergency oil are supplied from the same hydraulic pressure supply device (not shown), and among the oils from the hydraulic pressure supply device (not shown), the oil is supplied to the hydraulic cylinders 22b and 32b to drive the rod. The oil that applies hydraulic pressure to 21b and 31b is called hydraulic oil, and the oil that is supplied to the dump valve chambers 23b and 33b and applies hydraulic pressure to the disc dump valves 24b and 34b is called emergency oil.

第一の排出流路45は、油圧シリンダ22b内部の作動油およびダンプ弁室23b内部の非常油を油圧供給装置(図示省略)に排出する流路、第二の排出流路55は、油圧シリンダ32b内部の作動油およびダンプ弁室33b内部の非常油を油圧供給装置(図示省略)に排出する流路である。 The first discharge flow path 45 is a flow path for discharging the hydraulic oil inside the hydraulic cylinder 22b and the emergency oil inside the dump valve chamber 23b to the hydraulic supply device (not shown), and the second discharge flow path 55 is the hydraulic cylinder. This is a flow path for discharging the hydraulic oil inside the 32b and the emergency oil inside the dump valve chamber 33b to the hydraulic pressure supply device (not shown).

第一の急速作動電磁弁46は、通常時(通常運転時)は無励磁状態であり、非常油供給流路44とダンプ弁室23bとを連結する。一方、異常時(タービントリップまたは負荷遮断が発生した場合)は、指令部(図示省略)からの制御指令に基づいて励磁状態となり、第一の非常油供給流路44とダンプ弁室23bとを遮断すると共に、ダンプ弁室23bと第一の排出流路45とを連結させ、油圧シリンダ22b内部の作動油を急ぎ排出する。第二の急速作動電磁弁56についても同様に、通常時は第二の非常油供給流路54とダンプ弁室33bとを連結し、異常時はダンプ弁室33bと第二の排出流路55とを連結させる。これらの急速作動電磁弁は、油圧シリンダに作動油を供給する場合や、タービン発電設備1の通常運転時(油圧シリンダ内部の作動油量を所定の範囲内に調整する場合)は、インターセプト弁駆動装置と排出流路とを遮断(無励磁状態)する。第一および第二の急速作動電磁弁46、56の詳細な説明は後述する。 The first rapidly operating solenoid valve 46 is in a non-excited state during normal operation (normal operation), and connects the emergency oil supply flow path 44 and the dump valve chamber 23b. On the other hand, in the event of an abnormality (when a turbine trip or load cutoff occurs), the excitation state is set based on a control command from the command unit (not shown), and the first emergency oil supply flow path 44 and the dump valve chamber 23b are connected. At the same time as shutting off, the dump valve chamber 23b and the first discharge flow path 45 are connected, and the hydraulic oil inside the hydraulic cylinder 22b is quickly discharged. Similarly, for the second rapidly operating solenoid valve 56, the second emergency oil supply flow path 54 and the dump valve chamber 33b are normally connected, and in the event of an abnormality, the dump valve chamber 33b and the second discharge flow path 55 are connected. And are connected. These rapidly operating solenoid valves are driven by an intercept valve when supplying hydraulic oil to the hydraulic cylinder or during normal operation of the turbine power generation facility 1 (when adjusting the amount of hydraulic oil inside the hydraulic cylinder within a predetermined range). The device and the discharge flow path are cut off (non-excited state). A detailed description of the first and second fast-acting solenoid valves 46, 56 will be described later.

次に、本実施形態のインターセプト弁12bの作用について説明する。比較のため、タービン発電設備1の通常時(通常運転時)におけるインターセプト弁12bの作用を説明した後に、タービン発電設備1の異常時(タービントリップまたは負荷遮断が発生した場合)のインターセプト弁12bの作用を説明する。 Next, the operation of the intercept valve 12b of the present embodiment will be described. For comparison, after explaining the operation of the intercept valve 12b in the normal time (normal operation) of the turbine power generation facility 1, the intercept valve 12b in the case of an abnormality in the turbine power generation facility 1 (when a turbine trip or load cutoff occurs) Explain the action.

(通常時)
図2を用いて、通常時のインターセプト弁12bの作用を説明する。通常時は、クラッチ機構16bを介して、弁棒13bと駆動レバー14bとが連結される。すなわち、インターセプト弁駆動装置20bにより、インターセプト弁12bを回動させる。この際、インターセプト弁駆動装置30bには、所定量の作動油が満たされている。また、指令部(図示省略)からの制御指令に基づき、サーボ弁43が第一の作動油供給流路41と油圧シリンダ22bとを、サーボ弁53が第二の作動油供給流路51と油圧シリンダ32bとをそれぞれ連結する。
(Normal time)
The operation of the intercept valve 12b in a normal state will be described with reference to FIG. Normally, the valve rod 13b and the drive lever 14b are connected via the clutch mechanism 16b. That is, the intercept valve 12b is rotated by the intercept valve drive device 20b. At this time, the intercept valve drive device 30b is filled with a predetermined amount of hydraulic oil. Further, based on a control command from a command unit (not shown), the servo valve 43 has the first hydraulic oil supply flow path 41 and the hydraulic cylinder 22b, and the servo valve 53 has the second hydraulic oil supply flow path 51 and the hydraulic pressure. The cylinders 32b are connected to each other.

インターセプト弁駆動装置20bに作動油を供給する場合(インターセプト弁12bを開く場合)には、作動油を供給する前に、油圧供給装置(図示省略)から第一の非常油供給流路44、第一の急速作動電磁弁46を通過してダンプ弁室23bに非常油を供給する。ダンプ弁室23bに非常油が供給されると、ディスクダンプ弁24bは非常油から上方向の油圧を受ける。この油圧がディスクダンプ弁24b弁に接続されたばねの復元力に打ち勝つと、ディスクダンプ弁24が上方向に変位して、油圧シリンダ22bと第一の排出流路45との接続口を塞ぐ。また、第一の非常油供給流路44を流れる非常油の一部は遮断弁42に供給され、遮断弁42を構成するピストンを押し下げる。これにより、第一の作動油供給流路41からサーボ弁43までの流路が開通する。 When supplying hydraulic oil to the intercept valve drive device 20b (when opening the intercept valve 12b), the first emergency oil supply flow path 44, first from the hydraulic pressure supply device (not shown), before supplying the hydraulic oil. Emergency oil is supplied to the dump valve chamber 23b through one of the rapidly operating solenoid valves 46. When emergency oil is supplied to the dump valve chamber 23b, the disc dump valve 24b receives upward hydraulic pressure from the emergency oil. When this hydraulic pressure overcomes the restoring force of the spring connected to the disc dump valve 24b, the disc dump valve 24 is displaced upward and closes the connection port between the hydraulic cylinder 22b and the first discharge flow path 45. Further, a part of the emergency oil flowing through the first emergency oil supply flow path 44 is supplied to the isolation valve 42 and pushes down the piston constituting the isolation valve 42. As a result, the flow path from the first hydraulic oil supply flow path 41 to the servo valve 43 is opened.

この状態で、指令部(図示省略)からの制御指令に基づき、サーボ弁43が第一の作動油供給流路41と油圧シリンダ22bとを連結すると、油圧供給装置(図示省略)からの作動油が、第一の作動油供給流路41、遮断弁42、サーボ弁43を順次経て、油圧シリンダ22bに供給される。油圧シリンダ22bに作動油が供給されると、この作動油からの油圧によって駆動ロッド21aが上方向に変位する。駆動レバー14bは、駆動ロッド21aの変位を回転運動に変換し、弁棒13bおよびインターセプト弁12bを回動させる。これにより、インターセプト弁12bが開く。 In this state, when the servo valve 43 connects the first hydraulic oil supply flow path 41 and the hydraulic cylinder 22b based on the control command from the command unit (not shown), the hydraulic oil from the hydraulic oil supply device (not shown) Is supplied to the hydraulic cylinder 22b via the first hydraulic oil supply flow path 41, the shutoff valve 42, and the servo valve 43 in that order. When the hydraulic oil is supplied to the hydraulic cylinder 22b, the drive rod 21a is displaced upward by the hydraulic pressure from the hydraulic oil. The drive lever 14b converts the displacement of the drive rod 21a into a rotary motion to rotate the valve rod 13b and the intercept valve 12b. As a result, the intercept valve 12b opens.

なお、インターセプト弁駆動装置30bに作動油を供給する場合も、インターセプト弁駆動装置20bと同様である。すなわち、作動油を供給する前に、油圧供給装置(図示省略)から第二の非常油供給流路54、第二の急速作動電磁弁56を経てダンプ弁室33bに非常油を供給し、ディスクダンプ弁34bを上方向に変位させて、油圧シリンダ32bと第二の排出流路55との接続口を塞ぐ。また、第二の非常油供給流路54を流れる非常油の一部は遮断弁52に供給され、この非常油がピストンを押し下げて第二の作動油供給流路51からサーボ弁53までの流路を開通させる。この状態で、指令部(図示省略)からの制御指令に基づいてサーボ弁53を制御し、第二の作動油供給流路51と油圧シリンダ32bとを連結させる。すると、油圧供給装置(図示省略)から第二の作動油供給流路51を経て油圧シリンダ32bに作動油が供給される。通常時は、上述の手順により油圧シリンダ32bに作動油を供給し、その内部に所定量の作動油が満たされている。また、油圧シリンダ32bに所定量の作動油が満たされるため、駆動ロッド31bは上方に変位している。 The case of supplying hydraulic oil to the intercept valve drive device 30b is the same as that of the intercept valve drive device 20b. That is, before supplying the hydraulic oil, the emergency oil is supplied from the hydraulic pressure supply device (not shown) to the dump valve chamber 33b via the second emergency oil supply flow path 54 and the second rapidly operating solenoid valve 56, and the disk is used. The dump valve 34b is displaced upward to close the connection port between the hydraulic cylinder 32b and the second discharge flow path 55. Further, a part of the emergency oil flowing through the second emergency oil supply flow path 54 is supplied to the shutoff valve 52, and this emergency oil pushes down the piston and flows from the second hydraulic oil supply flow path 51 to the servo valve 53. Open the road. In this state, the servo valve 53 is controlled based on a control command from the command unit (not shown) to connect the second hydraulic oil supply flow path 51 and the hydraulic cylinder 32b. Then, the hydraulic oil is supplied from the hydraulic pressure supply device (not shown) to the hydraulic cylinder 32b via the second hydraulic oil supply flow path 51. Normally, hydraulic oil is supplied to the hydraulic cylinder 32b by the above procedure, and a predetermined amount of hydraulic oil is filled therein. Further, since the hydraulic cylinder 32b is filled with a predetermined amount of hydraulic oil, the drive rod 31b is displaced upward.

一方、インターセプト弁12bの開きを調整すべく、インターセプト弁駆動装置20bから作動油を排出する場合には、指令部(図示省略)からの制御指令に基づき、サーボ弁43が第一の作動油供給流路41と油圧シリンダ22bとを遮断すると共に、油圧シリンダ22bと第一の排出流路45とを連結させる。これにより、油圧シリンダ22b内部の作動油は、第一の排出流路45を経て油圧供給装置(図示省略)に排出され、インターセプト弁12bおよび弁棒13bが閉じる方向に回動する。インターセプト弁12bが所定の開きに達した場合には、指令部(図示省略)からの制御指令に基づいて、サーボ弁43を中立位置に調整し、油圧シリンダ22bが、第一の作動油供給流路41にも第一の排出流路45にも連結されない状態とする。 On the other hand, when the hydraulic oil is discharged from the intercept valve drive device 20b in order to adjust the opening of the intercept valve 12b, the servo valve 43 supplies the first hydraulic oil based on the control command from the command unit (not shown). The flow path 41 and the hydraulic cylinder 22b are shut off, and the hydraulic cylinder 22b and the first discharge flow path 45 are connected to each other. As a result, the hydraulic oil inside the hydraulic cylinder 22b is discharged to the hydraulic supply device (not shown) via the first discharge flow path 45, and the intercept valve 12b and the valve rod 13b rotate in the closing direction. When the intercept valve 12b reaches a predetermined opening, the servo valve 43 is adjusted to the neutral position based on the control command from the command unit (not shown), and the hydraulic cylinder 22b is the first hydraulic oil supply flow. It is assumed that it is not connected to the road 41 or the first discharge flow path 45.

このように通常時においては、クラッチ機構16bを介して弁棒13bと駆動レバー14bとを連結し、インターセプト弁駆動装置20bからの駆動力(油圧)によってインターセプト弁12bの開きを調整する。この開きの調整は、サーボ弁43を介して油圧シリンダ22bと第一の作動油供給流路41または第一の排出流路45との連結を調整し、油圧シリンダ22b内部の作動油量の制御することで実現される。 As described above, in the normal state, the valve rod 13b and the drive lever 14b are connected via the clutch mechanism 16b, and the opening of the intercept valve 12b is adjusted by the driving force (hydraulic pressure) from the intercept valve drive device 20b. This opening is adjusted by adjusting the connection between the hydraulic cylinder 22b and the first hydraulic oil supply flow path 41 or the first discharge flow path 45 via the servo valve 43, and controlling the amount of hydraulic oil inside the hydraulic cylinder 22b. It is realized by doing.

(異常時)
次に、図2および図4を用いて、通常時からインターセプト弁12bを急閉および急開する場合(異常時)の作用を説明する。図4は、実施形態に係るインターセプト弁の開閉動作を示すフローチャートであって、(a)はインターセプト弁の急閉時を、(b)は急閉後の急開時をそれぞれ示す。なお、本実施形態においては、異常時としてタービントリップが発生した場合や、落雷等の系統事故に伴い負荷遮断された場合を例示して説明する。また、ここでいうインターセプト弁12bの急閉または急開とは、通常の開閉動作よりも早い時間、例えば1秒未満の時間でインターセプト弁12bを回動させて、インターセプト弁12bを急ぎ開閉させることをいう。
(In case of abnormality)
Next, with reference to FIGS. 2 and 4, the operation when the intercept valve 12b is suddenly closed and suddenly opened (at the time of abnormality) from the normal time will be described. 4A and 4B are flowcharts showing an opening / closing operation of the intercept valve according to the embodiment, in which FIG. 4A shows a sudden closing time of the intercepting valve, and FIG. 4B shows a sudden opening time after the sudden closing. In this embodiment, a case where a turbine trip occurs as an abnormal time and a case where the load is cut off due to a system accident such as a lightning strike will be described as an example. Further, the sudden closing or sudden opening of the intercept valve 12b here means that the intercept valve 12b is rotated in a time earlier than a normal opening / closing operation, for example, a time of less than 1 second, and the intercept valve 12b is opened / closed in a hurry. To say.

さらに、以降の説明では、通常時を初期状態として説明する。すなわち、初期状態においては、遮断弁42および52と、サーボ弁43および53とが開き、第一の作動油供給流路41または第二の作動油供給流路51を経て、油圧シリンダ22bおよび32bのそれぞれに所定量の作動油が満たされている。また、弁棒13bはクラッチ機構16bを介して駆動レバー14bに連結され、インターセプト弁12bと弁棒13bとが全開位置まで回動している。さらに、油圧シリンダ32bに所定量の作動油が満たされているため、駆動ロッド31bは上方に位置している。 Further, in the following description, the normal time will be described as the initial state. That is, in the initial state, the isolation valves 42 and 52 and the servo valves 43 and 53 are opened, and the hydraulic cylinders 22b and 32b pass through the first hydraulic oil supply flow path 41 or the second hydraulic oil supply flow path 51. Each of the above is filled with a predetermined amount of hydraulic oil. Further, the valve rod 13b is connected to the drive lever 14b via the clutch mechanism 16b, and the intercept valve 12b and the valve rod 13b rotate to the fully open position. Further, since the hydraulic cylinder 32b is filled with a predetermined amount of hydraulic oil, the drive rod 31b is located above.

(急閉させる場合)
図4(a)に示すように、タービントリップや負荷遮断が発生した場合、指令部(図示省略)は、第一の急速作動電磁弁46を励磁する(図2記載の第一の急速作動電磁弁46の弁体を下方向に変位させる)制御指令を出力する(S1)。この制御指令に基づいて第一の急速作動電磁弁46が励磁されると、ダンプ弁室23bが第一の非常油供給流路44から遮断され、第一の排出流路45に連結される(S2)。ダンプ弁室23b内部から非常油が排出されると、ディスクダンプ弁24bはばねからの復元力により下方に変位し、ダンプ弁室23bから第一の排出流路45への接続口が開通する(S3)。これにより、油圧シリンダ22b内部の作動油が、接続口から第一の排出流路45を経て、油圧供給装置(図示省略)に排出され(S4)、駆動ロッド21bが下方に変位する。駆動ロッド21bが下方に変位すると、駆動レバー14bがこの変位を回転運動に変換し、弁棒13bおよびインターセプト弁12bを閉方向に回動させる(S5)。これにより、インターセプト弁12bが急閉(急ぎ全閉)する(S6)。
(When closing suddenly)
As shown in FIG. 4A, when a turbine trip or load interruption occurs, the command unit (not shown) excites the first fast-acting solenoid valve 46 (first fast-acting solenoid according to FIG. 2). A control command (which displaces the valve body of the valve 46 downward) is output (S1). When the first fast-acting solenoid valve 46 is excited based on this control command, the dump valve chamber 23b is shut off from the first emergency oil supply flow path 44 and connected to the first discharge flow path 45 ( S2). When the emergency oil is discharged from the inside of the dump valve chamber 23b, the disc dump valve 24b is displaced downward due to the restoring force from the spring, and the connection port from the dump valve chamber 23b to the first discharge flow path 45 is opened ( S3). As a result, the hydraulic oil inside the hydraulic cylinder 22b is discharged from the connection port to the hydraulic supply device (not shown) via the first discharge flow path 45 (S4), and the drive rod 21b is displaced downward. When the drive rod 21b is displaced downward, the drive lever 14b converts this displacement into a rotary motion and rotates the valve rod 13b and the intercept valve 12b in the closing direction (S5). As a result, the intercept valve 12b is suddenly closed (quickly fully closed) (S6).

なお、第一の急速作動電磁弁46が励磁された場合(すなわちステップS2の場合)、遮断弁42への非常油の流路も第一の急速作動電磁弁46を介して第一の排出流路45に連結され、ダンプ弁室23b内部の非常油と共に、遮断弁42内部の非常油も第一の排出流路45に排出される。これにより、第一の作動油供給流路41からサーボ弁43への流路が閉鎖され、油圧シリンダ22bへの作動油の供給が遮断される。 When the first fast-acting solenoid valve 46 is excited (that is, in the case of step S2), the flow path of the emergency oil to the isolation valve 42 is also the first discharge flow through the first quick-acting solenoid valve 46. It is connected to the road 45, and the emergency oil inside the shutoff valve 42 is discharged to the first discharge flow path 45 together with the emergency oil inside the dump valve chamber 23b. As a result, the flow path from the first hydraulic oil supply flow path 41 to the servo valve 43 is closed, and the supply of hydraulic oil to the hydraulic cylinder 22b is cut off.

(急閉後に急開させる場合)
図4(b)に示すように、インターセプト弁12bを急閉させた後、低圧蒸気タービン6を継続運転させるために再度急開(急ぎ全開)する場合、制御装置17bは、クラッチ機構16bに対して、弁棒13bと駆動レバー14bとの連結を遮断し、弁棒13bと駆動レバー15bとを連結させる制御指令を出力する(S7)。クラッチ機構16bは、この制御指令に基づいて弁棒13bと駆動レバー15bとを連結させる(S8)。この後に、指令部(図示省略)が、第二の急速作動電磁弁56を励磁する(図2記載の第二の急速作動電磁弁56の弁体を下方向に変位させる)制御指令を出力する(S9)。この制御指令に基づいて第二の急速作動電磁弁56が励磁されると、ダンプ弁室33bが第二の非常油供給流路54から遮断され、第二の排出流路55に連結される(S10)。ダンプ弁室33b内部から非常油が排出されると、ディスクダンプ弁34bはばねからの復元力により下方に変位し、ダンプ弁室33bから第二の排出流路55への接続口が開通する(S11)。これにより、油圧シリンダ32b内部の作動油が、接続口から第二の排出流路55を経て油圧供給装置(図示省略)に排出され(S12)、駆動ロッド31bが下方に変位する。駆動ロッド21bが下方に変位すると、駆動レバー15bがこの変位を回転運動に変換し、弁棒13bおよびインターセプト弁12bを急閉時と同じ回転方向に、全閉位置からさらに回動させる(S13)。これにより、インターセプト弁12bが急開(急ぎ全開)する(S14)。
(When opening suddenly after sudden closing)
As shown in FIG. 4B, when the intercept valve 12b is suddenly closed and then suddenly opened again (quickly fully opened) in order to continuously operate the low pressure steam turbine 6, the control device 17b is referred to the clutch mechanism 16b. Then, the connection between the valve rod 13b and the drive lever 14b is cut off, and a control command for connecting the valve rod 13b and the drive lever 15b is output (S7). The clutch mechanism 16b connects the valve rod 13b and the drive lever 15b based on this control command (S8). After this, the command unit (not shown) outputs a control command for exciting the second fast-acting solenoid valve 56 (displaces the valve body of the second fast-acting solenoid valve 56 shown in FIG. 2 downward). (S9). When the second rapidly operating solenoid valve 56 is excited based on this control command, the dump valve chamber 33b is shut off from the second emergency oil supply flow path 54 and connected to the second discharge flow path 55 ( S10). When the emergency oil is discharged from the inside of the dump valve chamber 33b, the disc dump valve 34b is displaced downward due to the restoring force from the spring, and the connection port from the dump valve chamber 33b to the second discharge flow path 55 is opened ( S11). As a result, the hydraulic oil inside the hydraulic cylinder 32b is discharged from the connection port to the hydraulic supply device (not shown) via the second discharge flow path 55 (S12), and the drive rod 31b is displaced downward. When the drive rod 21b is displaced downward, the drive lever 15b converts this displacement into a rotary motion, and the valve rod 13b and the intercept valve 12b are further rotated from the fully closed position in the same rotational direction as when the valve rod 13b is suddenly closed (S13). .. As a result, the intercept valve 12b is suddenly opened (quickly fully opened) (S14).

なお、第二の急速作動電磁弁56が励磁された場合(すなわちステップS10の場合)、遮断弁52への非常油の流路も第二の急速作動電磁弁56を介して第二の排出流路55に連結され、ダンプ弁室33b内部の非常油と共に、遮断弁52内部の非常油も第二の排出流路55に排出される。これにより、第二の作動油供給流路51からサーボ弁53への流路が閉鎖され、油圧シリンダ32bへの作動油の供給が遮断される。 When the second fast-acting solenoid valve 56 is excited (that is, in the case of step S10), the flow path of the emergency oil to the isolation valve 52 is also the second discharge flow through the second fast-acting solenoid valve 56. It is connected to the road 55, and the emergency oil inside the shutoff valve 52 is discharged to the second discharge flow path 55 together with the emergency oil inside the dump valve chamber 33b. As a result, the flow path from the second hydraulic oil supply flow path 51 to the servo valve 53 is closed, and the supply of hydraulic oil to the hydraulic cylinder 32b is cut off.

つまり、インターセプト弁12bの急閉とその後の急開それぞれの動作に応じて、クラッチ機構16bを介して、弁棒13bと、このインターセプト弁の駆動装置であるインターセプト弁駆動装置20bまたは30bとの連結を切り替える。そして、インターセプト弁12bは、弁棒13bに連結された駆動装置からの順次作動油の排出を通して、弁体の急閉とその後の急開とを実行できる。 That is, the valve rod 13b is connected to the intercept valve driving device 20b or 30b, which is the driving device of the intercept valve, via the clutch mechanism 16b according to the operations of the sudden closing and the subsequent sudden opening of the intercept valve 12b. To switch. Then, the intercept valve 12b can execute the sudden closing of the valve body and the subsequent sudden opening through the sequential discharge of the hydraulic oil from the drive device connected to the valve rod 13b.

上述した実施形態によれば、インターセプト弁12bの駆動装置としてインターセプト弁駆動装置20bおよび30bという二つの駆動装置を備え、インターセプト弁12bの急閉とその後の急開に応じてクラッチ機構16bを動作させて、インターセプト弁駆動装置20bまたは30bと弁棒13bとの連結を調整する。そして、インターセプト弁12bを急閉させる場合にはインターセプト弁駆動装置20bの油圧シリンダ22bから、インターセプト弁12bを急閉後に急開させる場合にはインターセプト弁駆動装置30bの油圧シリンダ32bからそれぞれ作動油を排出することにより、インターセプト弁12bの急閉と、その後の急開とを作動油の排出だけで実現できる。したがって、インターセプト弁12bを急閉後に再度急開する場合、一度作動油を排出した油圧シリンダに再度作動油を供給する必要がなく、インターセプト弁12bが従来よりも短い時間で急開できる。また、油圧シリンダに作動油を供給せずにインターセプト弁の急開を実現できるため、一度に複数のインターセプト弁を急開する場合でも、多量の作動油を供給する必要がない。 According to the above-described embodiment, the intercept valve 12b is provided with two drive devices, the intercept valve drive devices 20b and 30b, and the clutch mechanism 16b is operated in response to the sudden closing and subsequent sudden opening of the intercept valve 12b. Then, the connection between the intercept valve driving device 20b or 30b and the valve rod 13b is adjusted. Then, hydraulic oil is supplied from the hydraulic cylinder 22b of the intercept valve drive device 20b when the intercept valve 12b is suddenly closed, and from the hydraulic cylinder 32b of the intercept valve drive device 30b when the intercept valve 12b is suddenly closed and then suddenly opened. By discharging, the intercept valve 12b can be suddenly closed and then suddenly opened only by discharging the hydraulic oil. Therefore, when the intercept valve 12b is suddenly closed and then suddenly opened again, it is not necessary to supply the hydraulic oil again to the hydraulic cylinder from which the hydraulic oil has been discharged once, and the intercept valve 12b can be suddenly opened in a shorter time than before. Further, since the intercept valve can be suddenly opened without supplying the hydraulic oil to the hydraulic cylinder, it is not necessary to supply a large amount of the hydraulic oil even when a plurality of intercept valves are suddenly opened at one time.

さらに、本実施形態においては、例えば急閉後に急開する間に、並行してインターセプト弁駆動装置20bの油圧シリンダ22bに再度作動油を供給し、油圧シリンダ22b内部に所定量の作動油を満たすことができる。すなわち、インターセプト弁12bの開閉動作と並行して、弁棒13bに連結されていない側の駆動装置に作動油を供給することができる。したがって、急閉または急開動作の一方を実行中に、並行して他方の動作の準備を行うことができるため、急閉や急開動作が再び必要になった場合でも、クラッチ機構16bによる切り替え操作を行えば、すぐに急閉や急開動作を実行できる。 Further, in the present embodiment, for example, during the sudden opening after the sudden closing, the hydraulic oil is supplied again to the hydraulic cylinder 22b of the intercept valve drive device 20b, and a predetermined amount of the hydraulic oil is filled inside the hydraulic cylinder 22b. be able to. That is, in parallel with the opening / closing operation of the intercept valve 12b, the hydraulic oil can be supplied to the drive device on the side not connected to the valve rod 13b. Therefore, since it is possible to prepare for the other operation in parallel while executing one of the sudden closing or the sudden opening operation, even if the sudden closing or the sudden opening operation is required again, the switching by the clutch mechanism 16b is performed. If you perform an operation, you can immediately execute a sudden closing or sudden opening operation.

なお、本実施形態においては、インターセプト弁12bにのみ二つの駆動装置を設ける場合を例示して説明したが、中間蒸気止め弁12aにも二つの駆動装置を設ける構成としてもよいし、中間蒸気止め弁12aにのみ二つの駆動装置を設け、インターセプト弁12bには従来と同様に一つの駆動装置を設ける構成としてもよい。ただし、二つの駆動装置を設ける場合には、クラッチ機構を介してこれらの駆動装置と弁棒とを連結する。 In the present embodiment, the case where the two drive devices are provided only on the intercept valve 12b has been described as an example, but the intermediate steam stop valve 12a may also be provided with the two drive devices, or the intermediate steam stop valve 12a may also be provided with the two drive devices. Two drive devices may be provided only on the valve 12a, and one drive device may be provided on the intercept valve 12b as in the conventional case. However, when two drive devices are provided, these drive devices and the valve stem are connected via a clutch mechanism.

また、本実施形態の変形例として、例えば図5に示すように、油圧回路40が新たに第三の排出流路57および第三の急速作動電磁弁58を設けると共に、油圧シリンダ32bの上下方向の中間位置に、第三の排出流路57と繋がる接続口を設けてもよい。この構成の場合には、駆動レバー15bの回転運動への変換能力を調整し、例えば駆動レバー14bの二倍の変換能力を有することが好ましい。すなわち、駆動ロッドを同じ変位量だけ変位させた場合に、駆動レバー15bが、駆動レバー14bの二倍の回転角だけ弁棒13bおよびインターセプト弁12bを回動させるように設計することが好ましい。このような構成とすることで、変形例のインターセプト弁駆動装置30bからの作動油の排出を通して、インターセプト弁12bを半周回動させることができる。 Further, as a modification of the present embodiment, for example, as shown in FIG. 5, the hydraulic circuit 40 newly provides a third discharge flow path 57 and a third fast-acting solenoid valve 58, and the hydraulic cylinder 32b is vertically operated. A connection port connected to the third discharge flow path 57 may be provided at an intermediate position of the above. In the case of this configuration, it is preferable to adjust the conversion ability of the drive lever 15b to the rotary motion, for example, to have twice the conversion ability of the drive lever 14b. That is, it is preferable to design the drive lever 15b to rotate the valve rod 13b and the intercept valve 12b by a rotation angle twice that of the drive lever 14b when the drive rod is displaced by the same displacement amount. With such a configuration, the intercept valve 12b can be rotated half a circle through the discharge of the hydraulic oil from the intercept valve drive device 30b of the modified example.

つまり、急閉後の急開時には、指令部(図示省略)からの制御指令に基づき、ダンプ弁室23bの作動油を排出せずに第三の急速作動電磁弁58を励磁させ、油圧シリンダ32b内部に満たされた所定量の半分の作動油を、第三の急速作動電磁弁58、第三の排出流路57、第二の排出流路55を順次経て油圧供給装置(図示省略)に排出させる。このとき、駆動レバー15bの変換能力が駆動レバー14bの二倍であることから、所定の半分の量の作動油を排出させるだけでインターセプト弁12bを急開できる。所定の半分の量の作動油を排出またはインターセプト弁12bの弁開度をセンサ(図示省略)等で検出し、インターセプト弁12bが急開したことを確認した場合には、指令部(図示省略)からの制御指令により第三の急速作動電磁弁58を無励磁に戻す。このような構成とすることで、例えば急開後に再度タービントリップや負荷遮断が発生した場合でも、油圧シリンダ32b内部の残りの作動油を第一の実施形態と同様の手法で排出させてインターセプト弁12bを再度急閉することができる。 That is, at the time of sudden opening after sudden closing, the third rapidly operating solenoid valve 58 is excited without discharging the hydraulic oil of the dump valve chamber 23b based on the control command from the command unit (not shown), and the hydraulic cylinder 32b. Half of the predetermined amount of hydraulic oil filled inside is discharged to the hydraulic pressure supply device (not shown) in sequence through the third rapidly operating solenoid valve 58, the third discharge flow path 57, and the second discharge flow path 55. Let me. At this time, since the conversion capacity of the drive lever 15b is twice that of the drive lever 14b, the intercept valve 12b can be suddenly opened only by discharging a predetermined half amount of hydraulic oil. When a predetermined half amount of hydraulic oil is discharged or the valve opening of the intercept valve 12b is detected by a sensor (not shown) or the like and it is confirmed that the intercept valve 12b is suddenly opened, the command unit (not shown). The third rapidly operating solenoid valve 58 is returned to non-excitation by a control command from. With such a configuration, for example, even if a turbine trip or load cutoff occurs again after sudden opening, the remaining hydraulic oil inside the hydraulic cylinder 32b is discharged by the same method as in the first embodiment to intercept the valve. 12b can be closed again.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1.タービン発電設備、2.原子炉、3a.主蒸気止め弁、3b.蒸気加減弁、4.高圧蒸気タービン、5.湿分分離加熱器、6.低圧蒸気タービン、7.発電機、8.復水器、9.復水ポンプ、10.組み合わせ中間弁装置、11.弁ケーシング、11a、11b.軸受部、12a.中間蒸気止め弁、12b.インターセプト弁、13a、13b.弁棒、14a、14b、15b.駆動レバー、16b.クラッチ機構、17b.制御装置、18a、18b、19b.連結具、20a.中間蒸気止め弁駆動装置、20b、30b.インターセプト弁駆動装置、21a、21b、31b.駆動ロッド、22a、22b、32b.油圧シリンダ、23b、33b.ディスクダンプ弁、40.油圧回路、41.第一の作動油供給流路、42、52.遮断弁、43、53.サーボ弁、44.第一の非常油供給流路、45.第一の排出流路、46.第一の急速作動電磁弁、51.第二の作動油供給流路、54.第二の非常油供給流路、55.第二の排出流路、56.第二の急速作動電磁弁、57.第三の排出流路、58.第三の急速作動電磁弁 1. 1. Turbine power generation equipment, 2. Reactor, 3a. Main steam stop valve, 3b. Steam control valve, 4. High pressure steam turbine, 5. Moisture separation heater, 6. Low pressure steam turbine, 7. Generator, 8. Condenser, 9. Condensation pump, 10. Combination intermediate valve device, 11. Valve casings, 11a, 11b. Bearing portion, 12a. Intermediate steam stop valve, 12b. Intercept valves, 13a, 13b. Valve rods, 14a, 14b, 15b. Drive lever, 16b. Clutch mechanism, 17b. Control devices, 18a, 18b, 19b. Couplings, 20a. Intermediate steam stop valve drive device, 20b, 30b. Intercept valve drive device, 21a, 21b, 31b. Drive rods, 22a, 22b, 32b. Hydraulic cylinders, 23b, 33b. Disc dump valve, 40. Hydraulic circuit, 41. First hydraulic oil supply channel, 42, 52. Isolation valve, 43, 53. Servo valve, 44. First emergency oil supply channel, 45. First drainage channel, 46. First fast-acting solenoid valve, 51. Second hydraulic oil supply channel, 54. Second emergency oil supply channel, 55. Second drainage channel, 56. Second fast-acting solenoid valve, 57. Third drainage channel, 58. Third fast-acting solenoid valve

Claims (4)

弁体が取り付けられた弁棒を油圧シリンダ内の作動油量を調整して回転駆動させ、蒸気流路からこの弁体を通過して蒸気タービンに供給される蒸気量を制御する組み合わせ中間弁装置であって、
前記油圧シリンダを具備し、前記油圧シリンダへ供給される前記作動油量を調整し前記弁棒を介して前記弁体に駆動力を伝達する第一および第二の駆動装置と、
前記第一の駆動装置と前記弁棒との間、および前記第二の駆動装置と前記弁棒との間に設けられ、前記弁棒と前記第一および第二の駆動装置のいずれか一方とを連結させるクラッチ機構と、
前記クラッチ機構による前記連結を調整する制御指令を出力する制御装置と、
を備え、
前記蒸気タービンの通常運転時には、前記弁棒が前記クラッチ機構を介して前記第一の駆動装置に連結され、前記第一の駆動装置の油圧シリンダ内の前記作動油量により前記弁体の開きを調整し、
前記蒸気タービンの異常運転時に前記弁体を急閉する場合には、前記第一の駆動装置の油圧シリンダへの前記作動油の供給を遮断して、前記第一の駆動装置の油圧シリンダから前記作動油を排出し、
前記急閉の後に前記弁体を急開する場合には、前記制御装置からの制御指令に基づいて、前記クラッチ機構が前記第一の駆動装置と前記弁棒とを遮断すると共に、前記第二の駆動装置と前記弁棒とを連結し、前記第二の駆動装置の油圧シリンダへの前記作動油の供給を遮断して、所定量の作動油が満たされた前記第二の駆動装置の油圧シリンダから前記作動油を排出する組み合わせ中間弁装置。
A combination intermediate valve device that controls the amount of steam supplied to the steam turbine from the steam flow path through the valve body by adjusting the amount of hydraulic oil in the hydraulic cylinder and rotating the valve rod to which the valve body is attached. And,
A first and second drive device comprising the hydraulic cylinder, adjusting the amount of the hydraulic oil supplied to the hydraulic cylinder, and transmitting a driving force to the valve body via the valve rod.
Provided between the first drive device and the valve rod, and between the second drive device and the valve rod, with either the valve rod and the first and second drive devices. With the clutch mechanism that connects
A control device that outputs a control command for adjusting the connection by the clutch mechanism, and
Equipped with
During normal operation of the steam turbine, the valve rod is connected to the first drive device via the clutch mechanism, and the valve body is opened by the amount of hydraulic oil in the hydraulic cylinder of the first drive device. Adjust and
When the valve body is suddenly closed during abnormal operation of the steam turbine, the supply of the hydraulic oil to the hydraulic cylinder of the first drive device is cut off, and the hydraulic cylinder of the first drive device is said to be the same. Drain the hydraulic oil,
When the valve body is suddenly opened after the sudden closing, the clutch mechanism shuts off the first drive device and the valve rod based on a control command from the control device, and the second. The hydraulic pressure of the second drive device is filled with a predetermined amount of hydraulic oil by connecting the drive device of the above and the valve rod and cutting off the supply of the hydraulic oil to the hydraulic cylinder of the second drive device. A combined intermediate valve device that discharges the hydraulic oil from a cylinder.
前記第一および第二の駆動装置の油圧シリンダのそれぞれに前記作動油を供給する第一および第二の作動油供給流路と、
前記第一および第二の駆動装置の油圧シリンダのそれぞれから前記作動油を排出する第一および第二の排出流路と、
外部からの制御指令に基づき、前記第一の排出流路および前記第一の供給流路のいずれかと前記第一の駆動装置とを連結させる第一の急速作動電磁弁と、
外部からの制御指令に基づき、前記第二の排出流路および前記第二の供給流路のいずれかと前記第二の駆動装置とを連結させる第二の急速作動電磁弁と、
を備え、
前記通常運転時には、前記第一の急速作動電磁弁を介して前記第一の作動油供給流路と前記第一の駆動装置とを、前記第二の急速作動電磁弁を介して前記第二の作動油供給流路と前記第二の駆動装置とをそれぞれ連結し、前記第一の供給流路から前記第一の駆動装置の油圧シリンダへ、前記第二の供給流路から前記第二の駆動装置の油圧シリンダへそれぞれ所定量の作動油を供給し、
前記異常運転時に前記弁体を急閉する場合には、外部からの制御指令に基づいて前記第一の急速作動電磁弁を励磁し、前記第一の急速作動電磁弁を介して前記第一の排出流路と前記第一の駆動装置とを連結させて、前記第一の駆動装置の油圧シリンダから前記第一の排出流路へ前記作動油を排出し、
前記急閉後に前記弁体を急開する場合には、前記クラッチ機構による前記弁棒と前記第二の駆動装置との連結後に、外部からの制御指令に基づいて前記第二の急速作動電磁弁を励磁し、前記第二の急速作動電磁弁を介して前記第二の排出流路と前記第二の駆動装置とを連結させて、前記第二の駆動装置の油圧シリンダから前記第二の排出流路へ前記作動油を排出する請求項1に記載された組み合わせ中間弁装置。
The first and second hydraulic oil supply channels for supplying the hydraulic oil to the hydraulic cylinders of the first and second drive devices, respectively.
The first and second discharge channels for discharging the hydraulic oil from the hydraulic cylinders of the first and second drive devices, respectively.
A first fast-acting solenoid valve that connects any of the first discharge flow path and the first supply flow path with the first drive device based on an external control command.
A second fast-acting solenoid valve that connects any of the second discharge flow path and the second supply flow path with the second drive device based on an external control command.
Equipped with
During the normal operation, the first hydraulic oil supply flow path and the first drive device are connected to the first hydraulic oil supply flow path via the first fast-acting solenoid valve, and the second rapid-acting solenoid valve is used to connect the first hydraulic oil supply flow path to the first drive device. The hydraulic oil supply flow path and the second drive device are connected to each other, and the first supply flow path is connected to the hydraulic cylinder of the first drive device, and the second supply flow path is used to drive the second drive device. Supply a predetermined amount of hydraulic oil to each hydraulic cylinder of the device,
When the valve body is suddenly closed during the abnormal operation, the first quick-acting solenoid valve is excited based on an external control command, and the first quick-acting solenoid valve is used to excite the first quick-acting solenoid valve. By connecting the discharge flow path and the first drive device, the hydraulic oil is discharged from the hydraulic cylinder of the first drive device to the first discharge flow path.
When the valve body is suddenly opened after the sudden closing, the second fast-acting solenoid valve is based on an external control command after the valve rod is connected to the second drive device by the clutch mechanism. The second discharge flow path and the second drive device are connected to each other via the second rapid-acting solenoid valve, and the second discharge from the hydraulic cylinder of the second drive device. The combined intermediate valve device according to claim 1, wherein the hydraulic oil is discharged to the flow path.
前記急閉後に前記弁体を急開する場合には、前記第一の急速作動電磁弁を介して前記第一の作動油供給流路と前記第一の駆動装置とを連結させて、前記第一の作動油供給流路から前記第一の駆動装置の油圧シリンダへ前記所定量の前記作動油を供給し、
前記急開後に再び前記弁体を急閉する場合には、前記制御装置からの制御指令によって前記クラッチ機構が前記第一の駆動装置と前記弁棒とを連結し、外部からの制御指令に基づいて前記第一の急速作動電磁弁を励磁し、前記第一の急速作動電磁弁を介して前記第一の排出流路と前記第一の駆動装置とを連結させて、前記第一の駆動装置の油圧シリンダが前記第一の排出流路へ前記作動油を排出する請求項2に記載された組み合わせ中間弁装置。
When the valve body is suddenly opened after the sudden closing, the first hydraulic oil supply flow path and the first driving device are connected via the first rapid operating solenoid valve, and the first driving device is connected. The predetermined amount of the hydraulic oil is supplied from one hydraulic oil supply flow path to the hydraulic cylinder of the first drive device.
When the valve body is suddenly closed again after the sudden opening, the clutch mechanism connects the first drive device and the valve rod by a control command from the control device, and is based on a control command from the outside. The first rapid-acting solenoid valve is excited, and the first discharge flow path and the first drive device are connected via the first rapid-acting solenoid valve to connect the first drive device. The combined intermediate valve device according to claim 2, wherein the hydraulic cylinder of the above discharges the hydraulic oil to the first discharge flow path.
請求項1から3のいずれかに記載された組み合わせ中間弁装置を備えるタービン発電設備。 A turbine power generation facility including the combination intermediate valve device according to any one of claims 1 to 3.
JP2018171684A 2018-09-13 2018-09-13 Combined intermediate valve gear and turbine power generation equipment Active JP7053418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171684A JP7053418B2 (en) 2018-09-13 2018-09-13 Combined intermediate valve gear and turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171684A JP7053418B2 (en) 2018-09-13 2018-09-13 Combined intermediate valve gear and turbine power generation equipment

Publications (2)

Publication Number Publication Date
JP2020041531A JP2020041531A (en) 2020-03-19
JP7053418B2 true JP7053418B2 (en) 2022-04-12

Family

ID=69797875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171684A Active JP7053418B2 (en) 2018-09-13 2018-09-13 Combined intermediate valve gear and turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP7053418B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293705A (en) 2002-04-04 2003-10-15 Toshiba Corp Butterfly type combination intermediate valve for power plant and power plant
US20040000656A1 (en) 2001-09-27 2004-01-01 Jimmy Wiggins Dual actuator air turbine starter valve
CN202646801U (en) 2012-05-28 2013-01-02 中核苏阀科技实业股份有限公司 High-flow check valve
JP2017015027A (en) 2015-07-02 2017-01-19 株式会社東芝 Pump driving mechanism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231104A (en) * 1992-02-19 1993-09-07 Toshiba Corp Steam valve opening/closing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040000656A1 (en) 2001-09-27 2004-01-01 Jimmy Wiggins Dual actuator air turbine starter valve
JP2003293705A (en) 2002-04-04 2003-10-15 Toshiba Corp Butterfly type combination intermediate valve for power plant and power plant
CN202646801U (en) 2012-05-28 2013-01-02 中核苏阀科技实业股份有限公司 High-flow check valve
JP2017015027A (en) 2015-07-02 2017-01-19 株式会社東芝 Pump driving mechanism

Also Published As

Publication number Publication date
JP2020041531A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP6746511B2 (en) Steam turbine valve drive
US11053861B2 (en) Overspeed protection system and method
US20180171822A1 (en) Trip manifold assembly for turbine systems
US20180216486A1 (en) Hydraulic driving device for steam valve, combined steam valve, and steam turbine
JP7227845B2 (en) Steam valve drive system, steam valve system and steam turbine plant
EP2270369A1 (en) Valve device and a steam turbine system incorporating said valve device
US8753067B2 (en) Steam valve apparatus
JP7053418B2 (en) Combined intermediate valve gear and turbine power generation equipment
US9650912B2 (en) System and device for over-speed protection of a turbo-machine
EP3211185B1 (en) Emergency shutoff device and emergency shutoff system provided with same
JP4693360B2 (en) Turbomachine safety equipment and power generation equipment
JP4864838B2 (en) Steam valve
JP4551168B2 (en) Steam turbine power generation facility and operation method thereof
CN212054830U (en) Four-taking two-speed shutdown control device with emergency security function
JP2986148B2 (en) Turbine emergency equipment
JP3020893B2 (en) Turbine emergency control device
CN111237016B (en) Four-taking-out and two-speed-off shutdown control system
CN111535875B (en) Four-taking two-speed stop valve group
JP2997605B2 (en) Steam valve drive for steam turbine
JP2988816B2 (en) Turbine emergency equipment
JPS6153408A (en) Emergency stop device for turbine
RU2248451C1 (en) Steam turbine electrohydraulic control system
US3683620A (en) Arrangement for protecting a steam treatment device against excess pressure
SU731094A1 (en) Control apparatus for acceleration inhibiting valve of radial hydraulic turbines
USRE13229E (en) Governing mechanism foe mixed-pressure- turbines

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150