JP2019029553A - Amorphous Transformer - Google Patents

Amorphous Transformer Download PDF

Info

Publication number
JP2019029553A
JP2019029553A JP2017149014A JP2017149014A JP2019029553A JP 2019029553 A JP2019029553 A JP 2019029553A JP 2017149014 A JP2017149014 A JP 2017149014A JP 2017149014 A JP2017149014 A JP 2017149014A JP 2019029553 A JP2019029553 A JP 2019029553A
Authority
JP
Japan
Prior art keywords
coil
iron core
amorphous
transformer
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017149014A
Other languages
Japanese (ja)
Inventor
周二 多田
Shuji Tada
周二 多田
雅也 田中
Masaya Tanaka
雅也 田中
亮佑 杉田
Ryosuke Sugita
亮佑 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2017149014A priority Critical patent/JP2019029553A/en
Publication of JP2019029553A publication Critical patent/JP2019029553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To solve a problem in which the short-circuit strength improves as the coil shape of a transformer approaches a circular shape, however, the cross-sectional shape of an amorphous core is rectangular, and in the case of a circular coil, a large space occurs between an iron core and a coil.SOLUTION: A transformer according to an embodiment of the present invention includes at least a coil formed by winding a conductor a plurality of times and an iron core inserted into the inner periphery of the coil. The iron core is formed by laminating a plurality of ribbon layers made of one or a plurality of amorphous ribbons, and from among the plurality of ribbon layers, the even number ribbon layer is stacked on the odd number ribbon layers so as to be shifted from the odd number ribbon layers in the same direction as the width direction of the iron core.SELECTED DRAWING: Figure 1

Description

本発明はアモルファス変圧器に関する。   The present invention relates to an amorphous transformer.

変圧器は、コイル(一次コイル及び二次コイル)と、コイルの内周に挿入される鉄心を主要構成部品とする。変圧器に用いられるコイル形状にはいくつかの種類が存在するが、円形のコイル形状は短絡強度が向上する点で好ましい。   The transformer includes a coil (a primary coil and a secondary coil) and an iron core inserted in the inner periphery of the coil as main components. There are several types of coil shapes used in the transformer, but a circular coil shape is preferable in terms of improving short-circuit strength.

変圧器に円形形状のコイルを採用する場合、たとえば特許文献1に示されているように、内周に挿入される鉄心は、コイルと鉄心の間に生じる空間を小さくするために、その断面形状が円形に近い(コイルの内周形状に近い)鉄心が採用される。   When a circular coil is employed in the transformer, for example, as shown in Patent Document 1, an iron core inserted in the inner periphery has a cross-sectional shape in order to reduce a space generated between the coil and the iron core. An iron core that is close to a circle (close to the inner peripheral shape of the coil) is employed.

特開昭54−142520号公報JP 54-142520 A

近年では、アモルファス薄帯を複数積層してなる鉄心が、変圧器に用いられることが多い。しかし、アモルファス薄帯は非常に薄く成形が難しいため、幅が同寸法のアモルファス薄帯を積層し巻鉄心形状とすることが一般的である。そのため一般には、アモルファス鉄心の断面形状は矩形状となり、円形コイルの場合には鉄心とコイル内壁との間に大きなスペースが生まれてしまう。このスペースの分コイルは大形となる。また変圧器短絡時に生じる短絡機械力によりスペースにコイルの電線が落ち込んでしまいインピーダンス増大の原因となる。   In recent years, an iron core formed by laminating a plurality of amorphous ribbons is often used for a transformer. However, since an amorphous ribbon is very thin and difficult to mold, it is common to laminate amorphous ribbons having the same width to form a wound core. Therefore, in general, the cross-sectional shape of the amorphous iron core is rectangular, and in the case of a circular coil, a large space is created between the iron core and the inner wall of the coil. The split coil in this space becomes large. In addition, the short-circuit mechanical force generated when the transformer is short-circuited causes the coil wire to drop into the space, causing an increase in impedance.

もし、特許文献1に開示されている鉄心のように、断面形状がコイル内周の形状に近い鉄心を製造するためには、異なる幅のアモルファス薄帯を複数積層する必要がある。しかしこれは、異なる幅のアモルファス薄帯を複数用意する必要があるため、作業工数やコストの増大を招くことになる。   In order to manufacture an iron core having a cross-sectional shape close to the shape of the inner circumference of the coil, such as the iron core disclosed in Patent Document 1, it is necessary to stack a plurality of amorphous ribbons having different widths. However, this requires preparation of a plurality of amorphous ribbons having different widths, resulting in an increase in work man-hours and costs.

本発明の一実施形態に係るアモルファス変圧器は少なくとも、導体を複数回巻き回してなるコイルと、コイルの内周に挿入される鉄心とを有する。鉄心は、1または複数枚のアモルファス薄帯から成る薄帯層が複数積層されて成る鉄心であり、この複数の薄帯層のうち、偶数枚目の薄帯層は奇数枚目の薄帯層に対して、前記鉄心の幅方向の同じ向きに、ずらして積層されていることを特徴とする。   An amorphous transformer according to an embodiment of the present invention includes at least a coil formed by winding a conductor a plurality of times and an iron core inserted into the inner periphery of the coil. The iron core is an iron core formed by laminating a plurality of ribbon layers composed of one or a plurality of amorphous ribbons, and among the plurality of ribbon layers, even-numbered ribbon layers are odd-numbered ribbon layers. On the other hand, the iron cores are laminated so as to be shifted in the same direction in the width direction.

本発明によれば、アモルファス鉄心とコイルとの間に生じるスペースを、少ない作業工数で低減させることができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, the space generated between the amorphous iron core and the coil can be reduced with a small number of work steps. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

実施例1に係るアモルファス変圧器に用いられるアモルファス鉄心の断面概略図である。1 is a schematic cross-sectional view of an amorphous iron core used in an amorphous transformer according to Example 1. FIG. アモルファス鉄心をコイルに挿入した断面概略図である。It is the cross-sectional schematic which inserted the amorphous iron core in the coil. 変圧器の中身構造を示す概略図である。It is the schematic which shows the content structure of a transformer. 従来のアモルファス変圧器の鉄心コイル断面概略図である。It is a cross-sectional schematic diagram of an iron core coil of a conventional amorphous transformer. 三相変圧器のコイルと、そのコイルに挿入される鉄心の例を示す図である。It is a figure which shows the example of the coil of a three-phase transformer, and the iron core inserted in the coil.

以下、本発明の実施例を図面を用いて説明する。以下で説明する実施例に係る変圧器は、アモルファス薄帯を複数積層してなるアモルファス鉄心を用いた、アモルファス変圧器であるが、以下では単に「変圧器」と呼ぶ。また以下の実施例において鉄心の方向を説明する際、複数のアモルファス薄帯が積層される方向を、鉄心の「厚さ方向」または「積層方向」と呼ぶ。また鉄心の厚さ方向及び鉄心(またはアモルファス薄帯)の長手方向と直交する方向を、鉄心の「幅方向」と呼ぶ。   Embodiments of the present invention will be described below with reference to the drawings. The transformer according to the embodiment described below is an amorphous transformer using an amorphous iron core formed by laminating a plurality of amorphous ribbons. Hereinafter, the transformer is simply referred to as a “transformer”. In the following embodiments, the direction of the iron core will be described. The direction in which a plurality of amorphous ribbons are laminated is referred to as the “thickness direction” or “lamination direction” of the iron core. The direction perpendicular to the thickness direction of the iron core and the longitudinal direction of the iron core (or amorphous ribbon) is referred to as the “width direction” of the iron core.

図3は、変圧器、特に単相変圧器の中身構造を表す図である。変圧器はコイル1と、コイルを貫くように配置された鉄心2で構成される。図3で示す例は、円筒形状のコイル1を採用した変圧器の例である。   FIG. 3 is a diagram showing the content structure of a transformer, particularly a single-phase transformer. The transformer is composed of a coil 1 and an iron core 2 arranged so as to penetrate the coil. The example shown in FIG. 3 is an example of a transformer that employs a cylindrical coil 1.

図4は従来のアモルファス鉄心が挿入されたコイルの断面図であり、図3のA−A断面を表す。周知のように、変圧器のコイル形状は円形に近づくほど短絡強度が向上する。アモルファス薄帯は非常に薄く成形が難しいため幅が同寸法のアモルファス薄帯を積層し巻鉄心形状とすることが一般的である。そのためアモルファス鉄心の断面形状は矩形状となり、円形コイルの場合には鉄心とコイル内壁との間に大きなスペース3が生まれてしまう。このスペースの分コイルは大形となる。また変圧器短絡時に生じる短絡機械力により、スペース3にコイルの電線が落ち込んでしまい、インピーダンス増大の原因となる。   FIG. 4 is a cross-sectional view of a conventional coil in which an amorphous iron core is inserted, and represents a cross section taken along the line AA of FIG. As is well known, the short-circuit strength improves as the coil shape of the transformer approaches a circle. Since amorphous ribbons are very thin and difficult to form, it is common to laminate amorphous ribbons of the same width into a wound core shape. Therefore, the cross-sectional shape of the amorphous iron core is rectangular, and in the case of a circular coil, a large space 3 is created between the iron core and the inner wall of the coil. The split coil in this space becomes large. Moreover, the electric wire of a coil falls in the space 3 by the short circuit mechanical force which arises at the time of a transformer short circuit, and becomes a cause of an impedance increase.

図1は本実施例に係る変圧器で用いられる鉄心の断面概略図である。アモルファス鉄心2はアモルファス薄帯4を積層し成形される。本実施例に係る変圧器で用いられるアモルファス鉄心2(以下では「鉄心2」と略記することもある)は、アモルファス薄帯4を中央部が重なるように1枚または数枚毎に幅方向へ交互にずらしながら積層することにより、形成される。   FIG. 1 is a schematic cross-sectional view of an iron core used in the transformer according to the present embodiment. The amorphous iron core 2 is formed by laminating amorphous ribbons 4. The amorphous iron core 2 (hereinafter also abbreviated as “iron core 2”) used in the transformer according to the present embodiment is arranged in the width direction by one or several sheets so that the amorphous ribbon 4 overlaps the central portion. It is formed by laminating while shifting alternately.

図1を参照しながら、アモルファス薄帯4の積層の仕方の例を説明する。図1では、アモルファス薄帯4−1の上に、順にアモルファス薄帯4−2,4−3...が積層されている。ここで、アモルファス薄帯4−1,4−2,4−3...はそれぞれ、1枚のアモルファス薄帯でもよいが、あるいはn枚(nは1以上の整数とする)のアモルファス薄帯から成る層であってもよい。またアモルファス薄帯4−1,4−2,4−3...の幅はいずれも同じである。なお、本明細書では、1または複数枚のアモルファス薄帯から成る層を、薄帯層と呼び、アモルファス薄帯4−1,4−2,4−3...のそれぞれも、薄帯層である。また、鉄心2を構成する薄帯層の数(積層数)は、特定の数に限定されるものではなく、使用される変圧器の種類・特性によって、適宜積層数が定められるとよい。   An example of a method for stacking the amorphous ribbon 4 will be described with reference to FIG. In FIG. 1, the amorphous ribbons 4-2, 4-3. . . Are stacked. Here, amorphous ribbons 4-1, 4-2, 4-3. . . Each may be a single amorphous ribbon, or may be a layer composed of n (n is an integer of 1 or more) amorphous ribbons. Further, amorphous ribbons 4-1, 4-2, 4-3. . . The width of each is the same. In the present specification, a layer composed of one or a plurality of amorphous ribbons is referred to as a ribbon layer, and the amorphous ribbons 4-1, 4-2, 4-3. . . Each of these is also a ribbon layer. Moreover, the number (number of lamination | stacking) of the thin ribbon layer which comprises the iron core 2 is not limited to a specific number, It is good to determine the number of lamination | stacking suitably according to the kind and characteristic of the transformer to be used.

そして図1において、アモルファス薄帯4−2はアモルファス薄帯4−1に対して、距離d(dは正の値とする)だけ左方向にずれて積層されており(なお図1において、水平方向(左右方向)は、鉄心2の幅方向である)、アモルファス薄帯4−3はアモルファス薄帯4−2に対して距離−dだけ左方向にずれて(言い換えると、距離dだけ右方向にずれて)積層されている。4−3以降のアモルファス薄帯4についても同様に、左方向に距離dだけずらして積層する、右方向に距離dだけずらして積層する、という手順を交互に繰り返して積層することで、図1のように、アモルファス薄帯4−(2k)がそれぞれ、アモルファス薄帯4−(2k−1)に対して、鉄心2の幅方向の左向きに距離dだけずれて積層された鉄心2が形成される(ここで、kは1以上の整数である)。なお、ここではアモルファス薄帯4−1の上方向にアモルファス薄帯4−2,4−3を積層する例を説明したが、アモルファス薄帯4−1の下方向に積層されているアモルファス薄帯4についても同様の手順で積層されているものである。このように、アモルファス薄帯4を1枚ずつ(あるいはn枚単位で)幅方向に交互にずらしながら積層すると、アモルファス薄帯4の幅よりも大きな幅を有する鉄心2が得られる。またここで得られる鉄心2の中央の重なり部の厚さは両端部の2倍になり、完成したアモルファス鉄心2の断面は矩形状ではなく、八角形あるいは楕円状に近づく。   In FIG. 1, the amorphous ribbon 4-2 is laminated to the amorphous ribbon 4-1 while being shifted to the left by a distance d (d is a positive value) (in FIG. Direction (left-right direction) is the width direction of the iron core 2), and the amorphous ribbon 4-3 is shifted leftward by a distance −d with respect to the amorphous ribbon 4-2 (in other words, rightward by the distance d). Are stacked). Similarly, the amorphous strips 4-3 and subsequent layers are laminated by alternately repeating the steps of laminating the layers by shifting the distance d in the left direction and laminating the layers by shifting the distance d by the distance d in the right direction. Thus, the iron core 2 is formed in which the amorphous ribbon 4- (2k) is laminated with a distance d shifted to the left in the width direction of the iron core 2 with respect to the amorphous ribbon 4- (2k-1). (Where k is an integer greater than or equal to 1). Here, the example in which the amorphous ribbons 4-2 and 4-3 are stacked in the upper direction of the amorphous ribbon 4-1 has been described, but the amorphous ribbons stacked in the lower direction of the amorphous ribbon 4-1 are described. 4 is also laminated in the same procedure. In this way, when the amorphous ribbons 4 are laminated one by one (or in units of n) while being alternately shifted in the width direction, the iron core 2 having a width larger than the width of the amorphous ribbon 4 is obtained. In addition, the thickness of the overlapping portion at the center of the iron core 2 obtained here is twice that of both end portions, and the cross section of the completed amorphous iron core 2 is not rectangular but approaches an octagon or an ellipse.

なお、ここでの距離dは鉄心2が挿入されるコイル1の内周の形状に合わせて適宜決定されるとよい。ただし、複数のアモルファス薄帯4は、互いに重なる部分があるように積層されるため、距離dはアモルファス薄帯4の幅よりは小さくなる。   Here, the distance d may be appropriately determined according to the shape of the inner periphery of the coil 1 into which the iron core 2 is inserted. However, since the plurality of amorphous ribbons 4 are stacked so that there are portions that overlap each other, the distance d is smaller than the width of the amorphous ribbon 4.

図2は図1のアモルファス鉄心2を円形のコイル1に挿入した断面概略図である。コイル1は、公知の変圧器で用いられるコイルと同様、銅線等の導体を複数回巻き回して形成されたものである。コイル1を円形とすることにより、コイル1の短絡強度が向上する。アモルファス鉄心2の断面が楕円状に近づいたことにより、アモルファス鉄心2と円形のコイル1内壁との間のスペース3を低減することが可能である。スペース3が低減されたことにより、コイル寸法を小さくすることができ、使用電線量を削減することができるため、変圧器の小形化とコスト削減と負荷損の低減が見込める。また、短絡時に発生する機械力によりコイル電線が落ち込むスペースが削減され、変圧器の短絡強度が向上する。よって、アモルファス鉄心変圧器において、従来技術では製作が困難であった短絡時の電磁機械力が大きい大容量機種も製作が可能である。   FIG. 2 is a schematic sectional view in which the amorphous iron core 2 of FIG. 1 is inserted into a circular coil 1. The coil 1 is formed by winding a conductor such as a copper wire a plurality of times in the same manner as a coil used in a known transformer. By making the coil 1 circular, the short-circuit strength of the coil 1 is improved. Since the cross section of the amorphous iron core 2 approaches an elliptical shape, the space 3 between the amorphous iron core 2 and the inner wall of the circular coil 1 can be reduced. Since the space 3 is reduced, the coil size can be reduced, and the amount of electric wires used can be reduced. Therefore, the transformer can be reduced in size, cost, and load loss. Moreover, the space where a coil electric wire falls by the mechanical force generated at the time of a short circuit is reduced, and the short circuit strength of a transformer improves. Therefore, large-capacity models with a large electromagnetic mechanical force at the time of a short circuit, which was difficult to manufacture with conventional technology, can be manufactured with amorphous iron core transformers.

コイル1の形状は円形に限らず、楕円形、八角形等の場合でも、コイル1と鉄心2との間のスペース3を低減することが可能である。   The shape of the coil 1 is not limited to a circle, and the space 3 between the coil 1 and the iron core 2 can be reduced even in the case of an ellipse, an octagon, or the like.

アモルファス薄帯の幅寸法は数種類しかなく、従来の鉄心成形方法ではアモルファス鉄心2の幅寸法の設計値は選択肢が限られてしまう。しかし本発明によれば、アモルファス薄帯のずらし量と重なり代を調整することにより任意の幅寸法を持つアモルファス鉄心2を製作することが可能となる。   There are only several kinds of width dimensions of the amorphous ribbon, and the design value of the width dimension of the amorphous core 2 is limited in the conventional iron core forming method. However, according to the present invention, it is possible to manufacture the amorphous iron core 2 having an arbitrary width dimension by adjusting the shift amount and the overlap margin of the amorphous ribbon.

実施例1で説明した鉄心2の形状は、上下対称の形状であったが、鉄心2の形状は上下非対称であってもよい。実施例2ではそのような例を説明する。図5は、三相変圧器のコイルと、そのコイルに挿入される鉄心の例を示している。   Although the shape of the iron core 2 described in the first embodiment is a vertically symmetric shape, the shape of the iron core 2 may be vertically asymmetric. Example 2 describes such an example. FIG. 5 shows an example of a coil of a three-phase transformer and an iron core inserted into the coil.

三相変圧器では、1つのコイル1に2本の鉄心(2a,2b)が挿入される。この場合、2本の鉄心(2a,2b)の形状がそれぞれ、実施例1で説明したような上下対称の八角形の形状だとすると、コイル1と鉄心2a,2bの間のスペースが大きくなってしまう。   In the three-phase transformer, two iron cores (2a, 2b) are inserted into one coil 1. In this case, if the shape of the two iron cores (2a, 2b) is a vertically symmetric octagonal shape as described in the first embodiment, the space between the coil 1 and the iron cores 2a, 2b becomes large. .

そのため、図5のように1つのコイル1に2本の鉄心(2a,2b)を挿入する場合には、図5に示すように、鉄心2a,2bの形状を上下非対称にする、たとえば断面をほぼ六角形の形状にするとよい。そして鉄心2aは、コイル1の中央部に位置する面(以下ではこれを「鉄心2aの底面」と呼ぶ)の幅が最も大きくなるようにし、かつ鉄心2aの底面は平面になるようにアモルファス薄帯4が積層されるとよい。同様に鉄心2bについても、コイル1の中央部に位置する面(鉄心2bの底面)の幅が最も大きくなるようにし、かつ鉄心2bの底面は平面になるようにするとよい。   Therefore, when two iron cores (2a, 2b) are inserted into one coil 1 as shown in FIG. 5, the shapes of the iron cores 2a, 2b are made asymmetric in the vertical direction, as shown in FIG. It is good to have a substantially hexagonal shape. The iron core 2a is amorphous thin so that the width of the surface (hereinafter referred to as "the bottom surface of the iron core 2a") located at the center of the coil 1 is the largest, and the bottom surface of the iron core 2a is flat. The band 4 is preferably laminated. Similarly, with respect to the iron core 2b, the width of the surface (bottom surface of the iron core 2b) located at the center of the coil 1 should be maximized, and the bottom surface of the iron core 2b should be flat.

三相変圧器の場合には、鉄心2(2a,2b)の断面形状をこのようにすることで、鉄心2(2a,2b)とコイル1の内壁との間にできるスペースを少なくすることが可能である。   In the case of a three-phase transformer, the space formed between the iron core 2 (2a, 2b) and the inner wall of the coil 1 can be reduced by making the cross-sectional shape of the iron core 2 (2a, 2b) in this way. Is possible.

1…コイル、2…アモルファス鉄心、3…鉄心とコイル間に生じるスペース、4アモルファス薄帯 1 ... Coil, 2 ... Amorphous iron core, 3 ... Space generated between iron core and coil, 4 Amorphous ribbon

Claims (4)

導体を複数回巻き回してなるコイルと、
前記コイルの内周に挿入される鉄心と、
を有し、
前記鉄心は、1または複数枚のアモルファス薄帯から成る薄帯層が複数積層されて成っており、
複数の前記薄帯層のうち、偶数枚目の前記薄帯層は奇数枚目の前記薄帯層に対して、前記鉄心の幅方向の同じ向きに、ずらして積層されている、
ことを特徴とする、アモルファス変圧器。
A coil formed by winding a conductor multiple times;
An iron core inserted into the inner periphery of the coil;
Have
The iron core is formed by laminating a plurality of ribbon layers composed of one or more amorphous ribbons,
Among the plurality of the ribbon layers, the even-numbered ribbon layers are laminated with being shifted in the same direction in the width direction of the iron core with respect to the odd-numbered ribbon layers,
An amorphous transformer characterized by that.
前記鉄心の中央部の厚さが、前記鉄心の両端部の2倍の厚さである、
ことを特徴とする、請求項1に記載のアモルファス変圧器。
The thickness of the central portion of the iron core is twice the thickness of both end portions of the iron core.
The amorphous transformer according to claim 1, wherein:
前記コイルの内周の形状は、円形または楕円形である、
ことを特徴とする、請求項2に記載のアモルファス変圧器。
The shape of the inner periphery of the coil is circular or elliptical.
The amorphous transformer according to claim 2, wherein:
前記コイルの内周には、2本の前記鉄心が挿入され、
それぞれの前記鉄心の幅は、前記コイルの中央部に位置する部分である底面の幅が最も大きくなるように構成されている、
ことを特徴とする、請求項3に記載のアモルファス変圧器。
Two iron cores are inserted into the inner circumference of the coil,
The width of each of the iron cores is configured such that the width of the bottom surface that is a portion located in the center of the coil is the largest,
The amorphous transformer according to claim 3, wherein:
JP2017149014A 2017-08-01 2017-08-01 Amorphous Transformer Pending JP2019029553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017149014A JP2019029553A (en) 2017-08-01 2017-08-01 Amorphous Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017149014A JP2019029553A (en) 2017-08-01 2017-08-01 Amorphous Transformer

Publications (1)

Publication Number Publication Date
JP2019029553A true JP2019029553A (en) 2019-02-21

Family

ID=65476549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017149014A Pending JP2019029553A (en) 2017-08-01 2017-08-01 Amorphous Transformer

Country Status (1)

Country Link
JP (1) JP2019029553A (en)

Similar Documents

Publication Publication Date Title
US9640307B2 (en) Transformer
JP6185616B2 (en) Transformer core
KR101853795B1 (en) Low loss and reduced-weight type transformer and manufacturing method thereof
JP2002280230A (en) Planar coil and planar transformer
JP2018060886A (en) Shell type transformer
JP2017220515A (en) Transformer
JP6886931B2 (en) Static guidance device
JP2008043105A (en) Split core for motor
US20160268037A1 (en) Stationary Induction Electric Apparatus and Method for Making the Same
KR101506698B1 (en) iron core winding assembly for transformer
JP2011009433A (en) Edgewise winding magnetic component
US20190139697A1 (en) Magnetic element, metal annular winding and method for manufacturing the same
JP5680327B2 (en) Split winding transformer
JP2019029553A (en) Amorphous Transformer
JP7029920B2 (en) Transformer
WO2016005526A1 (en) Centre-tapped transformer
JP2011142149A (en) Transformer
JP2008205212A (en) Transformer
JP5538021B2 (en) Coil transformer with unit configuration
JP6576740B2 (en) Coil bobbin, coil and transformer provided with the coil
JP2018181976A (en) Transformer, and transformer bobbin
EP0450448A1 (en) Flat-type transformer
KR102490358B1 (en) A structure of single-phase transformer with wound core type capable of reducing iron loss and manufacturing method therof
JP5996008B2 (en) Common mode filter
US3270308A (en) Preformed magnetic core structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201