JP2019027403A - Two-stage supercharging system - Google Patents

Two-stage supercharging system Download PDF

Info

Publication number
JP2019027403A
JP2019027403A JP2017149855A JP2017149855A JP2019027403A JP 2019027403 A JP2019027403 A JP 2019027403A JP 2017149855 A JP2017149855 A JP 2017149855A JP 2017149855 A JP2017149855 A JP 2017149855A JP 2019027403 A JP2019027403 A JP 2019027403A
Authority
JP
Japan
Prior art keywords
pressure stage
intercooler
low
pressure
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017149855A
Other languages
Japanese (ja)
Inventor
木村 昌裕
Masahiro Kimura
昌裕 木村
宏 築坂
Hiroshi Chikusaka
宏 築坂
吉田 豊
Yutaka Yoshida
豊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2017149855A priority Critical patent/JP2019027403A/en
Publication of JP2019027403A publication Critical patent/JP2019027403A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

To provide a two-stage supercharging system capable of protecting a high-pressure stage compressor from the phenomenon that oil content or condensate water accumulated in a low-pressure stage intercooler are collectively suctioned to collide with each other.SOLUTION: A two-stage supercharging system comprises a high-pressure stage turbocharger 6 and a low-pressure stage turbocharger 10, wherein a low-pressure stage intercooler 12 is arranged relatively higher than a high-pressure stage intercooler 13; and the low-pressure stage intercooler 12 and the high-pressure stage intercooler 13 are connected through a communication pipe 17 so as to extract oil content or condensate water accumulated in the low-pressure stage intercooler 12 with gravity in a period where an engine 1 stops.SELECTED DRAWING: Figure 1

Description

本発明は、二段過給システムに関するものである。   The present invention relates to a two-stage supercharging system.

近年、過給システムのダウンサイジングやトルクアップを実現する観点から二段過給システムが提案されており、この種の二段過給システムにおいては、図3に示す如く、エンジン1の排気マニホールド2から送出される排気Gにより高圧段タービン3を作動させ且つ高圧段コンプレッサ4で圧縮した吸気Aをエンジン1の吸気マニホールド5へ送給する高圧段ターボチャージャ6と、該高圧段ターボチャージャ6の高圧段タービン3から送出される排気Gにより低圧段タービン8を作動させ且つ低圧段コンプレッサ9で圧縮した吸気Aを前記高圧段コンプレッサ4へ送給する低圧段ターボチャージャ10とが備えられている。   In recent years, a two-stage supercharging system has been proposed from the viewpoint of realizing downsizing and torque increase of the supercharging system. In this type of two-stage supercharging system, as shown in FIG. The high-pressure stage turbocharger 6 that operates the high-pressure stage turbine 3 by the exhaust G sent from the engine and supplies the intake air A compressed by the high-pressure stage compressor 4 to the intake manifold 5 of the engine 1, and the high pressure of the high-pressure stage turbocharger 6 A low-pressure stage turbocharger 10 that operates the low-pressure stage turbine 8 by the exhaust G sent from the stage turbine 3 and supplies the intake air A compressed by the low-pressure stage compressor 9 to the high-pressure stage compressor 4 is provided.

更に、前記低圧段ターボチャージャ10の低圧段コンプレッサ9の吐出側と前記高圧段ターボチャージャ6の高圧段コンプレッサ4の吸入側との間には、低圧段インタークーラ12が介装されており、前記高圧段コンプレッサ4の吐出側とエンジン1の吸気マニホールド5との間には、高圧段インタークーラ13が介装されている。   Further, a low pressure stage intercooler 12 is interposed between the discharge side of the low pressure stage compressor 9 of the low pressure stage turbocharger 10 and the suction side of the high pressure stage compressor 4 of the high pressure stage turbocharger 6. A high-pressure stage intercooler 13 is interposed between the discharge side of the high-pressure stage compressor 4 and the intake manifold 5 of the engine 1.

また、排気系の高圧段タービン3よりも上流側(具体的には排気マニホールド2)から高圧段インタークーラ13よりも下流側(具体的には吸気マニホールド5)へ至るEGR配管14が設けられ、該EGR配管14には、排気系から分流した排気Gを冷却するEGRクーラ15と、吸気系へ還流すべき排気Gの流量を調整するEGRバルブ16とが設けられている。   Also, an EGR pipe 14 is provided from the upstream side of the high-pressure stage turbine 3 (specifically, the exhaust manifold 2) to the downstream side (specifically, the intake manifold 5) of the high-pressure stage intercooler 13, The EGR pipe 14 is provided with an EGR cooler 15 that cools the exhaust gas G diverted from the exhaust system, and an EGR valve 16 that adjusts the flow rate of the exhaust G to be returned to the intake system.

而して、斯かる二段過給システムにおいては、エンジン1の運転時に、排気マニホールド2から送出される排気Gが、高圧段タービン3へ流入して高圧段コンプレッサ4を駆動した後、低圧段タービン8へ流入して低圧段コンプレッサ9を駆動し、該低圧段コンプレッサ9に流入して圧縮された吸気Aは、低圧段インタークーラ12を経て高圧段コンプレッサ4に送給され、該高圧段コンプレッサ4で再び圧縮され、高圧段インタークーラ13を経て吸気マニホールド5へ送給されるので、シリンダへの吸気Aの送給量が増加し、1サイクル当たりの燃料噴射量を多くすれば、エンジン1の出力を高めることができる。   Thus, in such a two-stage supercharging system, during operation of the engine 1, the exhaust G sent from the exhaust manifold 2 flows into the high-pressure turbine 3 and drives the high-pressure compressor 4, and then the low-pressure stage. The intake air A that flows into the turbine 8 and drives the low-pressure compressor 9 and is compressed by flowing into the low-pressure compressor 9 is supplied to the high-pressure compressor 4 through the low-pressure intercooler 12, and the high-pressure compressor 4 is compressed again and fed to the intake manifold 5 via the high-pressure intercooler 13, so that the amount of intake A delivered to the cylinder increases, and if the fuel injection amount per cycle is increased, the engine 1 Can increase the output.

また、前記排気Gの一部は、排気マニホールド2からEGR配管14へ流入し、EGRクーラ15で冷却され且つEGRバルブ16で流量調整が行われた排気Gが、吸気Aと一緒に吸気マニホールド5へと送給され、これによりシリンダ内の燃焼温度の低下が図られてNOxの発生が低減される。   Further, a part of the exhaust G flows from the exhaust manifold 2 into the EGR pipe 14, and the exhaust G cooled by the EGR cooler 15 and adjusted in flow rate by the EGR valve 16 is combined with the intake air A with the intake manifold 5. This reduces the combustion temperature in the cylinder and reduces the generation of NOx.

ただし、排気Gの流量が大きい高速高負荷域では、高圧段ターボチャージャ6が過剰に回転して過給圧が必要以上に高まり、エンジン1の各気筒の最大筒内圧が制限値を超えて運転不可となってしまったり、過給圧が排気マニホールド2の圧力より高くなって排気Gが再循環できなくなったりする虞れがある。   However, in the high speed and high load range where the flow rate of the exhaust G is large, the high pressure turbocharger 6 rotates excessively and the boost pressure increases more than necessary, and the maximum in-cylinder pressure of each cylinder of the engine 1 exceeds the limit value. There is a possibility that the exhaust pressure becomes higher than the pressure of the exhaust manifold 2 and the exhaust G cannot be recirculated.

このため、高圧段タービン3を迂回するバイパス配管7を設けると共に、該バイパス配管7の途中にバイパスバルブ11を設け、該バイパスバルブ11を高速高負荷域で開けて適正な流量の排気Gのみ高圧段タービン3に流し、残りは高圧段タービン3を迂回させて低圧段タービン8へ導くようにしている。   Therefore, a bypass pipe 7 that bypasses the high-pressure turbine 3 is provided, and a bypass valve 11 is provided in the middle of the bypass pipe 7, and the bypass valve 11 is opened in a high-speed and high-load region so that only the exhaust gas G having an appropriate flow rate is high pressure. It flows through the stage turbine 3, and the remainder is bypassed to the high pressure stage turbine 3 and led to the low pressure stage turbine 8.

尚、この種の二段過給システムに関連する先行技術文献情報としては下記の特許文献1等がある。   The prior art document information related to this type of two-stage supercharging system includes the following Patent Document 1.

実開昭59−2926号公報Japanese Utility Model Publication No.59-2926

しかしながら、近年におけるエンジン1では、その燃焼室からクランクケース内に漏れ出るブローバイガスを大気開放せずに吸気系に戻してエンジン1で焼却処理させるようにしているため、ブローバイガスに含まれるミスト状の油分や凝縮水が低圧段インタークーラ12内で液滴化して溜まった場合に、その溜まった油分や凝縮水が一気に高圧段ターボチャージャ6の高圧段コンプレッサ4に吸い込まれ、該高圧段コンプレッサ4の健全性に悪影響を及ぼすことが懸念されている。   However, in the engine 1 in recent years, the blow-by gas leaking from the combustion chamber into the crankcase is returned to the intake system without being released to the atmosphere, and is incinerated by the engine 1, so that the mist contained in the blow-by gas is contained. Oil and condensed water are stored in droplets in the low-pressure stage intercooler 12, the accumulated oil and condensed water are sucked into the high-pressure stage compressor 4 of the high-pressure stage turbocharger 6 at a stroke. There is concern that it will adversely affect the health of the company.

即ち、これまでの一段過給の場合、インタークーラに溜まった油分や凝縮水が吸い出される先がエンジン1であったため、該エンジン1に吸い込まれた油分や凝縮水が焼却処理されるだけで特に何も支障がなかったが、二段過給の場合においては、前段の低圧段インタークーラ12に溜まった油分や凝縮水が吸い出される先が高圧段コンプレッサ4となるため、該高圧段コンプレッサ4で通常扱われている空気と比較して格段に比重の大きな油分や凝縮水がまとまった量で高圧段コンプレッサ4のブレード等に衝突することになり、この衝突によりブレード等が大きなダメージを受ける可能性があった。   That is, in the case of the one-stage supercharging so far, since the engine 1 is the destination of the oil and condensed water accumulated in the intercooler, the oil and condensed water sucked into the engine 1 is merely incinerated. Although there was no problem in particular, in the case of two-stage supercharging, the high-pressure stage compressor 4 is the destination of the oil and condensed water collected in the preceding low-pressure stage intercooler 12, so that the high-pressure stage compressor 4 will collide with the blades of the high-pressure compressor 4 with a much larger amount of oil or condensed water than the air normally handled in 4 and the blades will be greatly damaged by this collision. There was a possibility.

本発明は上述の実情に鑑みてなしたもので、低圧段インタークーラに溜まった油分や凝縮水が一気に吸い込まれて衝突する事象から高圧段コンプレッサを保護し得る二段過給システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a two-stage turbocharging system capable of protecting a high-pressure compressor from an event in which oil or condensed water accumulated in the low-pressure intercooler is sucked at once and collides. With the goal.

本発明は、エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気を高圧段インタークーラを介しエンジンへ送給する高圧段ターボチャージャと、前記高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ低圧段インタークーラを介し送給する低圧段ターボチャージャとを備えた二段過給システムであって、前記低圧段インタークーラを前記高圧段インタークーラよりも相対的に高くなるように配置し、前記低圧段インタークーラに溜まった油分や凝縮水をエンジン停止時に重力を利用して抜き出し得るよう該低圧段インタークーラと前記高圧段インタークーラとの間を連絡管により接続したことを特徴とするものである。   The present invention includes a high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas sent from an engine and that compresses the intake air compressed by a high-pressure stage compressor to the engine via a high-pressure stage intercooler, and is sent from the high-pressure stage turbine. A two-stage supercharging system comprising: a low-pressure stage turbocharger that operates a low-pressure stage turbine by exhaust gas and supplies the compressed air compressed by the low-pressure stage compressor to the high-pressure stage compressor via a low-pressure intercooler, The low-pressure stage intercooler is arranged so as to be relatively higher than the high-pressure stage intercooler, and the oil and condensed water accumulated in the low-pressure stage intercooler can be extracted using gravity when the engine is stopped. A cooler and the high-pressure stage intercooler are connected by a connecting pipe. Is shall.

而して、このようにすれば、エンジン停止時に低圧段インタークーラに溜まった油分や凝縮水が重力により連絡管を流下して高圧段インタークーラへと抜き出される結果、低圧段インタークーラにまとまった量の油分や凝縮水が溜まらなくなり、該低圧段インタークーラから油分や凝縮水が高圧段コンプレッサに一気に吸い込まれて衝突する事象が未然に回避される。   In this way, when the engine is stopped, the oil or condensed water accumulated in the low pressure intercooler flows down through the connecting pipe due to gravity and is extracted to the high pressure intercooler. This prevents an amount of oil and condensed water from accumulating, and prevents the oil and condensed water from being sucked into the high-pressure stage compressor from the low-pressure intercooler and colliding with each other.

一方、エンジンの運転時にあっては、高圧段インタークーラ側から低圧段インタークーラ側へ連絡管を通して吸気が抜け出てしまうことになるが、低圧段インタークーラに溜まった油分や凝縮水をエンジン停止時に自重で流下させることが可能な範囲で前記連絡管の口径を必要最小限に絞り込んでおけば良く、そのような必要最小限の口径としておけば、エンジン運転時に高圧段インタークーラ側から低圧段インタークーラ側へ抜け出る吸気のバイパス量は極めて軽微なものとなる。   On the other hand, when the engine is in operation, intake air escapes from the high pressure stage intercooler side through the connecting pipe to the low pressure stage intercooler side. However, oil and condensed water collected in the low pressure stage intercooler is removed when the engine is stopped. The diameter of the connecting pipe should be narrowed to the minimum necessary within the range where it can flow down under its own weight, and if such a minimum required diameter is set, the low pressure stage intercooler from the high pressure stage intercooler side during engine operation. The amount of intake air bypassing to the cooler side is extremely small.

尚、高圧段インタークーラに抜き出された油分や凝縮水は、運転状況によりエンジンへ吸い出されて焼却処理されることになるが、エンジン側に油分や凝縮水が衝突する程度でダメージを受けるような脆弱な箇所が存在しないため、従前通り高圧段インタークーラ以降で油分や凝縮水の衝突対策を講じる必要はない。   The oil and condensed water extracted to the high-pressure stage intercooler will be sucked into the engine and incinerated depending on the operating conditions, but will be damaged to the extent that the oil and condensed water collide with the engine. Since there is no such weak point, it is not necessary to take measures against collision of oil and condensed water after the high-pressure intercooler as before.

また、本発明においては、連絡管の途中にエンジン運転時に高圧段インタークーラ側から低圧段インタークーラ側へ抜け出る吸気のバイパス量を抑制するオリフィスを設けることが好ましく、このようにすれば、連絡管そのものを前述の如き必要最小限の口径にしなくても済み、適切な口径のオリフィスを選定して連絡管の途中に設けるだけで、前記吸気のバイパス量を抑制することが可能となる。   In the present invention, it is preferable to provide an orifice in the middle of the connecting pipe that suppresses the amount of intake air that escapes from the high-pressure stage intercooler to the low-pressure stage intercooler during engine operation. It is not necessary to use the minimum necessary diameter as described above, and the intake air bypass amount can be suppressed by selecting an orifice having an appropriate diameter and providing it in the middle of the connecting pipe.

上記した本発明の二段過給システムによれば、下記の如き種々の優れた効果を奏し得る。   According to the above-described two-stage supercharging system of the present invention, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、低圧段インタークーラにまとまった量の油分や凝縮水が溜まらないようにして、該低圧段インタークーラから油分や凝縮水が高圧段コンプレッサに一気に吸い込まれて衝突する事象を未然に回避することができるので、このような事象から高圧段コンプレッサを確実に保護することができ、高圧段コンプレッサの健全性を長期に亘り確保することができる。   (I) According to the invention described in claim 1 of the present invention, the oil component and the condensed water are not collected in the low pressure stage intercooler, and the oil component and the condensed water are collected from the low pressure stage intercooler. Since it is possible to avoid an event where the compressor is sucked into the compressor at a stroke, it is possible to reliably protect the high-pressure compressor from such an event, and to ensure the soundness of the high-pressure compressor for a long period of time. it can.

(II)本発明の請求項2に記載の発明によれば、連絡管の口径には特別な制約を持たせずに、適切な口径のオリフィスを選定して連絡管の途中に設けるだけで、エンジン運転時に高圧段インタークーラ側から低圧段インタークーラ側へ抜け出る吸気のバイパス量を抑制することができる。   (II) According to the invention described in claim 2 of the present invention, the orifice of the connecting pipe is not particularly restricted, and an orifice having an appropriate diameter is selected and provided in the middle of the connecting pipe. It is possible to suppress the amount of intake air bypassing from the high pressure stage intercooler side to the low pressure stage intercooler side during engine operation.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の要部の詳細を示す拡大図である。It is an enlarged view which shows the detail of the principal part of FIG. 従来例を示す概略図である。It is the schematic which shows a prior art example.

以下、本発明の実施の形態を図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1及び図2は本発明を実施する形態の一例を示すもので、図3と同一の符号を付した部分は同一物を表わしており、図3で説明した従来例の場合と同様に、エンジン1から送出される排気Gによって高圧段タービン3を作動させ且つ高圧段コンプレッサ4で圧縮した吸気Aを高圧段インタークーラ13を介しエンジン1へ送給する高圧段ターボチャージャ6と、前記高圧段タービン3から送出される排気Gによって低圧段タービン8を作動させ且つ低圧段コンプレッサ9で圧縮した吸気Aを前記高圧段コンプレッサ4へ低圧段インタークーラ12を介し送給する低圧段ターボチャージャ10とを備えた二段過給システムとなっているが、前記低圧段インタークーラ12を前記高圧段インタークーラ13よりも相対的に高くなるように配置し、前記低圧段インタークーラ12に溜まった油分や凝縮水を重力を利用して抜き出し得るよう該低圧段インタークーラ12と前記高圧段インタークーラ13との間を連絡管17により接続したところが特徴となっている。   1 and FIG. 2 show an example of an embodiment for carrying out the present invention, and the parts denoted by the same reference numerals as those in FIG. 3 represent the same items, and in the same manner as the conventional example described in FIG. A high-pressure stage turbocharger 6 for operating the high-pressure stage turbine 3 by exhaust G delivered from the engine 1 and supplying the intake air A compressed by the high-pressure stage compressor 4 to the engine 1 via the high-pressure stage intercooler 13; A low-pressure stage turbocharger 10 that operates the low-pressure stage turbine 8 by the exhaust G delivered from the turbine 3 and supplies the intake air A compressed by the low-pressure stage compressor 9 to the high-pressure stage compressor 4 via the low-pressure intercooler 12. The low-pressure stage intercooler 12 is arranged so as to be relatively higher than the high-pressure stage intercooler 13. A characteristic is that the low pressure stage intercooler 12 and the high pressure stage intercooler 13 are connected by a connecting pipe 17 so that oil and condensed water accumulated in the low pressure stage intercooler 12 can be extracted by using gravity. Yes.

即ち、図1では模式的に高圧段インタークーラ13と低圧段インタークーラ12とを並列に図示しているが、実際の配置としては、図2に示す如く、上段に低圧段インタークーラ12を配置し且つ下段に高圧段インタークーラ13を配置した二段構造としてあり、上段の低圧段インタークーラ12と下段の高圧段インタークーラ13とは、水平方向の同じ向きに吸気Aを流すようにして互いの吸気入口12a,13aと吸気出口12b,13bが同じ側面で上下に近接するようにし、これにより油分や凝縮水が溜まり易い夫々の吸気出口12b,13b同士を比較的短い連絡管17によりコンパクトに接続し得るようにしてある。   That is, in FIG. 1, the high-pressure stage intercooler 13 and the low-pressure stage intercooler 12 are schematically shown in parallel. However, as shown in FIG. 2, the low-pressure stage intercooler 12 is arranged in the upper stage. The upper low-pressure stage intercooler 12 and the lower high-pressure stage intercooler 13 are arranged so that the intake air A flows in the same direction in the horizontal direction. The intake inlets 12a, 13a and the intake outlets 12b, 13b are close to each other on the same side, so that the intake outlets 12b, 13b that are likely to collect oil and condensed water are made compact by a relatively short communication pipe 17. It can be connected.

また、本形態例においては、低圧段インタークーラ12に溜まった油分や凝縮水をエンジン1の停止時に自重で流下させることが可能な範囲で必要最小限に流路を絞り込むオリフィス18が前記連絡管17の途中に設けられており、このオリフィス18によりエンジン1の運転時における高圧段インタークーラ13側から低圧段インタークーラ12側への吸気Aのバイパス量が抑制されるようになっている。   Further, in the present embodiment, the orifice 18 for narrowing the flow path to the minimum necessary within a range in which the oil or condensed water accumulated in the low pressure intercooler 12 can flow down by its own weight when the engine 1 is stopped is provided in the connecting pipe. 17, the orifice 18 suppresses the bypass amount of the intake air A from the high pressure stage intercooler 13 side to the low pressure stage intercooler 12 side when the engine 1 is operated.

ここで、前記連絡管17には、例えば油分や凝縮水に対し濡れ性(wettability:主として固体表面に対する液体の親和性)の悪い樹脂チューブ等を採用することが好ましく、そのようにすれば、連絡管17内を油分や凝縮水の液滴が流れ落ち易くなる。   Here, it is preferable to employ a resin tube or the like having poor wettability (wetability: mainly affinity of the liquid with respect to the solid surface), for example, as the communication tube 17. Oil and condensed water droplets easily flow down in the tube 17.

尚、図2においては、その図面に対し直角な方向からの走行風等による空冷で吸気Aを冷却するイメージで図示されたものとなっているが、低圧段インタークーラ12と高圧段インタークーラ13の何れか一方又は両方を、冷却水との熱交換により水冷する形式で構成しても良いことは勿論である。   In FIG. 2, the low-pressure stage intercooler 12 and the high-pressure stage intercooler 13 are illustrated as an image in which the intake air A is cooled by air cooling with traveling wind or the like from a direction perpendicular to the drawing. Of course, either one or both may be configured to be water-cooled by heat exchange with cooling water.

而して、このように二段過給システムを構成すれば、エンジン1の停止時に低圧段インタークーラ12に溜まった油分や凝縮水が重力により連絡管17を流下して高圧段インタークーラ13へと抜き出される結果、低圧段インタークーラ12にまとまった量の油分や凝縮水が溜まらなくなり、該低圧段インタークーラ12から油分や凝縮水が高圧段コンプレッサ4に一気に吸い込まれて衝突する事象が未然に回避される。   Thus, if the two-stage supercharging system is configured in this way, the oil or condensed water accumulated in the low-pressure intercooler 12 when the engine 1 is stopped flows down through the connecting pipe 17 due to gravity to the high-pressure intercooler 13. As a result, the amount of oil and condensed water collected in the low-pressure intercooler 12 does not accumulate, and the oil and condensed water are sucked into the high-pressure compressor 4 from the low-pressure intercooler 12 and collide with each other. To be avoided.

一方、エンジン1の運転時にあっては、高圧段インタークーラ13側から低圧段インタークーラ12側へ連絡管17を通して吸気Aが抜け出てしまうことになるが、本形態例においては、低圧段インタークーラ12に溜まった油分や凝縮水をエンジン1の停止時に自重で流下させることが可能な範囲で前記オリフィス18により必要最小限に流路を絞り込んでいるので、エンジン1の運転時に高圧段インタークーラ13側から低圧段インタークーラ12側へ抜け出る吸気Aのバイパス量は極めて軽微なものとなる。   On the other hand, when the engine 1 is in operation, the intake air A flows out from the high pressure stage intercooler 13 side to the low pressure stage intercooler 12 side through the connecting pipe 17, but in this embodiment, the low pressure stage intercooler is discharged. Since the flow path is narrowed to the minimum necessary by the orifice 18 within a range in which the oil or condensed water accumulated in 12 can flow under its own weight when the engine 1 is stopped, the high-pressure stage intercooler 13 is operated when the engine 1 is operated. The bypass amount of the intake air A that escapes from the side to the low-pressure stage intercooler 12 side is extremely small.

ここで、エンジン1の運転時に高圧段インタークーラ13側から低圧段インタークーラ12側へ抜け出る吸気Aのバイパス量を抑制するにあたっては、前記連絡管17そのものを前述の如き必要最小限の口径とすることも可能であるが、本形態例のようにオリフィス18を用いれば、連絡管17そのものを前述の如き必要最小限の口径にしなくても済み、前記吸気Aのバイパス量を簡便に抑制することが可能となる。   Here, in order to suppress the bypass amount of the intake air A that escapes from the high-pressure stage intercooler 13 side to the low-pressure stage intercooler 12 side during the operation of the engine 1, the connecting pipe 17 itself has the minimum necessary diameter as described above. However, if the orifice 18 is used as in the present embodiment, the connecting pipe 17 itself does not need to have the required minimum diameter as described above, and the bypass amount of the intake air A can be easily suppressed. Is possible.

尚、高圧段インタークーラ13に抜き出された油分や凝縮水は、運転状況によりエンジン1へ吸い出されて焼却処理されることになるが、エンジン1側に油分や凝縮水が衝突する程度でダメージを受けるような脆弱な箇所が存在しないため、従前通り高圧段インタークーラ13以降で油分や凝縮水の衝突対策を講じる必要はない。   The oil and condensed water extracted to the high-pressure stage intercooler 13 are sucked into the engine 1 and incinerated depending on the operating conditions. However, the oil and condensed water collide with the engine 1 side. Since there is no fragile part that is damaged, it is not necessary to take measures against collision of oil and condensed water after the high-pressure intercooler 13 as before.

従って、上記形態例によれば、低圧段インタークーラ12にまとまった量の油分や凝縮水が溜まらないようにして、該低圧段インタークーラ12から油分や凝縮水が高圧段コンプレッサ4に一気に吸い込まれて衝突する事象を未然に回避することができるので、このような事象から高圧段コンプレッサ4を確実に保護することができ、高圧段コンプレッサ4の健全性を長期に亘り確保することができる。   Therefore, according to the above-described embodiment, the oil component and the condensed water are not sucked into the low pressure stage intercooler 12 and the oil component and the condensed water are sucked into the high pressure stage compressor 4 from the low pressure stage intercooler 12 at once. Therefore, the high-pressure stage compressor 4 can be reliably protected from such an event, and the soundness of the high-pressure stage compressor 4 can be ensured over a long period of time.

また、特に本形態例においては、連絡管17の口径には特別な制約を持たせずに、適切な口径のオリフィス18を選定して連絡管17の途中に設けるだけで、エンジン1の運転時に高圧段インタークーラ13側から低圧段インタークーラ12側へ抜け出る吸気Aのバイパス量を抑制することができる。   In particular, in the present embodiment, the diameter of the connecting pipe 17 is not particularly restricted, and an orifice 18 having an appropriate diameter is selected and provided in the middle of the connecting pipe 17. The bypass amount of the intake air A that flows out from the high-pressure stage intercooler 13 side to the low-pressure stage intercooler 12 side can be suppressed.

尚、本発明の二段過給システムは、上述の形態例にのみ限定されるものではなく、連絡管を適切な口径とすることができれば、該連絡管の途中に必ずしもオリフィスを設けなくても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The two-stage supercharging system of the present invention is not limited to the above-described embodiment. If the connecting pipe can have an appropriate diameter, it is not always necessary to provide an orifice in the middle of the connecting pipe. Of course, various modifications can be made without departing from the scope of the present invention.

1 エンジン
3 高圧段タービン
4 高圧段コンプレッサ
6 高圧段ターボチャージャ
8 低圧段タービン
9 低圧段コンプレッサ
10 低圧段ターボチャージャ
12 低圧段インタークーラ
13 高圧段インタークーラ
17 連絡管
18 オリフィス
A 吸気
G 排気
1 Engine 3 High-pressure stage turbine 4 High-pressure stage compressor 6 High-pressure stage turbocharger 8 Low-pressure stage turbine 9 Low-pressure stage compressor 10 Low-pressure stage turbocharger 12 Low-pressure stage intercooler 13 High-pressure stage intercooler 17 Connecting pipe 18 Orifice A Intake G Exhaust gas

Claims (2)

エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気を高圧段インタークーラを介しエンジンへ送給する高圧段ターボチャージャと、前記高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ低圧段インタークーラを介し送給する低圧段ターボチャージャとを備えた二段過給システムであって、前記低圧段インタークーラを前記高圧段インタークーラよりも相対的に高くなるように配置し、前記低圧段インタークーラに溜まった油分や凝縮水をエンジン停止時に重力を利用して抜き出し得るよう該低圧段インタークーラと前記高圧段インタークーラとの間を連絡管により接続したことを特徴とする二段過給システム。   A high-pressure stage turbocharger that operates the high-pressure stage turbine by exhaust gas sent from the engine and supplies the intake air compressed by the high-pressure stage compressor to the engine via the high-pressure stage intercooler, and low pressure by the exhaust gas sent from the high-pressure stage turbine A two-stage supercharging system comprising: a low-pressure stage turbocharger that operates a stage turbine and feeds the intake air compressed by the low-pressure stage compressor to the high-pressure stage compressor via a low-pressure stage intercooler. Is arranged so as to be relatively higher than the high-pressure stage intercooler, and the low-pressure stage intercooler and the high-pressure stage can be extracted using gravity when the engine is stopped. Two-stage excess characterized by connecting to the stage intercooler with a connecting pipe System. 連絡管の途中にエンジン運転時に高圧段インタークーラ側から低圧段インタークーラ側へ抜け出る吸気のバイパス量を抑制するオリフィスを設けたことを特徴とする請求項1に記載の二段過給システム。   2. The two-stage turbocharging system according to claim 1, wherein an orifice that suppresses a bypass amount of intake air that escapes from the high-pressure stage intercooler side to the low-pressure stage intercooler side during engine operation is provided in the middle of the connecting pipe.
JP2017149855A 2017-08-02 2017-08-02 Two-stage supercharging system Pending JP2019027403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017149855A JP2019027403A (en) 2017-08-02 2017-08-02 Two-stage supercharging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017149855A JP2019027403A (en) 2017-08-02 2017-08-02 Two-stage supercharging system

Publications (1)

Publication Number Publication Date
JP2019027403A true JP2019027403A (en) 2019-02-21

Family

ID=65475880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017149855A Pending JP2019027403A (en) 2017-08-02 2017-08-02 Two-stage supercharging system

Country Status (1)

Country Link
JP (1) JP2019027403A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239752A (en) * 2002-02-14 2003-08-27 Avl List Gmbh Cooling system for internal combustion engine
JP2013002406A (en) * 2011-06-20 2013-01-07 Denso Corp Intake device of internal combustion engine
US20140041381A1 (en) * 2012-08-07 2014-02-13 Ford Global Technologies, Llc Method for discharging condensate from a turbocharger arrangement
JP2014074357A (en) * 2012-10-04 2014-04-24 Mitsubishi Motors Corp Engine condensed water discharge device
JP2018105172A (en) * 2016-12-26 2018-07-05 日野自動車株式会社 Two-stage supercharging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239752A (en) * 2002-02-14 2003-08-27 Avl List Gmbh Cooling system for internal combustion engine
JP2013002406A (en) * 2011-06-20 2013-01-07 Denso Corp Intake device of internal combustion engine
US20140041381A1 (en) * 2012-08-07 2014-02-13 Ford Global Technologies, Llc Method for discharging condensate from a turbocharger arrangement
JP2014074357A (en) * 2012-10-04 2014-04-24 Mitsubishi Motors Corp Engine condensed water discharge device
JP2018105172A (en) * 2016-12-26 2018-07-05 日野自動車株式会社 Two-stage supercharging system

Similar Documents

Publication Publication Date Title
US8375926B2 (en) Moisture purging in an EGR system
RU2584391C2 (en) Turbocharged internal combustion engine and method for operation thereof
US8789370B2 (en) Device for supporting a supercharging device
KR101607654B1 (en) A large slow running turbocharged two-stroke internal combustion engine with crossheads and exhaust gas recirculation and method for operating thereof
JP2004308487A (en) Exhaust gas supercharged engine with egr
KR960702886A (en) A LARGE SUPERCHARGED DIESEL ENGINE
FI123593B (en) Internal engine with two turbocharger connected in series
US20090255251A1 (en) Exhaust gas recirculation system for an internal combustion engine
US20180066572A1 (en) Blowby gas treatment device for internal combustion engine with supercharger
CN104471228A (en) Engine boosting system and method therefor
CN108223203B (en) Large-sized turbo-charging two-stroke compression ignition engine with exhaust gas recirculatioon
KR20130126507A (en) Internal combustion engine
JP2012197716A (en) Exhaust loss recovery device
JP2007071179A (en) Two stage supercharging system
JP2019027403A (en) Two-stage supercharging system
JP2018105172A (en) Two-stage supercharging system
KR101947977B1 (en) For cleaning a charge air cooler and an internal combustion engine
JP2010127126A (en) Two-stage supercharging system
US9068474B2 (en) Turbine housing
CN103573386A (en) A waste gas boost and aftertreatment module for a combustion engine and the combustion engine
JP5461226B2 (en) Two-stage turbocharging system
JP2012237231A (en) Blowby gas reflux device
JP2001355453A (en) Intake air cooling device for internal combustion engine with supercharger
JP2011099332A (en) Two-stage supercharging system
KR20140040360A (en) Intercooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20210525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220118